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Abstract. The Saharan heat low (SHL) is a key component of
the West African Monsoon system at the synoptic scale and
a driver of summertime precipitation over the Sahel region.
Therefore, accurate seasonal precipitation forecasts rely in
part on a proper representation of the SHL characteristics in
seasonal forecast models. This is investigated using the latest
versions of two seasonal forecast systems namely the SEAS5
and MF7 systems from the European Center of Medium-
Range Weather Forecasts (ECMWF) and Météo-France re-
spectively. The SHL characteristics in the seasonal forecast
models are assessed based on a comparison with the fifth
ECMWF Reanalysis (ERA5) for the period 1993–2016. The
analysis of the modes of variability shows that the seasonal
forecast models have issues with the timing and the intensity
of the SHL pulsations when compared to ERA5. SEAS5 and
MF7 show a cool bias centered on the Sahara and a warm
bias located in the eastern part of the Sahara respectively.
Both models tend to underestimate the interannual variabil-
ity in the SHL. Large discrepancies are found in the repre-
sentation of extremes SHL events in the seasonal forecast
models. These results are not linked to our choice of ERA5
as a reference, for we show robust coherence and high cor-
relation between ERA5 and the Modern-Era Retrospective
analysis for Research and Applications (MERRA). The use
of statistical bias correction methods significantly reduces
the bias in the seasonal forecast models and improves the

yearly distribution of the SHL and the forecast scores. The
results highlight the capacity of the models to represent the
intraseasonal pulsations (the so-called east–west phases) of
the SHL. We notice an overestimation of the occurrence of
the SHL east phases in the models (SEAS5, MF7), while
the SHL west phases are much better represented in MF7. In
spite of an improvement in prediction score, the SHL-related
forecast skills of the seasonal forecast models remain weak
for specific variations for lead times beyond 1 month, requir-
ing some adaptations. Moreover, the models show predictive
skills at an intraseasonal timescale for shorter lead times.

1 Introduction

In the Sahel region, food security for populations depends on
rainfed agriculture which is conditioned by seasonal rainfall
(Durand, 1977; Bickle et al., 2020), characterized by a strong
convective activity in the summer, associated with a large
climatic variability (local- and large-scale forcings), gener-
ally leading to poor precipitation forecast skills at subsea-
sonal and seasonal timescales in tropical North Africa (Vo-
gel et al., 2018). Hence, climate models suffer from biases
in the representation of West African Monsoon (WAM) pro-
cesses and dynamics responsible for rainfall in West Africa
(Roehrig et al., 2013; Martin et al., 2017). During the African

Published by Copernicus Publications on behalf of the European Geosciences Union.



894 C. G. Ngoungue Langue et al.: Seasonal forecasts of the Saharan heat low characteristics

Monsoon Multidisciplinary Analysis (AMMA) project (Re-
delsperger et al., 2006), the Saharan heat low (SHL) has
been used as a key component to assess the variability in the
WAM system. In particular, forecasters and researchers have
pointed out the need to document the SHL predictability and
its link with Sahelian rainfall (Janicot et al., 2008b). Improv-
ing precipitation forecasts not only is crucial for agriculture
and water supply in the region but also is of paramount im-
portance for floods and disease prevention.

The SHL refers to the low-surface-pressure area that ap-
pears above the Sahara region in the boreal summer due
to seasonal high temperatures and insolation (e.g., Lavaysse
et al., 2009). The SHL is an essential component of the WAM
system at the synoptic scale (Sultan and Janicot, 2003; Parker
et al., 2005; Peyrillé and Lafore, 2007; Lavaysse et al., 2009;
Chauvin et al., 2010) and a driver of precipitation over the
Sahel region (Lavaysse et al., 2010a; Evan et al., 2015). It
plays an important role in the atmospheric circulation over
West Africa and brings moisture from the Atlantic Ocean to
the region, thereby favoring the installation of the monsoon
flow. In the lower atmospheric layers, the cyclonic circulation
generated by a strong SHL tends to reinforce the monsoon
flow around its eastern flank and the Harmattan flow along
the western flank (Lavaysse, 2015). In the mid-layers, the
anticyclonic circulation associated with the divergent flow at
the top of the SHL contributes to maintaining the African
Easterly Jet (AEJ) at around 700 hPa and modulates its in-
tensity (Thorncroft and Blackburn, 1999). An intensification
of the AEJ is observed during strong phases of SHL activity
(Lavaysse et al., 2010b). According to Lavaysse et al. (2009),
the SHL maximum activity over the Sahara occurs on av-
erage from 20 June to 17 September, and it is located 20–
30◦ N, 7◦W–5◦ E, covering much of northern Mauritania,
Mali, Niger and southern Algeria (Fig. 1). The maximum of
SHL activity happens during the rainfall season in the Sahel
region (from June to September; Sultan and Janicot, 2003).
The SHL is considered a reliable proxy for the regional- and
large-scale forcings impacting the WAM (Lavaysse et al.,
2010b).

Lavaysse et al. (2009) monitored the seasonal evolution of
the West African heat low (WAHL) using ERA-40 reanaly-
ses and brightness temperature from the Cloud Archive User
Service (CLAUS). They found a northwestward migration
of the WAHL from a position south of the Darfur moun-
tains in the winter to a location over the Sahara between the
Hoggar and the Atlas mountains during the summer. They
also estimated the climatological onset of the SHL occur-
ring around 20 June (from the period 1984–2001) some days
before the climatological monsoon onset date. This high-
lights strong links between the SHL and the monsoon flux.
Chauvin et al. (2010) assessed the intraseasonal variability in
the SHL and its link with midlatitudes using National Cen-
ters for Environmental Prediction (NCEP-2) reanalysis data.
They found a robust mode of variability in the SHL over
North Africa and the Mediterranean which can be decom-

posed into two phases called east–west oscillations. The west
phase corresponds to a maximum temperature over the coast
of Morocco–Mauritania, propagating southwestward, and a
minimum temperature between Libya and Sicily, propagat-
ing southeastward. The east phase corresponds to the oppo-
site temperature structure which propagates as in the west
phase. Roehrig et al. (2011) studied the link between the vari-
ability in convection in the Sahel region and the variability
in the SHL at an intraseasonal timescale using NCEP-2 re-
analysis data. They showed that the onset of the monsoon
is associated with strong SHL activity when the northerlies
coming from the Mediterranean (sometimes called ventila-
tion) are weak. Conversely, they revealed that the formation
of a strong cold air surge over Libya and Egypt and its prop-
agation toward the Sahel lead to the decrease in the SHL,
which inhibits the WAM onset.

As detailed above, previous work has evidenced the im-
portance and the role of the SHL in the West African climate.
These studies are based on a climatological view of the SHL
using mostly reanalysis data. One may legitimately wonder
how seasonal forecast models represent the SHL evolution.

The seasonal forecast is a long-term forecast which is very
useful because it allows an anticipation of seasonal trends.
The use of an ensemble forecast for seasonal forecasting pro-
vides a range of forecasts and gives information about the
spread associated with the forecast of a specific variable. En-
semble forecast models lead to an improvement in the pre-
dictive skills of some atmospheric variables (Haiden et al.,
2015; Lavaysse et al., 2019). The evaluation of the SHL be-
havior in seasonal forecast models has not been addressed
yet. Roehrig et al. (2013) show that the mean temperature
over the Sahara from July to September is well correlated
with rainfall position over the Sahel region. Provided that the
SHL characteristics (i.e., the east and west pulsations of the
heat low, its intensity, and its interannual variability) are well
captured in seasonal forecast models simulations, they can
be used as predictors for rainfall in the Sahel area.

