

Supplement of

A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017

Mauro Hermann et al.

Correspondence to: Mauro Hermann (mauro.hermann@env.ethz.ch)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary material

Table S1. Melt events EV1–EV22 listed with their start and end date ("YYYY-MM-DD HH"), duration (dur.), maximum elevation (ME), maximum T2M at maximum elevation ($T2M_{max}^{ME}$), minimum melt extent (min. A.) and maximum melt extent (max. A.) – sorted by date.

ID	start	end	dur.	ME	$T2M_{max}^{ME}$	min. A.	max. A.
			[d]	[m]	[°C]	[frac]	[frac]
1	1979-07-24 18	1979-07-26 18	2.25	2606	-1.17	0.14	0.46
2	1981-06-25 18	1981-06-27 18	2.25	2549	-1.29	0.13	0.40
3	1981-07-21 12	1981-07-24 18	3.5	2729	2.44	0.13	0.38
4	1983-06-30 18	1983-07-01 18	1.25	2606	-0.27	0.10	0.43
5	1984-07-03 18	1984-07-08 18	5.25	2549	-1.72	0.04	0.45
6	1984-07-22 18	1984-07-24 18	2.25	2537	-0.57	0.05	0.41
7	1984-07-26 18	1984-07-27 18	1.25	2333	-0.06	0.19	0.38
8	1985-08-12 18	1985-08-14 18	2.25	2810	-0.51	0.14	0.34
9	1986-07-02 18	1986-07-03 18	1.25	2394	0.67	0.04	0.31
10	1986-07-20 18	1986-07-22 18	2.25	2729	2.43	0.16	0.32
11	1987-06-12 18	1987-06-13 18	1.25	2717	-1.17	0.15	0.36
12	1987-06-18 18	1987-06-22 18	4.25	2826	-1.87	0.02	0.40
13	1987-08-07 18	1987-08-10 18	3.25	2734	-1.07	0.03	0.49
14	1988-07-04 12	1988-07-12 18	8.5	2658	-0.10	0.05	0.45
15	1988-07-21 18	1988-07-22 18	1.25	2413	0.27	0.05	0.38
16	1989-07-13 18	1989-07-20 18	7.25	2810	-1.27	0.09	0.45
17	1990-07-28 18	1990-07-30 18	2.25	2748	-0.43	0.06	0.46
18	1990-08-05 18	1990-08-06 18	1.25	2628	-1.27	0.09	0.38
19	1991-06-18 18	1991-06-19 18	1.25	2810	-1.62	0.04	0.34
20	1991-06-26 18	1991-06-27 18	1.25	2394	-1.53	0.10	0.29
21	1991-06-29 12	1991-07-02 18	3.5	2606	-0.47	0.04	0.31
22	1991-07-04 18	1991-07-13 18	9.25	3000	-1.46	0.02	0.44

ID	start	end	dur.	ME	T2M _{max}	min. A.	max. A.
ID			[d]	[m]	[°C]	[frac]	[frac]
23	1994-07-07 18	1994-07-08 18	1.25	2443	0.55	0.09	0.43
24	1995-06-30 18	1995-07-03 18	3.25	2810	-0.25	0.05	0.40
25	1995-07-12 18	1995-07-16 18	4.25	2969	-0.36	0.09	0.51
26	1997-08-11 18	1997-08-13 18	2.25	2970	0.99	0.12	0.42
27	1998-08-01 18	1998-08-03 18	2.25	2637	-0.83	0.09	0.39
28	1999-06-28 18	1999-07-03 18	5.25	2721	-0.62	0.05	0.45
29	1999-07-25 18	1999-07-31 18	6.25	2628	-0.89	0.05	0.41
30	1999-08-02 18	1999-08-06 18	4.25	2826	-2.56	0.05	0.39
31	2000-07-28 18	2000-07-29 18	1.25	2637	0.49	0.22	0.47
32	2000-08-01 00	2000-08-02 18	2	2729	0.61	0.21	0.38
33	2000-08-19 18	2000-08-21 18	2.25	2634	0.43	0.10	0.34
34	2002-06-11 18	2002-06-14 18	3.25	2810	-0.67	0.02	0.48
35	2002-06-27 18	2002-07-03 18	6.25	3156	-0.44	0.08	0.84
36	2002-07-06 18	2002-07-07 18	1.25	2444	1.23	0.05	0.40
37	2002-07-20 18	2002-07-21 18	1.25	2719	-0.67	0.13	0.45
38	2003-08-26 18	2003-08-30 18	4.25	2729	-0.30	0.08	0.43
39	2004-06-18 12	2004-06-23 18	5.5	2826	-1.05	0.04	0.42
40	2004-07-05 18	2004-07-12 18	7.25	3175	-0.15	0.08	0.60
41	2004-08-11 18	2004-08-12 18	1.25	2810	-0.06	0.26	0.47
42	2005-06-13 18	2005-06-16 18	3.25	2628	0.67	0.05	0.49
43	2005-07-02 18	2005-07-03 18	1.25	2486	-0.17	0.07	0.44
44	2005-07-13 18	2005-07-15 18	2.25	2729	2.98	0.18	0.43
45	2005-07-21 18	2005-07-30 18	9.25	2916	-0.58	0.12	0.65
46	2006-07-19 18	2006-07-28 18	9.25	3100	-0.51	0.07	0.59
47	2006-08-03 18	2006-08-05 18	2.25	2606	-0.98	0.12	0.40
48	2006-08-15 00	2006-08-18 18	4	2758	-0.91	0.16	0.53
49	2007-06-10 18	2007-06-13 18	3.25	2637	1.88	0.11	0.42
50	2007-06-22 18	2007-06-29 18	7.25	2637	5.04	0.04	0.49
51	2007-07-06 18	2007-07-22 18	16.25	2658	0.70	0.05	0.48
52	2007-07-24 18	2007-07-25 18	1.25	2381	-2.37	0.08	0.39
53	2008-06-13 18	2008-06-14 18	1.25	2637	1.14	0.24	0.42
54	2008-06-17 18	2008-06-18 18	1.25	2482	2.37	0.06	0.31
55	2008-07-05 18	2008-07-06 18	1.25	2786	-0.91	0.16	0.50

