
Weather Clim. Dynam., 2, 867–891, 2021
https://doi.org/10.5194/wcd-2-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive 3-D visual analysis of ERA5 data: improving diagnostic
indices for marine cold air outbreaks and polar lows
Marcel Meyer1,3, Iuliia Polkova2,3, Kameswar Rao Modali1, Laura Schaffer2, Johanna Baehr2,3, Stephan Olbrich1,3,
and Marc Rautenhaus1,3

1Regional Computing Centre, Visual Data Analysis Group, Universität Hamburg, Hamburg, Germany
2Institute of Oceanography, Universität Hamburg, Hamburg, Germany
3Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany

Correspondence: Marcel Meyer (marcel.meyer@uni-hamburg.de)

Received: 19 April 2021 – Discussion started: 27 April 2021
Revised: 2 August 2021 – Accepted: 6 August 2021 – Published: 15 September 2021

Abstract. Recent advances in visual data analysis are well
suited to gain insights into dynamical processes in the at-
mosphere. We apply novel methods for three-dimensional
(3-D) interactive visual data analysis to investigate marine
cold air outbreaks (MCAOs) and polar lows (PLs) in the re-
cently released ERA5 reanalysis data. Our study aims at re-
vealing 3-D perspectives on MCAOs and PLs in ERA5 and
at improving the diagnostic indices to capture these weather
events in long-term assessments on seasonal and climatologi-
cal timescales. Using an extended version of the open-source
visualization framework Met.3D, we explore 3-D perspec-
tives on the structure and dynamics of MCAOs and PLs and
relate these to previously used diagnostic indices. Motivated
by the 3-D visual analysis of selected MCAO and PL cases,
we conceptualize alternative index variants that capture the
vertical extent of MCAOs and their distance to the dynami-
cal tropopause. The new index variants are evaluated, along
with previously used indices, with a focus on their skill as a
proxy for the occurrence of PLs. Testing the association of
diagnostic indices with observed PLs in the Barents and the
Nordic seas for the years 2002–2011 shows that the new in-
dex variants based on the vertical structure of cold air masses
are more skilful in distinguishing the times and locations of
PLs, compared with conventional indices based on sea–air
temperature difference only. We thus propose using the new
diagnostics for further analyses in climate predictions and
climatological studies. The methods for visual data analysis
applied here are available as an open-source tool and can be
used generically for interactive 3-D visual analysis of atmo-

spheric processes in ERA5 and other gridded meteorological
data.

1 Introduction

Marine cold air outbreaks (MCAOs) are transport events of
cold air from sea-ice- or snow-covered regions towards rela-
tively warmer oceans (Rasmussen, 1983; Kolstad and Brace-
girdle, 2008; Gryschka, 2018). Understanding MCAOs is rel-
evant because they represent conditions favourable for ex-
treme weather phenomena known as polar lows (PLs; Ras-
mussen, 1983; Ese et al., 1988; Kolstad, 2011; Michel et al.,
2018). PLs are intense mesoscale cyclones, which have been
called “Arctic hurricanes” (Nordeng, 1992; Føre et al., 2012;
Bracegirdle, 2012) due to similarities with tropical hurri-
canes including symmetric vortex-like cloud patterns. PLs
in the Northern Hemisphere usually occur during winter and
are characterized by strong winds, heavy precipitation, and
severe marine icing, which pose substantial risks to marine
activities and infrastructures (Aarnes et al., 2018). Improving
the understanding of MCAOs and their relation to PLs could
improve marine services in the polar regions. In addition
to representing conditions conducive for extreme weather,
MCAOs are also important in the context of deep water for-
mation as they contribute to cooling of the ocean surface (Pa-
pritz and Spengler, 2017).

To facilitate statistical statements about atmospheric pro-
cesses in, e.g., climatological or climate prediction studies,
weather phenomena are commonly characterized by means
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of diagnostic indices that abstract a complex atmospheric
structure into a simple numerical value. To define such in-
dices for MCAOs and PLs, various interdependent factors
need to be considered, and understanding the link between
MCAOs and PLs remains an area of active research (Claud
et al., 2007; Kolstad and Bracegirdle, 2008; Kolstad, 2011;
Terpstra et al., 2016; Afargan-Gerstman et al., 2020; Stoll
et al., 2021). To diagnose MCAOs, most previous studies
used an index that represents a simplified version of the
Brunt–Väisälä frequency for quantifying static stability, by
considering only the sign of the vertical temperature gradi-
ent between potential skin temperature of the ocean and po-
tential air temperature aloft (e.g. Papritz et al., 2015; Kol-
stad, 2017). The temperature gradient is termed MCAO in-
dex, where positive potential temperature difference between
the ocean surface and the air aloft indicates vertical insta-
bility. Previously used MCAO indices (Papritz et al., 2015;
Kolstad, 2017) have the form

mθ = θskin− θ850 hPa, (1)

or variations thereof (Kolstad et al., 2009; Fletcher et al.,
2016; Papritz and Sodemann, 2018; Landgren et al., 2019),
where θskin is the potential skin temperature (which is the sea
surface potential temperature), and θ850 hPa is the potential air
temperature at 850 hPa. Other related indices use the differ-
ence between the temperature at a certain height and the sea
surface temperature (e.g. Zappa et al., 2014). In what follows,
we will summarize the different variants of previously used
MCAO indices using the term conventional MCAO index (to
distinguish these from other metrics considered here). The
vertical level at which air aloft is considered for calculation
of the conventional MCAO index (850 hPa in Eq. 1) will be
referred to as the characteristic pressure level.

The choice of the characteristic pressure level used for
computing the conventional MCAO index varies substan-
tially amongst previous studies – from 500 hPa (Landgren
et al., 2019), to 700 hPa (Kolstad et al., 2009), 800 hPa
(Fletcher et al., 2016), 850 hPa (Papritz et al., 2015; Kol-
stad, 2017; Polkova et al., 2019, 2021), and 900 hPa (Pa-
pritz and Sodemann, 2018). Consequently, the magnitude of
the MCAO index values, as well as the geographical extent
of areas with positive MCAO index values, differs between
studies, and a classification into weak, moderate, and strong
MCAO events requires adjustment accordingly. For small
variations in the characteristic pressure level, the effect on
index values can be small if the pressure level is located in-
side of a particularly well-mixed layer with a fairly uniform
vertical profile of potential air temperature. However, large
variations of the characteristic pressure level can have a sub-
stantial effect on index values. On the one hand, the variety
of different pressure levels considered in different previously
used MCAO indices provide a diverse and valuable knowl-
edge base, but on the other hand it also complicates com-
parison and interpretation of results from different studies.

Open questions remain on the appropriate choice of a char-
acteristic pressure level and the sensitivity of results to this
choice (e.g. the frequency of occurrence of MCAOs in cli-
matological assessments). Since MCAOs have been reported
to be a necessary but not a sufficient condition for the occur-
rence of PLs (Kolstad, 2011), an open question is whether a
diagnosed presence of MCAOs can be useful as a proxy for
the occurrence of PLs. A recent climatological study finds a
weak relation between MCAOs and the occurrence of polar
mesoscale cyclones, including PLs (Michel et al., 2018). In
this study, we investigate the effect of the choice of the char-
acteristic pressure level for the MCAO index and the vertical
structure of MCAOs in relation to PLs. We develop and test
alternative indices that do not rely on a subjective element in
the choice of a characteristic pressure level but instead take
into account the vertical structure of MCAOs and PLs. We
quantify the link between MCAO indices and the time and
location of observed PLs and propose a simple method for
determining the characteristic pressure level that maximizes
this link.

For our analyses we make use of recently released re-
analysis data and innovative methods for three-dimensional
(3-D) interactive visual analysis (IVA). The global reanaly-
sis dataset ERA5 (in the following referred to as ERA5), re-
cently released by the European Centre for Medium-Range
Weather Forecasts (ECMWF), is considered to be the most
detailed and highest-quality global reanalysis data available
(Hersbach et al., 2020; Copernicus Climate Change Ser-
vice , C3S). The increased spatial and temporal resolution
of ERA5, compared to its predecessors, along with its large
temporal coverage, allows for both 3-D analysis of mesoscale
atmospheric phenomena during single weather events and
statistical analysis over multiple decades. Recent advances
in graphics hardware along with innovative methods for vi-
sual data analysis facilitate the interactive 3-D visual explo-
ration of ERA5 and other gridded meteorological data. Raut-
enhaus et al. (2018) provided a comprehensive overview of
methods and potential benefits. Examples of 3-D IVA include
supercell tornados (Orf et al., 2017), jet-stream core lines
(Kern et al., 2018), and synoptic-scale fronts (Kern et al.,
2019). The 3-D IVA provides more comprehensive impres-
sions and can help improve our understanding of meteoro-
logical phenomena, for example by rapid visual investiga-
tion of dynamical processes and by exploration of unknown
features for formulating new hypotheses. The potential of
3-D depictions has long been appreciated by meteorologists
(see e.g. Uccellini, 1990; Rautenhaus et al., 2018). How-
ever, despite novel 3-D visualization being available in sev-
eral frameworks (open-source examples include ParaView,
Ayachit, 2015; Vapor, Li et al., 2019; Met.3D, Rautenhaus
et al., 2015b, a), meteorological studies are still mainly con-
ducted by means of visualizing static 2-D slices. Rautenhaus
et al. (2018) discussed reasons for the slow uptake of mod-
ern visualization methods in the atmospheric sciences, in-
cluding usability aspects as well as too few studies in the
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atmospheric community that demonstrate the potential bene-
fits to be gained from, e.g., 3-D IVA. In this study, we extend
and apply the open-source interactive visualization frame-
work Met.3D (Rautenhaus et al., 2015b, a) for interactive
3-D investigation of the structure of MCAOs and PLs as rep-
resented in ERA5. We investigate to which level of detail
the 3-D structure of MCAOs and PLs is resolved in ERA5,
demonstrate the potential of 3-D IVA as a tool to under-
stand atmospheric processes, and use insights from 3-D IVA
as inspiration for conceptualizing improvements to existing
MCAO and PL indices.