The goal of this article is (i) to investigate the representa-
tion and the forecast skills of the SHL in two seasonal fore-
cast models and (ii) to evaluate the added value of bias cor-
rection techniques on raw seasonal forecasts. Bias issues are
very frequent in seasonal forecast models; by correcting them
with statistical methods, the predictive skills of the models
can be improved in order to provide atmospheric variables
that better fit the characteristics of the observation.

To reach this aim, we firstly study the SHL variability
modes in seasonal forecast models and reanalyses; secondly
we estimate the biases between the forecasts and reanaly-
ses. Finally, we assess the recent evolution of the SHL and
proceed with an evaluation of forecasts with respect to the
reanalyses.

The remainder of this article is organized as follows: in
Sect. 2, we present our region of interest and the data used
for this work; the description of the methodology adopted is
also provided. Section 3 contains the main results of this in-
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Figure 1. Topographic map of West Africa using ERA5 elevation data. The y axis and x axis represent the latitude and longitude respectively,
in degrees over the domain. The color bar shows the elevation in meters over the region.

vestigation obtained by following the methodology described
in Sect. 2. In Sect. 4, the predictive skills of the seasonal fore-
cast models are discussed; and Sect. 5 provides a conclusion
with some perspectives for future studies.

2 Data and methods

2.1 Saharan heat low evaluation metric

The location of the West African heat low has a strong
seasonal variation: north–south owing to the seasonal cy-
cle of insolation and east–west owing to orographic forcing
(Lavaysse et al., 2009; Drobinski et al., 2005). It is termed
SHL once it reaches its Saharan location generally within
20–30◦ N, 7◦W–5◦ E, during the monsoon season, an area
that is bounded by the Atlas mountains to the north, the
Hogar mountains to the east, the Atlantic Ocean to the west
and the northern extent of the WAM to the south (Evan et al.,
2015). The SHL has been detected in previous studies using
the low-level atmospheric thickness (LLAT) computed as a
geopotential distance between two pressure levels, 700 and
925 hPa (Lavaysse et al., 2009). Because the LLAT is due to
a thermal dilatation of the low troposphere and in order to
simplify the detection process, the SHL can be monitored by
using the 850 hPa temperature field. Lavaysse et al. (2016)
using ERA-Interim reanalysis, showed that the 850 hPa tem-
perature (T850) field is well correlated to the LLAT and can
be used as a proxy for the monitoring of the SHL (detec-
tion and intensity). As ERA5 is an improvement in ERA-
Interim, we assume that the correlation between T850 and
the LLAT is preserved in ERA5. We suppose this is also true
for the forecast models. Consequently in this study, we use
T850 to analyze the SHL characteristics. Because fixed boxes

are used, the detection of the SHL is not needed, but strong
(weak) phases of the SHL will be associated with high (low)
T850.

2.2 Region of interest

The Sahara is located over 20–35◦ N, 25◦W–40◦ E, and cov-
ers large parts of Algeria, Chad, Egypt, Libya, Mali, Mau-
ritania, Morocco, Niger, Western Sahara, Sudan and Tunisia
(see topographic map in Fig. 1). The climate is associated
with very hot temperatures from May to September of around
30 ◦C for mean temperatures and over 40 ◦C for mean max-
imum temperatures, very low humidity close to the surface
(with relative humidities of less than 10 %), and a critical ab-
sence of rainfall.

It is also the region with the largest production of dust par-
ticles (Prospero et al., 2002). For this study, North Africa is
subdivided in four regions (see Fig. 2) defined as follows:

– the Sahara area 20–30◦ N, 10◦W–20◦ E, and extending
from the south of Morocco to Egypt;

– the central SHL here denoted as CSHL, located 20–
30◦ N, 7◦W–5◦ E, and covering most of the north of
Mauritania, Mali and the south of Algeria;

– the western SHL here denoted as WSHL, located 20–
30◦ N, 10–2◦W and including the north of Mauritania,
Mali, the south of Morocco and Algeria;

– the eastern SHL denoted as ESHL, located 20–30◦ N,
0–8◦ E, and mostly in the south of Algeria.

The choice of the four regions is supported by previous
studies: Lavaysse et al. (2009) highlight a maximum activ-
ity of the SHL in the CSHL location during summer (JJAS
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Figure 2. Climatology of the SHL during the JJAS period over 1993–2016 in the reanalysis data using T850, (a) ERA5 and (b) MERRA,
and the anomalies of the climatologies of the SHL between (c) SEAS5 and ERA5, (e) SEAS5 and MERRA, (d) MF7 and ERA5, and (f)
MF7 and MERRA. The rectangles indicate the boxes chosen for the computation of the average T850 and their corresponding name. WSHL:
western SHL; CSHL: central SHL; ESHL: eastern SHL; SAH: the Saharan region. The color bars indicate T850 (a, b) and the anomalies of
T850 (c–f) in kelvins. The computation was made using the ensemble mean member.

period, June–September); Roehrig et al. (2011) show that
the SHL tends to migrate from the west to the east during
the season, which explains the WSHL and ESHL locations.
The Saharan location has been used in some climate studies
(Lavaysse, 2015; Taylor et al., 2017).

2.3 Data

In this study, we used two types of data: reanalyses and
seasonal forecast model outputs. We used outputs from
the fifth-generation European Center for Medium-Range
Weather Forecasts (ECMWF) Reanalysis (ERA5) (Hersbach
et al., 2020). The ERA5 atmospheric variable studied here is
daily T850 with a spatial resolution of 0.25◦× 0.25◦ down-
loaded on the climate data store website: https://cds.climate.
copernicus.eu/ (last access: 14 January 2020). The Modern-
Era Retrospective analysis for Research and Applications
(MERRA) dataset was also used. The MERRA data have
a spatial resolution of 0.5◦× 0.625◦ with 42 vertical levels
downloaded on the ClimServ database. As for ERA5 reanal-
ysis, we used the MERRA T850 to carry out our analyses.

To be coherent with the model outputs, we consider only
the daily temperature data at 00:00 and 12:00 UTC. We also
transformed the spatial resolution of ERA5/MERRA (from
0.25◦×0.25◦/0.5◦×0.625◦ to 1◦×1◦) to match the one of the
seasonal forecast models. The two forecast models analyzed
here are the seasonal forecast SEAS5 from ECMWF and
the seasonal forecast system MF7 from Météo-France. The
seasonal forecast model SEAS5 replaces the previous sea-
sonal system S4 (Johnson et al., 2019); it includes upgraded
versions of the atmosphere and ocean models at higher res-
olutions. The SEAS5 model has a horizontal resolution of
36 km over the globe and contains 91 levels for the vertical
resolution. The MF7 seasonal forecast system is based on
the ARPEGE/IFS global forecast model (Déqué et al., 1994)
which was jointly developed by Météo-France and ECMWF.
MF7 uses the climate version of CNRM-CM6 (Voldoire
et al., 2019) such that MF7 and SEAS5 only share a com-
mon radiation parameterization but the rest of the physical
package is different. The horizontal resolution of the MF7
model is around 7.5 km over France and 37 km over the An-
tipodes; it contains 105 vertical levels. Both SEAS5 and MF7
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model outputs used in this paper are based on the ensemble
retrospective forecast (hindcast) which contains 25 members,
meaning that for a given time, we have 25 re-forecasts from
each model. The re-forecasts are released on the first day
of every month for a period of 6 months for SEAS5. With
MF7, one member of the model is initialized on the first of
the month and the other members are launched on the last
two Thursdays of the month. The atmospheric variable in-
vestigated in models is also daily temperature at 00:00 and
12:00 UTC with a spatial resolution of 1◦× 1◦. Our dataset
covers the period going from 1 January 1993 to 31 Decem-
ber 2016.