ID	start	end	dur.	ME	T2M ^{ME} max	min. A.	max. A.
	start	enu	[d]	[m]	[°C]	[frac]	[frac]
56	2008-07-28 18	2008-07-31 18	3.25	2537	0.59	0.05	0.47
57	2009-07-06 18	2009-07-16 18	10.25	2943	-0.10	0.08	0.57
58	2009-07-20 18	2009-07-23 18	3.25	2486	0.09	0.06	0.46
59	2010-07-18 18	2010-07-19 18	1.25	2486	0.11	0.01	0.35
60	2010-07-23 18	2010-07-27 18	4.25	2486	-0.88	0.08	0.38
61	2010-07-29 18	2010-08-02 18	4.25	2537	-1.22	0.07	0.39
62	2010-08-09 18	2010-08-10 18	1.25	2455	-0.28	0.06	0.30
63	2010-08-15 18	2010-08-16 18	1.25	2628	-0.26	0.07	0.32
64	2011-06-13 18	2011-06-15 18	2.25	2856	0.93	0.01	0.44
65	2011-07-06 18	2011-07-10 18	4.25	2916	-0.78	0.10	0.49
66	2011-07-13 18	2011-07-15 18	2.25	2455	0.20	0.07	0.51
67	2011-07-18 18	2011-07-23 18	5.25	2526	0.03	0.07	0.44
68	2012-06-15 18	2012-06-29 18	14.25	2916	-1.81	0.03	0.56
69	2012-07-02 18	2012-07-17 18	15.25	3175	-0.13	0.05	0.95
70	2012-07-27 18	2012-08-08 18	12.25	3100	-1.08	0.06	0.70
71	2013-07-24 18	2013-07-28 18	4.25	2826	-2.44	0.06	0.46
72	2013-07-30 18	2013-08-02 18	3.25	2608	-1.07	0.07	0.38
73	2015-07-02 18	2015-07-09 18	7.25	2605	0.43	0.09	0.53
74	2016-06-10 18	2016-06-14 18	4.25	2652	-1.47	0.05	0.44
75	2016-06-22 18	2016-06-25 18	3.25	2581	2.50	0.08	0.35
76	2016-07-18 18	2016-07-24 18	6.25	2607	0.25	0.09	0.50
77	2017-07-25 12	2017-07-27 18	2.5	2628	1.98	0.11	0.49

Table S3. As Table S1 for EV56–EV77.

Figure S1. LFP maps of the median potential temperature anomaly θ' wrt. local climatology θ_{cl} at t = -192 h (a) during all melt events, (c) during EV69, and (b,d) the respective anomaly wrt. the climatological summertime air streams. The contours indicate elevation in 500 m intervals with the 2000 m isoline in solid. Summit and Southdome are marked with triangles.

Figure S2. The trajectory density of melt air masses arriving during all large-scale melt events at (a) t = -192 h, (b) t = -144 h, and (c) t = -96 h. Trajectory density results from gridding all melt air masses at a specific time before the event, using the gridding tool v2.4.2 by Škerlak (2014) with a radius of 200 km and with the filtering option.

Figure S3. As Fig. 7 but for (a) total column water vapor (*TCV*), (b) total column liquid ice water (*TCIW*), (c) surface longwave downward radiation (*STRD*), (d) net surface longwave radiation (*STR*), (e) net surface shortwave radiation (*SSR*) during EV69 melt time steps, and (f–j) their anomalies wrt. climatology.

Figure S4. As Fig. S3 but for melt time steps during all large-scale melt events.

References

Škerlak, B.: Climatology and process studies of tropopause folds, cross-tropopause exchange, and transport into the boundary layer, Ph.D. thesis, ETH Zurich, https://doi.org/10.3929/ethz-a-010256937, 2014.