The objectives for this study are (a) to obtain a 3-D per-
spective on the structure and dynamics of MCAOs and PLs,
(b) to relate the 3-D structure to previously used diagnostic
indices for representing these weather events on seasonal and
climatological timescales, and (c) to evaluate diagnostic in-
dices in the context of observed PLs for the main purpose of
testing whether these indices could serve as proxies for PLs.
The article is structured as follows. Section 2 describes the
data, the visual analysis setup, the candidates for improved
indices, and the methodology to evaluate these. In Sect. 3 we
illustrate insights gained from the 3-D visual analysis and
describe the evaluation of diagnostic indices. The article is
concluded in Sect. 4.

2 Data and methods

Our analysis starts with the interactive 3-D visual exploration
of selected cases of MCAOs and PLs in ERA5 (Sect. 2.1 and
2.2). Subsequently, we conceptualize alternative diagnostic
indices (Sect. 2.3) using insights from the 3-D IVA as in-
spiration. The performance of the new indices is tested in
comparison with conventional MCAO indices by assessing
associations with observed PLs (Sect. 2.4).

2.1 ERA5 data

Our analyses are based on the recently released ECMWF
ERA5 reanalysis, with a spatial resolution of approximately
31 km horizontally, 137 vertical model levels, and hourly
temporal resolution (Hersbach et al., 2020; Copernicus Cli-
mate Change Service , C3S). We analyse data covering the
time interval 2002–2011, which is chosen to cover the times
of observed PLs in the STARS data (Sect. 2.4). For use with
Met.3D, data are regridded to a regular longitude–latitude
grid (0.25◦ horizontal resolution) and to a polar stereographic
grid (25 km horizontal resolution). In the vertical, all model
levels are retained; if necessary, vertical interpolation be-
tween model levels is conducted on-the-fly by Met.3D.

2.2 Interactive visual analysis of ERA5 with Met.3D

Met.3D is a meteorology-specific 3-D visualization frame-
work that provides the user with various methods for IVA
of gridded meteorological data (Rautenhaus et al., 2015b, a).

The framework focuses on interactive rapid exploration of
the 3-D atmosphere and on uncertainty represented by en-
semble simulations. It is designed to bridge the gap between
2-D visualizations (including horizontal maps, vertical cross
sections, vertical profiles), 3-D visualizations (including iso-
surfaces, direct volume rendering, 3-D streamlines, and tra-
jectories), and novel feature-based displays (Kern et al.,
2018, 2019). All visualization techniques can be combined in
an interactive setup, so that benefit can be gained from aug-
menting, e.g., traditional 2-D map views by corresponding
3-D perspectives. As part of this study, we update Met.3D
by extending it with implementations of two new features
with relevance to the analysis of MCAOs and PLs in ERA5
data: (i) support for visualizing polar stereographic data, as
well as other common map projections, and (ii) on-the-fly
computation of MCAO indices on user-defined vertical lev-
els for visual assessment of the sensitivity to the choice of the
characteristic pressure level in conventional MCAO indices.
The current release (v1.7) of Met.3D can be used generically
for 3-D IVA of atmospheric phenomena in ERA5 (Met.3D –
Homepage, 2021; Met.3D – Documentation, 2021a, b) and
other gridded meteorological datasets.

We apply Met.3D to investigate the 3-D structure of
MCAOs and PLs in ERA5. For the initial explorative phase
of the investigation, a set of MCAO and PL cases were se-
lected based on previous studies (Kolstad, 2011; Føre et al.,
2012; Bracegirdle, 2012) about strong MCAO events and
symmetric PLs (e.g. the case on 18 December 2002 in Figs. 1
and 2). After the statistical evaluation of new index variants
(Sect. 2.4), we conducted additional interactive visual anal-
yses for one exemplar event characterized by an overlap of
PL occurrence with high values of the new MCAO index
(the case on 24 March 2011 in Figs. 1 and 2). The follow-
ing exploratory visualization methods were used to study the
ERA5 atmosphere: interactive sliding of 2-D horizontal and
vertical cross sections through the 3-D atmosphere, explo-
ration of the shape and location of 3-D isosurfaces of selected
variables including potential temperature and wind speed, di-
rect volume rendering to inspect cloud liquid and ice water,
and computation of 3-D streamlines of wind fields. During
the initial phase of the visual case analyses, we explored
> 10 ERA5 variables over the Northern Hemisphere (north
of 25◦ N) for several cases of MCAOs and PLs to obtain a
picture of the large-scale atmospheric situation. During the
second phase, we visually analysed single cases of MCAOs
and PLs in more detail by inspecting ERA5 variables on a
smaller domain covering the Barents and the Nordic seas.
More technical details are given in Appendix A.

2.3 New indices for MCAOs and PLs

Conventional MCAO indices have been calculated with a
variety of different characteristic pressure levels, ranging
from 500 to 900 hPa. For understanding the 3-D structure of
MCAOs and the sensitivity of conventional MCAO indices
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Figure 1. Three-dimensional interactive visual analysis of MCAOs in ERA5 data. Cold air is delineated by isosurfaces of potential tempera-
ture. The air below the isosurfaces has lower potential temperatures, and the air above has higher potential temperatures. Panels (a, b) show
a top view for locating the geographical domain of interest (Barents and Nordic seas). Temporal snapshots illustrate the transport of cold
air during two MCAOs: (c–e) case 1, 15–19 December 2002 (257 K isentrope); (f–h) case 2, 22–24 March 2011 (267 K isentrope). Contour
lines of cloud water and cloud ice are drawn at [10−5,10−6,10−8] kgkg−1. Movie 1 demonstrates the interactive 3-D data exploration of
MCAO case 1 using Met.3D. Figure 2 illustrates winds during the PLs that formed within the MCAO depicted in panels (c–e).

to the choice of the characteristic pressure level, we have
implemented a functionality in Met.3D that allows for IVA
of the effect of varying the characteristic pressure level. For
this purpose, we introduce a simple 3-D extension of con-
ventional MCAO indices. We compute the temperature dif-
ference between the surface and each vertical pressure level,
p, instead of considering only one particular characteristic
pressure level, as was usually done in previous studies on
MCAOs. That is, instead of the conventional MCAO index
(Eq. 1), we compute its 3-D variant,

mθ (p)= θskin− θ(p), (2)

and use methods for interactive visual data exploration for
its analysis (e.g. sliding a horizontal cross section through all
vertical levels, p). In a similar way, we implement in Met.3D
the conventional MCAO index variants described in Kolstad
and Bracegirdle (2008), Landgren et al. (2019), and Fletcher
et al. (2016). Insights from the 3-D IVA (Sect. 3.1 and 3.2)
are used as inspiration for conceptualizing improved diag-
nostic indices for capturing MCAOs and PLs. We summarize
the definition of indices here and describe the results from the
IVA in the results section. All indices used in this study are
summarized in Table 1.
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Figure 2. Three-dimensional interactive visual analysis of PLs in ERA5 data. Winds are visualized for the times of two PLs. (a) In case 1, at
16:00 UTC on 19 December 2002, a symmetric slow wind “eye” is observed (grey isosurface) in the area where a PL is reported (Bracegirdle,
2012; Føre et al., 2012), with a pronounced vortex in the wind field around it (see inlay). The coherent volume of air with slow winds extends
up into the stratosphere. Winds in the lower troposphere are visualized by means of isosurfaces constrained to different bounding boxes for
selective illustration of various wind speeds in different volumes of air. Movie 2 demonstrates the interactive 3-D data exploration of PL case
1 using Met.3D. (b) In case 2, at 11:00 UTC on 24 March 2011, no symmetric slow wind eye is observed in the lower troposphere in the area
of the reported PL (Noer et al., 2011).