2.4 Strategy for the analysis of forecast

As we analyze the representation of the SHL, we focus on
the period going from June to September (denoted by JJAS
in the rest of the study) because it corresponds approximately
to the period of maximum heat low activity over the Sa-
hara (Lavaysse et al., 2009). Seasonal forecast models usu-
ally fail to correctly forecast events a long time in advance
for a given target period. Therefore, we are interested in a
forecast launched at most 2 months in advance of the JJAS
period. In order to do that, we consider re-forecasts initial-
ized on 1 April, 1 May and 1 June, which corresponds to a
June lead time of 2, 1 and 0 months respectively. This tech-
nique allows us to quantify the sensitivity of the models in
representing the SHL at different lead times. The re-forecast
validation process is made separately for the whole JJAS pe-
riod and individual months (June, July, August and Septem-
ber) because June and September temperature values are in
the same range.

2.5 Methods

This section describes in more detail the set of analyses car-
ried out to achieve our goal. The methodology adopted is
illustrated below.

2.5.1 Subseasonal modes of variability

A mode of variability represents a spatio-temporal structure
highlighting the main characteristics of the evolution of at-
mospheric variables at a given timescale. There are several
statistical methods for assessing the modes of variability that
contribute to a raw signal. The one used here is the wavelet
analysis of the temperature signal. The wavelet transform
consists in applying a time–frequency analysis to a given sig-
nal. It is very useful for analyzing non-stationary signals in
which phenomena occur at different scales. This method pro-
vides more information than the Fourier transform about the
observed structures in the initial signal (starting and ending
time and the duration of propagation (frequency)). With this
type of analysis, we observe the distribution of the signal in-
tensity in time and frequency. A wavelet function is defined

by a scale factor and a position factor (Büssow, 2007; Zhao
et al., 2004).

Let f (t) be a real function of a real variable; the wavelet
transformation of this function denoted as W(f )(a,b) is
given by

W(f )(a,b)=< f,ψa,b>=

+∞∫
−∞

(f (t) ·ψa,b(t)dt, (1)

ψa,b(t)=
1
√
a
·9(

t − b

a
). (2)

The function9 is called the mother wavelet and must be of
square integrable that means

∫
+∞

−∞
(9(t))2dt is finite and also

verify the following property:
∫
+∞

−∞
9(t)dt = 0. The param-

eter b is the position factor, and a is the scaling parameter
greater than zero. For a given signal, a represents the fre-
quency and b the time. There exist diverse types of mother
wavelets; based on the literature review and its common use,
we chose the Morlet wavelet (Tang et al., 2010). The Morlet
wavelet is defined as the product of a complex sine wave and
a Gaussian window (see Eq. 3) (Cohen, 2018). The wavelet
analysis has been applied separately to the re-forecasts and
the reanalyses for an initialization of the seasonal forecast
models on 1 April, 1 May and 1 June for a 6-month period;
but we extracted only the signal on the JJAS period to con-
duct our analyses on variability modes. We focused on sig-
nals with a period of up to 32 d.

9(t)= π−1/4exp−t
2/2 cos(wot) (3)

2.5.2 Bias correction

Seasonal forecast models provide a numerical representation
of the Earth and the interactions between its different compo-
nents: the atmosphere, the ocean and the continental surfaces.
Those interactions are very complex and take place at differ-
ent spatio-temporal scales. This can lead in certain cases to
an over/underestimation of the evolution of atmospheric vari-
ables in the models. The cause of this behavior in the models
is often the presence of biases. To overcome this bias issue,
we use here two univariate bias correction methods: quan-
tile mapping (QMAP) and cumulative distribution function
transform (CDF-t).

QMAP

Quantile mapping aims to adjust climate model simulations
with respect to reference data, in determining a transfer func-
tion to match the statistical distribution of simulated data to
one of the reference values (e.g., Dosio and Paruolo, 2011).
When reference data have a resolution similar to those of cli-
mate model simulations, this technique can be considered a
bias adjustment method. On the other hand, when the obser-
vations are of a higher spatial resolution than those of climate
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simulations, quantile mapping attempts to fill the scale shift
and is then considered a downscaling method (Michelangeli
et al., 2009). The QMAP method is based on the assump-
tion that the transfer function calibrated over the past period
remains valid in the future. Let Fo, h and Fm, h be the cumu-
lative distribution functions (CDFs) of the observational (ref-
erence) data Xo, h and modeled data Xm, h respectively, in a
historical period h. The transfer function for bias correction
ofXm, p(t)which represents a modeled value at time t within
a projected period p is given by the following relation (e.g.,
Cannon et al., 2015; Dosio and Paruolo, 2011):

X̂m, p(t)= F
−1
o, h{Fm, h[Xm, p(t)]}, (4)

where F−1
o, h is the inverse function of the CDF Fo, h .

CDF-t

CDF-t is a statistical downscaling method developed by
Michelangeli et al. (2009). It can be considered a general-
ization of the quantile-mapping correction method. Hence,
as with QMAP, CDF-t consists in finding a relationship be-
tween the CDF of a large-scale climate variable and the CDF
of this same variable at the local scale. However, while the
quantile-mapping method projects the simulated values at a
large scale on the historical CDF to calculate quantiles, CDF-
t takes explicitly into account the change in the large-scale
CDF between the historical period and the future period. In
the CDF-t approach, a mathematical transformation T is ap-
plied to the large-scale CDF to define a new CDF as close
as possible to the CDF obtained from the station data (e.g.,
Vrac et al., 2012; Lavaysse et al., 2012).

Let Fm, h and Fo, h be the CDFs at a large and local scale
respectively of the modeled data Xm, h and the observational
data Xo, h over a historical period h and T the transformation
allowing us to go from Fm, h to Fo, h. We have the following
relation (Vrac et al., 2012):

T (Fm, h(Xm, h))= Fo, h(Xo, h). (5)

By applying this relation to the CDF Fm, f of the modeled
dataXm, f in a future period f, it provides an estimation of the
local CDF Fo, f in the future period f:

F̂o, f = T (Fm, f(Xm, f)). (6)

Quantile mapping can then be performed between Fm, f
and F̂o, f to obtain bias-corrected values of future simula-
tions. More details about CDF-t can be found in Vrac et al.
(2012). All the computations for the CDF-t method were
done with the R package “CDFt”.

After applying the bias correction methods to the model
outputs, the added value of the bias correction compared

to the raw re-forecasts will be assessed by the computation
of the Cramér–von Mises (hereafter Cramér) score (Henze
and Meintanis, 2005; Michelangeli et al., 2009). The Cramér
score measures the similarity between two distribution func-
tions; the closer its value is to 0, the closer the distributions
are.

Application of bias correction

QMAP and CDF-t are usually used for downscaling tasks in
a climate projection context. In this study, we adapted the
application of these methods for bias correction in a seasonal
forecast context. We used a leave-one-out approach for the
calibration process with CDF-t and QMAP. This method con-
sists in removing the target year (the year we want to apply
the correction to) in the historical period before the estima-
tion of the transfer function which allows us to pass from
the global scale to local-scale data. In our case the calibra-
tion process has been made using 23 of the 24 years in the
historical period 1993–2016 for every year. The correction
or projection process is made differently using CDF-t and
QMAP. For QMAP, we use as input the target year removed
previously during the calibration phase. With CDF-t, we built
a new dataset of 24 years which is the concatenation of the
dataset used for the calibration and the target year so that the
year at the end of the new dataset represents the target year.

