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Abstract. Ray paths of stationary Rossby waves emanating
from a local midlatitude source are usually refracted equator-
ward. However, this general tendency for equatorward prop-
agation is mitigated by the presence of a midlatitude jet that
acts as a zonal waveguide. This opens up the possibility of
circum-global teleconnections and quasi-resonance, which
suggests that the ability to guide a wave in the zonal direction
is an important jet property. This paper investigates waveg-
uidability of idealized midlatitude jets in a barotropic model
on the sphere. A forced-dissipative model configuration with
a local source for Rossby waves is used in order to quantify
waveguidability by diagnosing the latitudinal distribution of
waviness in a longitudinal sector far downstream of the forc-
ing. Systematic sensitivity experiments show that waveguid-
ability increases smoothly with increasing jet amplitude and
with decreasing jet width. This result is contrasted with the
predictions from two idealized theoretical concepts based on
(1) ray tracing as derived from Wentzel–Kramers–Brillouin
(WKB) theory and (2) a sharp jet with a zonally oriented
front of potential vorticity. The existence of two so-called
turning latitudes, which is the key diagnostic for a zonal
waveguide according to ray tracing theory, turns out to be
a poor predictor for the dependence of waveguidability on
jet amplitude and jet width obtained in the numerical simula-
tions. By contrast, the meridional gradient of potential vortic-
ity correlates fairly well with the diagnosed waveguidability.
The poor predictions from ray tracing are not surprising, be-
cause the underlying WKB assumptions are not satisfied in
the current context. The failure of WKB is traced back to the
properties of the underlying equations, and a heuristic argu-
ment is presented to elucidate the potential of the potential
vorticity (PV) gradient to act as a proxy for waveguidability.

1 Introduction

Rossby waves are a ubiquitous feature of the atmospheric
flow in the upper troposphere (Rossby, 1940; Rhines, 2002).
They can transfer energy and momentum across large dis-
tances and sometimes give rise to teleconnections (Wallace
and Gutzler, 1981; Hoskins and Karoly, 1981; Branstator,
2002). The present paper focuses on Rossby waves in mid-
latitudes, where they may occur in the form of Rossby wave
packets (Wirth et al., 2018).

An important aspect in connection with midlatitude
Rossby waves is the extent to which they are ducted in the
zonal direction. As is well known, there is a general tendency
for Rossby waves to be refracted equatorward owing to the
sphericity of the Earth (Hoskins and Karoly, 1981; Hoskins
and Ambrizzi, 1993); in practice, this holds true to the ex-
tent that the background flow varies smoothly. However, the
existence of a zonal jet may change the situation and lead to
preferential propagation in the zonal direction. The latter sit-
uation is often referred to as a zonal waveguide (Branstator,
2002; Schwierz et al., 2004; Martius et al., 2010; Bransta-
tor and Teng, 2017). An interesting question is as follows:
which properties of the background atmosphere constitute
a strong zonal waveguide? Earlier work of Manola et al.
(2013) suggests that strong and narrow jets are associated
with high waveguidability, although their work does not sug-
gest a mechanistic explanation.

To the extent that the midlatitude background flow repre-
sents an efficient waveguide, this may lead to circumglobal
Rossby waves, which in turn can result in circumglobal tele-
connections (Branstator, 2002; Ding and Wang, 2005; Feld-
stein and Dayan, 2008; O’Reilly et al., 2018). If, in addition,
such circumglobal Rossby waves turn quasi-stationary, this
has two implications: first, weather is synchronized across
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112 V. Wirth: Waveguidability of midlatitude jets

long distances (Kornhuber et al., 2019), and, second, there
is the possibility of constructive interference of the Rossby
wave with itself, which may lead to quasi-resonance in the
case of stationary forcing (Petoukhov et al., 2013; Kornhu-
ber et al., 2017b). In fact, a number of previous authors ar-
gued that an increased tendency for quasi-resonance may be
responsible for the increased occurrence of recent Northern
Hemisphere weather extremes (Petoukhov et al., 2013, 2016;
Coumou et al., 2014; Stadtherr et al., 2016; Kornhuber et al.,
2017a; Mann et al., 2017). The issue is interesting because
quasi-resonance would imply that small changes in the prop-
erties of the jet and its associated waveguidability can cause
large changes in Rossby wave amplitude. This scenario pro-
vides additional motivation for a comprehensive understand-
ing of waveguidability.

A key argument in the work of previous authors to sup-
port the theory of quasi-resonance draws on the ideas of ray
tracing, which in turn are based on the Wentzel–Kramers–
Brillouin (WKB) theory (Lighthill, 1967). Ray tracing allows
one to diagnose the refraction of ray path along which the
waves propagate. In this theory, a zonal jet turns into an effi-
cient waveguide as soon as a region of wavelike propagation
in the neighborhood of the jet is straddled by two so-called
turning latitudes on either side of the jet, where a suitably de-
fined “refractive index” turns zero. Not surprisingly, the exis-
tence of two turning latitudes plays a crucial role in the analy-
sis of the above-quoted papers in their attempt to connect the
observations with the theory of quasi-resonance (e.g., Fig. 4
in Petoukhov et al., 2013, Fig. 2 in Petoukhov et al., 2016,
Fig. 1 in Kornhuber et al., 2017a).

The basic tenet of WKB theory is that the scale 1w of the
wave must be much smaller than the scale 1bg on which the
background flow varies, i.e.,

1w

1bg
� 1. (1)

Unfortunately, this assumption is often violated in connec-
tion with Rossby waves. For instance, in the analysis of
Kornhuber et al. (2017a), the two turning latitudes are sep-
arated by about 10◦≈ 1000 km (see their Fig. 1). Assuming
that this distance corresponds to one-half wavelength in the
meridional direction and that the associated scale is given by
the wavelength divided by 2π , one obtains 1bg ≈ 320 km;
but at the same time the zonal wavelength of the waves in
question (wavenumber 7 at midlatitudes) is on the order of
4000 km, which means that 1w ≈ 640 km. In this situation,
the relation (Eq. 1) is badly violated and one would not ex-
pect WKB theory to be applicable at all.

This state of affairs motivates the current work, in which
we consider the waveguidability of midlatitude jets in an ide-
alized modeling framework and investigate the validity of ray
tracing arguments. Our approach is partly based on the work
of Manola et al. (2013), but with modifications and exten-
sions in a number of ways. Key to our analysis is a forced-
dissipative model configuration, which allows us to explicitly

simulate the propagation of stationary Rossby waves emanat-
ing from a local source. To the extent that the path of propa-
gation is confined in the zonal direction, the scenario will be
associated with a high degree of waveguidability. These re-
sults will be compared with the predictions from ray tracing
theory. We will see that the existence of two turning latitudes
is a poor predictor for waveguidability. Instead, the strength
of the meridional gradient of potential vorticity turns out to
be a better proxy for waveguidability in our framework. In
addition, we will corroborate our results by analyzing the un-
derlying equations, which is facilitated by the idealized na-
ture of our model.