Two new diagnostic indices are introduced and tested: (i)
the new MCAO index and (ii) the new PL index. Put simply,
the new MCAO index approximates the vertical extent (in
what follows also termed “height”) of MCAOs, and the new
PL index measures the vertical distance between the upper
boundary of MCAOs and the dynamical tropopause. These
metrics are designed to address shortcomings in conventional
indices (e.g. a subjective choice of pressure level and weak
relation between MCAOs and PLs) by taking into account
3-D features of the atmospheric circulation, while remaining
simple and computationally cheap, and hence feasible for use

in further climatological studies that rely on processing of
large amounts of data.

(i) The new MCAO index approximates the vertical extent
of the lower-level instability induced by MCAOs (expressed
as a pressure difference). It is calculated for each horizontal
grid cell and time step (hourly in ERA5) as the pressure dif-
ference between the surface and the upper boundary of the
lower-level instability caused by a MCAO,

mp = p0−p
∗, (3)
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Table 1. Diagnostic indices for measuring MCAOs. The term “conventional MCAO index” summarizes previously used diagnostics that
are based on the difference in potential temperature between the ocean surface and a fixed characteristic pressure level aloft, such as, e.g.,
850 hPa (Papritz et al., 2015; Kolstad, 2017; Polkova et al., 2021), or other levels (Kolstad et al., 2009; Fletcher et al., 2016; Papritz and
Sodemann, 2018; Landgren et al., 2019). Notation: θskin, θ850 hPa, θ(p), and θ(pcrit) denote the potential air temperature at the surface; at
850 hPa; at pressure level, p; and at a critical characteristic pressure level, pcrit (see Sect. 3.3.4), respectively. p0, p∗, and ptr denote the air
pressure at the surface, at the upper boundary of MCAOs, and at the dynamical tropopause, respectively. Details of the indices are given in
the text (see Eqs. 1, 2, and 7 for the conventional MCAO index, its 3-D variant, and a region-specific variant obtained by fitting to data about
observed PLs; see Eqs. 3 and 4, for the new MCAO and polar low indices, respectively).

Name Definition Unit Required dimension of input data

Conventional MCAO index mθ = θskin− θ850hPa K Two-dimensional
3-D variant of the conventional MCAO index mθ (p)= θskin− θ(p) K Three-dimensional
Region-specific variant of the conventional MCAO index mθ (pcrit)= θskin− θ(pcrit) K Two-dimensional
New MCAO index mp = p0−p

∗ hPa Three-dimensional
New polar low index mtr = p

∗
−ptr hPa Three-dimensional

where p0 is defined here as the standard constant surface
pressure 1013.25 hPa. For the computation of the upper
boundary of the MCAO, p∗, we determine the pressure level
at which the potential air temperature equals the potential
skin temperature. The new MCAO index, mp, is set to 0 in
grid cells without lower-level instability (θskin < θ(p)) for all
vertical levels above each grid cell. High index values of mp
correspond to high vertical extents of the instability region
caused by MCAOs.

(ii) The new polar low index measures the vertical distance
between the upper boundary of MCAOs and the dynamical
tropopause. It is calculated for each horizontal grid cell and
time step within the area of MCAOs (mp > 0) as the pressure
difference:

mtr = p
∗
−ptr, (4)

where ptr is the pressure at the dynamical tropopause, which
is defined by the 2 potential vorticity unit (PVU) surface. The
new PL index decreases with decreasing distance between
the dynamical tropopause and the upper boundary of MCAOs
and turns negative if the lower-level instability extends all the
way to the dynamical tropopause and above (p∗ < ptr).

2.4 Evaluating the link between indices and observed
PLs

The conventional and the new indices are evaluated by com-
parison with observed PLs, as reported in the STARS dataset
(polar low tracks north, STARS-DAT, 2013; Noer et al.,
2011). The STARS dataset (hereafter also referred to as
STARS) contains 140 PLs observed during the years 2002–
2011 for the geographical region of the Barents and the
Nordic seas, including data about the times of PLs, the PL
track, and the approximate PL radius. For comparing diag-
nostic indicators with observed PL data, we use a 2-D grid-
ded representation of the STARS data. This is obtained by
defining a geographical domain that covers the tracks of PLs
(latitudes: 57–83◦ N, longitudes: 20–66◦ E) and setting all

grid cells inside the area of observed PLs (track location plus
radius) to 1 and all other grid cells to 0. Diagnostic index val-
ues are calculated for each grid cell in the same geographical
domain. For eight PLs in STARS the approximate radius is
not reported. As we require the empirically observed radius
for defining the empirically observed area of observed PLs,
we sort out these eight entries to ensure a consistent empiri-
cal dataset with 132 reported PLs.

To investigate whether the diagnostic indices may be used
to distinguish times and locations at risk for PL occurrence,
it is important to not only analyse index values at times and
locations when PLs have occurred, but also when no PLs
have occurred. For that purpose, we calculate all diagnostics
during a set of randomly selected “pseudo-events”. Pseudo-
events are defined as hypothetical PL events with the same
frequency and the same temporal and spatial scale as the
actual PL events observed in STARS. This provides an ex-
perimental setup for testing whether diagnostic indices are
able to distinguish actual from hypothetical PL events. The
pseudo-events are defined as follows: (i) we compute the av-
erage duration, track length, and radius of all PLs reported
in STARS; (ii) we randomly select times during October–
March of all years 2002–2011 when no PLs occurred (ac-
cording to STARS); (iii) we randomly define the genesis lo-
cation of a pseudo-event somewhere in the geographical do-
main of interest over open waters; (iv) we define the track
of the pseudo-event by randomly defining the main direc-
tion and a series of randomized track increments such that
the overall track length of all events matches the observed
mean track length but individual events exhibit small vari-
ations around this (to mimick some of the observed vari-
ations in PL tracks); (v) we use the average radius of ob-
served PLs to define the area of a pseudo-event around the
randomly generated track. The diagnostic indices are calcu-
lated for all random pseudo-events, which serve here as a
control set for investigating the robustness of the relationship
between diagnostic indices and observed PLs during “nor-
mal” weather conditions (randomly chosen days). Two ex-

Weather Clim. Dynam., 2, 867–891, 2021 https://doi.org/10.5194/wcd-2-867-2021



M. Meyer et al.: Interactive 3-D visual analysis of ERA5 data 873

amples of randomly generated pseudo-events are illustrated
in Appendix B, Fig. B1.

Performance of the diagnostic indices in distinguishing the
time and location of occurrence of PLs is assessed by (i) vi-
sual analysis and comparison of index maps with maps of
empirically observed tracks of PLs, (ii) automated count-
ing of the number of matches between areas with high in-
dex values and locations of past PLs, and (iii) a receiver
operating characteristic (ROC) curve and accuracy scores –
both widely used metrics for binary classification problems
(Fawcett, 2006; Tharwat, 2021). ROC curves summarize sen-
sitivity and specificity values for different classifiers, and the
accuracy score is used to measure how good a model (in this
case a diagnostic index) predicts the desired classes (in this
case PL or non-PL event).

For comparison of diagnostic indices with observed PLs,
we compute for each grid cell a temporal average, Mi , of the
hourly index values (mθ ,mp,mtr – as defined in Eqs. 1, 3 and
4 and in what follows also denoted as mi , with i ∈ {θ,p, tr}).
The temporal average is computed over a time interval that
covers the reported time interval of each PL in STARS.
For the conventional and the new MCAO indices, we com-
pute the simple temporal average Mi =

1
T

∑tend
t0
mi(t), where

T = tend− t0 and t0 = t∗start− 12 h and tend = t
∗
stop+ 12 h are

the start and end times of the time interval around each PL
(t∗start and t∗stop are the reported start and stop dates in STARS).
We compute the index values for ±12 h to also capture en-
vironmental conditions around the genesis and lysis of PLs
(a comparable approach regarding the genesis time interval
was used in Terpstra et al., 2016). For the new PL index we
compute the temporal average, Mtr, by considering only the
hourly index values, mtr, for hours with lower-level insta-
bility (mp > 0). The different temporal average for the PL
index, compared with the MCAO indices, is chosen because
a lower-level instability (as indicated by a non-zero MCAO
index) is assumed to be a necessary condition for the oc-
currence of PLs (following Kolstad, 2011), and we wanted
to test whether additional information about the upper-level
anomaly in the areas of MCAOs, as captured inmtr, improves
the performance of the index compared with the simpler new
MCAO index.

3 Results and discussion

3.1 Interactive 3-D visual analyses of MCAOs and PLs
in ERA5

In this section we summarize selected examples from the in-
teractive 3-D visual data analyses. The aim is twofold: (i) il-
lustrate 3-D perspectives on MCAOs and PLs, as represented
in ERA5, for contributing to the understanding of these phe-
nomena (Figs. 1 and 2), and (ii) show examples of the appli-
cation of novel methods for interactive visual exploration of
complex meteorological data (Movies 1, 2). The high reso-

lution and consistency of ERA5 allows for both detailed 3-D
visual analyses of single cases of MCAOs and PLs (as re-
ported in this section) and long-term assessments of diag-
nostic indices used to capture these events (see subsequent
sections). The methods for 3-D IVA that we show here can be
applied generically for analyses and visualization of a vari-
ety of meteorological phenomena in ERA5 and other gridded
meteorological data.

