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Abstract. Here we demonstrate that dynamical adjustment
allows a straightforward approach to extreme event attribu-
tion within a conditional framework. We illustrate the po-
tential of the approach with two iconic extreme events that
occurred in 2010: the early winter European cold spell and
the Russian summer heat wave. We use a dynamical adjust-
ment approach based on constructed atmospheric circula-
tion analogues to isolate the various contributions to these
two extreme events using only observational and reanaly-
sis datasets. Dynamical adjustment results confirm previous
findings regarding the role of atmospheric circulation in the
two extreme events and provide a quantitative estimate of
the various dynamic and thermodynamic contributions to the
event amplitude. Furthermore, the approach is also used to
identify the drivers of the recent 1979–2018 trends in sum-
mer extreme maximum and minimum temperature changes
over western Europe and western Asia. The results suggest
a significant role of the dynamic component in explaining
temperature extreme changes in different regions, including
regions around the Black and Caspian seas as well as central
Europe and the coasts of western Europe. Finally, dynami-
cal adjustment offers a simple and complementary storyline
approach to extreme event attribution with the advantage that
no climate model simulations are needed, making it a promis-
ing candidate for the fast-track component of any real-time
extreme event attribution system.

1 Introduction

Extreme weather events such as heat waves and cold spells
have a profound impact on human health (Guo et al., 2018;
Robine et al., 2008), natural ecosystems (Stillman, 2019), so-
cial systems and the economy (Jahn, 2015). Europe has expe-
rienced a high number of extreme temperature episodes since

the early 2000s. Recent examples include the summer 2003
heat wave over western Europe, the summer 2010 heat wave
over eastern Europe and Russia, the 2010 cold winter over
Europe, the 2012 cold spell over eastern and northern Eu-
rope, the summer 2015 heat wave over southern and central
Europe, and the summer 2018 heat waves over northwestern
and central Europe. Science questions related to the origin,
causal and amplifying factors as well as predictability and
prediction of these events have led to an unprecedented num-
ber of studies in the last 20 years, with 2003 being perhaps
the starting point of this intense wave of research activity
(Stott et al., 2004). This emerging field of research is often
referred to as extreme event attribution, although it often cov-
ers a range of questions and issues that go beyond the stan-
dard attribution framework Hegerl and Zwiers, 2011; Lloyd
and Shepherd, 2020).

Recent and exhaustive review papers have nicely summa-
rized the multiple modeling and statistical approaches and
framings that have been used in the field of extreme event
attribution (Stott et al., 2016; Shepherd, 2016; Otto, 2017;
Naveau et al., 2020). A first type of approach (from now
on the risk-based approach) focuses on estimating and com-
paring the frequency of occurrence of extreme events under
two stationary worlds, the factual one (with the effect of hu-
man influence on climate) and the counterfactual one (with
no human influence on climate). A second type of approach
(thereafter the process-based approach) puts more emphasis
on the identification of the physical drivers of extreme events.
Within this second approach, the main objective is to quan-
tify the influence of the key causal factors of the extreme
event under scrutiny rather than estimating changes in the
likelihood of the event due to human influence (see Wehrli
et al., 2019, for a perfect example of the process-based ap-
proach). Both risk- and process-based approaches can often
be combined in some ways to improve the understanding
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and robustness of extreme event attribution results (Otto et
al., 2012). Note that the process-based approach can also be
viewed as a sub-category of the storyline approach that fo-
cuses on the key drivers and physically plausible unpacking
of past events (Shepherd et al., 2018).

Within the process-based approach, the quantification of
the driver’s influence often relies upon model sensitivity
experiments to disentangle the impact of each causal fac-
tor. Different modeling frameworks can be used (Schär and
Kröner, 2017; Wehrli et al., 2019): the first one is based on
“all-but-one” experiments where the influence of one specific
factor is removed from the control simulation setup (here
control simulation means a simulation including the influ-
ence of all factors). The second one, based on “only-one” ex-
periments, goes in the other direction by accounting for the
influence of a specific causal factor in a control simulation
(with all other factors’ influence removed).

A subset of the process-based approach uses the fact that
the vast majority of extreme events (in particular at midlati-
tudes to high latitudes) are associated with specific (but not
necessarily extreme) atmospheric circulation patterns. Con-
ditioning the observed temperature or precipitation extreme
variations on the appropriate circulation pattern naturally
leads to decomposition of the extreme event characteristics
(such as amplitude and persistence) into dynamic and ther-
modynamic components. As the two components have very
different signal-to-noise ratios related to the response to an-
thropogenic forcing, extreme event attribution results can be
notably strengthened by focusing separately on the two as-
pects (Shepherd, 2016; Vautard et al., 2016).

The above decomposition can easily be performed based
on atmospheric circulation nudging experiments for differ-
ent mean climate states corresponding to contrasted values
of the thermodynamic drivers (either external forcings or in-
ternal variability factors). For instance, Wehrli et al. (2019)
quantify the influence of sea surface temperatures (SSTs)
and soil moisture to five recent heat waves in both sub-
tropical and extratropical regions using global atmospheric
simulations with atmospheric circulation nudged to reanal-
ysis (using grid-point nudging). Based on nudged regional
model experiments, Meredith et al. (2015) have shown that
recent Black Sea sea surface temperature (SST) warming
has been a key contributor and amplifier in the magnitude
of the Krymsk July 2012 precipitation extreme. Another re-
cent example about heat wave attribution is the application
of a methodology based on spectral nudging of the free at-
mosphere within a global model and applied to both factual
and counterfactual worlds (van Garderen et al., 2021).

An alternative approach to model-based studies is to apply
a dynamical adjustment diagnostic approach to observations
and/or reanalyses. Dynamical adjustment methods have ini-
tially been developed to illustrate and quantify the role of
atmospheric internal variability on long-term regional tem-
perature trends (Wallace et al., 2012; Smoliak et al., 2015;
Guan et al., 2015; Deser et al., 2016; Saffioti et al., 2016;

Gong et al., 2019; Sippel et al., 2019). They have also been
applied in other contexts such as attribution studies of re-
gional precipitation changes (Guo et al., 2019; Lehner et al.,
2018), time of emergence uncertainties (Lehner et al., 2017),
influence of low-frequency oceanic modes on continental cli-
mate (O’Reilly et al., 2017) and land–atmosphere interaction
studies (Merrifield et al., 2017). The dynamical adjustment
method pioneered in Deser et al. (2016) is based on the con-
structed analogue approach and was initially applied using
monthly mean sea level pressure and temperature fields.

Here we investigate the possible added value of the con-
structed analogue dynamical adjustment approach in iden-
tifying and disentangling the key drivers and related physi-
cal processes of extreme events. We first use dynamical ad-
justment to assess the contribution of atmospheric circulation
and other drivers to two specific and iconic extreme events:
the 2009–2010 cold European winter (Wang et al., 2010;
Cattiaux et al., 2011; Osborne, 2011) and the 2010 Russian
heat wave (Barriopedro et al., 2011; Dole et al., 2011). The
analysis is performed at daily timescales for the two events,
allowing the yield of insights on both the chronology and
time-mean aspects. One key advantage of the dynamical ad-
justment approach is that it can be used with observational
(and/or reanalyses) data without the need of additional at-
mospheric (or climate) model simulations. One limitation is
that using dynamical adjustment with only observations does
not allow us to make statements regarding the role of any
particular external forcing (for instance greenhouse gases or
aerosols). Note that this inability to make single-forcing at-
tribution statements does not come from the dynamical ad-
justment itself but rather from the fact that the approach
used in this work only relies on observations. Indeed, dy-
namical adjustment could also be used on large ensembles of
single-forcing simulations such as those presented in Deser
et al. (2020) or the ones performed under the DAMIP frame-
work (Gillett et al., 2016).