The paper is organized as follows. First in Sect. 2 we
present our model, its configuration, and our method of nu-
merical solution. Section 3 reviews the relevant theoretical
concepts before our results are presented and compared with
the theoretical concepts in Sect. 4. Section 5 seeks a deeper
understanding of the numerical results through reference to
the linearized equations, and finally Sect. 6 gives a short sum-
mary and our conclusions.

2 Model configuration and numerical solution

We consider non-divergent barotropic flow on a sphere in a
forced-dissipative configuration. In our analysis we focus on
the stationary part of the solution, which is obtained through
temporal averaging. The key model variable is absolute vor-
ticity q, which plays the role of potential vorticity (PV) in the
barotropic model. It is given by

q(λ,φ, t)= 2�sinφ+ ζ, (2)

where

ζ(λ,φ, t)=
1

a cosφ
∂v

∂λ
−

1
a cosφ

∂

∂φ
(ucosφ) (3)

is relative vorticity, v = (u, v) is the horizontal wind, λ is lon-
gitude, φ is latitude, t is time, a is the Earth’s radius, and� is
the angular velocity of the Earth’s rotation. The dynamics are
determined by the following model equation

Dq
Dt
=−λr (q − q0)+F, (4)

where D/Dt = ∂/∂t + v · ∇ denotes the material derivative,
λr is a damping rate,

q0(φ)= 2�sinφ−
1

a cosφ
d

dφ
(u0 cosφ) (5)

is a zonally symmetric background PV (with u0(φ) denoting
the corresponding background zonal wind), and F represents
the forcing. For later reference we note that

1
a

dq0

dφ
= β(φ)−

d
adφ

[
1

cosφ
d
adφ

(u0 cosφ)
]

(6)
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with

β(φ)=
2�
a

cosφ. (7)

The forcing is implemented as pseudo-orographic forcing
with a rather local orography, i.e.,

F = div(f0vfh) (8)

with f0 = 10−4 s−1, vf = (uf, 0),

uf(φ)= Uf cosφ (9)

(using Uf = 15 m s−1), and with a Gaussian-shaped orogra-
phy

h(λ,φ)= h0 exp

(
−
(λ− λ0)

2

2σ 2
λ

−
(φ−φ0)

2

2σ 2
φ

)
, (10)

where h0 = 0.3, σλ = 10◦, σφ = 10◦, λ0 = 30◦ E, and φ0 =

45◦ N. Our formulation (Eq. 8) for the forcing has the advan-
tage that it integrates to zero upon global integration, which
means that it creates equal amounts of positive and nega-
tive local PV anomalies (in contrast with the forcing used by
Manola et al., 2013). Note also that our forcing F contains a
fixed and specified flow field vf and is, therefore, independent
of the actual flow v. The forcing is localized in the sense that
the spatial scale of the pseudo-orography h is much smaller
than the planetary scale.

The dissipative term in Eq. (4) is designed such that in the
unforced case (F = 0) the background state q0(φ) is a sta-
tionary solution of the equation. Waves, i.e., deviations from
zonal symmetry, arise to the extent that F is nonzero. But
even for nonzero forcing the solution is gradually relaxed
back towards the zonally symmetric background state. As re-
laxation parameter we use λr = (7 d)−1, which was chosen
such that Rossby wave packets emanating from the pseudo-
orography are just about able to propagate once around the
Earth before they get completely dissipated. This facilitates
the interpretation of our solutions because it deliberately
avoids constructive interference of a Rossby wave train with
itself and, hence, the phenomenon of quasi-resonance. It con-
trasts our approach from that of Manola et al. (2013), who
used a slightly smaller value for λr and obtained weak reso-
nance phenomena.

Any deviation from purely zonal flow will be considered
to be an eddy or, more specifically, a wave. Correspondingly,
we will use maps of the meridional wind v in order to visu-
alize the waves.

The flow is initialized with the zonally symmetric back-
ground state. The latter is defined by specifying a zonally
symmetric zonal flow field u0(φ) and computing the cor-
responding q0(φ) via Eq. (2). Our main strategy includes a
set of sensitivity experiments in which we impose different
background flows u0(φ) and investigate their impact on the

stationary part of the solution. More specifically, the back-
ground flow is defined as a superposition of a solid-body
rotation uSB(φ), a midlatitude jet UJ(φ), and a small linear
component L(φ), i.e.,

u0(φ)= uSB(φ)+ uJ(φ)+L(φ). (11)

The solid-body rotation part is given by

uSB(φ)= USB cosφ (12)

with USB = 15 m s−1, and the jet part is given by a Gaussian
profile

uJ(φ)= UJe
−
(φ−φ0)

2

2σ2
J , (13)

with φ0 = 45◦ N. The latter choice is motivated by the work
of Manola et al. (2013), who showed that a Gaussian profile
fits the shape of observed jets fairly well. The two param-
eters UJ and σJ characterize the amplitude and width of the
jet, respectively. The value ofUJ will be varied between 0 and
40 m s−1. For the width parameter we choose σ = 5◦ unless
stated otherwise, and we will refer to this choice as a “nar-
row” jet. Generally, the sum of uSB(φ) and uJ(φ) would be
nonzero at the poles, which is undesirable. We, therefore, in-
cluded the linear function L(φ)= a+ bφ on the right-hand
side of Eq. (11) with the parameters a and b chosen such
that the resulting total profile u0(φ) turns zero at both poles.
Quite deliberately we choose our background wind to be pos-
itive for all latitudes in order to allow stationary wave prop-
agation. As explained below, this enables us to diagnose the
waveguidability of the jet in a meaningful manner. For later
reference we note that

d2uJ

dφ2

∣∣∣∣
φ=φJ

=−
UJ

σ 2
J
. (14)

Numerical solutions are obtained using a standard pseudo-
spectral scheme. To ensure numerical stability, we add a hy-
perdiffusion term

Th =D∇
4 (q − q0) (15)

to the right-hand side of Eq. (4) with D = 1015 m4 s−2. The
term Th is generally small in comparison with the other terms
in Eq. (4) and will be neglected in our theoretical analysis.
The code uses triangular truncation at wavenumber N = 72.
Time-stepping is done using the leapfrog scheme with a time
step of 1t = 20 min, combined with a Robert–Asselin filter
in order to damp the computational mode.