We analyse in 3-D the transport of cold air from regions
covered by sea ice toward the ice-free ocean during MCAOs
in ERA5 by assessing, for example, the dynamics of the
3-D isosurface of potential air temperature, illustrated here
for two MCAO events in the Barents and the Nordic seas
(Fig. 1, Movie 1). During the MCAO event in December
2002 (Fig. 1c–e), the volume of cold air grows in vertical
extent before moving southward over the sea ice into the Bar-
ents Sea. Complex spatio-temporal structures with great vari-
ation in shape and dynamics between different MCAO cases
can be observed (e.g. Fig. 1d–f). Comparison with concep-
tual models and previous examples of standard 2-D depic-
tions of MCAOs (e.g. Gryschka, 2018) underlines that ad-
vanced methods for 3-D visual analysis provide more com-
prehensive insights and can be used for quick and flexible
interactive exploration of data volumes (Movies 1, 2). While
the visual inspection of cloud cover does partly resemble typ-
ical thick cloud bands at the boundary of the outbreak, as de-
scribed, e.g., in Gryschka (2018), the details of the character-
istic 3-D structure of convective cloud bands are not resolved
in ERA5 for the cases that we inspected (not shown).

A PL that was described as an “Arctic hurricane” (Brace-
girdle, 2012) formed west of the coast of Novaya Zemlya, on
19–20 December 2002, towards the end of the MCAO illus-
trated in Fig. 1. The capacity for quickly analysing various
data variables from different angles using different visualiza-
tion methods is a key advantage of 3-D IVA, because it makes
it easier to explore new perspectives and discover potentially
interesting features. One such example emerging from our
case studies is a “slow wind perspective” on PLs (Fig. 2,
Movie 2). During some of the PL events we analysed, there
is a coherent tube-like volume of air with slow wind speeds
at the centre of the PL which extends from the surface up into
the stratosphere (e.g. winds< 4 ms−1 in Fig. 2a). This coher-
ent 3-D feature of the wind field is consistent with the 2-D
vertical profile of winds during reverse shear PLs (Terpstra
et al., 2016; Michel et al., 2018), but here it is illustrated in
3-D and for a much larger vertical extent. Inspection of iso-
surfaces at different wind speeds reveals complex wind flows
during PLs, with strong near-surface winds (Fig. 2, Movie 2).
Visual analysis of wind barbs shows vortex-like wind fields
around the slow-wind eye. Interactive sliding of cross sec-
tions through different vertical levels helps locate altitudes
with strong winds as well as regions with strong wind shear
(Movie 2).
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Figure 3. Extending the conventional MCAO index to 3-D. (a–c) Sensitivity of the conventional MCAO index to the choice of the character-
istic pressure level. The MCAO index is calculated at 14:00 UTC on 24 March 2011, for different characteristic pressure levels (i.e. Eq. 2 with
different values of θ(p)): (a) 850 hPa, (b) 700 hPa, and (c) 500 hPa. (d–f) Vertical profiles of potential air temperature at selected locations
within the MCAO (locations indicated by the poles in panels (a–c)). The 3-D variant of the conventional MCAO index is positive below and
negative above the critical pressure level, p∗ (illustrated as an orange cross), at which θskin = θ(p). The red and green lines illustrate the
difference in potential temperature at the pressure levels shown in (a–c). Movie 3 demonstrates the interactive visual analysis of the effect of
varying the characteristic pressure level in the conventional MCAO index. Figure 4 illustrates the 3-D structure of the MCAO shown here by
visualizing the isosurface of p∗ for the entire geographical domain.

3.2 Interactive 3-D visual analysis of diagnostic indices
and vertical structure of MCAOs and PLs

Inspecting the 3-D variant of conventional MCAO indicators
(mθ (p), Eq. 2) unravels the sensitivity to changes in the char-
acteristic pressure level (Sect. 3.2.1). Aiming at avoiding this
sensitivity by conceptualizing new diagnostics, we analysed
the vertical extent of MCAOs (Sect. 3.2.2) and the vertical
distance to the dynamical tropopause (Sect. 3.2.3). Results
described in this section served as motivation for the defini-
tion of new diagnostic indices (as summarized in Sect. 2.3).

3.2.1 Sensitivity of conventional MCAO indices to the
choice of the characteristic pressure level

Visual analyses of changes in mθ (p) (Eq. 2), the 3-D variant
of conventional MCAO indices, at different locations when
varying the characteristic pressure level show that the magni-
tude of MCAO index values and the geographical area with
positive MCAO index values decrease with increasing alti-
tude (Fig. 3, Movie 3). At low altitudes, close to the ocean
surface, potential air temperature is lower than potential skin
temperature, leading to positive MCAO indices. At higher

altitudes, potential air temperature increases, leading to neg-
ative MCAO indices (set to zero in Fig. 3a–c, Movie 3). Note
that areas with extreme values of the conventional MCAO
index, i.e. maximum temperature difference between the sea
surface and a certain pressure level, do not necessarily co-
incide with areas where the conventional MCAO index is
also positive at high altitudes (i.e. mθ (p) > 0 at high verti-
cal levels p; see Fig. 3, Movie 3). The MCAO index values
change substantially depending on the choice of the char-
acteristic pressure level, which suggests reconsidering the
thresholds for distinguishing between weak, moderate, and
extreme MCAOs depending on the choice of the pressure
level.

The sensitivity of conventional MCAO indices to the
choice of the characteristic pressure level can be expected,
considering standard vertical profiles of potential tempera-
ture along with a dynamic 3-D shape of the volume of cold
air and its complex mixing with air masses above the ocean.
With the aim of formulating a diagnostic index that is not
sensitive to the choice of a characteristic pressure level, we
consider in more detail the 3-D structure of potential air tem-
perature.
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3.2.2 The upper boundary of MCAOs

The interactive visual analyses of the 3-D MCAO index,
along with standard vertical profiles of potential air temper-
ature, suggest that the vertical profile of potential air tem-
perature in the column of air above each location inside of a
MCAO may be sketched as follows: in the lower troposphere,
there is an unstable layer of air, in which the potential air
temperature decreases with altitude, followed by a layer with
approximately constant potential air temperature, and then a
stable layer of air in which potential temperature increases
with altitude. This implies that, in the column of air above
each location (grid cell) within the area of a MCAO, there
should be at least one pressure level at which the 3-D MCAO
index,mθ (p), changes its sign. Figure 3d–f show the vertical
profile of potential temperature at exemplar locations. The
critical pressure level, p∗, at whichmθ (p) changes its sign is
the altitude at which

θ(p∗)= θskin. (5)

We define the critical pressure level, p∗, which delineates
the boundary between unstable and stable air masses (with
respect to the simple static stability criterion used in con-
ventional MCAO indices), as a simple measure of the upper
boundary of MCAOs.

The upper boundary of the lower-level instability caused
by MCAOs can be visualized by computing the zero iso-
surface of mθ (p). Visual analyses of the dynamics of the
zero isosurface reveal interesting spatio-temporal dynamics
in the upper boundary of MCAOs (Fig. 4, Movies 4–6).
Investigation of several MCAO cases indicates a trend for
the upper boundary of the lower-level instability to increase
with distance from the sea-ice edge. This is in accordance
with conceptual descriptions about strong organized convec-
tive processes and convective overturning that cause a ver-
tical increase in the MCAO depth with increasing distance
from the sea ice (e.g. Gryschka, 2018). However, there are
substantial spatio-temporal variations during the course of
single MCAOs and particularly between different MCAOs.
Interestingly, visual comparison of the upper boundary of
MCAOs and the position of observed PLs during several of
our use cases shows that geographical areas with the highest
vertical extent of MCAOs coincide with geographical areas
of PLs.

3.2.3 The vertical distance between lower-level
instability and upper-level anomaly during PLs

Both a lower-level instability and an upper-level forcing of
the dynamical tropopause are required for PL genesis (Kol-
stad, 2011; Grønås and Kvamstø, 1995). Along these lines,
Grønås and Kvamstø (1995) showed that, for two out of four
PLs, the distance between the surface and the top of the atmo-
spheric boundary layer was smaller than 2500 m. In related
previous work, Kolstad (2011) advocated that there was an

association between PLs and the co-occurrence of two fac-
tors: a positive MCAO index and an upper-level potential
vorticity anomaly. Kolstad (2011) used these factors to de-
fine a binary PL index. Motivated by these studies, we vi-
sually explore in Met.3D the spatio-temporal variations in
the upper boundary of MCAOs (p∗, Eq. 5) in combination
with spatio-temporal variations in the dynamical tropopause
(Fig. 4, Movie 5).

