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Abstract. El Niño–Southern Oscillation (ENSO) modulates
severe thunderstorm activity in the US, with increased activ-
ity expected during La Niña conditions. There is also evi-
dence that severe thunderstorm activity is influenced by the
Arctic Oscillation (AO), with the positive phase being asso-
ciated with enhanced activity. The combined ENSO–AO im-
pact is relevant for situations such as in early 2021, when
persistent, strong positive and negative AO events occurred
during La Niña conditions. Here we examine the relation of
a spatially resolved tornado environment index (TEI) with
ENSO and the AO in climate model forecasts of February,
March, and April conditions over North America. Bivariate
composites on Niño 3.4 and AO indices show that TEI pre-
dictability is high (strong signals and probability shifts) when
the ENSO and AO signals reinforce each other and low when
they cancel each other. The largest increase in the expected
value and variance of TEI occurs when Niño 3.4 is negative,
and the AO is positive. Signal-to-noise ratios are higher dur-
ing El Niño–negative AO than during La Niña–positive AO,
but probability shifts are comparable.

1 Introduction

El Niño–Southern Oscillation (ENSO) modulates severe
thunderstorm activity (tornadoes, large hail, and damag-
ing straight-line winds) in the US, with increased activity
expected during La Niña conditions in winter and spring
(Marzban and Schaefer, 2001; Cook and Schaefer, 2008;
Allen et al., 2015; Moore, 2019). The association of ENSO
with US tornado and hail activity provides a basis for sea-

sonal predictions that are based on observed or predicted
values of the Niño 3.4 index (Lepore et al., 2017). On the
other hand, La Niña conditions during the beginning of 2021
did not translate into consistently enhanced tornado activity
during that period. In particular, Oceanic Niño Index values
in 2021 were −0.9, −0.8, −0.7, and −0.5 for JFM, FMA,
MAM, and AMJ, respectively (NOAA Climate Prediction
Center, 2022a). However, February, March, April, and May
tornado report numbers from NOAA’s Storm Prediction Cen-
ter were 11, 138, 78, and 259, compared to their 2006–2020
median values of 42, 86, 189, and 252, respectively (NOAA
Storm Prediction Center, 2022). Only the March report num-
bers were substantially above their 2006–2020 median value,
while the February and April report numbers were below
their 2006–2020 median values. The particular events of
early 2021 and the generally modest skill of ENSO-based
severe thunderstorm forecasts may simply reflect the limited
ENSO signal in severe thunderstorm activity and the large
role of unpredictable weather noise or may indicate the need
to consider other factors.

Climate predictability studies can provide an indication
of how much of the observed variability is explained by
ENSO and other predictable signals and what skill is to be
expected from forecasts. A general challenge in estimating
climate predictability is that the predictable variability (sig-
nal) is usually modest compared to the unpredictable vari-
ability (noise). Predictability can be estimated using observa-
tions or physics-based models. An advantage of model-based
predictability studies is that sample sizes can be substan-
tially larger than the observational record, and both signal
and noise can be better estimated (e.g., Deser et al., 2018). A
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disadvantage is that the predictability in the model may dif-
fer from that in nature (e.g., Scaife and Smith, 2018). Model-
based climate predictability studies have tended to focus on
quantities such as near-surface temperature and precipitation
and not severe thunderstorm activity, in large part because
climate models do not resolve thunderstorms. However, cli-
mate models can simulate environmental quantities associ-
ated with thunderstorms such as convective available poten-
tial energy and wind shear. In the so-called ingredients ap-
proach, a climate model simulates the response of these thun-
derstorm ingredients to prescribed sea surface temperature
(SST) (Lee et al., 2012) or radiative forcings (e.g., Lepore
et al., 2021, and references therein).