Observational uncertainty estimates can be derived by us-
ing multiple products and/or a perturbed-parameter obser-
vational ensemble. Uncertainty related to the dynamical ad-
justment method parameters can be estimated by adequate
sampling of the latter. Finally, the approach can be used
for any type of event as long as high-quality observational
daily datasets of both atmospheric circulation and the phys-
ical variable of interest are available for a sufficiently long
common period (at least 30 years).

The second objective of this study is to revisit the attribu-
tion of the links between recent changes in atmospheric cir-
culation patterns and the increased occurrence of summer hot
temperature extremes over several midlatitude regions (Hor-
ton et al., 2015; Jézéquel et al., 2018, 2020). We first apply
dynamical adjustment at a daily timescale to all summer days
of the 1979–2018 period for both maximum (TX) and mini-
mum temperature (TN). We then identify maximum and min-
imum temperature for extreme hot days for every summer
of the 1979–2018 period and estimate changes in tempera-
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ture extremes as well as the role of atmospheric circulation
in these changes based on the dynamical adjustment results.
We focus on two specific regions, loosely defined as western
Europe (from 35 to 65◦ N and 15◦W to 25◦ E) and western
Asia (from 35 to 65◦ N and 25 to 60◦ E). Based on a trend
analysis of atmospheric circulation patterns derived from a
self-organizing map clustering approach, Horton et al. (2015)
have attributed a fraction of the increase in the occurrence
of extreme hot summer days for these two regions to an en-
hanced occurrence frequency and/or persistence (and/or du-
ration) of anticyclonic circulation patterns during the 1979–
2013 period. Here we assess whether a different but comple-
mentary approach can be used to investigate whether atmo-
spheric circulation changes have contributed to changes in
maximum and minimum temperature summer extremes over
a slightly extended period (1979–2018). We restrict our anal-
ysis to hot (TX maxima) and cold (TN maxima) summer ex-
tremes.

The paper is organized as follows. Section 2 describes the
observational and reanalysis datasets and the methodologi-
cal aspects of the dynamical adjustment approach. Section 3
presents the results for the two illustrative extreme events and
a comparison with other approaches based on published re-
sults. Based on the dynamical adjustment approach, Sect. 4
then investigates the possible contribution of changes in at-
mospheric circulation patterns to the recent (1979–2018) in-
crease in hot and cold summer extremes over western Europe
and western Asia. Finally, Sect. 5 gives a short summary and
possible directions for future work.

2 Material and methods

2.1 Observational and reanalysis datasets

2.1.1 Mean sea level pressure data from reanalyses

We mainly use daily mean sea level pressure (SLP) from the
2◦× 2◦ Twentieth Century Reanalysis version 3 (20CR_V3,
Slivinski et al., 2019) from 1836 to 2015 to characterize at-
mospheric circulation patterns and their link with temper-
ature extremes. The data are extended through 2018 with
ERA-Interim (ERAI; Dee et al., 2011) by adding daily ERAI
anomalies to the daily 20CR_V3 climatology (based on the
1979–2015 period which is the common period between
ERAI and 20CR_V3). We also use daily SLP data from
20CR version2c (20CR_V2C; Compo et al., 2011), also ex-
tended through 2018 with ERAI. For both 20CR_V3 and
20CR_V2C, we only use daily SLP data from 1900 to 2018
due to the sparsity of the observational record in the 19th cen-
tury. Finally, we also make use of the NCAR/NCEP-R1
(Kalnay et al., 1996) on the shorter period (1948–2018) to
further assess the sensitivity of the dynamical adjustment re-
sults to the choice of atmospheric reanalysis for the sea level
pressure field.

2.1.2 Temperature datasets

The Berkeley Earth temperature (BERK) daily datasets
are experimental products (http://berkeleyearth.lbl.gov/auto/
Global/Gridded/Gridded_Daily_README.txt, last access:
20 March 2019) and are available from 1 January to 31 De-
cember 2018. The BERK datasets are homogenized daily
temperature fields built as a refinement upon their monthly
temperature datasets (Rohde et al., 2013) and using simi-
lar techniques. The gridded data are provided on a regular
latitude–longitude grid at 1◦ resolution. We only consider
temperature data over the 1900–2018 period to match the pe-
riod chosen for mean sea level pressure.

The EOBS daily land surface air temperature gridded
datasets are also used over western Europe. The homo-
geneous EOBS dataset (version19.0eHOM) is available
from 1 January 1950 to 30 November 2018 (Cornes et
al., 2018; Squintu et al., 2019). The raw station data
are first homogenized using a quantile matching tech-
nique (Squintu et al., 2019). The gridded temperature
data are provided on a regular latitude–longitude grid at
0.25◦ resolution (https://www.ecad.eu/download/ensembles/
downloadversion19.0eHOM.php#datafiles, last access: 7
November 2019). The data are provided for a geographical
domain from 25 to 71.5◦ N and from 25◦W to 45◦ E.

The HadGHCND global product has been created based
on daily station observations from the Global Historical Cli-
matology Network-Daily database (Caesar et al., 2006). This
consists of over 27 000 stations with temperature observa-
tions, though the temporal and spatial coverage of the record
is very variable. Quality control has been carried out to in-
dicate potentially spurious values. The temperature data are
provided as anomalies relative to the 1961–1990 reference
period. The HadGHCND dataset spans the years 1950 to
2014 and is available on a 2.5◦ latitude by 3.75◦ longitude
grid.

The BERK and EOBS datasets are used as our reference
temperature datasets. HadGHCND and the NCEP reanalyses
are also used to complement the observational uncertainty
analysis for temperature. Unless explicitly mentioned, all TX
and TN anomalies are calculated relative to the 1981–2010
reference period.

2.2 Dynamical adjustment based on constructed
analogues

The dynamical adjustment used in this study is a straightfor-
ward adaptation to daily timescales of the method introduced
in Deser et al. (2016). The main objective of dynamical ad-
justment is to derive an estimate of the component of any
physical variable variability due solely to atmospheric circu-
lation changes. In agreement with many previous studies, we
assume that robust forced circulation changes over the North
Atlantic European domain are not currently detectable due to
a small signal-to-noise ratio. Consequently, observed circu-
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lation changes are considered to be an integral part of climate
internal variability. In the following and for the sake of con-
cision, we refer to any variable changes due to atmospheric
circulation as the dynamic component (instead of the internal
dynamic component). Here, SLP is used to represent atmo-
spheric circulation changes, and we use TX as our physical
variable in the method description. Consequently, dynami-
cal adjustment leads to the decomposition of any daily TX
anomaly between a TX dynamic component and a residual
(loosely described as the “thermodynamic residual” or sim-
ply the thermodynamic component). Note that the thermody-
namic component may include both forced and internal con-
tributions.