For some choices of the background wind our numerical
solutions turn out to be highly transient. This transience is
due to barotropic instability in the case of a strong narrow
jet. In all our experiments these unstable modes are char-
acterized by a large eastward phase velocity. This is illus-
trated in Fig. 1 showing a Hovmöller diagram of the tran-
sient part of the meridional wind, v′ = v−v, where the over-
bar denotes the time average. The Hovmöller diagram indi-
cates how barotropic instability is triggered downstream of
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Figure 1. Development of a barotropically unstable initial state for
a model setup with a strong narrow jet at 45◦ N. The plot shows a
Hovmöller diagram of the meridional wind component of the tran-
sient part of the flow, v′ = v− v, averaged over 30–60◦ N.

the orography (which is located at λ0 = 30◦). During the first
10 d the instability materializes in the form of an eastward-
propagating Rossby wave packet with nonzero (eastward)
phase speed. Later this wave packet disperses in the zonal
direction, and after about day 30 it has turned into an almost
pure sine wave with eastward phase velocity. This behavior
allows us to eliminate the transient part of the solution by
simple time averaging. More specifically, for each model run
we performed a 100 d long model integration and extracted
the stationary part v of the flow by averaging over the last
90 d (the initial 10 d were discarded in order to eliminate ini-
tial transients).

For illustration we consider two very different background
flows, one with pure solid-body rotation (corresponding to
UJ = 0 m s−1) and one with a strong narrow jet superimposed
(corresponding to UJ = 40 m s−1). The two latitudinal pro-
files UJ(φ) are depicted in Fig. 2. The corresponding numer-
ical solutions for v are presented in Fig. 3. In the case of the

Figure 2. Latitudinal profiles of the background zonal wind u0(φ)
for the strong narrow jet case (solid line) and for the pure solid-body
rotation case (dashed line).

solid-body rotation, the transients have died out after about
10 d such that the solution for v at later times (not shown)
is practically indistinguishable from the time average v dis-
played in Fig. 3a. By contrast, in the strong jet case there is
strong transience throughout the integration, but these tran-
sients are effectively eliminated by the time averaging, leav-
ing us with the forced stationary part v displayed in Fig. 3b.

Apparently, for pure solid-body rotation (Fig. 3a) there is
a wave train emanating from the pseudo-orography; down-
stream of the source the individual troughs and ridges de-
velop a strong NE–SW tilt and the wave train crosses
the Equator and disperses into the Southern Hemisphere
(Hoskins et al., 1977; Hoskins and Karoly, 1981). At the
same time, the wave signal is damped with increasing dis-
tance from the wave source, which is due to our relaxation
term in Eq. (4). The cross-equatorial propagation implies that
some 180◦ downstream of the Rossby wave source the wave
train is found in the Southern Hemisphere, and the Northern
Hemisphere is practically devoid of any wave signal at these
longitudes.

By contrast, the solution for the strong jet case (Fig. 3b)
indicates that the majority of the wave signal remains in the
Northern Hemisphere midlatitudes, and only a rather small
fraction of the wave signal follows a great circle into the
Southern Hemisphere. This behavior is consistent with the
notion that a strong narrow jet acts as a waveguide (Manola
et al., 2013). As a consequence, in this case the majority of
the wave signal 180◦ downstream of the Rossby wave source
has remained in the Northern Hemisphere midlatitudes. Later
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Figure 3. Illustration of the numerical solution for an initial state with (a) pure solid-body rotation and (b) a strong narrow jet superimposed
on solid-body rotation. Displayed in both cases is the time-averaged meridional wind v. The oval-shaped yellow contour is the contour of the
orography h(λ, φ) at 0.3h0.

in Sect. 4.1 we will use the striking difference in behavior be-
tween these two contrasting scenarios to define a quantitative
measure for waveguidability.

3 Theoretical concepts

Before we do so, however, in this section we review some
well-known concepts for the analysis of stationary Rossby
waves and their propagation in a spherical domain. This will
help us to interpret our results in the later parts of the paper.

First, we linearize the model equation (Eq. 4) about the
background state q0(φ) and obtain the following equation for
the (small) perturbation q ′ = q − q0,(
∂

∂t
+ u0

∂

a cosφ∂λ

)
q ′+ v′

dq0

adφ
= S′, (16)

where

S′ =−λrq
′
+F. (17)

Note that the forcing F is now assumed to be small and,
hence, a perturbation term. Expressing, as usual (see, e.g.,
Vallis, 2006), the perturbation variables q ′ and v′ in terms of
a perturbation streamfunction ψ ′, this becomes(
∂

∂t
+ u0

∂

a cosφ∂λ

)
∇

2ψ ′+
∂ψ ′

a cosφ∂λ
dq0

adφ
= S′, (18)

where ∇2 is the two-dimensional Laplace operator in spher-
ical coordinates.

For further progress, it turns out it is convenient to per-
form a coordinate transformation corresponding to a Mer-
cator projection of the sphere onto a plane (see Hoskins and
Karoly, 1981; Hoskins and Ambrizzi, 1993). This is achieved
by defining

x = aλ, (19)

y = a ln
(

1+ sinφ
cosφ

)
. (20)

This transformation is valid everywhere except at the poles;
it transforms Eq. (18) into(
∂

∂t
+ uM

∂

∂x

)(
∂2ψ ′

∂x2 +
∂2ψ ′

∂y2

)
+βM

∂ψ ′

∂x
= S′, (21)

where

uM =
u0

cosφ
(22)

and

βM = cosφ
dq0

adφ
≡

dq0

dy
. (23)

Assuming uM and βM to be constants, one can look for plane
wave solutions of the form

ψ ′(x,y, t)= ψ̂ei(kx+ly−ωt), (24)

where k and l are the wavenumbers in the zonal and merid-
ional directions on the Mercator projection, respectively, and
ω is the angular velocity. Note that k relates to the dimen-
sionless zonal wavenumber s through

s = ka. (25)

Perturbations of the form in Eq. (24) are solutions of Eq. (21)
if the following dispersion relation is satisfied:

ω = uMk−
kβM

k2+ l2
. (26)

Obviously, the advantage of using the new coordinates (x, y)
is that both the Eq. (21) and the associated dispersion rela-
tion (Eq. 26) are formally identical to their Cartesian β-plane
version, if the zonal basic flow u0 is replaced by uM and the
planetary vorticity gradient β is replaced by βM.
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For later reference we note that for a background flow with
pure solid-body rotation as in Eq. (12), one obtains uM =

USB = const and

βM = 2
(
�+

USB

a

)
cos2φ

a
. (27)

The latter is obviously not a constant, which, hence, violates
the assumption made above when deriving the dispersion re-
lation.