The difference between the expected ENSO response and
what occurs in a given year (e.g., in early 2021) can be at-
tributed to atmospheric noise. However, such atmospheric
noise may include predictable variability that is indepen-
dent of ENSO. For instance, ENSO-based predictability of
California winter precipitation is relatively low (Kumar and
Chen, 2017), but taking account of subseasonal components
identifies additional sources of predictability that can explain
deviations from the expected ENSO response (L’Heureux
et al., 2021; Wang et al., 2017). The Arctic Oscillation (AO)
may be such a source of subseasonal predictability for North
American severe thunderstorm activity.

The AO is a dominant mode of hemispheric variability
which influences North American near-surface temperature
and precipitation, especially during the cold season (Thomp-
son and Wallace, 1998). In particular, the positive phase of
the AO is associated with warmer temperatures across the
eastern US and increased variance of band-passed (3–10 d)
500 hPa height anomalies (Higgins et al., 2000; Thompson
and Wallace, 2001). Moreover, the AO is predictable beyond
weather timescales, especially in winter (L’Heureux et al.,
2017; Riddle et al., 2013; Stockdale et al., 2015; Tang et al.,
2007). Origins of AO predictability include the stratosphere
(Nie et al., 2019) and the tropics (Kumar and Chen, 2018;
Scaife et al., 2017). Some evidence suggests that the AO
modulates severe thunderstorm activity. Childs et al. (2018)
found a statistically significant relation between the AO and
November–February numbers of tornadoes rated EF1 and
higher in the southeastern US. Notably those tornado report
numbers were more strongly related to the AO than to ENSO.
Brown and Nowotarski (2020) reported that daily values of
the NOAA/Climate Prediction Center AO index were rele-
vant to tornado outbreak likelihood in the southeastern US
across all seasons. Nouri et al. (2021) found a positive rela-
tion between annually averaged state tornado frequencies and
the AO. While only suggestive, the tornado report numbers in
early 2021 are not inconsistent with the concurrent values of
the AO index: February−1.191, March 2.109, April−0.204,
and May−0.161 (NOAA Climate Prediction Center, 2022b).

A limitation of previous studies is that they have not con-
sidered spatially resolved, sub-annual, combined impacts of
ENSO and AO on severe thunderstorm activity. Pooling data

across the US or multi-state regions can mix different climate
signal responses, which may dilute or obscure signals and
their spatial dependence. Subseasonal analysis is also prefer-
able because of the strong annual cycle in US severe thunder-
storm activity and because the persistence of the AO as mea-
sured by its autocorrelation function is limited to less than
30 d (Domeisen et al., 2018; Keeley et al., 2009). However,
robustly estimating the spatially resolved, subseasonal joint
response to ENSO and AO from observations alone is chal-
lenging because of high sampling variability. Climate models
can provide a complementary approach in which sample size
is not limited by the length of the observational record.

Here, we examine ENSO and AO signals in monthly cli-
mate model forecasts. The number of monthly samples in
the climate model data is larger than the observational record
by more than a factor of 200 because of multiple fore-
cast initializations and ensemble members. Since the climate
model does not resolve thunderstorms, we investigate the
predictability of a spatially resolved tornado environment in-
dex (TEI). TEI is known to capture some aspects of the ob-
served tornado climatology and variability when it is com-
puted from reanalysis or climate model forecast data (Lepore
et al., 2018; Tippett et al., 2014). The work here is an exten-
sion of that in Tippett and Lepore (2021), in which we used
the same climate model but analyzed the impact of ENSO
only on a multi-state average of TEI. Here, we specifically
address the following questions. What are the spatially re-
solved ENSO and AO signals in TEI? How do the ENSO
and AO signals in TEI interfere constructively and destruc-
tively? How does the predictability of TEI depend on the
joint ENSO–AO phase?