Interactive 3-D visual analysis of single cases indicates
that the distance between the dynamical tropopause and the
upper boundary of MCAOs (Sect. 3.2.2) is smaller in geo-
graphic proximity to areas where PLs occur. During some of
the PL cases, the dynamical tropopause extends downward
into the lower-level instability region induced by MCAOs
(Fig. 4e, crossing the zero isosurface of mθ (p) with the dy-
namical tropopause; Movie 5).

3.3 Evaluating diagnostic indices by comparison with
observed PLs

In previous sections, we summarized our case studies of
MCAOs and PLs along with the definition and motivation for
new diagnostic indices. Further on, we evaluate these new in-
dices, along with the conventional MCAO index, by compar-
ison with all PL events observed during the years 2002–2011
in the Barents and Nordic seas (as reported in Noer et al.,
2011; STARS-DAT, 2013). We investigate the distribution
of index values in different geographical domains during all
PLs (Sect. 3.3.1), the number of matches between areas with
high index values and areas where PLs have been observed
(Sect. 3.3.2), and the performance of indices in distinguish-
ing times and locations of observed PLs from times and lo-
cations without PLs (Sect. 3.3.3).

3.3.1 Distribution of diagnostic index values in areas
within and outside of observed PLs

Analysing the distribution of index values in all grid cells
during all years 2002–2011, within and outside of the areas
of observed PLs (defined via the track and radius of PLs re-
ported in STARS), shows that (i) high values of the conven-
tional MCAO index occur only slightly more often in areas,
where PLs were observed compared with all other areas in
the domain (Fig. 5b); (ii) the new indices differ substantially
between the two geographical domains – within and outside
of observed PLs (Fig. 5e and h); and (iii) high values of the
new MCAO index and low values of the new PL index occur
more often in geographical areas of the observed PLs com-
pared with the rest of the domain (Fig. 5e and h).

The mean vertical extent of MCAOs within the area of
all observed PLs during the years 2002–2011, as captured
by mp (Eq. 3), is 289 hPa. Substantially higher vertical ex-
tents were observed (Fig. 5e), with a maximum at 607 hPa.
In comparison, a mean vertical extent of 161 hPa is observed
in areas outside of PLs. The mean vertical extent of MCAOs
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Figure 4. Upper boundary of a MCAO and its distance from the dynamical tropopause. (a–c) Spatio-temporal variations in the upper
boundary of a MCAO, defined here as the pressure level, p∗, at which θ(p)= θskin. The new MCAO index,mp (Eq. 3), which approximates
the “height” of MCAOs, is shown on the horizontal cross section. (d–f) The dynamical tropopause extends downwards into the lower-level
instability caused by the MCAO. Movies 4–6 show the 3-D dynamics of the upper boundary and the dynamical tropopause for this case and
for the MCAO case depicted in Fig. 1. The vertical pole is plotted at a fixed location to indicate the mean position of the observed PL in
STARS.

(289 hPa) corresponds to an upper boundary of the MCAO at
1013.25− 289≈ 724 hPa, and the maximum vertical extent
corresponds to an upper boundary of the MCAO at approxi-
mately 406 hPa.

The mean distance between the upper boundary of the
lower-level instability and the dynamical tropopause, as
captured by mtr, during all PL events is approximately
345 hPa, but substantially smaller distances are also observed
(Fig. 5h). Interestingly, in 41 % of all PLs, there is a short
time of at least 1 h during which the dynamical tropopause
extends downward into the lower-level instability (ptr(t) >

p∗(t)) within the area of observed PLs (separate analysis not
shown in the figure). In comparison, a larger mean distance

of approximately 510 hPa is observed in the areas outside of
observed PLs (Fig. 5).

Investigating diagnostic indices during pseudo-events, de-
fined as randomly selected times when no PL occurred with
an area that matches in scale the area of actual PL events
(see Sect. 2.4), shows that low values for the new MCAO
index (“shallow” MCAOs) and larger values of the new PL
index (weak or no forcing from the dynamical tropopause)
occur more often during normal weather conditions than dur-
ing PLs (grey bars in Fig. 5e, f and h, i). This suggests that the
new indices capture features that are useful for distinguish-
ing meteorological conditions during PLs from meteorolog-
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Figure 5. Association of diagnostic indices with locations of observed PLs. (a–c) Conventional MCAO index (Eq. 1); (d–f) new MCAO
index (Eq. 3); (g–i) new PL index (Eq. 4). Maps (a, d, g): diagnostic indices for one selected example, the PL on 24 March 2011 (index
values are averaged over all time steps of the event; see Sect. 2.4). PL track from the STARS dataset (Noer et al., 2011). Histograms (b, e,
h): distribution of index values in all grid cells for all PLs during the years 2002–2011 separated into areas within and outside of the area of
observed PLs. Grey bars show index values in all grid cells of the domain during a set of randomly selected times with no PL (pseudo-events
defined as a proxy for “normal” weather conditions without PLs; see Sect. 2.4). Bar charts (c, f, i): number of overlaps between areas with
high index values (≥ 95th percentile; (i) low index values, ≤ 5th percentile) and the area of observed PLs and random pseudo-events.

ical conditions during a randomly selected set of days in the
Nordic winter.

3.3.2 Association between diagnostic indices and
locations of observed PLs

The locations with high values of the new indices, mp and
mtr, resemble the locations of observed PLs for selected
cases. For example, the area with high values of the new
MCAO index during the MCAO case that we previously il-

lustrated (Figs. 1, 3, and 4) matches the area of the observed
PL rather well (Fig. 5), considering that it is a very simple
index computed without using knowledge about the location
of the PL. However, as can be expected considering the sim-
plicity of the diagnostics and the complexity of PL genesis,
the indices also miss various observed PLs (see Appendix C,
Fig. C1, for two such examples).

We assessed for how many of all the PLs during the years
2002–2011 in the Barents and Nordic seas (as reported in the
STARS data) there is an overlap between geographical areas
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Figure 6. Composite analysis of the conventional and the new MCAO index. (a) The conventional MCAO index during all PL events. (b)
The new MCAO index during all PL events. (c) Difference between the conventional MCAO index during PL events and pseudo-events.
(d) Difference between the new MCAO index during PL events and pseudo-events. PL tracks are plotted as blue lines with the circle at the
genesis location reported in STARS.

with high values of the new MCAO index and geographical
areas of observed PLs (Fig. 5). The association is also anal-
ysed for the new PL index and the conventional MCAO in-
dex. We compute one time-averaged diagnostic,Mi , for each
PL event (averaged over all hours of the event; see Sect. 2.4)
and define areas with “high” index values as the 95th per-
centile of all index values in the geographical domain. We
count the number of events with overlap of at least one grid
cell between areas with high index values and the area of ob-
served PLs. Results for the new MCAO and PL indices show
that, for approximately 100 out of the total 132 observed PLs
during the years 2002–2011 (i.e. in approximately 76 % of all
cases), the area with high index values overlaps with the area
of observed PLs (Fig. 5). This suggests a notable association
between diagnostic indices and locations of PLs. In contrast,
for the conventional MCAO index, areas with high index val-
ues only overlap with areas of observed PLs in around 33 out
of 132 PLs. Clearly, the association between high index val-
ues and locations of observed PLs is stronger for the new
index values compared with the conventional MCAO index.
PLs occurred more often in areas with high vertical extent of
the lower-level instability rather than areas with strong insta-

bility at low altitudes. This is further supported by a compos-
ite analysis computing the long-term average of the conven-
tional and the new MCAO index for all observed PLs (Fig. 6a
and b).

To assess whether the number of matches that we obtain is
substantially different to the number of matches one would
expect by random choice of high index values somewhere
in the geographical region of interest, we count the number
of overlaps between the areas of randomly selected pseudo-
events (Sect. 2.4) and the areas of high index values. This
shows that the number of matches between high index val-
ues and observed PLs is substantially higher than the number
of matches between high index values and randomly chosen
pseudo-events (Fig. 5), which provides additional supportive
evidence for the robustness of the new diagnostics.

The number of matches between areas with high index val-
ues and areas of observed PLs is sensitive to the choice of the
threshold for delineating high index values. We focus on test-
ing the association between areas with particularly high in-
dex values (≥ 95th percentile), because these are confined to
a fairly small area compared with the total geographical do-
main of the Nordic Seas, which is a useful characteristic for
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an index that aims at narrowing down the likely location of
PLs. Recall that MCAOs are relatively large-scale phenom-
ena compared to PLs. Thus as is, the conventional MCAO
index is not a useful PL proxy in predictability studies or
for marine services as it indicates too large areas where PLs
could potentially occur. Results in this section suggest that
the new diagnostic indices are useful and informative for dis-
tinguishing the location of PLs, given knowledge about the
time of occurrence of PLs. However, for the diagnostics to be
useful in predictability studies or marine services as PL prox-
ies, it is necessary to demonstrate that they are able not only
to identify locations with higher risk for PLs, conditional on
knowledge about the time of occurrence, but that they are
also able to distinguish times and locations of PLs without
any prior knowledge from observations. This is tested in the
next section.