We now briefly summarize the dynamical adjustment al-
gorithm. We first define a geographical domain for SLP with
the constraint that dynamically adjusted TX values are only
meaningful in a region enclosed within the SLP domain and
having a smaller longitudinal and latitudinal extent than the
SLP one. The geographical boundaries of the SLP domains
are 25–90◦ N, 60◦W–100◦ E and 25–90◦ N, 20◦W–80◦ E for
the 2009–2010 cold European winter and the 2010 Russian
heat wave, respectively. For any day di of the extreme event,
we search for the closest Na daily SLP analogues in all
years (but the one of the extreme event occurrence) within
a time window of ±N days centered on di (N being typ-
ically ∼ 15 d). The SLP analogues are ranked according to
the Teweles–Wobus skill score. The score measures the sim-
ilarity between the SLP horizontal gradients (i.e geostrophic
winds). We then randomly subsample (without replacement)
Ns of the Na SLP analogues and compute their best linear
fit (see Appendix of Deser et al., 2016, for details) to the
target SLP field (that of day di). The dynamically recon-
structed TX is then defined as the corresponding linear com-
bination of daily TX anomalies associated with the Ns SLP
analogues. Next, we repeat this random subsampling proce-
dure Nr times. Finally, we average the Nr optimal sets of re-
constructed daily SLP analogues and associated TX to obtain
the dynamic component, defined as the “best estimate” of
the circulation-induced component of maximum temperature
anomaly for the day di . This sequence of steps is finally re-
peated for all days of the extreme event under consideration.
Uncertainty estimates can be derived with a simple bootstrap
procedure applied to the set of Nr estimates of the TX dy-
namic component (O’Reilly et al., 2017).

We randomly draw (with replacement) Nr estimates 1000
times to produce a distribution that can then be used to de-
rive a 95 % confidence interval. The uncertainty analysis can
be applied for any single day of the extreme event (Figs. 2a
and 4a) or to the time-averaged event magnitude (Figs. 1d
and 3d). In the latter case, we randomly draw Nr estimates
(with replacement) among the Nr ones for every day of the
event, take the average of the Nr estimates and repeat the
process 100 times. We end up with 100 estimates of the dy-
namic component for each day of the event. We then ran-
domly select one estimate for each day of the event, take the

time average, and repeat the process 1000 times to get the
final distribution.

All results shown below are based on the following param-
eter values: Na = 400, Ns = 200 and Nr = 100 (see parame-
ter sensitivity tests in Appendix A). We have also checked
that the selected analogues span the whole period evenly and
do not preferentially arise from a specific multidecadal pe-
riod such as the recent data-rich one (see Appendix B). As
we are interested in separating the TX dynamic component
from any forced thermodynamic residual (due for instance to
changes in the external forcing), we need to remove a local
estimate of the forced TX component before applying dy-
namical adjustment. In a sense, the TX dynamic component
(DYNCF thereafter) represents the effect of atmospheric cir-
culation on the TX anomaly in the counterfactual world (the
world with no human influence on climate). As one of the
objectives of this approach is to rely exclusively on observa-
tions (and/or reanalyses), we apply a Loess-based smoother
(see Sect. 2.3) to TX daily observations to remove the low-
frequency trend (for all grid points) that we hypothesize to
be primarily due to external forcing (Hawkins et al., 2020;
Sect. 2.3).

Our physical interpretation of the TX dynamic compo-
nent is that it represents the “mean” contribution of the at-
mospheric circulation pattern, including both direct (advec-
tion) and indirect (e.g local feedbacks) effects, in the coun-
terfactual world. Here, the use of “mean” is simply associ-
ated with an average over multiple linear combinations of
TX anomalies arising from a large number of days having
different ocean and/or land surface conditions.

We then interpret the residual component (RESTOT) as be-
ing the sum of three contributions. The first one (RESTRD)
is the externally forced TX component that has been re-
moved before applying dynamical adjustment. The resid-
ual component also includes any TX changes due to a lo-
cal or remote contribution associated with internal variabil-
ity (RESINT). For example, the local contribution includes
local processes such as those associated with land surface
feedbacks linked to soil moisture or snow cover anomalies.
The remote contribution includes any TX change related to
thermal advection changes due to mean flow advection of
anomalous zonal and meridional TX gradients caused by
internal variability (for example due to anomalous oceanic
air masses). The last contribution (RESFRC) includes ther-
mal horizontal advection changes related to externally forced
changes in zonal and meridional TX gradients as well as
forced changes in other factors such as radiative processes
and vertical advection anomalies (Pfahl and Wernli, 2012;
Quinting and Reeder, 2017). The estimation of RESINT and
RESFRC can be obtained by running the dynamical adjust-
ment twice: firstly, with the TX forced response removed (as
previously described) and secondly with the observed raw
TX. The RESFRC contribution can then be estimated by sub-
tracting the former TX dynamic component (from the coun-
terfactual world) from the latter one (from the factual world).
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Figure 1. EOBS daily maximum temperature (◦C, shading) and 20CR_V3 sea level pressure (hPa, black line contours with contour interval
of 1 hPa) anomalies averaged over the European cold spell period (28 December 2009–13 January 2010): (a) total TX anomaly and observed
SLP anomaly, (b) TX dynamic component contribution and reconstructed SLP anomaly, (c) TX total residual contribution, (d) TX internal
residual contribution, (e) TX long-term trend residual contribution and (f) TX residual contribution from forced changes in other factors.
Numbers in the upper right corner indicate the weighted average TX anomaly over the region delimited by the black dashed box in (c).
In (a) and (b), the black thick contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies. In
(d), stippling indicates grid points where RESINT values are within the uncertainty range of the dynamical component given by the 95 %
confidence interval estimated by the bootstrap method given in Sect. 2.2.

Finally, RESINT can be estimated as

RESINT = RESTOT−RESTRD−RESFRC. (1)

The final decomposition of any daily TX anomaly (TXA) can
then be written as

TXA = DYNCF+RESINT+RESTRD+RESFRC. (2)

With the objective to compare with model-based studies
(see Sect. 3.2) and assuming that the contribution of forced
changes in radiative processes is not the dominant factor, it is
also useful to define an upper bound of the “total” dynamic
contribution DYNTOT given by

DYNTOT = DYNCF+RESFRC. (3)

2.3 Estimation of the forced response

We assume that the temperature response to external forc-
ing can be simply estimated with a low-frequency trend es-
timated over the 1900–2018 period. The latter is estimated
with a Loess smoother (Cleveland et al., 1990) as imple-
mented in the NCSTAT package (https://terray.locean-ipsl.
upmc.fr/ncstat/index.html, last access: 16 March 2020). We
choose a smoother length of 45 years, and we apply a light
(∼ 2 years) additional smoothing of the trend before estimat-
ing the residual. Iterations are carried out until convergence
of the trend, which is reached when maximum changes in

individual trend fits are less than 1 % of the trend’s range af-
ter the previous iteration. We detrend the daily TX and TN
datasets separately for each month before applying the dy-
namical adjustment procedure and estimating the dynamic
component.

3 Results for individual extreme events

As our illustrative examples, we choose two seasonally con-
trasted extreme events that have been widely documented in
the literature: the cold European winter of 2009–2010 and
the 2010 Russian summer heat wave. For the Russian heat
wave, we follow previous studies by focusing on the 15 July–
14 August period. For the cold European winter, we choose a
17 d period between 28 December 2009 and 13 January 2010
that is associated with record-breaking temperatures in many
midlatitude land masses of the Northern Hemisphere (Wang
et al., 2010). We restrict our analysis to the TX variable. For
each illustrative example, we first describe the synoptic cir-
culation and associated TX anomalies during the event be-
fore showing the dynamical adjustment results averaged over
all event days. We then briefly discuss the chronology of the
event and the evolution of the TX dynamic component. We
use 20CR_V3, BERK and EOBS as primary datasets for our
dynamical adjustment analysis and figures in the main text.
Specifically, we use EOBS for the 2010 winter event and
BERK for the summer one (note that the EOBS geographi-
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Figure 2. (a) Time evolution of EOBS daily maximum temperature (◦C) anomaly averaged over the European domain (box with red dashed
line in b). The covered period is from 10 December 2009 until 20 January 2010. The thick black line represents the total TX anomaly.
The thick blue line shows the contribution of the dynamic component, and the blue shading indicates the 95 % confidence interval of the
reconstruction based on bootstrapping (see Sect. 2.2). The chosen period for the 2-week cold spell is defined by the white background.
(b) Daily maps of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic component contribution (◦C,
shading) to the total TX anomaly. The black thick contour line indicates the zero SLP anomaly, and dashed contour lines indicate negative
SLP anomalies. Numbers in the upper left corner indicate the region-averaged contribution of the dynamic component to the total TX
anomaly.

cal domain does not cover Russia). Results based on the other
TX and SLP datasets are shown in Tables 1 and 2.