2 Data and methods

2.1 Data

The Climate Forecast System, version 2 (CFSv2; Saha et al.,
2014) data used are similar to those of Tippett and Lepore
(2021), with some modifications that include additional vari-
ables and extension of the spatial domain. Monthly values of
the Niño 3.4 index, convective precipitation (cPrcp), storm-
relative helicity (SRH), and geopotential height at 1000 hPa
(Z1000) were taken from reforecasts and real-time forecasts
of CFSv2 during the period 1981–2021 (NOAA Environ-
mental Modelling Center, 2022). Reforecasts consist of four
initializations per day (00:00, 06:00, 12:00, and 18:00 UTC)
on every fifth day (not counting 29 February) starting from
12 December 1981 and ending on 27 March 2011. Real-time
forecasts were sampled at the same initialization frequency
starting on 2 April 2011 and ending on 29 May 2021. Fore-
cast target months that include the initialization date were
discarded. Initializations and lead times corresponding to
February, March, and April monthly targets were used in
the predictability analysis (sample sizes of 8774, 8498, and
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8537, respectively, for a total of 25 809 forecasts). The Z1000
EOF calculation used 51 653 monthly forecast targets in the
range November–May.

Niño 3.4 and Z1000 anomalies were computed with re-
spect to a forecast climatology that is a function of target
month and lead time, where lead time is defined as the num-
ber of days from the initialization day to the beginning of the
target month and ranges from 1 to 276 d (∼ 9 months). The
forecast climatology is computed by averaging over a ±10 d
lead time window. In other words, each forecast anomaly is
with respect to the mean of all forecasts that have the same
target month and whose lead time is within 10 d of that of the
anomaly being computed. Separate Niño 3.4 and Z1000 cli-
matologies were used for starts before and after 00:00 UTC
1 January 1999 to account for a discontinuity in CFSv2 initial
conditions (Barnston and Tippett, 2013; Kumar et al., 2012;
Xue et al., 2011).

The tornado environment index (TEI) was computed from
CFSv2 output on a 1◦× 1◦ latitude–longitude grid for land
points in the domain 140 to 60◦W and 25 to 60◦ N according
to Lepore et al. (2018):

TEI= exp(−14.01+ 1.36logcPrcp+ 1.89log |SRH|)

× number of days in target month,

where the units of cPrcp and SRH are kg m−2 d−1 and
m2 s−2, respectively. The CFSv2 TEI forecast climatology in
February has its largest values localized to the Gulf Coast,
which increase and shift northward in March and April
(Fig. S1 in the Supplement).

2.2 Methods

We applied EOF analysis to CFSv2 monthly forecasts of
hemispheric Z1000 poleward from 20◦ N and used PC1 as an
AO index (Thompson and Wallace, 1998). EOF1 explained
31 % of the total area-weighted monthly variance and is char-
acterized by low-pressure anomalies over the pole and high-
pressure anomalies over the midlatitude Pacific and Atlantic
basins (Fig. S2).

For composites, positive and negative ENSO and AO con-
ditions were defined as occurring when index amplitudes ex-
ceeded 0.76 times the monthly standard deviation of the in-
dex. We used a lower threshold than the 1-standard-deviation
threshold in Tippett and Lepore (2021) to increase the sam-
ples sizes of the four possible bivariate (e.g., El Niño and
positive AO) composites. For a normally distributed random
variable, the 0.76-standard-deviation threshold corresponds
to the upper and lower 22.3 % of values. That is, the prob-
ability of a normally distributed random variable with mean
zero and unit variance exceeding 0.76 is 22.3 %. For the joint
occurrence of bivariate independent normally distributed ran-
dom variables, this threshold corresponds to 5 % of values.
That is, the probability of two independent and normally
distributed random variables with zero mean and unit vari-
ance simultaneously exceeding 0.76 is 5 % (= 0.2232). Each

month has over 8000 samples, and 5 % of 8000 is 400. How-
ever, the Niño 3.4 and AO indices are negatively correlated
in CFSv2 forecasts of February, March, and April (Fig. S3).
Consequently, the sample sizes of the bivariate composites
(corners in Fig. S3) differ systemically. In particular, the
composites with opposite-signed Niño 3.4 and AO indices
have more samples, and the composites with same-signed
Niño 3.4 and AO indices have fewer samples. This difference
is largest for March, which has the strongest ENSO–AO rela-
tion (r2

= 13 %). The fraction of CFSv2 forecast Februaries
with negative Niño 3.4 and negative AO indices exceeding
the threshold (similar to February 2021) is 262/8774≈ 3 %.