2.5.3 Ensemble forecast verification

Ensemble forecast verification is the process of assessing the
quality of a forecast. The forecast is compared against a cor-
responding observation or a reference; the verification can
be qualitative or quantitative. Forecast verification is impor-
tant for monitoring forecast quality, improving forecast qual-
ity and comparing the quality of different forecast systems.
There are many metrics or probability scores developed for
ensemble forecast verification depending on the tasks per-
formed. In our preliminary studies (not shown) on the skills
of the forecast models, we used different scores (continuous
ranked probability score – CRPS, Brier score, relative oper-
ating characteristic (ROC) area curve, rank histogram, relia-
bility diagram), but in the present work, we will only focus
on the CRPS (Hudson and Ebert, 2017), which is very simi-
lar to the Brier score. This choice is justified by the simplicity
in data processing when computing the CRPS through some
R packages like SpecsVerification (Siegert et al., 2017). The
CRPS is a quadratic measure of the difference between the
forecast CDF and observation CDF. It quantifies the relative
error between the model forecasts and the observations; it is
a measure of the precision of an ensemble forecast model.
The closer the CRPS is to 0, the better it is.

Letting PF(x) and PO(x) be the cumulative distribution
functions for the forecasts and observations respectively, the
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CRPS is computed as follows:

CRPS=

+∞∫
−∞

(PF(x)−PO(x))
2dx (7)

The root mean square error (RMSE), which is a measure
of the differences between two samples (model predictions
and observations), has also been used for the evaluation of
the forecasts. Letting yt be the forecast of the model at time
t and Ot the corresponding observation at the same time, the
RMSE is given by the following relation:

RMSE=

√∑N
t=1(yt −Ot )

2

N
, (8)

where N is the number of time steps.

3 Results

3.1 Climatology of the SHL

The climatology state of the SHL has been assessed from
1993 to 2016 during the JJAS period for ERA5, MERRA,
SEAS5 and MF7 (see Fig. S2 in the Supplement). The sea-
sonal forecast models tend to develop SHL’s climatologies
with very similar characteristics to those of the reanalyses.
Strong SHL intensities are located over the CSHL location
(Fig. S2) for all the products (reanalyses and forecast mod-
els); this is in agreement with Lavaysse et al. (2009). Another
point discussed in this section is the uncertainty between
the reanalyses (ERA5 and MERRA) (see Fig. 2). ERA5 and
MERRA exhibit similar behaviors regarding the climatologi-
cal bias of the SHL with respect to the seasonal forecast mod-
els (Fig. 2c–f): a cold bias with SEAS5 and a warm bias with
MF7. The seasonal evolution of the climatological state of
the SHL in ERA5 and MERRA (see Fig. 6) is almost similar
over the CSHL location except for the Sahara, where a little
shift of MERRA to high temperatures is observed but the pat-
terns in the evolution remain very close to ERA5. The distri-
bution of yearly T850 over the JJAS period (see Fig. 7a, b, g,
h) in ERA5 and MERRA is quite similar, suggesting a good
correlation between the two reanalyses. The uncertainties be-
tween the reanalyses (see Fig. S3 in the Supplement) are
much smaller than the biases in the seasonal forecast mod-
els with respect to ERA5. We also found large correlation
between ERA5 and MERRA (see Fig. S1 in the Supplement)
of around 0.97/0.92 over the CSHL/Sahara location during
the JJAS period. By considering all these results highlighting
high similarities between ERA5 and MERRA, we decided
to choose ERA5 as our reference dataset for the rest of the
study.

3.2 Variability modes

Through a wavelet transformation, we compared the vari-
ability modes in the forecast products (SEAS5, MF7) with
respect to ERA5 over the central SHL location and Sahara
(boxes indicated in Fig. 2) (see Fig. S4 in the Supplement).
Especially for the year 2016, three main frequency bands of
activity of the SHL have been identified in ERA5: firstly,
the SHL activity within the 4–8 d window with high inten-
sity; secondly an intensification of events with strong inten-
sity (spectral power> 16) is observed for periods of about
8–16 d. Finally, events at very high frequencies are observed,
and the intensity associated is much higher (spectral power>
64) than in the previous ones. This shows the SHL activity
becomes stronger at high frequencies. The models tend to
reproduce the pulsations observed in the reanalysis signals
quite differently; there is an issue regarding the temporality,
frequency and intensity of the pulsations in the forecast mod-
els.

To assess the climatology of the variability modes (Fig. 3),
we analyzed the distribution of days associated with spectral
power greater than 1 (normalized value), here defined as sig-
nificant days during the period 1993 to 2016. This threshold
of 1 has been selected arbitrarily after applying a sensitivity
test to several threshold values from 0.5 to 10 to focus on
predominant events at different periods. We noticed globally
a decrease in events occurrence with high threshold values of
the spectral power. Note that the sensitivity to the threshold
values does not significantly impact our results (not shown).
We observe similar behavior in ERA5, SEAS5 and MF7 in
terms of significant days with an increasing number of days
with periods of up to 10 d followed by quite steady activity
for longer periods. Over the Sahara area, there is a tendency
for both models to reproduce SHL activity that is similar to
ERA5 at too-short periods (∼ 10 d). ERA5 shows little vari-
ation in the number of significant days with periods between
12–26 d and tends to be constant for high-frequency peri-
ods (greater than 27 d). SEAS5 overestimates the SHL ac-
tivity around the 15 d period, while MF7 is shifted toward
higher frequencies and underestimates the longer period.
Over the central SHL box, there is a tendency of both the
MF7 and the SEAS5 models to generate significant SHL ac-
tivity at too-short periods (∼ 4/10 d) compared to ERA5. At
longer timescales MF7 tends to overestimate the SHL activ-
ity within the 10–23 d period, while SEAS5 shows an under-
estimation of the SHL activity within the same window. The
evolution of significant days over the central SHL location
and Sahara highlighted three main pulsations based on the
period (or frequency). The different pulsations identified are
arbitrarily classified as follows: the class C1= [0, 10] d for
low-frequency, the class C2= (10, 22] d for high-frequency
and the class C3= (22, 32] d for very high frequency pulsa-
tions. In the following, we investigate the interannual vari-
ability of significant days for those different classes of pulsa-
tion (Fig. 4). The result for ERA5 shows a high interannual
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variability for pulsations in class C1 over both the central
SHL box and the Sahara (Fig. 4a, d). This can be caused by
the triggering of easterly waves and Kelvin equatorial waves
which tend to reinforce the convection activity. Those two
types of wave have a periodicity of between 1–6 d (Janicot
et al., 2008a). The correlation between the seasonal forecast
models and ERA5 is very low, less than 0.4. From this anal-
ysis, we can see that the seasonal forecast models tend to
represent the climatological activity of the SHL at different
frequencies even if some discrepancies are observed. How-
ever, the representation of the interannual variability in the
SHL activity remains a big challenge for the seasonal fore-
cast models.

3.3 Seasonal cycle

In this section, we are assessing the spatial representation of
the SHL over the Sahara region. In order to do that, we eval-
uate the bias between the seasonal forecast models (SEAS5,
MF7) and ERA5 (Fig. 5). The bias is defined here as the dif-
ference between the forecasts and the reanalyses; the mathe-
matical expression of the bias is the following:

Bt = Ft −Rt , (9)

where Ft and Rt are the forecasts and reanalyses respectively
at time t .