3.1 The 2009–2010 European winter cold spell

Winter 2010 is characterized by an extreme negative phase
of the North Atlantic Oscillation (NAO) (the classical NAO
index reaches a value of 3 standard deviations below aver-
age; see Cattiaux et al., 2010, and Osborn, 2011). In the east-
ern Atlantic the mean winter (December–February) eddy-
driven jet was displaced southward by almost 10◦ compared
with its climatological position and maintained south by di-
abatic heating feedbacks (Woollings et al., 2016). Averaged
SLP anomalies during the extreme event period (28 Decem-
ber 2009–13 January 2010) display a dipole with large pos-
itive anomalies over the northwestern Atlantic and negative

ones over the central eastern Atlantic, in agreement with a
jet stream axis located over northern Africa (Fig. 1a). Impor-
tantly, the reconstructed SLP pattern is almost identical to
the original observed SLP pattern (Fig. 1b). This anomalous
SLP pattern strongly projects onto the negative NAO pattern.
Negative NAO phases are known to lead to cold temperature
over western and northern Europe (Hurrell, 1995). The spa-
tial pattern of the TX anomaly during the cold spell displays
an elongated cold TX anomaly over the United Kingdom
and northern Europe, contrasting with warm TX anomalies
in northern Africa and the Middle East (Fig. 1a). The mag-
nitude of the mean TX anomaly for the cold spell event –
regionally averaged over the European domain (see box in
Fig. 1c) – is −2.04 ◦C based on EOBS. As expected, the dy-
namic component contribution to the TX anomaly is nega-
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Table 1. Total TX anomaly (◦C, in bold) and dynamic component contribution (◦C and as a fraction of the total anomaly in percent) averaged
over Europe (36–72◦ N, 10◦W–30◦ E, black box in Fig. 1c) during the 2009–2010 winter cold spell. The reference period is 1981–2010.

SLP

TX 20CR_V3 20CR_V2C NCEP

NCEP −1.32 – −1.96 (148 %) −1.32 – −2.78 (210 %) −1.32 – −2.40 (182 %)
HadGHCND −2.20 – −2.83 (129 %) −2.20 – −3.52 (160 %) −2.20 – −3.04 (138 %)
EOBS −2.04 – −2.76 (135 %) −2.04 – −3.59 (176 %) −2.04 – −3.36 (165 %)
BERK −1.95 – −2.63 (135 %) −1.95 – −3.01 (154 %) −1.95 – −3.04 (156 %)

Table 2. Total TX anomaly (◦C, in bold) and dynamic component contribution (◦C and as a fraction of the total anomaly in percent) averaged
over western Russia (50–60◦ N, 35–55◦ E, black box in Fig. 3c) during the 2010 summer Russian heat wave. The reference period is 1981–
2010.

SLP

TX 20CR_V3 20CR_V2C NCEP

NCEP 10.16–3.85 (38 %) 10.16–3.67 (36 %) 10.16–3.05 (30 %)
HadGHCND 9.16–3.75 (41 %) 9.16–3.51 (38 %) 9.16–3.31 (36 %)
BERK 9.06–3.99 (44 %) 9.06–3.07 (34 %) 9.06–3.20 (35 %)

tive and has a larger magnitude than the total (with a mean
and 95 % confidence interval of −2.76 ◦C and [−2.95 ◦C,
−2.57 ◦C]). In particular, the dynamic component displays
very cold (∼−5 ◦C) TX anomalies over northeastern Europe
(Fig. 1b). The total residual contribution is positive (Fig. 1c)
and has a smaller amplitude (0.72 ◦C) than the dynamic com-
ponent due to the opposite sign of the internal residual con-
tribution (−0.31 ◦C, Fig. 1d) and the two forced contribu-
tions, the long-term trend (RESTRD: 0.44 ◦C, Fig. 1e), and the
residual forced component (RESFRC: 0.59 ◦C, Fig. 1f). The
total TX forced contribution (defined as the sum of RESTRD
and RESFRC) has a significant positive contribution (1.03 ◦C)
and shows increased warming in northern Europe (Fig. 1e–f).

It is noteworthy that the internal residual contribution dis-
plays coherent large-scale patterns with grid-point values that
are outside of the uncertainty range of the dynamic compo-
nent (Fig. 1d), suggesting that its salient regional features
are related to factors other than dynamical ones. The RESINT
pattern exhibits cold TX anomalies along the coasts of west-
ern Europe, perhaps linked to cold and persistent – present
in both December 2009 and January 2010 – North Atlantic
SST anomalies (Buchan et al., 2014). These SST anomalies
may have been the surface signature of a reduced northward
ocean heat transport related to a strong decrease in the At-
lantic meridional overturning circulation in 2009 (McCarthy
et al., 2012; Sonnewald et al., 2013). We speculate that the
amplitude of these ocean-induced cold SST anomalies has
been further enhanced in late winter due to the ocean inte-
gration of the recurrent and persistent negative NAO atmo-
spheric forcing.

Further inland, the internal residual contribution shows
warm TX anomalies with maximum values in southeastern

and central Europe (Fig. 1d). We speculate that the Black
Sea and Levantine sub-basin warm SST anomalies observed
in 2009 and 2010 (in line with the eastern Mediterranean
SST warming trend over 1982–2012; Shaltout and Omstedt,
2014) may have contributed to the internal residual warm TX
anomalies in southeastern Europe.

These results confirm that the long-term warming (mostly
attributed to human influence) has mitigated the extreme
character of the 2009–2010 early winter cold spell as ini-
tially suggested by Cattiaux et al. (2010). In the counterfac-
tual world, the winter cold spell would have been 1.03 ◦C
(Fig. 1e–f) colder than the observed one (−3.07 ◦C instead
of −2.04 ◦C). Keeping 20CR_V3 for SLP, additional results
based on BERK and HadGHCND for TX lead to quasi-
similar amplitudes for the total anomaly and dynamic com-
ponent (Table 1). The use of NCEP data for TX underesti-
mates the amplitude of the 2-week cold spell by 35 %. Us-
ing different datasets for SLP (20CR_V2C and NCEP) while
keeping EOBS for TX leads to slightly larger values of the
dynamic component.

We now illustrate how the dynamical adjustment approach
can be used to track the daily evolution of the contribu-
tion due to atmospheric circulation changes. The chronol-
ogy of the early 2010 winter cold spell shows two cold
minima, the first one in mid-December and the second one,
more persistent, 2 weeks later (Fig. 2a). The dynamic com-
ponent is by far the main contributor to daily and weekly
variability in the TX anomaly magnitude (as suggested by
the similarity of the two time series in Fig. 2a). In partic-
ular, the two cold minima observed during December 2009
and January 2010 are associated with an eastward exten-
sion of the anticyclonic SLP anomalies centered around Ice-
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land that favor the advection of Arctic air masses towards
northern Europe (Fig. 2b). While observed daily NAO in-
dex values (https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/nao.shtml, last access: 26 April 2021) are all
negative during the period shown in Fig. 2a (albeit with
different amplitudes) illustrating the persistence of the low-
frequency large-scale atmospheric flow, the contribution of
the dynamic component to TX anomaly exhibits significant
daily variability due to the high-frequency part of the flow.
For instance, the circulation-induced and region-averaged
TX anomaly on 31 December is positive, which contrasts
with the cold minimum observed a few days later and as-
sociated with a marked negative NAO phase (Fig. 2).