3.1 WKB approximation and ray tracing

If the factors uM(φ) and βM(φ) in Eq. (21) depend on lati-
tude instead of being constants, further analytical progress is
possible by assuming that the spatial variation in uM and βM
is small in the sense that their derivatives can be neglected in
comparison with the rate of change resulting from the wave’s
phase. This method is often referred to as WKB approxima-
tion (see, e.g., Lighthill, 1967). In this framework, a plane
wave of the form in Eq. (24) can still be considered to be
an approximate solution of Eq. (21). For the special case of
stationary waves, this immediately leads to

k2
+ l2 =

βM

uM
(28)

or, using Eq. (25),

a2l2 = K̂2
s − s

2, (29)

where the square of the dimensionless stationary wavenum-
ber is defined as

K̂2
s := a

2 βM

uM
. (30)

Note that K̂2
s inherits the property of “weak variation”

from uM and βM. Apparently, for a given zonal wavenum-
ber s, the solution (Eq. 24) is wavelike in those regions
where the meridional wavenumber l2 > 0. In these regions
the Rossby wave packets are free to propagate. For illustra-
tion, Fig. 4 shows profiles of u0, βM, and K̂s = (K̂

2
s )

1/2 for
pure solid-body rotation (panels a, b, c), for the strong nar-
row jet (panels g, h, i), and for a weaker jet (panels d, e, f)
representing a scenario intermediate between the first two.
The profiles of K̂s in Fig. 4 indicate that for solid-body ro-
tation wave propagation in the WKB sense is possible over
most of the sphere except in the regions close to the poles.
In contrast, for background flows with a jet, both flanks of
the jet are characterized by a strip of relatively low (Fig. 4f)
or even imaginary (Fig. 4i) values of K̂s; depending on the
zonal wavenumber, this potentially prohibits wave propaga-
tion in these strips.

Ray tracing arguments consider the propagation of Rossby
waves in those regions which allow wave propagation (e.g.,
Hoskins and Karoly, 1981; Hoskins and Ambrizzi, 1993). It

can be shown that the vector of the group velocity is refracted
towards larger values of K̂2

s as one proceeds in the direction
of the propagation; in addition, latitudes where l = 0 are as-
sociated with a purely zonal group velocity, which implies
that ray paths return back to latitudes where the wave packet
came from. The latter is only valid as long as the background
state does not vanish at those latitudes, which is satisfied
for all background states used in our study. Latitudes where
l(φ) turns zero are aptly called “turning latitudes”.

Turning latitudes can easily be diagnosed from profiles
of K̂s as those latitudes where the function K̂s(φ) intersects
the straight line s = const. Let us, for illustration, consider a
wave with s = 4. Figure 4c then indicates that for solid-body
rotation there are two turning latitudes, one at 60◦ N and one
at 60◦ S. This is consistent with our numerical solution from
Fig. 3a which shows wavelike behavior throughout most of
the domain. By contrast, both cases with a jet superimposed
(Fig. 4f and i) indicate that waves emanating from a source
at 45◦ N encounter two turning latitudes, one at 50◦ N and
another one at 35◦ N. We note in passing that the strong jet
case displayed in Fig. 4g, h, i features regions with a negative
meridional gradient of absolute vorticity and, hence, of βM
(Fig. 4h). This opens up the possibility of barotropic insta-
bility (Charney and Stern, 1962), which we do observe in
our numerical simulations.

The jet scenario is particularly interesting in the present
context. Whenever there are two turning latitudes (l = 0) sep-
arated by a region of wavelike propagation (l > 0), ray trac-
ing arguments predict that Rossby wave packets oscillate be-
tween the two turning latitudes as they propagate eastward.
This means that they are effectively trapped between the two
turning latitudes and, thus, ducted in the zonal direction. In
other words, ray tracing theory suggests that the existence of
two turning latitudes is tantamount to a perfect zonal waveg-
uide. In fact, this seems to be broadly consistent with our
numerical solution shown in Fig. 3b, where the majority of
the wave signal is ducted in the zonal direction: the corre-
sponding function K̂s(φ) shows the existence of two turning
latitudes for any wavenumber 1≤ s ≤ 7, straddling a wave-
like region in the core of the jet.

Let us return to the case of a background flow with pure
solid-body rotation according to Eq. (12), yielding

K̂2
s (φ)= 2

(
�a

USB
+ 1

)
cos2φ (31)

(see Fig. 4c). For this case, ray tracing theory predicts that ray
paths are generally refracted equatorward, because the func-
tion K̂2

s (φ) maximizes right at the Equator. In fact, Hoskins
and Karoly (1981) showed explicitly that ray paths on a
solid-body rotation background flow are identical to great
circles. In addition, K̂2

s goes to zero at both poles such that at
some point the expression on the right-hand side of Eq. (29)
turns negative, leading to a turning latitude close to the pole.
The crucial question in our context is whether the addition
of a jet leads to a second (more equatorward) turning latitude
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Figure 4. Diagnosing the zonally symmetric background state for three different cases: solid-body rotation (a–c), a weak narrow jet with
UJ = 10 m s−1 (d–f), and a strong narrow jet withUJ = 40 m s−1 (g–i). Panels (a, d, g) show the meridional wind profile u0(φ), (b, e, h) show
βM(φ), and (c, f, i) show the dimensionless stationary wavenumber K̂s(φ), where the negative values (shading) represent minus the imaginary
part of K̂s.

which prevents the general equatorward refraction and forces
the ray path back into the zonal direction. The latter scenario
would be equivalent to a perfect zonal waveguide. It is this
prediction from ray tracing theory that led previous authors
to systematically search for the occurrence of two turning lat-
itudes straddling a region of wave propagation. Interestingly,
this prediction is not fully supported by our numerical simu-
lations, as we will show in Sect. 4.

3.2 PV front

Another school of thought associates a midlatitude zonal
waveguide with the existence of a sharp meridional gradient

of PV (Schwierz et al., 2004; Martius et al., 2010). A highly
idealized model that represents this idea would be a zonally
oriented front of PV in the basic state separating two regions
with a completely homogeneous PV distribution (Platzmann,
1949). Note that the idealization made in this model is oppo-
site to that in the WKB approximation: a PV front is equiva-
lent to a discontinuous jump in the background PV, while the
WKB approximation assumes the background state to vary
very gently.