The bias is computed for each month at lead time 0 during
the season from January to December for the period 1993–
2016. By extending the analysis window over the season, we
are able to check if the biases in the seasonal forecast mod-
els are constant or specific to the JJAS period. When an-
alyzing the SEAS5 model outputs (Fig. 5a), we notice an
overestimation of temperature over the Atlantic Ocean and
over the Mediterranean Sea. We observe a cold bias between
SEAS5 and ERA5 which appears progressively during the
first months (January to April) and tends to intensify during
the monsoon phase over the Sahel region. This cold bias is
centered over the Sahara between the north of Mali, Niger
and the south of Algeria and tends to decrease in intensity
during the retreat phase of the monsoon in October. SEAS5 is
colder than ERA5 and underestimates the spatial evolution of
the SHL over the Sahara. In fact, biases in the evolution of the
coupled ocean–atmosphere system or in the continental sub-
surface can play a role in theses biases, but their investigation
is beyond the scope of this paper. The analysis on MF7 shows
a progressive appearance of a warm bias in comparison to
ERA5 over the Sahel during January and February (Fig. 5b).
This warm bias tends to develop from March to September
and affects the whole Sahara. It is more intense during the
monsoon phase and is located over the eastern part of the Sa-
hara. The bias between MF7 and ERA5 tends to decrease in
intensity during the retreat phase of the monsoon in October.
MF7 is warmer than ERA5 and overestimates the spatial evo-
lution of the SHL over the Sahara. The central SHL area is

less affected by this warming in MF7 compared to the rest of
the Sahara. This behavior in the Sahara region, especially in
the eastern part of the Sahara, could be related to an under-
estimation of air advection coming from the Mediterranean
regarding the prevalence of the hot bias to the eastern part of
the Sahara (Fig. 2b). This analysis shows that the two sea-
sonal forecast models have two contrasted representations of
the SHL compared to ERA5, with a colder SHL in SEAS5
and a warmer SHL in MF7, which is in agreement with pre-
vious global studies (e.g., Dixon et al., 2017; Johnson et al.,
2019). The two seasonal forecast models share however a
similar seasonal evolution of the bias (increasing bias during
the monsoon season) and a large spatial scale of the bias that
covers most of the Sahara. Without sensitivity experiments,
it is impossible to clearly identify the reasons for these op-
posite behaviors between the two models. The investigation
of the origins of these biases is well beyond the scope of
this article. In a more general framework, various European
research projects have shown the difficulty of attributing a
specific bias to a specific parameterization over West Africa,
including the SHL (Martin et al., 2017).

After the evaluation of the spatial evolution of the SHL in
the seasonal forecast models, the representation of the tem-
poral drift is assessed (Fig. 6). The method used here con-
sists in computing the climatology of the daily T850 ensem-
ble mean and ensemble spread for the two models (SEAS5
and MF7) and the daily climatology of T850 for ERA5
from 1993–2016. For the models, we consider only the re-
forecasts launched on 1 April, 1 May and 1 June for a pe-
riod of 6 months (see Sect. 2.4 for more details). We can
see that the climatology of ERA5 remains contained in the
spread described by SEAS5 for all lead times over the cen-
tral SHL location and Sahara; this spread in SEAS5 seems
to be constant in time and does not increase with the lead
time. We observe for the first forecast days a large spread
with MF7 which is not present in SEAS5, likely associated
with different perturbations and initialization techniques that
are beyond the scope of this study. For all lead times, an
overestimation of temperature is shown with MF7 over the
Sahara around mid-June and later over the central SHL loca-
tion (∼ 10 d after 1 July). SEAS5 shows an underestimation
of temperature occurring on 1 July over both the central SHL
box and the Sahara at different lead times. The maximum
intensities of the SHL activity in the two seasonal forecast
models are reached during the period of strong activity of the
monsoon flux in the Sahel region (July–August). Both mod-
els are very consistent at the beginning of the season (April–
June) when the Sahara is gradually warming. In the extension
of the previous analyses, we decided to check the temporal
correlation of the models and ERA5 (Fig. S6). We observe
a weak correlation between the evolution of the SHL in the
seasonal forecast models and ERA5. The scatterplot analysis
used for this evaluation highlights the over/underestimation
of T850 in MF7/SEAS5 with respect to ERA5 as observed in
the monthly bias analyses (Fig. S6c).
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Figure 3. Climatology of significant days: significant days here refer to days with a spectral power signal greater than 1. Red, blue and
black curves and bars represent the number of days and spread for SEAS5, MF7 and ERA5 respectively over the (a) central SHL box and
(b) Sahara during the period 1993–2016. The computation was made just using the unperturbed member of the ensemble forecast models
launched from 1 June for the JJAS period. The y axis represents significant days and x axis the duration of propagation in days.

Figure 4. Interannual variability of significant days: significant days here refer to days with a spectral power signal greater than 1. Red,
blue and black curves represent the number of days for SEAS5, MF7, ERA5 respectively over the (a–c) central SHL and (d–f) Sahara. The
values in red and blue boxes refer to the correlation between SEAS5 and ERA5 and between MF7 and ERA5 respectively. The terms [0,10],
(10,22] and (22,32] are the different classes of days identified for the present study. The computation was made just using the unperturbed
member of the ensemble forecast models launched from 1 June for the JJAS period. The y axis represents significant days and x axis the
year.

An estimation of bias was carried out for the SEAS5 model
data for (i) the full available period, running from 1981 to
2016 (denoted SEAS51), and (ii) the period common to MF7
and SEAS5, 1993–2016 (denoted SEAS52). The bias evolu-
tion is quite similar over the two periods (see Fig. 5a and
Fig. S5 in the Supplement); but we notice in SEAS51 a

smaller cold bias compared to in SEAS52. This change in
bias intensity can be explained by a warming in SEAS5 re-
forecasts during the period 1981–1992 which attenuates the
cooling effect in the model during the period 1993–2016.
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Figure 5. Climatology of monthly bias temperature over the Sahara region during 1993–2016 between (a) SEAS5 and ERA5 and (b) MF7
and ERA5. The bias is computed using daily temperature at 00:00 and 12:00 UTC. The computation was made using the ensemble mean for
forecast models. The color bar indicates the bias value in kelvins. The y axis indicates the latitudes and x axis the longitudes of our domain.

3.4 Interannual distribution of the T850

The climatological trend of the distribution of SHL intensi-
ties has been analyzed using the seasonal probability distri-
bution function (pdf) (Fig. 7a, f) of the SHL box-averaged
T850 (used as the proxy for the SHL intensity) over the JJAS
period at June lead time 0 (i.e., the initialization of the model
was made on 1 June). The analysis of seasonal T850 shows a
high variability in ERA5 and the presence of a decadal warm-
ing trend from 2005–2016 over both the central SHL location
and the Sahara (Fig. 7a, g). The high interannual variabil-
ity in the SHL seen in ERA5 is underestimated by SEAS5
and MF7. Using raw outputs of the seasonal forecast models,

SEAS5 tends to represent much better than MF7 the distribu-
tion the SHL intensities over the Sahara (Fig. 7a, c, d and g, i,
j). Another specificity of MF7 is its slightly larger ensemble
spread. SEAS5 seems to underestimate the warming trends
present in ERA5 from 2005–2016, and an overestimation of
this trend is observed with MF7 (Fig. S10); this behavior in
the seasonal forecast models is present over both the central
SHL box and the Sahara. By using this type of visualization
(heatmap which is a graphical representation of data where
values are depicted by color), it is possible to assess the inten-
sity of the climatological trend with respect to the intrasea-
sonal variability (Fig. 8). The interannual variability in the
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Figure 6. Climatology and spread of mean daily temperature during 1993–2016 at different initialization months for a 6-month forecast:
(a, d) April, (b, e) May and (c, f) June for the (a–c) central SHL box and (d–f) Sahara. Bold black, green, red and blue curves refer to the
mean T850 of ERA5, MERRA, SEAS5 and MF7 respectively; red and blue bars represent the inter-member spreads for SEAS5 and MF7
respectively. The computation was made using the ensemble mean of forecast models. The y axis indicates temperature in kelvins and x axis
the time.