3.2 The 2010 Russian summer heat wave

Summer 2010 is characterized by persistent quasi-stationary
anticyclonic circulation anomalies over western Russia (Dole
et al., 2019; Barriopedro et al., 2010). The persistence of
the long-lasting blocking high has been linked to a transi-
tion between El Niño–Southern Oscillation (ENSO) warm
and cold phases and the resulting changes in quasi-stationary
wave anomaly and transient eddies (Schneidereit et al., 2012;
Drouard and Woollings, 2018). These blocking circulation
patterns are often associated with surface temperature warm
anomalies due to enhanced subsidence and adiabatic com-
pression, reduced cloudiness allowing a greater fraction of
solar radiation to reach the surface and horizontal advec-
tion of warmer air masses from regions located to the south
of the blocks. A late winter to spring precipitation deficit
over western Russia has also likely contributed to the ab-
normally warm summer maximum temperature anomalies
(with a magnitude on the order of ∼ 9–10 ◦C when region-
ally averaged over the heat wave period; see Wehrli et al.,
2019, and Fig. 3 and Table 2) through the concurrent sum-
mer drought and associated land–surface feedbacks related
to depleted soil moisture content (Miralles et al., 2014).
Based on atmospheric model nudging experiments, Wehrli
et al. (2019) have estimated dynamic (related to atmospheric
circulation changes) changes and other contributions to the
Russian heat wave. They suggest that the largest contribution
to the Russian heat wave TX anomaly can be attributed to
atmospheric circulation (range 54 %–63 %) with a substan-
tial albeit smaller contribution (27 %–36 %) from antecedent
soil moisture conditions (the remaining 10 % being due to
the contribution of the response to external forcing, named
greenhouse gas forcing in their paper).

Figure 3 shows our estimates of the different contributions
based on the dynamical adjustment approach and the BERK
dataset. The event total TX anomaly for the western Rus-
sian region (see box in Fig. 3b) is 9.06 ◦C and is located
southwest of the blocking high maximum (with a SLP mag-
nitude of 9 hPa, Fig. 3a). As suggested by previous studies
(Dole et al., 2011; Wehrli et al., 2019), we find that the total
TX anomaly is dominated by the total internal contribution

(DYNCF [3.99 ◦C]+ RESINT [3.59 ◦C]) with the total forced
contribution (RESTRD [1.03 ◦C] + RESFRC [0.45 ◦C]) being
only 16 % of the total TX anomaly (Fig. 3). The magnitude
of the dynamic component is 3.99 ◦C with an uncertainty
range (given by the 95 % confidence interval) of [3.88 ◦C,
4.1 ◦C]. The magnitude of the total dynamic contribution is
4.44 ◦C (DYNTOT = DYNCF [3.99 ◦C] + RESFRC [0.45 ◦C];
∼ 49 % of the event total anomaly). The other and smaller
contributions are the long-term TX trend residual contribu-
tion RESTRD (1.03 ◦C, ∼ 11 % of the total) and the inter-
nal residual RESINT (3.59 ◦C, ∼ 40 % of the total). Using
HADGHCND or NCEP data for TX leads to very similar
results in terms of the percentage of the dynamic contribu-
tion (Table 2). The latter is slightly lower when SLP from the
20CR_V2C and NCEP datasets is used for dynamical adjust-
ment while keeping BERK for TX.

Therefore, we find that the total dynamic component
yields the dominant contribution to the Russian heat wave
TX anomaly, in agreement with the model study of Wehrli
et al. (2019). We also note that our best estimate for the to-
tal dynamic component contribution (49 % of the total TX
anomaly) is slightly lower than their minimum estimate (see
discussion below). As suggested by many previous studies,
it is very likely that anomalous soil moisture is an important
contributor to the substantial magnitude of the internal resid-
ual contribution (note however that the dynamical adjustment
approach cannot be used directly to infer the soil moisture
influence; see also the discussion below). The magnitude of
the long-term TX residual contribution trend is in reasonable
agreement with the model-based estimate (1.2 ◦C) of Wehrli
et al. (2019).

Differences with results from the latter study regarding the
magnitude of the dynamic contribution (and consequently, of
the thermodynamic residual magnitude) can be due to mul-
tiple factors. First, using the same baseline (1982–2008) as
Wehrli et al. (2019) does not significantly change the con-
tribution of the dynamic component (46 % instead of 49 %).
Second, while our methodology only relies on observations
and reanalysis, their approach relies upon both “all-but-one”
and “only-one” modeling frameworks based on simulated
differences between SST-forced historical atmospheric ex-
periments with and without circulation and/or soil moisture
nudging and a control simulation without any nudging. Pos-
sible caveats of this modeling approach include the lack of
validity of the assumption that the different factors are addi-
tive, the lack of interaction between the ocean and the atmo-
sphere, and the fact that different soil moisture climatology
between simulations with and without soil moisture nudg-
ing can lead to a different response to the same soil moisture
anomaly (for a detailed discussion, see Wehrli et al., 2019).
Possible sources of uncertainty of the dynamical adjustment
results include observational uncertainty and the presence
of “noise” in the internal thermodynamic residual resulting
from dynamic contributions not accounted for by the con-
structed analogue technique (due to both inadequate sam-
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Figure 3. BERK daily maximum temperature (TX, ◦C, shading) and 20CR_V3 sea level pressure (SLP, hPa, black line contours with contour
interval of 1 hPa) anomalies averaged over the Russian heat wave period (15 July–14 August 2010): (a) total TX anomaly and observed SLP
anomaly, (b) TX dynamic component contribution and reconstructed SLP anomaly, (c) TX total residual contribution, (d) TX internal residual
contribution, (e) TX long-term trend residual contribution and (f) TX residual contribution from forced changes in other factors. Numbers
in the upper right corner indicate the weighted average TX anomaly over the region delimited by the black dashed box in (c). In (a) and
(b), the thick black contour line indicates the zero SLP anomaly, and dashed contour lines indicate negative SLP anomalies. In (d), stippling
indicates grid points where RESINT values are within the uncertainty range of the dynamic component given by the 95 % confidence interval
estimated by the bootstrap method given in Sect. 2.2.

pling and methodological uncertainty). Table 2 shows that
the magnitude of the dynamic component for different ob-
servational and reanalysis products is always less than 50 %
of the total TX anomaly. This suggests that differences in
magnitude of the dynamic component discussed above are
unlikely to be fully explained by observational uncertainty in
the dynamical adjustment method.

The chronology of the Russian heat wave suggests that
the contribution of the dynamic component to the total TX
anomaly varies at a daily timescale (Fig. 4a). As expected,
the dynamic component seems to play a key role in the initi-
ation and termination of the heat wave. In particular, the neg-
ative contribution from the dynamic component after 15 Au-
gust leads the decline of the extreme heat by a couple of days.
During the heat wave, two multi-day periods (19–23 July
and 30 July–1 August) show persistent and high values of
the TX dynamic component (Fig. 4b). The first one (the less
extreme one) is associated with a zonally extended anticy-
clonic anomaly from the European coasts to western Russia.
The largest contributions of the dynamic component appear
to be associated with a high, strong blocking center situated
eastward of the location of maximum TX anomaly.