We measured the predictability of TEI during univariate
(e.g., El Niño) and bivariate (e.g., El Niño and positive AO)
composite conditions using skill scores that were computed
under the perfect model assumption. No observational data
were used. We measured the predictability of deterministic
forecasts using the mean squared error skill score (MSESS).
The perfect model MSESS is (Tippett and Lepore, 2021)

MSESS= 1−
MSE

MSEclim
=

S2
c

S2
c + σ

2
X|c

, (1)

where c labels the univariate or bivariate condition, X is the
variable being predicted, MSE= σ 2

X|c is its conditional vari-
ance (noise), MSEclim = S

2
c +σ

2
X|c is the mean squared error

of a climatological forecast (bias2
+ noise), and Sc = E[X |

c]−E[X] is the conditional anomaly (signal); E denotes ex-
pectation, and the vertical line means “conditional on.” Per-
fect model MSESS varies between zero and one and is an r2

value in the sense that it is the square of the expected value
of the anomaly correlation for the given condition (Kumar,
2009; Sardeshmukh et al., 2000). For probability forecasts,
we consider the probability of TEI exceeding its monthly cli-
matological median. We measured predictability of proba-
bilistic forecasts in terms of the shift in the forecast proba-
bility away from its climatological value of 0.5 because the
perfect model values of the Brier and log skill scores depend
only on the size of the probability shift; larger probability
shifts result in larger skill scores (Tippett and Lepore, 2021).
Expected skill scores in the perfect model context here are
always positive (more skill than climatology).

We computed the empirical (no fitting) cumulative proba-
bility distribution function of the area-weighted sum of TEI
over land points east of 110◦W (denoted summed TEI) for
different conditions. We plotted in the results in the form
of return level plots in which the vertical coordinate is the
100×(1−p) percentile of the data, the horizontal coordinate
is the approximate return period yp =−1/ log(1−p)≈ 1/p,
and p is a probability (Coles, 2001; DelSole and Tippett,
2022). For instance, p = 0.01 corresponds to the 100-year
return level and period. For p = 0.5, the return level is the
median, and y0.5 ≈ 1.44 and is marked on the return level
plots with M .
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To assess the statistical significance of composite, corre-
lation, and probability maps, we followed the procedure of
Benjamini and Hochberg (1995) as detailed in Sect. 13.4 of
DelSole and Tippett (2022). First, a two-sided p value is
computed at each grid point (land only). The p value for the
correlation ρ̂ and sample size N is computed by considering
the quantity

tcorrelation =
ρ̂
√
N − 1√
1− ρ̂

,

which has a t distribution with N − 2 degrees of freedom
under the null hypothesis of no correlation. The p value of a
composite under the condition c is computed by considering
the quantity

tcomposite =
µ̂c− µ̂c

σ̂pooled

√
1
Nc
+

1
Nc

,

which has a t distribution with Nc+Nc− 2 degrees of free-
dom under the null hypothesis of no difference; µ̂ and N
are the sample mean and sample size, respectively, under the
condition c and its negation c, as indicated by the subscript,
and the pooled correlation is

σ̂ 2
pooled =

(Nc− 1)σ̂ 2
c + (Nc− 1)σ̂ 2

c

Nc+Nc− 2
.