SHL anomalies distribution in the seasonal forecast models is
too far from ERA5, but some characteristics are captured by
the models (e.g., the increase in the frequency of anomalies
in ERA5 during the 2000s). We observed high frequencies in
the SHL anomalies distribution at an interannual timescale
for MF7 and SEAS5 with more intense values over the Sa-
hara (Fig. 8b, c, g, h). To focus more on the evolution of the
tails of the distribution (i.e., the warmest and coldest T850),
the anomaly of the pdf of temperature is provided in supple-
mentary materials (Fig. S7). An increase in the occurrence
of the warmest temperature is observed in SEAS5 and MF7
during the 2010s. MF7 tends to overestimate the interannual
variability in the coldest and warmest temperature distribu-
tion, and SEAS5 exhibits an overall trend with some features
close to ERA5. Despite the fact that seasonal models tend
to capture some characteristics of the SHL variability, large
differences are observed in comparison with ERA5. These
differences can be explained by systematic biases present in
models, as well as by approximations made during the mod-
els implementation (initial and boundary conditions, physi-
cal hypotheses, etc.). In order to improve the quality of the
forecast, bias correction methods have been applied.

The above analyses revealed the presence of biases in the
models; bias correction was applied over the JJAS period for
June lead times 2, 1 and 0 (which represent the forecast of the
JJAS period initialized in April, May and June respectively).
The bias correction techniques used are CDF-t and QMAP
(see Sect. 2.5.2 for more details on their application). The
analysis of ensemble forecast models remains very delicate

because of the many possible ways to approach the bias cor-
rection; i.e., should we use the unperturbed member, mean
ensemble member, median ensemble member or the whole
ensemble member? In our case, the bias correction is first ap-
plied separately to the ensemble members in order to correct
the re-forecasts of each of the 25 members of the seasonal
forecast models (SEAS5 and MF7). A second methodology
has been tested by applying a bias correction to the ensem-
ble mean. To evaluate the sensitivity of the Cramér score to
the ensemble forecast models, we defined three different ap-
proaches as follows:

– CORR_NO_MEAN. In this approach the bias correc-
tion is applied to the whole ensemble member and the
Cramér score is computed using the outputs of the cor-
rection.

– CORR_MEAN. Here we compute first the mean over the
outputs of the bias correction on the whole ensemble
member; and we use this mean to compute the Cramér
score;

– MEAN_CORR. The method consists of applying the
bias correction to the ensemble mean, and the computa-
tion of the Cramér is performed directly using the out-
puts of the correction.

The Cramér score was calculated firstly using ERA5 and
the raw forecast samples (SEAS5 and MF7) and secondly be-
tween ERA5 and the bias-corrected forecast samples (Fig. 9).
We can observe that raw forecasts are not improved with
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Figure 7. Distribution of yearly T850 over the JJAS period during 1993-2016 over the (a–f) central SHL box and (g–l) Sahara. ERA5,
MERRA, SEAS5_BRUT and MF7_BRUT here correspond to the intensity of the SHL using ERA5 and MERRA for the reanalyses; SEAS5
and MF7 raw forecasts respectively. SEAS5_CDFT and MF7_CDFT refer to the intensity of the SHL using SEAS5 and MF7 seasonal
forecasts respectively bias corrected using ERA5. The computation was made using the ensemble members of the forecast models. The
y axis indicates time in years and x axis T850 in kelvins. The color bar indicates the probability of occurrence.

Figure 8. Same as Fig. 7 but for the yearly anomalies of temperature. The anomalies are computed by removing the daily climatology
temperature for each year.

initialization months (April, May or June) while corrected
forecasts show an improvement with decreasing lead times.
This can be the result of systematic bias in seasonal forecast
models. The MEAN_CORR method (Fig. 9c, f, i) is more
efficient than the two other approaches CORR_MEAN and
CORR_NO_MEAN, based on the Cramér score values. The
CORR_MEAN approach tends to smooth the corrected fore-
casts due to the computation of the mean ensemble mem-
ber after applying the correction. CDF-t and QMAP meth-
ods produce very similar results; an illustration of the cor-
rected forecasts using both the methods is provided in sup-
plementary materials (see Fig. S9). MF7 raw forecasts show
relatively large correction over the Sahara (Fig. S8); this be-
havior in MF7 is related to the hot bias occurring over the
eastern part of Sahara during the JJAS period as mentioned
in Sect. 3.2 (Fig. 5b). We can see from these results that
bias corrections are efficient and so important to apply to the

model outputs. Some illustrations of the corrected forecasts
have been made with the CDF-t method. In Fig. 7e and j, we
can notice a significant improvement in the distribution of
SHL in MF7 over both the central SHL location and the Sa-
hara. This improvement is also effective for SEAS5 (Fig. 7d,
i). The corrected forecast distributions are closer to ERA5
than the raw forecast ones. The investigation of the correla-
tion between the corrected forecasts and ERA5 (Fig. S6b,
d) shows clearly that CDF-t corrects the cold/hot bias in
SEAS5/MF7 by increasing/decreasing T850 values in order
to match with ERA5 T850 values. CDF-t reduces a large
part of the biases in SEAS5 and MF7, but the interannual
correlation with ERA5 is not improved. Indeed, CDF-t is a
quantile-based univariate bias adjustment method. As such,
it preserves the ranks of the model simulations and thus pre-
serves their rank (Spearman) correlations as well (e.g., Vrac,
2018; François et al., 2020).
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Figure 9. Bias correction evaluation using Cramér–von Mises score over the JJAS period during 1993–2016 on the central SHL box at
different forecast initialization months: (a–c) April, (d–f) May and (g–i) June. The CORR_NO_MEAN, CORR_MEAN and MEAN_CORR
methods are well described in Sect. 3.4. S5_B, S5_CD and S5_QM represent the Cramér score computed using the SEAS5 raw forecasts,
SEAS5 corrected with CDF-t and QMAP methods respectively. The same applies to MF7_B, MF7_CD and MF7_QM with the MF7 model.
The y axis indicates the Cramér score and x axis the different products used for the computation of the Cramér score.

3.5 Evolution of the extreme SHL events

Strong SHL activity contributes to the reinforcement of the
monsoon flow over the Sahel along the eastern flank of the
SHL. It also modulates the intensity of the AEJ and gener-
ates wind shear over the region. The resulting wind shear
will generate more instabilities favoring convective activi-
ties over the West Africa region. Taylor et al. (2017) showed
that strong SHL activity intensifies the convection within
the meso-scale convective systems (MCSs). Fitzpatrick et al.
(2020) suggest that stronger wind shear may be a key driver
of decadal changes in storm intensity in the Sahel. This
shows the importance of having a good representation of
these SHL characteristics in the models. Therefore, we an-
alyzed the variability in the SHL extremes using the raw and
corrected forecasts obtained with CDF-t (Fig. 10). We distin-
guished cold and hot extremes which represent events under
the quantile 10 % and above the quantile 90 % respectively.
We observe an increase in the SHL hot extremes in the sea-
sonal forecast models during the 2010s as well as a diminu-
tion of the SHL cold extremes which is in agreement with
the evolution in ERA5. MF7 raw forecasts tend to overesti-
mate the SHL hot extremes, while they seem to underesti-
mate the SHL cold extremes over both the central SHL loca-
tion and the Sahara. SEAS5 raw forecasts underestimate the
SHL hot extremes and make an overestimation of the SHL
cold extremes over the Sahara. We can see the efficiency of
the bias correction (CDF-t) when analyzing the evolution of
the SHL extremes from the corrected forecasts. Despite the

difference between ERA5 and the corrected forecasts being
reduced compared to the raw forecasts, the observed gap re-
mains significant.