The background flow associated with a PV discontinuity is
a westerly jet with a cusp-like peak at the latitude of the dis-
continuity. Solutions of the linearized equations can be found
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which are wavelike in the zonal direction and evanescent in
the meridional direction like

ψ ′ = ψ̂e−sgn(y−y0)k(y−y0)ei(kx−ωt), (32)

where we assumed Cartesian geometry for simplicity, where
sgn(. . . ) denotes the sign function and where the other sym-
bols have their usual meaning. The resulting dispersion re-
lation is similar (albeit not identical) to the dispersion re-
lation of Rossby waves on a β plane with constant back-
ground flow (see, e.g., Schwierz et al., 2004); in particu-
lar, both kinds of waves have westward phase propagation
with respect to the basic flow. More importantly, however,
these interfacial waves can only propagate in the zonal di-
rection, and their amplitude is exponentially damped away
from the PV front. This is consistent with the concept of the
key importance of PV gradients for the existence of Rossby
waves. It transpires that in this framework a zonal waveguide
is present to the extent that the PV distribution has a zonally
oriented sharp PV gradient separating two regions with near-
homogeneous PV on both sides of the sharp gradient. As we
will see, our numerical solutions turn out to be broadly con-
sistent with this idea.

4 Investigating waveguidability

Based on the theoretical concepts sketched out in the previ-
ous section, we now define waveguidability in the framework
of our numerical model, explore it systematically for various
background flows, and compare the results with predictions
from ray tracing theory.

4.1 Definition of waveguidability

As we argued before, background solid-body rotation can be
considered a reference scenario in which the waves propagate
along great circles from one hemisphere to the other. As a
consequence, wave activity emanating from a local northern
hemispheric Rossby wave source can be expected to be lo-
cated almost entirely in the Southern Hemisphere some 180◦

downstream (in longitude) of the source region. We interpret
this scenario as the lack of waveguidability, and our diagnos-
tic (to be defined shortly) should reflect this by producing a
very small value.

These considerations motivated us to use the following
method to quantify waveguidability. Introducing wave en-
strophy of the stationary part of the solution as

E(λ,φ)=
1
2

(
q∗
)2
, (33)

where q∗ = q−[q] is the deviation of absolute vorticity from
the zonal mean and the overline denotes the time average, we
define a probability density function as

P(φ)=
cosφ
N

λ2∫
λ1

E(λ,φ)dλ, (34)

where a suitable downstream sector is defined through λ1 ≤

λ≤ λ2 with λ1 = 180◦ and λ2 = 270◦ and where N repre-

sents a normalization factor to guarantee that
π/2∫
−π/2

P(φ)dφ =

1. Note that our definition of P(φ) includes a factor cosφ in
order to account for the variation in surface area with latitude.
In other words, the function P(φ) quantifies the likelihood
of encountering wave enstrophy E as a function of latitude in
the downstream sector [λ1, λ2]. Figure 5 shows this proba-
bility density function for our two background profiles from
Fig. 2. Apparently, for solid-body rotation most of the wave
enstrophy in the downstream sector is found in the southern
midlatitudes, consistent with Fig. 3a. On the other hand, for
the strong narrow jet, a large fraction of the wave enstrophy
remains in the northern midlatitudes, which is consistent with
Fig. 3b.

The probability density function P(φ) is now used to de-
fine waveguidability W as the probability of encountering
downstream wave enstrophy in the northern midlatitudes at
φ1 ≤ φ ≤ φ2, i.e.,

W =
φ2∫
φ1

P(φ′)dφ′, (35)

where we set φ1 = 30◦ N and φ2 = 60◦ N. By design, W is a
number between 0 and 1, and it will be expressed in percent
in the following. For the case of solid-body rotation (Fig. 5a),
we obtain W = 7.5 %, indicating that this background flow
has a very low capacity to duct waviness in the zonal direc-
tion. On the other hand, for the strong narrow jet (Fig. 5b)
we obtain W = 75.4 %; although this value is still less than
100 %, it is an order of magnitude larger than for pure solid-
body rotation.

Our method to quantify waveguidability is based on, but
also extends, the ideas from Manola et al. (2013). A key
difference is that we diagnose the meridional distribution
of waviness only in a downstream longitudinal sector rather
than circumglobally, which allows us to associate a percent-
age (i.e., a number between 0 and 100) with the waveguid-
ability of any jet. Nevertheless, our definition of waveguid-
ability is neither universal nor exact. It is not universal be-
cause it only makes sense in our particular model configura-
tion where we consider the stationary response from a local
Rossby wave source in a forced-dissipative framework; it is
not exact because it depends on model details like, for exam-
ple, the exact value of the damping parameter λr, the choice
of the boundaries for the downstream region [λ1, λ2], and
the definition of northern midlatitudes [φ1, φ2]. Neverthe-
less, this diagnostic is appropriate for our purpose, because
we will only study relative changes of W as we change the
background flow.
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Figure 5. Probability density function P(φ) as defined in Eq. (34) for two different background flows: (a) solid-body rotation and (b) a
strong narrow jet with UJ = 40 m s−1. The grey shading indicates the northern midlatitudes, where the forcing is located. Broadly speaking,
the function P(φ) quantifies where the “wavines” can be found far downstream of the Rossby wave source.

4.2 Waveguidability as a function of jet amplitude and
jet width

We now systematically vary the amplitude UJ and the
width σJ of our background jet (Eq. 13) and use our nu-
merical solutions to compute the value of W as explained
above. The result is shown in Fig. 6 (red squares and thin
red line). Apparently, there is a very smooth and gradual
variation in W with both UJ and σJ extending from rather
low values around 10 % to rather high values close to 80 %
(within the ranges considered for UJ and σJ). Qualitatively
the behavior is entirely consistent with the results of Manola
et al. (2013), who suggested increasing waveguidability for
increasing jet amplitude and decreasing jet width.

We tested the sensitivity of our results with respect to the
particular metric (Eq. 33) for quantifying waviness of the sta-
tionary eddies. To this end we repeated the calculations, but
using eddy kinetic energy,

K(λ,φ)=
1
2

{(
u∗
)2
+
(
v∗
)2}

, (36)

as an alternative metric. The corresponding dependence of
waveguidability W on jet amplitude and jet width is very
similar to the behavior shown in Fig. 6, suggesting that our
results do not sensitively depend on the choice of the metric.