The p value for the probability P̂c of exceeding the median
under condition c is computed from the binomial distribu-
tion with Nc trials and success probability 0.5. Second, the p
values are sorted from smallest to largest and then compared
to the sequence γ /S,2γ /S, . . .,γ , where S is the number of
land grid points (here S = 1740), and γ is the specified false
discovery rate (FDR), here 5 %. The null hypothesis is re-
jected for those p values that are smaller than the comparison
sequence. The largest correlation in absolute value for which
the null hypothesis is accepted is denoted ρFDR; all statis-
tically insignificant correlations have amplitudes less than
ρFDR. The largest TEI composite for which the null hypoth-
esis is accepted is denoted TEIFDR; all statistically insignifi-
cant TEI composites have amplitudes less than TEIFDR. The
largest probability shift from 50 % for which the null hypoth-
esis is accepted is denoted PFDR; all statistically insignifi-
cant probability shifts are less than PFDR. Statistical signifi-
cance of regression maps is equivalent to that of correlation
maps (see Sect. 9.9 in DelSole and Tippett, 2022). Statisti-
cal significance of a MSESS map under the condition c is
equivalent to statistical significance of a composite map un-
der the same condition since analysis of variance in this case
is equivalent to a t test for a difference in means.

For plotting composite, MSESS, and probability maps,
we masked locations where the values were statistically in-
significant or where the absolute value of the TEI composite
anomaly was less than 0.05. In addition, we masked MSESS

values less than 0.05 and probability values that were less
than 5 percentage points away from 50 %. Our use of thresh-
olds in addition to statistical significance reflects the fact that
with large sample sizes, nearly all results are statistically sig-
nificant.

3 Results

3.1 Univariate composites

ENSO and AO composites of TEI anomalies show signals
that are centered over Louisiana and Arkansas in February
and that shift northward in March and April (Fig. 1). The TEI
signals are mostly positive during La Niña conditions and
during the positive phase of the AO, with the opposite sign
over Florida. TEI signals are essentially reversed when the
ENSO or AO phase is inverted. Overall, there is no strong in-
dication of nonlinear responses to positive and negative val-
ues of the indices.

Signal amplitudes are highest in March and lowest in
April. Signals in May are weaker still (not shown). Regres-
sion and correlation maps show the same subseasonal varia-
tion in the strength of the relation of TEI with the Niño 3.4
and AO indices (Figs. S4 and S5). Correlation maps show
additional continental-scale structure in the west and north,
where there are sizable correlations but where the TEI vari-
ability is too small to appear in the composite or regres-
sion patterns. The strongest TEI correlations are of the or-
der of 0.3–0.4, which is highly statistically significant in the
model data here but would be less so in 40 years of data for
which the 5 % significance threshold would be about 0.32.
The ENSO and AO spatial patterns and amplitude are simi-
lar in February and March. In April the AO pattern is shifted
further northward than the ENSO one. Correlation maps in-
dicate that both TEI ingredients contribute to the April dif-
ferences between ENSO and AO patterns (Figs. S6 and S7).
Overall, the ENSO signal is slightly stronger than the AO
one (Fig. 1), which may reflect the stronger correlation of
the dominant TEI ingredient (SRH) with the Niño 3.4 index
than with the AO index.

To address the question of how ENSO and AO might mod-
ulate the total number of tornadoes, we examined the distri-
bution of TEI summed over land points east of 110◦W (last
row Fig. 1). Summed TEI return levels are higher for La Niña
and positive AO (active phases) than for El Niño and negative
AO (inactive phases), with corresponding changes in return
period. A summed TEI value of 150 in February has a return
period of about 10 years during active phases and a return
period of about 100 years during inactive phases. Return lev-
els for the two active phases are similar for return periods
up to about 20 years, at which point sampling variability be-
comes noticeable, and likewise for the two inactive phases.
The active-phase return level curves have steeper slopes, and
the steeper slopes indicate greater extension of the distribu-
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Figure 1. Rows 1–4: univariate Niño 3.4 and AO composites of February, March, and April TEI anomalies. TEI units are number of tornado
reports per 1× 1 grid box. The sample size for each case is indicated in the lower left corner. All statistically insignificant values have
amplitudes less than TEIFDR, which is shown on each map. Statistically insignificant values and values with absolute values less than 0.05
are masked. Bottom row: summed (land points east of 110◦W) TEI return levels and approximate return periods conditional on univariate
Niño 3.4 and AO phases. “M” marks the approximate return period of the median.
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tion rightward to more extreme values. Moreover, the return
level curves are approximately straight lines, which means
that the distributions are reasonably approximated by the
Gumbel distribution. The variance of a Gumbel-distributed
random variable is proportional to the square of the slope of
the return level line (see Appendix A), which means that the
active phases have higher variance than the inactive phases.
The differing slopes of the return level curves mean that the
return level change between active and inactive phases (ver-
tical distance between return level curves) increases with re-
turn period.