4 Atmospheric circulation contribution to recent
changes in summer hot and cold temperature
extremes

We now use dynamical adjustment to assess the possi-
ble changes in circulation-related temperature anomalies

and their contribution to summer extreme hot temperature
changes during the 1979–2018 period. We select two North-
ern Hemisphere midlatitude regions, western Asia (TX, TN
domain: 35–65◦ N, 25–60◦ E; SLP domain: 25–80◦ N, 10–
65◦ E) and western Europe (TX, TN domain: 35–70◦ N,
15◦ E–25◦W; SLP domain: 25–80◦ N, 30◦ E–45◦W), and we
apply the dynamical adjustment separately to each of them.
The focus is on the contribution of the dynamic compo-
nent to changes on the warmest summer day (TX maxima)
and warmest night (TN maxima) temperature over these 4
decades. The initial step is to run the dynamical adjustment
procedure for all summers during the 1979–2018 period and
for both TX and TN. As with the two illustrative exam-
ples, we apply the dynamical adjustment procedure twice,
with and without detrending, before applying dynamical ad-
justment. For each year and each grid point, we then select
the days with the largest TX and TN anomalies. In the fol-
lowing, we focus on the summer days and nights with the
most extreme temperature: the days with the hottest maxi-
mum (TXx) and minimum (TNx) temperature. We then es-
timate changes in TXx and TNx during 1979–2018 by us-
ing the non-parametric Mann–Kendall test and Theil–Sen es-
timator to calculate the trend. Based on dynamical adjust-
ment results, we also quantify the contribution of both total
dynamic (DYNTOT; see Eq. 3) and thermodynamic residual
(RESINT+RESTRD) components to these changes.
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Figure 4. (a) Time evolution of BERK daily maximum temperature (◦C) anomaly averaged over the western Asia domain (box with red
dashed line in b). The covered period is from 1 July until 20 August 2010. The thick black line represents the total TX anomaly. The thick
blue line shows the contribution of the dynamic component, and the blue shading indicates the 95 % confidence interval of the reconstruction
based on bootstrapping (see Sect. 2.2). The chosen period for the Russian heat wave is defined by the white background. (b) Daily maps
of SLP anomaly (hPa, black line contours with contour interval of 1 hPa) and of the dynamic component contribution (◦C, shading) to the
total TX anomaly. The thick black contour line indicates the zero SLP anomaly and dashed contour lines indicate negative SLP anomalies.
Numbers in the upper left corner indicate the region-averaged contribution of the dynamic component to the total TX anomaly.

4.1 Extreme maximum and minimum temperature
trends in summer over western Asia and western
Europe

We find warming trends for both TXx and TNx over large
parts of the western Asian (WA) and western European
(WE) regions (Figs. 5a, d and 6a, d). The warming of TXx
over most of the WA region (often greater than 3 ◦C ev-
ery 40 years) is primarily due to the thermodynamic com-
ponent with an additional and substantial contribution from
the dynamic component north of the Black and Caspian seas
(Fig. 5b–c). Both thermodynamic and dynamic components
contribute to the lack of statistical significance and small am-
plitude of the TXx trends found in the northeastern part of the
WA region.

Warming trends in TNx are statistically significant only
in a small region located south of the Black Sea while the
eastern part of the WA region exhibits significant cooling
with contribution from both components (Fig. 5d–f). In ad-
dition, the lack of significant TNx trends over most of the
WA region results from opposite effects from the thermody-
namic (cooling) and dynamic (warming) components. This
contrasts with the TXx case, supporting the existence of dif-
ferent processes governing the changes in TXx and TNx. For
instance, clear-sky conditions often associated with subsid-
ing motions near the central region of blocking patterns have
opposite radiative effects on TX and TN: on the one hand,
they enhance daytime solar heating, leading to TX increase,
and on the other hand, they also enhance nighttime longwave
cooling, leading to a TN decrease. Assuming that a substan-
tial fraction of the dynamical component is related to the in-
creased occurrence (and/or persistence) of blocking patterns
during recent decades (Horton et al., 2015), one would ex-
pect a reduced amplitude of TNx changes compared with that
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Figure 5. Summer temperature extremes: 1979–2018 trend maps
for western Asia based on BERK (trend unit is degrees Celsius ev-
ery 40 years, shading): (a–c) TXx raw trend and TXx thermody-
namic and dynamic component trends. (d–f) TNx raw trend and
TNx thermodynamic and dynamic component trends. The trend de-
tection is estimated using the non-parametric Mann–Kendall test,
and the linear trend slope is computed based on the Theil–Sen esti-
mator. In (a, d), stippling indicates locations where the raw trend is
not significant at the 5 % level.

Figure 6. Summer temperature extremes: 1979–2018 trend maps
for western Europe based on EOBS (trend unit is degrees Celsius
every 40 years, shading): (a–c) TXx raw trend and TXx thermo-
dynamic and dynamic component trends. (d–f) TNx raw trend and
TNx thermodynamic and dynamic component trends. The trend de-
tection is estimated using the non-parametric Mann–Kendall test,
and the linear trend slope is computed based on the Theil–Sen esti-
mator. In (a, d), stippling indicates locations where the trend is not
significant at the 5 % level.

of TXx changes in regions where these circulation changes
have occurred. However, the eastern part of the WA region
shows the opposite sign (cooling) with a large amplitude for
the TNx trend compared with that of TXx. Whether this is a
real signal or not is further discussed below in light of obser-

vational uncertainty. Finally, we have checked that omitting
the year 2010 has little influence on the raw TXx and TNx
trend pattern and statistical significance, suggesting that the
long-term signal is robust and not influenced by the excep-
tionally warm 2010 summer.

The dynamic contribution to the WA summer TXx trend
magnitude can also be quantified with regard to year-to-year
variability of the dynamic component that is quite similar (in
both spatial pattern and amplitude) to the daily dynamic com-
ponent variability during the Russian heat wave period. In
WA regions with the largest trend magnitude (north of the
Black and Caspian seas), the 40-year TXx changes are com-
parable with the summer TXx interannual standard deviation
in terms of localization and magnitude (not shown).

Regarding the WE region, the TXx trend map shows max-
imum warming (often greater than 3 ◦C every 40 years )
located over the central part of the domain and along the
coasts of western Europe. This contrasts with most of south-
ern Europe and Scandinavia where TXx trends are weaker
and not statistically significant (Fig. 6a). Regions with signif-
icant TXx trends show different relative contributions from
dynamic and thermodynamic components (Fig. 6a–c). In-
terestingly, the contribution of the dynamic component to
the total trend is substantial over many locations, including
northwestern Spain and France, northeastern Europe (east of
the Baltic Sea), and northern Scandinavia (Fig. 6c). The TNx
trend map shows widespread warming over western Europe
and reduced amplitude compared with that of TXx, except
for Italy and Greece, where the large trend values are mainly
due to the thermodynamic component (Fig. 6d–f). Over the
central European domain, both components contribute to the
TNx warming, with the contribution of the dynamic com-
ponent being slightly dominant, particularly over southern
France, eastern Europe and Scandinavia (Fig. 6f).