3.3.3 Performance of diagnostic indices in
distinguishing the time and location of PLs

For distinguishing times and locations with higher risk for PL
occurrence from times and locations with lower risk for PL
occurrence based on the simple diagnostic indices, it is nec-
essary that these take on sufficiently different values during
PL events compared with no-PL events. As a first step to test
this, we conduct a composite analysis for analysing the dif-
ference between index values during PL events and non-PL
events (random pseudo-events) and compare it visually with
observed PL tracks (Fig. 6c and d). The difference between
the new MCAO index during PL events compared with non-
PL events is particularly large in those areas where many PLs
have been observed, whereas the difference is not as large in
those areas for the conventional MCAO index (Fig. 6c and
d, compare, e.g., the area between Iceland and Norway in
panels c, d). This indicates that the new MCAO index may
serve as an approximate classifier to distinguish times and
locations of PLs, whereas the conventional MCAO index is
not well suited for this task.

For systematically testing the performance of index values
in distinguishing PL occurrence in the observational STARS
data, we express the task of distinguishing the time and lo-
cation of observed PLs as a binary classification problem
and measure the skill of index values by means of ROC
curves and accuracy scores (details below). For this pur-
pose we introduce for each of the different indices, Mi (with
i ∈ {θ,p, tr}; see Sect. 2.4), a set of critical threshold values,
Mcrit
i . The thresholds are chosen to be evenly distributed over

the entire range of index values with a constant step size. For
example,Mcrit

p = {0,30,60, . . .,600} covers the range of val-
ues of the new MCAO index (see Fig. 6e) with a constant
step size of 30. Applying the critical thresholds to the index
values, we obtain binary indices,

M̂i =

{
1 if Mi >M

crit
i

0 if Mi ≤M
crit
i ,

(6)

for all grid cells during all events (i.e. for observed PLs and
for randomly chosen pseudo-events when no PL was ob-
served). We then test the performance in distinguishing PL
occurrence based on these binary indices. In the following
paragraphs, we first inspect the performance of indices in dis-
tinguishing the time of occurrence of PLs (task 1) and second
the performance in distinguishing both the time and location
of PLs (task 2).

Task 1: distinguish the time of PL occurrence

For distinguishing the time of occurrence of PLs, we use the
following classification (summary in Appendix E, Table E1):
(i) if the binary index values are positive (M̂i = 1) anywhere
in the geographical domain of interest at the time of the event,
we define this as a “prediction” that a PL occurs at this time
anywhere in the domain (true positives: a PL occurs during
that time; false positives: a PL does not occur during that
time); (ii) if the binary index, M̂i , is zero everywhere in the
domain, we define this as a “prediction” that no PL occurs
(true negatives: no PL occurs during that time; false nega-
tive: a PL occurs during that time). By computing sensitiv-
ity and specificity values for the set of critical threshold val-
ues, we obtain one ROC curve for each index (see Fig. 7).
The ratio of times that the new index correctly identifies PL
events defines the true positive rate (sensitivity) and the ra-
tio of times that the new index incorrectly identifies the PL
events as the false positive rate (1− specificity). For the ROC
analysis, the two rates are then plotted against each other (see
e.g. Fawcett, 2006). A perfect true positive rate of 1.0 would
imply that all PL events are identified correctly. In our exper-
imental setup with 50 % observed PL events and 50 % non-
events, it is necessary that the new index has an area under
the ROC curve (AUC score) that is higher than 0.5 for per-
forming better than random chance and being counted as a
potentially useful proxy for PLs. All three diagnostic indices
perform substantially better than random chance, suggesting
that they could be useful for indicating the time of occurrence
of PLs (AUC values of 0.78, 0.80, and 0.83, for the conven-
tional MCAO index, the new PL index, and the new MCAO
index, respectively).

From the set of threshold values, Mcrit
i , which are used in

the ROC analysis for distinguishing the time of PLs, we se-
lect the one that maximizes Youden’s index (Youden, 1950),
which is defined as sensitivity+ specificity− 1, as the best
threshold. The best threshold for the conventional MCAO in-
dex to distinguish times of occurrence of PLs is Mcrit

θ = 8 K.
For the new MCAO index, it is Mcrit

p = 390 hPa, and for the
PL index, it is Mcrit

tr = 250 hPa (as shown in Fig. 7a). Using
these threshold values we compute the accuracy score, which
is defined as the sum of true positives (TPs) and true neg-
atives (TN) divided by all events (see e.g. Tharwat, 2021),
for measuring how well the diagnostic indices with the se-
lected binary classifier perform in distinguishing the times
of PLs. In our experimental setup, with the same number of
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Figure 7. ROC curves for distinguishing times and locations of PLs based on conventional and new diagnostic indices. Panels: (a) task 1:
distinguish the time of PL events and (b) task 2: distinguish the time and location of PL events. Index scores are compared with the times and
locations of observed PLs, as reported in the STARS data (Noer et al., 2011; STARS-DAT, 2013), by testing a set of critical thresholds (Eq. 6),
for distinguishing areas and times at risk for polar lows. Diagnostic indices: the conventional MCAO index (Eq. 1), the new MCAO index
(Eq. 3), and the new polar low index (Eq. 4). The critical thresholds highlighted in black are the best classifiers, defined as the thresholds
Mcrit
i

(Eq. 6) that maximize Youden’s index (Youden, 1950). These are used for calculating the accuracy of indices in distinguishing times
and areas of PLs (see text and Table 2).

Table 2. Performance metrics for distinguishing times and locations of PLs based on simple diagnostic indices. The AUC (area under the
curve) values are computed for the ROC curves shown in Fig. 7. The accuracy scores are calculated for the best classifier for each index and
task, defined as the classifier that maximizes Youden’s index.

Task 2: distinguish time and
Index name Task 1: distinguish time of PLs location of PLs

AUC Best Accuracy AUC Best Accuracy
value classifier value classifier

(Mcrit
i

) (Mcrit
i

)

Conventional MCAO index 0.73 8 K 0.73 0.52 4 K 0.56
New MCAO index 0.83 390 hPa 0.77 0.74 330 hPa 0.67
New PL index 0.80 250 hPa 0.75 0.67 250 hPa 0.64

PL events as non-PL pseudo-events, an uninformed random
classification would be expected to yield an accuracy score
of 0.5. Using the conventional MCAO index with the thresh-
old of 8 K allows us to distinguish the time of occurrence of
PLs with an accuracy of 0.73. Using the new MCAO index
with the threshold of 390 hPa achieves an accuracy of 0.77.
For the new PL index with a threshold of 250 hPa, we obtain
an accuracy of 0.75 (all values summarized in Table 2).

Task 2: distinguish the time and location of PL
occurrence

For distinguishing the time and location of PLs, we use the
following classification (summary in Appendix E, Table E2):
(i) true positive, if there is an area with non-zero index val-
ues, M̂i = 1 (i.e. Mi >M

crit
i ), at the time of the event and a

PL is observed at that time in that area (overlap of at least one
grid cell with the empirical data in STARS); (ii) false posi-

tive, if there is an area with positive binary index, M̂i = 1, at
the time of the event, but no PL is observed in that area at that
time; (iii) true negative, if index values are zero, M̂i = 0, ev-
erywhere in the geographical domain at the time of the event
and no PL is observed anywhere in the domain at that time;
(iv) false negative, if index values are zero everywhere in the
geographical domain at a particular time, but there is a PL
observed somewhere in the domain at that time.

Results of the ROC analyses show that the conventional
MCAO index performs poorly (close to random chance) in
distinguishing the time and location of PLs (AUC value of
0.52). This underlines that the magnitude of the conventional
MCAO index is not useful for identifying times and loca-
tions at risk for PLs. In contrast, the newly introduced in-
dices perform substantially better in distinguishing the time
and location of PLs compared with the conventional MCAO
index (AUC values of 0.67 and 0.74, for the new PL index
and the new MCAO index, respectively). Interestingly, the
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new MCAO index performs better than the new PL index,
despite the new MCAO index being simpler and requiring
less meteorological input data (the PL index requires the po-
tential vorticity field as an additional 3-D data field). The best
threshold value for the new MCAO index that maximizes the
sum of sensitivity and specificity in distinguishing the times
and locations of PLs in the ROC analysis is Mcrit

p = 330 hPa
(thresholds for the other indices in Fig. 7b). With this thresh-
old, we obtain a sensitivity of 0.78, a specificity of 0.58, and
an accuracy of 0.67. In light of the complexity of PL gene-
sis and the simplicity of the new diagnostic index, the afore-
mentioned performance is noteworthy (though still far from
maximally attainable reference values of the respective per-
formance metrics). The new MCAO index outperforms the
conventional MCAO index and is better than uninformed ran-
dom choice (all values summarized in Table 2)

In summary, results from testing the performance of the
conventional MCAO index and the new MCAO and PL in-
dices (Sect. 3.3.1 3.3.2, and 3.3.3), suggest that the new
MCAO index, mp (Eq. 3), is a useful alternative to conven-
tional MCAO indices, as it exhibits an association with the
times and locations of observed PLs and hence may serve
as a simple proxy for PL occurrence. The new index incor-
porates more information about the 3-D structure of cold air
intrusions from the Arctic and is more skilful in identifying
areas and timing favourable for PL development.