3.2 Bivariate composites

We computed bivariate composites of TEI anomalies condi-
tional on the simultaneous values of the Niño 3.4 and AO
indices to investigate the constructive and destructive inter-
ference between the ENSO and AO signals. TEI signals are
strong when the ENSO and AO signals reinforce each other
(interference is constructive), which is the case for opposite-
signed indices, namely, La Niña–AO+ (first row Fig. 2) and
El Niño–AO− (fourth row). The bivariate constructive sig-
nals are stronger than the univariate ones (compare with
Fig. 1) and show the same subseasonal variation in strength
with the strongest signals in March and the weakest ones in
April. TEI signals are weak when the ENSO and AO sig-
nals cancel, i.e., same-signed indices: La Niña–AO− and El
Niño–AO+ (second and third rows of Fig. 2). The La Niña–
AO− signal, although weak, is overall positive.

Summed TEI return levels deviate from their climatolog-
ical (All) values only when the ENSO and AO signals re-
inforce each other (bottom row Fig. 2). When the ENSO
and AO signals cancel, the distribution of summed TEI val-
ues is similar to the climatological one. As in the univari-
ate composites, the return level curves are approximately
straight lines, and the distributions are reasonably approxi-
mated by Gumbel distributions. The active-phase return pe-
riod curves have steeper slopes than the inactive-phase ones,
which as in the univariate composites indicate greater exten-
sion of the distribution rightward to more extreme values,
higher variance, and larger differences at longer return peri-
ods. A March-summed TEI value of 150 has an approximate
return period of 3 years during La Niña–AO+ conditions and
a return period of 20 years during El Niño–AO− conditions.

3.3 Bivariate composite predictability

Perfect model MSESS values can be interpreted as squared
anomaly correlation values and are low when the ENSO and
AO signals cancel (second and third rows of Fig. 3). Com-
paring the two constructively phased cases, MSESS is higher
when TEI is reduced (El Niño–AO−) than when TEI is en-
hanced (La Niña–AO+). Since MSESS is an increasing func-
tion of signal-to-noise ratio (see Eq. 1), and the signal ampli-
tudes of the two constructively phased cases are about the

same (compare first and fourth rows of Fig. 2), the difference
in MSESS is due to the noise variance being larger when TEI
is larger. We return to the reason for this difference in vari-
ance in the “Discussion” section. This increased variance is
consistent with the increased variance of summed TEI seen
in the return level plots (bottom row Fig. 2). A consequence
of increased variance is that mean squared error will be larger
during La Niña–AO+ conditions than during El Niño–AO−
conditions.

For probabilistic forecasts during each of the four bivari-
ate conditions, we considered the probability of TEI exceed-
ing its climatological median. The expected Brier skill score
and log skill score are even increasing functions of the fore-
cast probability shift away from its climatological value of
50 % – larger probability shifts mean larger expected skill
scores. Therefore, we only show the probability shifts for the
bivariate composites (Fig. 4). Substantial probability shifts
only occur when the ENSO and AO signals reinforce each
other, i.e., for bivariate composites with opposite-signed in-
dices, namely La Niña–AO+ and El Niño–AO−. The prob-
ability shifts for these two cases are nearly the same, indi-
cating the same level of predictability and expected perfect
model skill. This behavior is different from that of MSESS,
which showed higher predictability and expected skill for El
Niño–AO−. We return to this point in the “Discussion” sec-
tion. The largest probability shifts occur in March, and the
smallest probability shifts occur in April. Probability shifts
when the ENSO or AO phase is considered separately are
weaker than those when ENSO and the AO reinforce each
other (compare Fig. S8 with the first and fourth rows of
Fig. 4).