4.3 Comparison with theoretical expectations

The numerical results from Fig. 6 are now contrasted with the
predictions from theoretical concepts that we sketched in the
previous section. We start with ray tracing theory, in which
the profile of K̂2

s is the key diagnostic and the existence of
two turning latitudes indicates a perfect waveguide. The dif-
ficulty in applying this theory is that it is not clear, a pri-
ori, which zonal wavenumber to consider as the relevant one.
Our numerical solution generally indicates an entire range
of wavenumbers (Fig. 7). For the background profiles with

solid-body rotation and for weak jets, the Fourier amplitudes
maximize at s = 4 (Fig. 7a and b), while for the stronger
and narrower jets the Fourier amplitudes maximize at s = 3
(Fig. 7c). Taking s = 4 as the relevant zonal wavenumber,
we checked whether there are two turning latitudes bounding
a wavelike region within the jet. Whenever this turned out to
be the case, we associated this jet with the value W = 100 %,
otherwise we set W = 0 %. This literal interpretation of ray
tracing theory is depicted as the solid blue line in Fig. 6. It
is clear that the resulting discontinuous dependence of W
on UJ and σJ (thick blue line) is in stark contrast with the
very gradual behavior obtained in the numerical solutions
(red squares and thin red line). In addition, waveguidabil-
ity diagnosed from the numerical solutions is much less than
100 % in a large part of the range of parameters where ray
tracing theory predicts a perfect waveguide. For instance, a
narrow jet with UJ ≈ 11 m s−1 yields W ≈ 26 % in our simu-
lations – rather than 100 % as predicted by ray tracing theory.

One could argue that the above interpretation of ray trac-
ing theory is too brute force because it does not account for
the existence of an entire spectrum of zonal wavenumbers
(see Fig. 7). We, therefore, considered another extreme sce-
nario by assuming that all zonal wavenumbers have equal
amplitude. The value of W for this scenario was obtained as
the fraction of the number of wavenumbers with two turn-
ing latitudes divided by the number of all wavenumbers al-
lowing wavelike behavior within the jet region. The resulting
values are represented as the other edge of the blue-shaded
area in Fig. 6. Apparently, there is now a more gradual tran-
sition from W = 0 % to W = 100 % as jet amplitude and
jet width are varied, but the transition is still significantly
steeper than for the values obtained from the simulations.
In addition, the scenario with equal amplitude for all rele-
vant zonal wavenumbers is not realistic either, because even
for very weak jets our numerical solutions indicate a maxi-
mum spectral amplitude as some intermediate wavenumber.
In the end, the best estimate for a “fair” prediction from ray
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Figure 6. Dependence of waveguidability W on (a) jet strength UJ (with σJ = 5◦ kept fixed) and (b) jet width σJ (with UJ = 40 m s−1 kept
fixed). The red squares (connected by a thin red line) represent the values of W diagnosed from the numerical solutions. The solid blue line
represents the prediction from ray tracing theory using zonal wavenumber s = 4. The blue shaded area indicates the uncertainty of the ray
tracing prediction associated with the fact that the numerical solution does not have a fixed single zonal wavenumber (see text for details).

Figure 7. Zonal Fourier spectrum of v averaged over 30–60◦ N, for (a) solid-body rotation, (b) a weak narrow jet with UJ = 10 m s−1, and
(c) a strong narrow jet with UJ = 40 m s−1.

tracing theory is a line which is located somewhere in the
middle of the blue shaded area in Fig. 6. This yields a fairly
steep (albeit not discontinuous) transition in both panels of
the figure, which – again – is in stark contrast with the very
gradual curves obtained from the simulations. But even for
jets where the ray tracing interpretation is unambiguous, its
prediction is still far off the result of our simulations: for
the narrow jet with UJ = 20 m s−1, ray tracing theory unam-
biguously predicts W = 100 %, while our analysis suggests
a much smaller value of W ≈ 50 %.

It is enlightening to focus on the behavior in Fig. 6a for
20 m s−1

≤UJ≤ 40 m s−1. Within this range, the numerical
solutions indicate an increase in W from 49 % to 75 %. On
the other hand, the ray tracing prediction is 100 % for all
those jets, and this prediction is unambiguous because there
are two turning latitudes for any zonal wavenumber in ques-
tion. This behavior is due to the fact that within this range of
UJ values the profiles of K̂s(φ) are practically independent
ofUJ. This, in turn, is related to the fact that for narrow strong
jets the meridional gradient of absolute vorticity is dominated
by the meridional curvature of the background wind field. In
this case the meridional gradient of background PV (Eq. 6)
can be approximated as

dq0

adφ
≈−

1
a2

d2u0

dφ2 , (37)

and, using Eqs. (22), (23), and (30), one obtains

K̂2
s ≈−

cos2φ

u0

d2u0

dφ2 . (38)

For our Gaussian jet with a fixed width σJ, this together with
Eq. (14) yields

K̂2
s

∣∣∣
φJ
≈+

cos2φJ

σ 2
J

(39)

at the jet latitude φJ, which is apparently independent of jet
amplitude UJ. This argument explains why ray tracing the-
ory is unable to predict the substantial increase in W when
increasing the jet amplitude from 20 to 40 m s−1. We con-
clude that ray tracing theory does a poor job in predicting the
variability of waveguidability as we vary either the jet ampli-
tude or the jet width.

How does the other theoretical concept, in which the
meridional gradient of PV plays the key role for waveg-
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uidability, fare? To the extent that the PV gradient is a rel-
evant proxy for waveguidability, we expect a close corre-
lation between W and βM at jet latitude. For this reason,
we plot in Fig. 8 the values of W together with the values
of βM at φJ after we non-dimensionalized βM by multiplying
with fs = 8.5× 1011 m s−1 (with the same fs in both pan-
els). Regarding the dependence of W on jet amplitude UJ,
the PV gradient (viz. βM) turns out to be a very good predic-
tor, showing a smooth increase from small to large values. In
particular, the PV gradient increases for values of UJ in the
range 20 m s−1

≤UJ≤ 40 m s−1 (unlike the ray tracing pre-
diction), which is also visible in Fig. 4e and h. Regarding the
dependence of W on jet width σJ, the PV gradient still pre-
dicts a smooth increase from small to large values, although
the blue line is less linear than the red line. Note that, at jet
latitude φJ, the dependence of βM on UJ and σJ can be ob-
tained by combining Eq. (23) with Eq. (6) and using Eq. (14).
This yields

βM (UJ,σJ)≈
2�
a

cos2φJ+
cosφJ

a2
UJ

σ 2
J

= A+B
UJ

σ 2
J

(40)

with positive constants A and B, which explains the linear
increase in βM with increasing UJ in Fig. 8a and the smooth
but nonlinear decrease in βM with increasing σJ in Fig. 8b.