3.6 East–west pulsation modes

The SHL has a typical timescale of 15 d associated with low-
level horizontal advection of moist and cold air that modu-
lates the surface temperature on the eastern part of the Sa-
hara and makes the maximum surface temperature shift from
a more eastern to a more western location of the Sahara
(Chou et al., 2001; Roehrig et al., 2011), leading to so-called
heat low east (HLE) events and heat low west (HLW) events
respectively (Chauvin et al., 2010). Roehrig et al. (2011)
and Lavaysse et al. (2011) highlighted interactions between
SHL components and Sahelian rainfall events. In the present
work, a simple method is proposed to capture the HLW and
HLE oscillations. Our method consists in defining a dipole
by computing the mean T850 difference between HLW and
HLE boxes, here referred to as WSHL and ESHL respec-
tively (see Sect. 2.2 for more details):

Dipole =HLW −HLE (10)

A positive value of the dipole indicates an HLW oc-
currence, while a negative value corresponds to the HLE
event. We evaluate the method using the LLAT approach
and the automatic detection of the SHL barycenter (Lavaysse
et al., 2009) used during the H2020 Dynamics–Aerosol–
Chemistry–Cloud Interactions in West Africa (DACCIWA)
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Figure 10. Interannual variability in the SHL extremes over the (a, b) central SHL and (c, d) Sahara during the JJAS period from 1993 to
2016. SEAS5_C and MF7_C refer to corrected forecasts with the CDF-t method, and SEAS5_B and MF7_B represent raw model forecasts.
The x axis indicates the time (year) and y axis the number of extremes registered for each year. Hot extremes are events occurring above the
90th percentile, and cold extremes are associated with events below the 10th percentile.

project campaign (Knippertz et al., 2017), which aims to
evaluate the seasonal location of the SHL with respect to
its climatological position. An illustration of our method for
the year 2005 is shown in Fig. S11 and confirms that there
is a good agreement between the evolution of the dipole of
T850 in ERA5 and the SHL barycenter computed in Knip-
pertz et al. (2017). After the assessment of the detection
method, we evaluate the representation of the SHL compo-
nents in the seasonal forecasts and ERA5 data (Fig. 11a).
As the corrected forecasts are unbiased compared to the raw
forecasts, we use them for this analysis. The results show that
ERA5 presents a bimodal regime; the first one is less accen-
tuated and associated with the HLE events (negative dipole
value), while the second regime is more representative and
related to HLW events (positive dipole value). For MF7, we
also noticed a bimodal regime and a large range in the dis-
tribution of the dipole compared to ERA5; the first regime
is more frequent and associated with the HLE events. The
second regime is less frequent and related to HLW events.
With SEAS5, we also observed a bimodal regime and a re-
duced range compared to ERA5. The first regime is less im-
portant and associated with the HLE events, while the second
one is more important and related to HLW events. From this
analysis, we can notice that MF7 (SEAS5) tends to overes-
timate the HLE (HLW) phases (Fig. 11a). This behavior in
the seasonal models is well highlighted when using the raw
forecasts for the computation of the dipole (see Fig. S16a in
the Supplement). MF7 and SEAS5 here again exhibit oppo-
site behaviors in terms of frequencies and intensities of the

Table 1. Correlation between the dipole values derived from the
seasonal models (SEAS5 and MF7) and the one derived from
ERA5. The “Raw dipole” represents the dipole computed using raw
forecasts and “Corrected dipole” that using the bias-corrected fore-
casts.

SEAS5 MF7

Raw dipole 0.53 0.65
Corrected dipole 0.61 0.75

SHL components. The analysis of the correlation between
the models and ERA5 shows that MF7 seems to be slightly
better correlated with ERA5 than SEAS5 (see Table 1). We
noticed a little and not significant improvement in the corre-
lation with the corrected signal.

To better understand the reasons for these differences, a
separate analysis of the SHL distribution in the two boxes
is performed (Fig. 11b, c). First, it is worth noting that the
east Sahara is climatologically hotter than the west Sahara in
ERA5, SEAS5 and MF7. This is explained by the proximity
of the west Sahara to the Atlantic Ocean and the advection
of fresh air masses in that area (see Fig. 2 for the location
of the west Sahara). Hence, there is a greater occurrence of
the HLE events compared to the HLW phases in ERA5. The
models (SEAS5/MF7) are able to reproduce this partitioning
of the SHL phases observed in ERA5 with the same range
of frequencies (∼ 0.6/0.4) for HLE/HLW respectively. Both
models overestimate the occurrence of the HLE events; MF7
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Figure 11. Distribution of the climatology over the period 20 June–17 September from 1993 to 2016 at June lead time 0 for (a) the dipole
which represents the difference between heat low west and heat low east, (b) heat low east, and (c) heat low west. MF7_C and SEAS5_C
refer to the MF7 and SEAS5 forecasts respectively corrected with the CDF-t method. ERA5_E, MF7_C_E and SEAS5_C_E refer to the HLE
in the reanalyses and MF7 SEAS5 forecasts respectively corrected with the CDF-t method. “ERA5_W”, “MF7_C_W” and “SEAS5_C_W”
refer to the HLW in the reanalyses and MF7 and SEAS5 forecasts respectively corrected with CDF-t method. The y axis indicates the
probability of occurrence and x axis the temperature in kelvins. The vertical green bar represents the boundary between the HLE and HLW
phases. The analysis was carried out using the unperturbed member.

tends to develop hot HLE events (Fig. 11b). The analysis
of the HLW phases reveals an under/overestimation of the
intensity/occurrence of these events in SEAS5. We notice,
with MF7, a good representation of the intensity of the HLW
events with sometimes an overestimation of the frequencies
associated with these phases (Fig. 11c). The interactions be-
tween the east and west boxes are investigated through a cor-
relation analysis using the outputs of both the seasonal mod-
els. The results obtained using raw and corrected forecasts
are very similar (not shown), so in the following we present
only the results related to the bias-corrected forecasts. High
correlation would suggest an influence of the large-scale pro-
cesses, whereas low correlation would indicate that smaller-
scale processes and local impacts come into play. The corre-
lation between HLE and HLW phases is about 0.45, 0.56 and
0.48 for ERA5, SEAS5 and MF7 respectively (see Table 2).
SEAS5 shows a higher correlation between the two phases
compared to ERA5 and MF7. To discriminate the effect of
the intraseasonal and seasonal cycles, the correlations are
computed between HLW and HLE by using the daily T850

anomalies relative to the daily climatology of T850 in the
two boxes. As expected, the seasonal cycle has a strong im-
pact and the correlation reduces from 0.45 to 0.30 for ERA5
compared to a reduction from 0.56 to 0.45 for SEAS5 and
from 0.48 to 0.34 for MF7 (see Table 2). The correlation with
SEAS5 remains high compared to MF7 and ERA5; this sug-
gests that T850 over the Sahara in SEAS5 is more affected
by large-scale drivers that provide wider temperature field
anomalies. MF7 shows a partitioning of SHL variability be-
tween the SHL intraseasonal mode and the seasonal cycle
that is more in agreement with ERA5. An investigation of
the representation of the SHL phases in the models vs. ERA5
has been assessed using the corrected forecasts. The models
are more correlated with ERA5 for the HLW phases (see Ta-
ble S1). Despite the differences between seasonal models and
ERA5, the models are able to capture the seasonal east–west
migration of the SHL.
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Table 2. Correlation between the HLW and HLE phases: values in
bold (parentheses) indicate the correlation using the bias-corrected
temperatures (anomalies of temperature) over the east and west
SHL boxes.

ERA5 SEAS5 MF7

Correlation 0.45 (0.30) 0.56 (0.45) 0.48 (0.34)

4 Discussion

Our results show that the two seasonal forecast models have
the capability to capture some of the SHL main character-
istics. There is a deficit in reproducing the intensity and the
occurrence of events, such as east and west phases of the
SHL, as they appear in the reference ERA5. The analysis of
the bias in seasonal forecast models evidenced a hot bias in
MF7 and a cold bias in SEAS5 which could be explained
by large-scale processes and forcings occurring at different
timescales in the Sahara region. The different behaviors ob-
served in forecast models can be related to their sensitivity
to the drivers and the physical processes involved in the SHL
evolution.