We now address the issue of observational uncertainty of
the raw TXx and TNx trend analysis. We use the HadEX3
dataset (Dunn et al., 2020) to perform exactly the same TXx
and TNx trend analysis as the one above with the BERK
dataset. Figure 7a–b suggest that the main salient features of
the trend patterns based on HadEX3 are reasonably similar to
those derived from BERK for TXx and TNx over the WE re-
gion and TXx over WA. However, the substantial TNx cool-
ing trend over the eastern part of the WA region seen with
BERK (Fig. 5d) does not appear with HadEX3 (Fig. 7b). In-
stead, the HadEX3-based TNx trend pattern exhibits a weak
warming decreasing eastward. Looking further east shows
that the cooling region exists in the HadEX3-based analysis
but is shifted eastward compared with the BERK one (Ap-
pendix C, Fig. C1). We speculate that the difference in TNx
trend patterns possibly arises from different sets of station
data used in the two analyses, as well as differences in the
optimal interpolation scheme such as different parameters of
the distance-based correlation function.
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Figure 7. The 1979–2018 summer temperature trend patterns
(units: ◦C every 40 years) for both WE and WA regions based on the
HadEX3 dataset: (a) TXx and (b) TNx. Summer (JJA) anomaly dif-
ferences (units: ◦C) between warm and cold periods of AMV. The
latter are defined as in O’Reilly et al. (2017): cold periods (1902–
1925 and 1964–1993) and warm periods (1931–1960 and 1996–
2012). The temperature data have been detrended before taking the
difference between warm and cold periods. In (a, b), stippling indi-
cates locations where the trend is not significant at the 5 % level.

4.2 Causal factors of the extreme temperature changes
over the 1979–2018 period

We find that the dynamic component has substantially con-
tributed to the increase in the summer TX and TN hottest
extreme over parts of the WA and WE regions. The regions
where the dynamic component is an important contributor to
the TX warming trend broadly correspond to the ones sug-
gested in Horton et al. (2015). This is especially noticeable
for western Asia (see their Fig. 4i) where Horton et al. (2015)
attributes a portion of the TX hottest extreme trend to an in-
crease in blocking pattern occurrence (note that the trend spa-
tial patterns shown in Figs. 5 and 6 and corresponding to the
full period 1979–2018 are qualitatively similar to those for
the reduced period 1979–2013 that is used in Horton et al.,
2015; not shown). Increase in the occurrence of anticyclonic
patterns mainly located in central Europe was also linked to
the observed increase in the TX hottest extreme in eastern
Europe (Fig. 3c, k of Horton et al., 2015). Our analysis con-
firms this result and suggests that the dynamic component
has also been an important driver of the TX hottest extreme
warming over several coastal areas of western Europe when
considering the extended period up to 2018.

We now discuss some of the possible drivers of recent
TXx and TNx changes. As the 1979–2018 period covers a
transition between the negative (cold) and positive (warm)
phase of the Atlantic Multidecadal Variability (AMV; Sut-
ton and Dong 2012), the question arises as to whether the
AMV phase shift has any influence on the extreme temper-
ature trends. To estimate the AMV contribution to the total
change in TXx and TNx, we have performed a simple com-

posite analysis by calculating the temperature difference be-
tween warm and cold AMV periods (Fig. 7c–d). The AMV
contribution to TXx changes is larger in the central part of
the domain and varies from ∼ 10 % over France to ∼ 25 %
west and north of the Black Sea. Regarding TNx changes,
the AMV contribution is restricted to the region to the north
of the Black Sea. South of the Black and Caspian seas, the
AMV contribution to TXx and TNx changes is seen to op-
pose the observed warming trends. Based on the summer
mean temperature results from the observational study of
O’Reilly et al. (2017), we speculate that the AMV shift may
have contributed to both dynamic and thermodynamic TXx
and TNx changes in western Europe and in the western part
of western Asia (to about 45◦ E) over the 1979–2018 period.

In addition to the AMV influence, other factors have likely
played a role in extreme temperature changes, in particular
over the eastern part of the WA region where the AMV in-
fluence is weak. Interestingly, both HadEX3-based TXx and
TNx trend patterns show a tripole pattern with two areas of
accelerated warming over the East European Plain and cen-
tral Siberia and a region of cooling over the West Siberian
Plain, which is located eastward of the eastern boundary
of the WA region (Appendix C, Fig. C1). Sato and Naka-
mura (2019) have suggested that this tripole pattern (of daily
mean temperature in their study) is linked to the increased oc-
currence in the beginning of the 21st century of an unforced
quasi-stationary wave train that has been anchored and am-
plified due to land–atmosphere interaction. Since the 1990s,
there has been evidence of increasing precipitation, winter
snow depth and snow cover extension over the West Siberian
Plain (Guo et al., 2019; Bulygina et al., 2009, 2011), leading
to increasing snowmelt in spring and soil moisture during
summer as well as reduced sensible heat flux and negative
temperature anomalies during summer (Sato and Nakamura,
2019). We suggest that similar mechanisms may also be rel-
evant for changes in maximum and minimum temperature
extremes over the West Siberian Plain.

5 Summary and discussion

The dynamical adjustment approach based on the con-
structed analogue method and extended at a daily timescale
has been used to assess the contribution of circulation-related
temperature anomalies to extreme temperature events. Based
on daily maximum temperature, two iconic observed extreme
events have been selected to illustrate the potential of the ap-
proach: the early 2009–2010 winter European cold spell and
the 2010 Russian heat wave. Dynamical adjustment results
confirm the key role and improve the quantification of the at-
mospheric circulation contribution (the dynamic component)
to the two extreme events. The 2009–2010 winter European
cold spell associated with an extreme negative NAO phase
would have been significantly colder without human influ-
ence that mitigated the region-averaged amplitude of the ex-
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treme cold event by 33 %. Regarding the Russian heat wave,
the contribution of the total dynamic component associated
with persistent anticyclonic conditions during the 2010 sum-
mer is estimated to be close to 50 % of the observed maxi-
mum temperature anomaly.

Furthermore, we have used the dynamical adjustment ap-
proach to assess the possible contribution of atmospheric cir-
culation to changes in summer extremes for two regions,
western Asia and Europe, and during the 1979–2018 period.
The dynamical adjustment results suggest that both dynamic
and thermodynamic factors have contributed to observed
changes in summer temperature extremes over the 1979–
2018 period. We have focused on changes on the warmest
summer day and night temperatures. Although thermody-
namic influence has dominated the TXx changes in a large
fraction of the western Asia domain, the dynamic influence
has been quite substantial north of the Black and Caspian
seas. Furthermore, the dynamic influence has been key in the
TNx warming trend depicted south of the Black Sea. Regard-
ing Europe, the influence of atmospheric circulation has been
a major driver of both TXx and TNx warming trends that are
seen in many regions, including the coasts of western Eu-
rope (TXx), Scandinavia and eastern Europe (both TXx and
TNx). Observational uncertainty has been assessed with the
HadEX3 dataset, and summer extreme temperature trend pat-
terns broadly agree between the two datasets except for TNx
over the eastern part of the WA region. The strong TNx cool-
ing observed with the BERK dataset is reduced and shifted
eastward when using the HadEX3 dataset. Finally, we have
found that the AMV has likely contributed to both dynamic
and thermodynamic changes in extreme temperature, in par-
ticular over the broad central European region north of the
Black Sea.

Dynamical adjustment provides a quick and cheap (com-
putationally) observationally based storyline approach to as-
sess and quantify the role of atmospheric circulation as a
driver of extreme events. Dynamical adjustment can be per-
formed in both factual and counterfactual (the world with-
out human influence) worlds, assuming that the counterfac-
tual can be simply defined by removing a non-parametric
trend to the observed climate surface variable under scrutiny
(here TX and TN). Note that, in principle, the contribution of
forced atmospheric trends can also be estimated by dynam-
ical adjustment (Deser et al., 2016). Assuming that a forced
atmospheric trend can be detected and robustly estimated,
dynamical adjustment can be performed twice, by remov-
ing the SLP trend from the raw SLP data or not. Difference
between the two results for the reconstructed surface vari-
able gives an estimate of the contribution of the forced dy-
namic component. In the standard conditional approach used
here, the hypothesis is that forced atmospheric circulation
changes are undetectable and no detrending is performed on
the SLP field. In this case, the above dual approach (perform-
ing the dynamical adjustment in both factual and counterfac-
tual worlds for the surface variable, here TX or TN) allows

us to partition the extreme event temperature anomaly in four
contributions: the (internal) dynamic component, the (inter-
nal) thermodynamic residual, the forced long-term thermo-
dynamical trend changes and the contribution due to forced
changes in other factors such as the mean horizontal advec-
tion of forced changes in temperature gradients or vertical
advection.