Overall, a comparison between Figs. 6 and 8 shows that,
in our model experiments, waveguidability correlates much
better with the meridional PV gradient than with the pre-
dictions from ray tracing theory. This result is synthesized
in Fig. 9, which shows the results of a systematic parame-
ter sweep varying σJ between 5 and 15◦ in steps of 2.5◦ and
varying UJ between 0 and 40 m s−1 in steps of 5 m s−1. Ap-
parently, the variation in W and βM in this parameter space
is qualitatively similar.

5 Analysis of the linearized equations

We now aim to obtain a deeper understanding for why WKB-
based ray tracing theory provides partly misleading results
regarding waveguidability. For this purpose we linearize the
model equation (Eq. 16) about the background state and re-
strict attention to stationary flow, yielding

u0

a cosφ
∂q ′

∂λ
+
v′

a

dq0

dφ
=−λrq

′
+F. (41)

Note that this equation does not imply any weak-variation as-
sumptions, which means that the coefficients u0 and q0 may
be arbitrary functions of latitude. This means that Eq. (41)
can be applied to a broader class of problems than covered
by WKB theory.

We, first, investigate whether or not our numerical solu-
tions are close to linear. For this purpose we repeated the

simulations with the forcing amplitude h0 reduced by a fac-
tor of 104 and the resulting perturbation fields increased by a
factor of 104. This so-called pseudo-linear solution is shown
in Fig. 10b and compared with the full nonlinear solution
shown in Fig. 10a. As it turns out, both solutions are very
similar, especially regarding their global appearance. There
are only small local differences in the northern midlatitudes,
where the pseudo-linear solution is somewhat more peaked,
suggesting that the effect of the nonlinear terms in the equa-
tion is similar to weak diffusion. Yet, the overall character of
the solution is well captured by linear dynamics.

We now write the perturbation PV in terms of the pertur-
bation streamfunction,

q ′ =∇2ψ ′. (42)

The zonal periodicity of our domain allows a Fourier series
expansion of both F and ψ ′ like

F =

∞∑
s=0

F̂ (s,φ)eisλ, ψ ′ =

∞∑
s=0

ψ̂(s,φ)eisλ. (43)

This yields the following equation for the (possibly complex)
Fourier coefficients

(1− iε̃)
cosφ

∂

∂φ

(
cosφ

∂ψ̂

∂φ

)
+

[
K̃2

s −
(1− iε̃)s2

cos2φ

]
ψ̂

=−i
a3 cosφ
su0

F̂, (44)

with the two dimensionless parameters

ε̃ = a cosφ
λr

su0
(45)

and

K̃2
s = a

2
1
a

dq0
dφ

u0
. (46)

Note that K̃2
s and K̂2

s are related through K̃2
s cos2φ = K̂2

s .
Equation (44) is an inhomogeneous Helmholtz-like equa-
tion, and the appropriate boundary condition is ψ̂ = 0 at both
poles. The term in angle brackets, called T (φ), may be ei-
ther positive or negative. For positive T , the character of
the (homogeneous part of the) solution ψ̂(φ) is oscillatory,
while for negative T the character of the solution ψ̂(φ) is
exponentially evanescent. Our profiles of K̂2

s (φ) shown in
Fig. 4 indicate that the solution has an oscillatory character
for solid-body rotation or for a weak jet, as long as the zonal
wavenumber s is small enough. However, in the case of a
strong jet there are small regions with evanescent behavior
on both sides of the jet where K̂2 is negative. In either case,
the solution ψ̂ at a given latitude not only depends on the lo-
cal coefficients ε̃ and K̂2

s at that latitude, but it also “feels”
the values of these coefficients at other latitudes. In particu-
lar, the solution can “tunnel through” regions where T < 0,
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Figure 8. Same as Fig. 6, except that here the solid blue line represents the non-dimensionalized βM (see text for details).

Figure 9. Results from the parameter sweep involving 5× 9 model simulations with five different values for σJ and nine different values
for UJ: (a) waveguidability W and (b) scaled βM (see text for details).

if that region is small enough and if there is another oscilla-
tory region beyond. This is in stark contrast with ray tracing
theory, which is purely local in the sense that the direction of
the ray path and the amplitude of the solution are given by
the local properties of the basic state. The ray path solution
only needs two turning latitudes in order to be completely
confined in the meridional direction, resulting in a perfect
zonal waveguide. By contrast, the mathematical character of
Eq. (44) indicates that there may be situations in which ray
tracing gives misleading results. In particular, the possibility
of tunneling through finite regions of exponential behavior
may explain why our numerical solutions show a weak wave
signal in the Southern Hemisphere even for the strong narrow
jet (Fig. 3b). Incidentally we note that a similar kind of non-
localness is obtained in the framework of PV thinking due to
the elliptic nature of the equation for PV inversion (Hoskins
et al., 1985).

The other question we want to discuss here is why the
PV gradient within the jet is possibly a more appropriate
proxy for its waveguidability. Let us, for the moment, con-

sider the unforced, undamped version of Eq. (44), which
reads

1
cosφ

∂

∂φ

(
cosφ

∂ψ̂

∂φ

)
+

(
K̃2

s −
s2

cos2φ

)
ψ̂ = 0. (47)

For weak damping, solutions of the full problem (Eq. 44)
should locally be close to solutions of Eq. (47). Interest-
ingly, all the information about the background atmosphere
in the latter equation is contained in the dimensionless pa-
rameter K̃2

s = K̂
2
s /cos2φ. It implies that the solution of this

equation can only depend on the combination of background
fields contained in K̂2

s , and this should lead to a better cor-
relation of waveguidability with K̂2

s than with βM. However,
this is in conflict with our numerical results from Sect. 4.2,
which show a better correlation of waveguidability with βM
than with K̂s. The only possible conclusion is that our re-
sults about waveguidability and their dependence on the
background flow are essentially determined by the forced-
dissipative nature of our model configuration.
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Figure 10. Numerical solution of the stationary part ψ∗ of the perturbation streamfunction for the weak narrow jet with uJ = 10 m s−1:
(a) full nonlinear solution, and (b) pseudo-linear solution. The contours are chosen to be symmetric about zero and the contour interval is
0.4× 107 m2 s−1 (positive contours solid, negative contours dashed).