A preliminary assessment of the quality of the forecasts
with respect to the ERA5 reanalysis is discussed. This is per-
formed through an evaluation of the skills of the seasonal
forecast models to reproduce the interannual variability in
the SHL. For this evaluation, we used two metrics: the CRPS
and RMSE (see Sect. 2.5.3 for more details). A first analysis
of the forecasts at an interannual timescale was conducted us-
ing monthly mean T850 and daily T850 respectively for the
computation of the CRPS (Figs. 12 and S12) and the RMSE
(Fig. S14) with initialization of the seasonal forecast models
in April, May and June. The first period of evaluation is the
seasonal timescale that provides a benchmark of the forecast
for the rainy season (Fig. 12a, f, k; see also Fig. S14a, f, k in
the Supplement). It gives a limited but significant improve-
ment with respect to the climatology. The scores (CRPS,
RMSE) are then decomposed by month (Fig. 12b–e, g–j, l–o)
(see also Fig. S14a–e, g–j and l–o in the Supplement) to in-
vestigate the representation of the intraseasonal variability in
the SHL. We noticed an increase in the CRPS and RMSE val-
ues with the lead times over the CSHL location, which leads
to a loss of predictability in the seasonal forecast models.
SEAS5 shows more predictive skills over the CSHL location
for short-lead-time forecasting (0 to 1 months), and MF7 is
a little better for long lead times (approximately 3 months).
MF7 raw forecasts show very limited skills over the Sahara
(see Figs. S12 and S13b in the Supplement); this behavior
in MF7 can be related to hot biases evidenced in Sect. 3.2
(Fig. 5a). Bias correction improves considerably the predic-
tive skills of the models. The effect of bias correction on the
predictive skills of the seasonal models is more efficient over
the Sahara (see Figs. S12 and S13b in the Supplement). This

can be explained by the fact that climate models usually take
into account large-scale variability. As the Sahara is larger
than the central SHL box, the forecast models will better rep-
resent the variability occurring over the Sahara; and the cor-
rection method will adjust the systematic bias present in the
models. Models present lower predictive skills for the daily
T850, and an improvement is seen at a monthly timescale for
short lead times. However, the correlation found at a monthly
timescale never exceeds 0.61 (see Fig. S15b in the Supple-
ment); at a daily timescale, the correlation is less than 0.53
(see Fig. S15a in the Supplement) for all months at lead time
0. Correlations at different lead times have also been com-
puted, but the resulting coefficients were even lower than
those obtained at lead time 0 (not shown). An evaluation of
the seasonal forecast models at a very short lead time has
been performed for June, July, August and September at lead
time 0 by computing the CRPS using daily T850 raw fore-
casts (see Fig. S14 in the Supplement); similar results have
been found with the unbiased forecasts (not shown). We ob-
served a progressive increase in the CRPS with time before
reaching the predictability horizon at around 20 d. SEAS5
shows predictive skills at the first time steps of 1–3 d over
the CSHL and 1–8 d over the Sahara location; and MF7 is
more affect by the spin-up at the beginning of the prediction.
This behavior in SEAS5 can be explained by the capacity of
the model to represent large-scale variability occurring at the
Sahara location. From these results, we observed some pre-
dictive skills in the seasonal forecast models at an intrasea-
sonal timescale; however they remain weak for a long pe-
riod and for lead times beyond 1 month. These results are in
agreement with previous works which addressed the predic-
tive skills of the ECMWF ensemble system (Haiden et al.,
2015).

As seen previously, MF7 and SEAS5 present different
characteristics in terms of bias, particularly regarding HLW
and HLE event detection. This suggests that a multi-model
ensemble approach may be a solution to improve the forecast
skills of the seasonal models. Surprisingly, the multi-model
shows a predictive skill comparable to the individual models
(Fig. 12). This shows that the predictive skills of an ensem-
ble model do not depend on the number of members in the
models.

5 Conclusions

This work assessed the representation of the SHL in two
seasonal forecast models (SEAS5 and MF7) using ERA5
reanalyses as reference. The choice of ERA5 as refer-
ence for this evaluation was supported by a sensitive study
conducted between ERA5 and another reanalysis dataset,
namely MERRA. Very high correlations have been found
between the two reanalyses data, i.e., around 0.97 and 0.92
over the CSHL and the Sahara location respectively; robust
similarities are also observed in the yearly distribution of
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Figure 12. Evaluation of the interannual variability in the SHL over the JJAS period and separately in June, July, August and September
during 1993–2016 using monthly mean T850 over the central SHL box at different initialization months: (a–e) April, (f–j) May and (k–o)
June. S5_B and S5_C represent respectively the CRPS evaluated using the SEAS5 raw and corrected forecast respectively with the CDF-t
method. The same applies for MF7_B and MF7_C with the MF7 model. MS_C represents the CRPS evaluated on the multi-model formed
by SEAS5 and MF7 corrected forecasts with the CDF-t method. The computation was made using the ensemble member for both corrected
and raw forecasts. The y axis indicates the CRPS values and x axis the data type used for the computation of the CRPS.

T850. The discrepancies between the reanalyses are much
smaller than the biases in the seasonal forecast models with
respect to ERA5. Through a set of analyses, we have found
opposite biases in the seasonal forecast models compared
to ERA5. MF7 has a warm bias and tends to overestimate
the intensity of the SHL with respect to ERA5. SEAS5 de-
velops a cold bias and tends to underestimate the intensity
of the SHL over the Sahara. The models are able to repre-
sent the mean seasonal cycle of the SHL and capture some
characteristics of its interannual variability like the warm-
ing trends observed during the 2010s. However, the good
representation of this interannual variability remains chal-
lenging for the models. SEAS5 represents more realistically
the climatic trend of the SHL than MF7. The bias correc-
tion methods CDF-t and QMAP are very efficient at reduc-
ing the systematic bias present in the seasonal models. By
using bias correction tools, the results highlight the capacity
of the models to represent the intraseasonal pulsations (the
so-called east–west phases) of the SHL. We notice an over-
estimation of the occurrence of the HLE phases in the models
(SEAS5 and MF7); the HLW phases are much better repre-
sented in MF7. This diagnosis is a first validation of the rep-
resentation of the SHL in seasonal models. In spite of this,
the correct timing of these pulsations is still a key challenge
and the next step forward. Seasonal forecast models show
predictive skills at an intraseasonal timescale for short peri-
ods. Bias correction contributes to improving the ensemble
forecast score (CRPS), but the forecast skill remains weak

for a lead time beyond 1 month. The issue of the lack of
correlation in models cannot be solved through a bias cor-
rection approach; only model improvements could provide
better correlations between forecasts and observations. In a
future study, we will investigate the relationship between the
SHL and the extreme rainfall in the Sahel region at an in-
traseasonal timescale.

Code availability. The codes to perform the detection and the
scores are available on demand; please feel free to contact us. The
codes were implemented using CDO, R (CDFt, SpecsVerification,
biwavelet packages) and Python (NumPy, pandas, SciPy libraries).

Data availability. The data used for this work are available and
open access. ERA5 and MERRA reanalyses can be assessed
through the ISPL (Institut Pierre Simon Laplace) server ClimServ or
the Copernicus website (https://cds.climate.copernicus.eu/#!/home;
Copernicus, 2021). MF7 seasonal forecasts can be found at the
Météo-France service, and SEAS5 seasonal forecasts are accessible
through the ECMWF website (https://www.ecmwf.int/en/forecasts;
ECMWF, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/wcd-2-893-2021-supplement.
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