3.3.4 Determining a region-specific characteristic
pressure level from observational data

The new MCAO index was designed to be a simple met-
ric that requires processing of only one 3-D input data field
(air temperature) for allowing its use in computationally ex-
pensive, long-term assessments that require processing large
amounts of data. However, compared with the 2-D conven-
tional MCAO index, the new MCAO index has the disadvan-
tage that it requires more input data. This means that its use
in, e.g., predictability studies that compare multiple datasets,
might be computationally challenging. In this section, we ad-
dress this disadvantage of the new MCAO index, along with
the disadvantage of the conventional MCAO index regarding
the subjective element in the choice of a characteristic pres-
sure level. Both of these challenges can be addressed by de-
termining a characteristic pressure level for the conventional
MCAO index from observational data about PLs.

Determining the characteristic pressure level for the con-
ventional MCAO index from observational data results in a
region-specific MCAO index that has the same form as the
conventional MCAO index,

mθ (pcrit)= θskin− θ(pcrit), (7)

but is based on the critical characteristic pressure level, pcrit,
that maximizes the link to observed PLs. The critical char-
acteristic pressure level can be determined directly from the
best classifier (Mcrit

p ) for the new MCAO index,

pcrit = p0−M
crit
p . (8)

The region-specific MCAO index, mθ (pcrit), has the advan-
tage that it is computationally cheaper than the new MCAO
index, mp, as it can be calculated based only on 2-D meteo-
rological data fields, at the ocean surface and at pcrit, while
maintaining the same skill in distinguishing the times and
locations of PLs compared to the new MCAO index. Ta-
ble 1 summarizes key differences between the region-specific
MCAO index and the other diagnostics considered in this
study.

The equivalence in skill to distinguish PLs from non-PLs
of the region-specific index, mθ (pcrit), and the new MCAO
index, mp, is evident from the definition of the indices. Sim-
ilar to the conventional MCAO index, the region-specific
index has positive values if the potential skin temperature
is larger than the potential temperature aloft. The region-
specific MCAO index takes on positive values in all grid
cells, in which the new MCAO index, mp, is higher than the
threshold value, Mcrit

p . This is the case because in these grid
cells the critical pressure level, pcrit, is vertically located be-
low the upper boundary of the MCAO. The upper boundary
of the MCAO, p∗, is defined as the vertical level, at which
potential temperature aloft equals potential skin temperature.
As potential temperature increases with height in the top
vertical layers of the MCAO, the potential temperature at
the critical pressure level below the upper boundary of the
MCAO is lower than the potential temperature at the upper
boundary, and hence also lower than the potential skin tem-
perature, which means that the region-specific MCAO index
is positive in these grid cells (in summary, ifmp >Mcrit

p , then
pcrit > p

∗, which implies that θ(pcrit) < θ(p
∗)= θskin, so

that mθ (pcrit) > 0). This was confirmed by numerical analy-
sis (see Appendix D, Fig. D1). As the skill for distinguishing
PLs from non-PLs is based on the binary index values ob-
tained via the critical thresholds (see Eq. 6), the skill based on
mp >M

crit
p is equivalent to the skill based on mθ (pcrit) > 0.

The region-specific MCAO index introduced in this sec-
tion with a threshold of 0 can be used just as well as the new
MCAO index with a threshold of Mcrit

p for distinguishing the
times and locations of observed PLs. While the procedure of
determining the region-specific MCAO index requires pro-
cessing of the 3-D potential temperature field, this procedure
only has to be conducted once in a baseline study for a spe-
cific geographical region. The critical characteristic pressure
level obtained here is pcrit = p0−M

crit
p = 1013.25− 330=

683.25 hPa for the geographical region of the Barents and
the Nordic seas. For other geographical regions and obser-
vational data about PLs, the calculation should be repeated
to account for regional differences. The resulting region-
specific MCAO index, with the parameter pcrit “fitted” to
empirical data, is computationally cheap and thus feasible for
use in climatological assessments and for quick operational
risk assessments as part of marine services.
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4 Conclusions

In the first part of the investigation, we conduct case studies
of MCAOs and PLs in ERA5 data by means of interactive
3-D visual exploration. In the second part, we conceptual-
ize alternative diagnostic indices for MCAOs and PLs, based
on insights from the 3-D IVA. In the third part, we evaluate
the performance of the new diagnostics, in comparison with
previously used metrics, in distinguishing the times and lo-
cations of observed PLs.

We provide a showcase for the potential of 3-D interac-
tive visual data exploration as part of the scientific work-
flow for advancing the understanding on meteorological phe-
nomena. We reveal complex 3-D features of MCAOs and
PLs (Sect. 3.1, Movies 1, 2). The interactive analysis with
Met.3D underlines the sensitivity of the conventional MCAO
index to the choice of the characteristic pressure level (Fig. 3,
Movie 3). The 3-D IVA improves our understanding of the
involved processes and their interaction (e.g. the spatio-
temporal dynamics of the upper boundary of MCAOs and its
interplay with the dynamical tropopause, Movies 4–6). Re-
sults from the 3-D IVA are used as inspiration for the concep-
tualization of alternative diagnostic indices (Sect. 3.1). Ex-
ploratory visual analyses and a long-term assessment (2002–
2011) of the alternative indices underline that the vertical ex-
tent of the lower-level static instability caused by MCAOs,
as well as the distance between the lower-level instability
and the dynamical tropopause, can serve as improved indi-
cators for PL tracks compared to a widely used 2-D MCAO
index (Landgren et al., 2019; Kolstad et al., 2009; Fletcher
et al., 2016; Papritz et al., 2015; Kolstad, 2017; Polkova et al.,
2019; Papritz and Sodemann, 2018).

We investigate the link between MCAOs and PLs by as-
sessing the performance of MCAO indices in distinguishing
times and locations of observed PLs (Sect. 3.3). The quan-
titative association between MCAO height and PLs shown
here could be a first step towards improving marine services.
For instance, Polkova et al. (2021) reported a prediction skill
for MCAOs in the Nordic Seas for as long as 20 d ahead,
whereas PLs can only be predicted up to a day ahead. If it
were possible to obtain information about, e.g., the frequency
of PLs from characteristics of MCAOs, this could improve
marine services accordingly. Previous studies demonstrated
that MCAOs are a necessary condition for PL development
(Ese et al., 1988; Noer et al., 2011; Kolstad, 2011; Mallet
et al., 2013). However, what it is exactly about MCAOs that
is decisive for PL occurrence and how often PLs accompany
MCAOs is still debated. Terpstra et al. (2020) suggested that
neither the duration nor the maturity of MCAOs has a distinct
relation to PL initiation. Our results might appear at odds
with studies suggesting that PLs mostly happen outside of
MCAOs (e.g. Terpstra et al., 2016). However, other authors
(Rasmussen, 1983; Kolstad, 2011) have pointed out that PLs
also happen within MCAOs. In particular those with warm-
core thermal instability typically develop deep inside the po-

lar air mass. Upper-level forcing in the form of a positive
potential vorticity anomaly is generally associated with the
upward doming of underlying isentropic surfaces (see e.g.
Hoskins et al., 2007). The height of MCAOs (defined here as
the level at which potential temperature aloft equals potential
temperature at the surface) therefore also depends on upper-
level anomalies, which means the new MCAO index implic-
itly contains additional information about upper-level forc-
ing that conventional index variants do not include (as these
are purely a measure of the coldness of the CAO relative to
the sea surface). This could explain why the association be-
tween the new MCAO index and the time and location of PLs
is stronger, compared with conventional index variants. The
new MCAO index introduced here allows us to narrow down
the areas at risk for PLs, overcoming one of the disadvan-
tages of the conventional MCAO index, which tends to iden-
tify too large areas at risk. Recently, and independently from
our study, Terpstra et al. (2021) also identified the useful-
ness of considering the vertical extent of MCAOs. The new
MCAO index introduced here closely resembles a metric in-
dependently introduced in their study. Both studies underline
the usefulness of considering the vertical extent of MCAOs.