The above dynamical adjustment decomposition can then
be used to present the approach results from two different
perspectives: forced versus internal or dynamic versus ther-
modynamic. Comparison with other model-based methods,
for instance those using spectral nudging, can then be per-
formed from one or the other perspective. For example, van
Garderen et al. (2021) use the spectral nudging method (with
the ECHAM6 atmospheric model and the NCEP reanalysis)
to make attribution statements regarding the 2010 Russian
heat wave (their Table 2). They focus on the role of cli-
mate change on the heat wave amplitude in early August
(domain-averaged anomaly ∼ 10 ◦C according to their esti-
mate, relative to a 1985–2015 climatology). Based on their
model results, they estimate that the heat wave amplitude
can be split in two contributions, ∼ 8 ◦C due to internal vari-
ability and ∼ 2 ◦C being anthropogenically forced. Assum-
ing that the early August period can be taken as the first 2
weeks of August, the dynamical adjustment approach using
SLP from the NCEP reanalysis gives a region-averaged heat
wave anomaly of 9.9 ◦C with 8 and 1.9 ◦C from the contri-
butions of internal variability and anthropogenic forcing, re-
spectively (here we use the same climatological period as van
Garderen et al., 2021). Interestingly, despite the fact that the
two approaches rely on very different methodology and data,
their results on the relative influence of internal variability
and anthropogenic forcing on the region-averaged heat wave
anomaly are remarkably similar.

The dynamical adjustment methodological framework
proposed in this study provides a simple and practical ap-
proach to investigate and quantify the role of atmospheric
circulation in specific extreme events as well as long-term
changes in extreme indicators. Combined with model-based
approaches, dynamical adjustment results can improve the
understanding and interpretation of observed extreme events
with minimal effort in terms of computing. Application
to other climate parameters (for example precipitation ex-
tremes) and regions will be pursued in future work.

Appendix A: Method parameter sensitivity tests

Sensitivity tests have been performed to support the final
choice of the dynamical adjustment code parameters. We fo-
cus here on two of the parameters: the number of subsampled
analogues, Ns, and the number of iterations, Nr. For Ns, the
focus is on the accuracy of the SLP fit for the early 2010 Eu-
ropean cold spell. Several multi-day periods, including the
1–8 January period marked by the occurrence of very cold
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TX anomalies over Europe (Fig. 2a), are used to assess the
quality of the SLP reconstruction. The dynamical adjustment
code is run for a range of Ns values (Ns = 20, 40, 60 . . . 260,
280, 300), keeping the other parameter values at those indi-
cated in the main text. The metric is simply the root-mean-
square error (RMSE) between the daily original SLP and the
reconstructed SLP. The RMSE is estimated separately for
each day, and the total RMSE is calculated as the sum in
quadrature of the daily RMSE values. Figure A1 shows that
the error is systematically large for small Ns values (often
greater than 2 hPa for fewer than 50 analogues), strongly de-
creases after Ns ∼ 100 (to less than 1 hPa) and almost sat-
urates to a few tenths of hectopascals after Ns ∼ 200 (with
RMSEs less than 0.5 hPa beyond Ns ∼ 200). The shape of
the RMSE curve is very similar among the different periods.
Note that Ns is a key parameter in terms of computational
cost as it defines the matrix size involved in the calculation of
the Moore–Penrose pseudo-inverse (see Appendix of Deser
et al., 2016, for details). Therefore, the choice of Ns ∼ 200 is
a good compromise between accuracy and speed.

The second parameter is the number of iterations, Nr. In
this case, the focus is on the reconstructed TX. The sensitiv-
ity test is performed for several multi-day periods through-
out the Russian heat wave. The dynamical adjustment code
is run for a range of Nr values (Nr = 10, 20, 30, . . . 150, 160
and with other parameters at their optimized value), and the
metric measures the RMSE between the reconstructed TX
for the different values in the above Nr range and the recon-
structed TX field with Nr = 300, taken here as the “refer-
ence” value. Note that this only allows us to see the “conver-
gence” of the algorithm relative to the number of iterations
for a given value of the Na and Ns parameters (here Na ∼ 400
and Ns ∼ 200). Figure A2 shows that there is an initial fast
RMSE decrease (starting from RMSE values of ∼ 1 ◦C for
fewer than 10 iterations) followed by a slower convergence
of the algorithm with the number of iterations. The change in
convergence rate occurs when Nr exceeds 50–60 iterations,
making the choice of Nr ∼ 100 a reasonable trade-off.

Appendix B: Time distribution of selected analogues

The selected study period (1900–2018) used for the SLP ana-
logue search includes active phases of low-frequency inter-
nal variability modes such as the Atlantic multidecadal vari-
ability (AMV). In addition, the 20CR_V3 reanalysis could
possibly exhibit lower variance in the early data-poor pe-
riod, leading to a preferential selection of analogues from
recent decades. Drawing a majority of analogues from a spe-
cific period can potentially bias the estimation of the dynam-
ical component contribution and that of the internal residual.
Figure B1 shows the distribution of analogues with respect
to the years for the two extreme events (for the entire se-
lected event, the total number of analogues used is equal to
Nr×Ns×Nd, with Nr and Ns defined as in Sect. 2.2 and

Figure A1. Accuracy (assessed by the RMSE, unit: hPa) of the SLP
reconstruction as a function of the number of analogues used in the
dynamical adjustment multilinear regression step. Four multi-day
periods (dates in upper right corner) within the 2010 early winter
European cold spell are considered to perform the sensitivity test.
The RMSE is first estimated at each grid point and then averaged
over the 30–75◦ N, 25◦W–40◦ E geographical box with latitudinal
weighting.

Figure A2. Convergence (assessed by the RMSE, unit: ◦C) of the
TX reconstruction as a function of the number of iterations used
in the dynamical adjustment algorithm. Convergence is assessed
against a reference dynamical adjustment run performed with 300
iterations. Four multi-day periods (dates in upper right corner)
within the 2010 Russian summer heat wave are considered to per-
form the sensitivity test. The RMSE is first estimated at each grid
point and then averaged over the 35–65◦ N, 25–50◦ E geographical
box with latitudinal weighting.

Nd the number of days of the event). It clearly shows that
the selected sample of analogues does not favor any specific
period or exhibit any particular trend and that specific years
with a large number of analogues can be found throughout
the entire period.
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Figure B1. Time distribution of selected SLP analogues (X axis, unit in percent of the total number of used analogues) versus their year of
occurrence (Y axis) for the two extreme events.
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Appendix C: Observational uncertainty for the TXx
and TNx trend analysis

Figure C1. The 1979–2018 temperature trend patterns (units: ◦C every 40 years) for western and central Asia based on the HadEX3 dataset:
(a) TXx and (b) TNx. The black dashed line indicates the eastern boundary of the region map shown in Fig. 5.

Code and data availability. The dynamical adjustment
code used in this study is available on https://github.
com/terrayl/Dynamico (last access: 5 January 2021),
https://doi.org/10.5281/zenodo.5584777 (terrayl, 2021). Ob-
served and reanalysis data used for this study can be found on the
data provider websites. They can also be provided by the author
upon request.
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