The remaining question in this line of argument is why the
global character of the solution should depend on dissipation
in an essential manner. At this point we suggest a heuristic
argument according to which the global character of the so-
lution is a result of a competition between the zonal speed of
Rossby wave propagation (in the group velocity sense) and
the dissipation. While the rate of dissipation is constant and
fixed (being equal to λr), the speed of zonal propagation may
depend, inter alia, on the meridional gradient of PV. The last
idea would, indeed, be consistent with the concept of down-
stream development in the framework of PV thinking (see
Fig. 8 in Wirth et al., 2018 for details): a given PV anomaly
at the leading edge of an Rossby wave packet induces a
new PV anomaly on the downstream side, and the speed of
downstream propagation should be related to the strength of
the meridional PV gradient. In competition against the om-
nipresent dissipation, those parts of the Rossby wave field
that have a larger propagation speed can travel longer dis-
tances before they are dissipated. In a sense, regions with
large PV gradients are like “express lanes” for Rossby wave
packets. On the other hand, those parts of the wave that de-
viate from the “express lane” soon find themselves in re-
gions with a much smaller meridional PV gradient, imply-
ing much slower zonal propagation. Since these wave pack-
ets are subject to the same damping rate, they can travel only
much smaller distances before they are dissipated. It follows
that 180◦ downstream of our local forcing only those wave
packets that used the “express lane” have survived signifi-
cant damping, and this might explain why waveguidability
as defined in Sect. 4.1 is large for jets with large βM.

6 Summary, discussion, and conclusions

In this paper we investigated the waveguidability of ideal-
ized midlatitude jets using a barotropic model for flow on
a sphere. Our focus was on stationary waves in a forced-

dissipative model configuration with a local source for
Rossby waves. This setup allowed us to quantify waveguid-
ability (in percent) by diagnosing the latitudinal distribution
of the explicitly simulated wave enstrophy in a longitudinal
sector far downstream of the forcing. We carried out a sys-
tematic sensitivity study by varying the amplitude and the
width of the jet.

Our numerical solutions indicate that waveguidability in-
creases smoothly with increasing jet amplitude and with de-
creasing jet width. This result is in contrast to the prediction
from WKB-based ray tracing theory, where the waveguide is
either perfect or nonexistent, depending on the existence or
nonexistence of two turning latitudes (one on either side of
the jet). Another weakness of ray tracing theory is that the
profile of the all-important stationary wavenumber saturates
at some point for fairly narrow and strong jets; this theory
would, therefore, not predict any further increase in waveg-
uidability as the jet’s amplitude is further increased, which is
in conflict with the simulated behavior. To be sure, the over-
all poor predictive power of ray tracing theory in the current
application is not surprising because the underlying WKB
assumptions are not satisfied. We conclude that a literal ap-
plication of ray tracing theory can be misleading; in partic-
ular, the existence of two turning latitudes is by no means a
binary event at which the waveguidability suddenly changes
in a fundamental way.

In addition, we found that waveguidability in our simu-
lations correlates much better with the meridional gradient
of background PV at jet latitude than with the predictions
from ray tracing theory: both the meridional PV gradient and
waveguidability vary smoothly as a function of jet amplitude
and jet width. This result is consistent with the idealized con-
cept of Rossby waves on a zonally oriented PV front suggest-
ing that sharp meridional gradients of PV are conducive to
zonal Rossby wave propagation. The good correlation with
the background PV gradient was argued to be due to the
forced-dissipative character of our model setup. A heuristic
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argument was presented based on the idea that the reach of a
Rossby wave packet is determined by a balance between the
dissipation rate and the speed of propagation of the Rossby
wave packet; to the extent that the zonal speed of propagation
is proportional to the meridional PV gradient, waveguidabil-
ity in the zonal direction should, indeed, be related to the
PV gradient.

Analysis of the linearized model equation (but without
the WKB approximation) indicates that the amplitude of the
forced stationary solution is governed by an inhomogeneous
one-dimensional Helmholtz equation. This implies that the
solution at a given grid point depends on the spatial dis-
tribution of the coefficients in a nonlocal fashion. Further-
more, a wave-like solution can tunnel through small regions
of evanescent behavior, which means that the existence of
two turning latitudes is not necessarily equivalent to a perfect
waveguide. By contrast, the ray path solution only depends
on the local values of the coefficients which prevents the pos-
sibility of tunneling. This argument helps to understand why
the literal interpretation of ray tracing theory can be mislead-
ing and why the existence of two turning latitudes is often
associated with values of waveguidability well below 100 %.

Overall, our analysis is not very affirmative regarding
the utility of ray tracing for diagnosing waveguidability of
Rossby waves in midlatitude jets. This seems to be in conflict
with results from earlier publications such as Hoskins and
Ambrizzi (1993), who extended the WKB concept to longi-
tudinally varying background flows and showed that the spa-
tial distribution of the stationary wavenumber has a certain
amount of predictive power. Later, it was even argued that
this kind of analysis may be useful in explaining the occur-
rence of persistent regimes and climate extremes (Hoskins
and Woollings, 2015). The point is that these applications
mostly rely on a broad qualitative interpretation of ray trac-
ing. In fact, a comparison of the global distribution of the
fields of K̂s and βM in Hoskins and Ambrizzi (1993, their
Fig. 3) indicates that both fields suggest broadly the same be-
havior regarding the horizontal propagation of Rossby waves
on the sphere. In other words, as long as the interpretation
does not focus on the details of the diagnosed fields, it may
well be qualitatively consistent with the observed behavior.
What we have shown here is that the literal application of
ray tracing and, in particular, the search for two turning lat-
itudes as indication for a perfect waveguide must be consid-
ered with care.

Despite these caveats, an analysis that focuses on the ex-
istence of two turning latitudes in the background flow may
still have some merit. As suggested by our Fig. 6, such a
binary definition of events distinguishes background states
with smaller values of W from background states with larger
values of W . In a statistical analysis which – from a large
sample – distinguishes episodes with and without two turn-
ing latitudes, the sample with two turning latitudes will, on
average, have larger waveguidability than the complemen-
tary sample without two turning latitudes. To the extent that

the sample with two turning latitudes is associated with spe-
cific properties which the complementary sample is lacking,
these properties are likely to have a systematic association
with waveguidability.

On the more constructive side, our work suggests that the
meridional PV gradient might be a suitable proxy for waveg-
uidability. Obviously, this hypothesis is currently lacking any
underlying closed theory. In addition, it should be tested in
more realistic modeling frameworks, because our barotropic
model entirely lacks the partitioning of PV into a contribu-
tion due to vorticity and a contribution due to static stability.
By contrast, Ertel PV in a primitive equation model would
be able to capture the sharp gradients of PV on isentropes at
the boundary between the upper troposphere and the lower
stratosphere (Martius et al., 2010). It is left for future work
to explore suitable diagnostics for waveguidability in such
more realistic frameworks.
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