Results here suggest that the new MCAO index (Eq. 3) is a
promising candidate for use in long-term assessments on sea-
sonal and climatological timescales as it requires less input
data (3-D temperature field and 2-D fields of surface pres-
sure and skin temperature) than the new PL index and shows
a slightly better performance (Sect. 3.3). Alternatively, we
also suggest a method to determine a critical characteristic
pressure level for the conventional MCAO index from em-
pirical data about PL occurrence (Sect. 3.3.4). This results
in a region-specific MCAO index that has the same form as
the conventional index but provides a region-specific quan-
titative link to observed PLs. It is a good alternative to the
new MCAO index, as it is computationally cheaper and thus
a more promising candidate for use in seasonal and climato-
logical assessments, which usually compare the phenomena
in multiple datasets over very long timescales. An interest-
ing task for future studies is to compare the predictability of
the conventional and the new indices in seasonal prediction
systems.

The assessment of the performance of conventional 2-D
and new 3-D MCAO indices as proxies for PLs in the Bar-
ents and Nordic seas (STARS data covering the time pe-
riod 2002–2011) shows that the new MCAO index performs
better in distinguishing time and location of PLs compared
with the conventional index (Sect. 3.3). While we show a
statistical association between areas with high index val-
ues and PLs in a limited geographical and time domain,
our results (e.g. AUC and accuracy scores in Sect. 3.3) also
clearly highlight that the complex genesis of PLs cannot be
fully captured with the simple diagnostic indices analysed
here (both conventional and new indices). This can be ex-
pected considering the interplay of various factors that lead
to PL genesis. More complex classification schemes, such as
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self-organizing maps, have also been reported recently (Stoll
et al., 2021). The new MCAO index introduced here does
not capture sea–air sensible heat fluxes, which are captured
by the conventional MCAO index (Papritz et al., 2015). We
have not distinguished between reverse-shear and forward-
shear PLs in this analysis. Whereas forward-shear PLs are
the most common ones, the reverse-shear PLs are more eas-
ily detectable due to strong static instability conditions in
the lower troposphere (Michel et al., 2018). Ultimately, the
choice of an appropriate diagnostic depends on the objective
of the study.

In our analysis, we consider a set of pseudo-events for
analysing the behaviour of indices during randomly se-
lected weather conditions. A broader climatological assess-
ment computing hourly indices for time intervals of several
decades is beyond the scope of this study. Considering that
PLs are rare events, the association between areas and times
with high index values with areas and times of observed PLs
might be overestimated. Future studies could build on this
analysis, for example, by analysing longer PL datasets, such
as provided in Rojo et al. (2019), taking into account dif-
ferent geographical areas and considering alternative perfor-
mance metrics, such as the extremal dependence index (EDI;
Wulff and Domeisen, 2019). If the performance of diagnostic
indices shown in this study for a limited time interval (2002–
2011) and geographical region proves to be robust in other
times and regions, then the new indices might be a useful
complement for marine services on PLs.

The methods for 3-D interactive visual analysis of ERA5
data introduced here (Sects. 2.2 and 3.1) are publicly avail-
able (Met.3D – Homepage, 2021; Met.3D – Documentation,
2021a, b) and can be used generically, for interactive visual
analysis of meteorological phenomena resolved in ERA5
data. We see great potential in using methods for interac-
tive 3-D visual data exploration during the explorative phases
of scientific workflows, as performed in this study, for de-
tailed meteorological case analyses, diagnosis of model sim-
ulations, and development of new hypotheses.
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Appendix A: Summary technical workflow

For the main part of our analyses, we use data from the ERA5
archive hosted at the German Climate Computing Center
(DKRZ), which is a copy of the original ERA5 archive (a
total of 1.3 PB; DKRZ, 2020). The ERA5 data are remapped
to a regular latitude–longitude grid using the Climate Data
Operators (CDO) (Schulzweida, 2020), as Met.3D requires
a regularly spaced horizontal grid. The remapping of ERA5
was conducted on Mistral, the super-computer at the DKRZ.
The remapped data were transferred to the regional comput-
ing centre for visual data analysis of single cases. For interac-
tive visual analysis in Met.3D, all data that are rendered into
a 3-D scene have to fit into the memory of a single GPU. New
data are loaded on demand, when selecting new variables or
manually stepping through time. For the visual data analy-
sis, we used a NVIDIA Tesla T4 GPU in a vGPU setup with
a global memory of 8 GB. A total of around 3 TB of ERA5
data was probed by means of manual selection and visual
data exploration. The remapping of ERA5 data and the com-
putation of the diagnostic indices for the 132 PL events and
the 132 random pseudo-events were conducted on Mistral at
the DKRZ. After selection of the required geographical sub-
domain (Barents and Nordic seas), time intervals (covering
all events), and remapping to regular grids, a total of approx-
imately 1 TB of ERA5 data was processed for computing the
diagnostic indices.
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Appendix B: Examples of randomly generated
pseudo-events

Figure B1. Examples of randomly generated pseudo-events to test performance of diagnostic indices. (a) One of the pseudo-events generated
in winter 2006. (b) One of the pseudo-events generated in winter 2007. Pseudo-events are defined at randomly selected times and locations
when no PL was observed to test whether diagnostic indices are useful for distinguishing occurrence and non-occurrence of PLs.
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Appendix C: Examples of PL events not captured by the
new MCAO index

Figure C1. Examples of PL events that were not captured by the new MCAO index. (a) PL event on 4 March 2010. (b) PL event on 13 March
2011. The area with the highest index values, delineated by the 95th percentile (dashed black line), does not overlap with the area of observed
PLs (STARS-DAT).
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Appendix D: Comparison of dichotomized regional and
new MCAO index

Figure D1. Comparison of dichotomized regional and new MCAO index for one exemplary time step (at 14:00 UTC on 24 March 2011).
(a) New MCAO index (mp , Eq. 3). Orange area: the new MCAO index is larger than the critical threshold determined via the analyses
in Sect. 3.3.3 (i.e. mp >Mcrit

p = 330 hPa). (b) Regional index (mθ (pcrit), Eq. 7). Orange area: the regional index is larger than zero. As
described in Sect. 3.3.4, the critical pressure level for computation of the regional index can be obtained as pcrit = p0−M

crit
p = 1013.25−

330= 683.25 hPa. The comparison provides a numerical example to illustrate thatmp >Mcrit
p impliesmθ (pcrit) > 0 (assuming that potential

temperature increases with height in the top layers of MCAOs). This means that the skill of the new MCAO index in distinguishing times
and locations of PLs with a critical threshold of 330 hPa also holds for the regional MCAO index with a critical threshold of 0, because
the classification is based on the dichotomized index values (Eq. 6, Sect. 3.3.3). Note that for the example illustrated here we compute the
regional index based on ERA5 data on the nearest pressure level (700hPa≈ 683.25hPa) to show that this may be used as a computationally
cheaper approximation. The new MCAO index is calculated based on ERA5 data on model levels with interpolation to the pressure level
where θ(p∗)= θskin. This explains the small deviations between the two orange areas.
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Appendix E: Classification scheme for testing
performance of diagnostic indices

Table E1. Confusion matrix summarizing the classification scheme for task 1. In task 1 we test the performance of indices in distinguishing
the time of PL occurrence.

Prediction (index values)
O

bs
er

va
tio

n

(S
TA

R
S

da
ta

) PL No PL
(M̂i = 1, anywhere in domain) (M̂i = 0, everywhere in domain)

PL True positive False negative
no PL False positive True negative

Table E2. Confusion matrix summarizing the classification scheme for task 2. In task 2 we test the performance of indices in distinguishing
the time and location of PL occurrence.

Prediction (index values)

O
bs

er
va

tio
n

(S
TA

R
S

da
ta

) PL No PL
(M̂i = 1, inside the area of PL/pseudo-event) (M̂i = 0, everywhere in domain)

PL True positive False negative
no PL False positive True negative
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Code availability. The code of the open-source visualization
framework Met.3D is available at https://gitlab.com/wxmetvis/met.
3d (Met.3D – Code Repository, 2021). Links to documentation
and further resources are available at https://met3d.wavestoweather.
de (Met.3D – Homepage, 2021) and https://collaboration.cen.
uni-hamburg.de/display/Met3D/Welcome+to+Met.3D (Met.3D –
Documentation, 2021a). The Python and bash scripts for pre- and
post-processing, statistical analyses, and visualizations are available
upon request.

Video supplement. The following movies illustrate interactive vi-
sual data analysis using Met.3D and provide supplementary insights
into the 3-D dynamics of MCAOs and PLs in ERA5.

– Movie 1. Interactive visual data analysis of a marine cold air
outbreak in ERA5 data (Meyer et al., 2021a).

– Movie 2. Interactive visual data analysis of a polar low in ERA5
data (Meyer et al., 2021b).

– Movie 3. Interactive visual data analysis of the characteristic
pressure level in the conventional MCAO index (Meyer et al.,
2021c).

– Movie 4. Dynamics of the upper boundary of a MCAO (time
of MCAO: March 2011; Meyer et al., 2021d).

– Movie 5. Dynamics of the upper boundary of a MCAO and the
dynamical tropopause (time of MCAO: March 2011; Meyer et
al., 2021e).

– Movie 6. Dynamics of the upper boundary of a MCAO (time
of MCAO: December 2002; Meyer et al., 2021f).
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