Both predictability measures show some regions west of
100◦W and north into Idaho, Washington State, and British
Columbia, where TEI in CFSv2 is predictable. On the other
hand, few if any tornadoes or thunderstorms are reported in
some of these regions, and the findings here may reflect a
previously noted positive bias of TEI compared to tornado
reports in environments that have relatively high SRH and
low cPrcp during this time of the year (Tippett et al., 2014).

4 Summary and discussion

Reports of US tornadoes appear to have diverged from the
enhanced activity that would be expected during the La Niña
conditions of early 2021, a period when notable monthly
Arctic Oscillation (AO) anomalies also occurred. To investi-
gate the question of how ENSO and the AO jointly modulate
North America severe thunderstorm activity, we computed
a tornado environment index (TEI) in 41 years of climate
model forecasts for target months in the range February–
April. Because the forecasts have many initializations and
ensemble members, the sample size is large enough to com-
pute robust bivariate composites based on simultaneous val-
ues of the Niño 3.4 and AO indices. Because lead times
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Figure 2. Rows 1–4: bivariate Niño 3.4–AO composites of February, March, and April TEI anomalies. TEI units are number of tornado
reports per 1× 1 grid box. The sample size for each case is indicated in the lower left corner. All statistically insignificant values have
amplitudes less than TEIFDR, which is shown on each map. Statistically insignificant values and values with absolute values less than 0.05
are masked. Bottom row: summed (land points east of 110◦W) TEI return levels and approximate return periods conditional on bivariate
Niño 3.4–AO phase. “M” marks the approximate return period of the median.
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Figure 3. Perfect model mean squared error skill score (MSESS) for February, March, and April bivariate Niño 3.4–AO composites of TEI.
MSESS values are masked as in Fig. 2 and where MSESS values are less than 0.05.

extend up to about 9 months when forecasts are nearly in-
dependent of the verifying observations, model results are
less closely tied to the observational record of the particular
weather events that occurred. Our main findings are as fol-
lows:

– ENSO and AO teleconnections in TEI have similar pat-
terns and amplitudes over North America, with the AO
index being overall positively correlated with TEI.

– TEI predictability is high (strong anomalies and proba-
bility shifts) when the ENSO and AO signals reinforce
each other (opposite-signed Niño 3.4 and AO indices).

– When the ENSO and AO signals interfere destructively
(same-signed Niño 3.4 and AO indices), the signals can-
cel, and TEI predictability is small.

We computed the predictability of TEI by target month
conditional on the simultaneous phases of ENSO and the
AO. Predictability was measured using skill scores that were
computed under the perfect model assumption. The mean
squared error skill score (MSESS) is a skill score for deter-
ministic forecasts, and the perfect model MSESS depends
only on the signal-to-noise ratio. To a first approximation,
MSESS reflects the TEI signal amplitude and is small (little
predictability) when the ENSO and AO signals cancel and
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Figure 4. Probabilities of February, March, and April TEI exceeding its climatological median value for bivariate Niño 3.4–AO composites.
The color bar is centered on the climatological value of 50 %. Statistically insignificant values, locations with composite amplitudes less than
0.05, and shifts away from 50 % that are less than 5 percentage points are masked. All statistically insignificant probability shifts away from
50 % are less than PFDR, which is shown on each map.

is large (high predictability) when they reinforce each other.
MSESS is highest in March and lowest in April. Comparing
the two constructively phased situations, MSESS is higher
during inactive phases (positive Niño 3.4 and negative AO
indices) than during active phases (negative Niño 3.4 and
positive AO indices). The reason for this difference is that
the noise variance is smaller during inactive phases, and con-
sequently the signal-to-noise-ratio is larger.

On the other hand, the perfect model Brier and log skill
scores depend only on the size of the probability shifts, which

are nearly the same for active and inactive constructively
phased composites. This difference between predictability as
measured by MSESS and predictability as measured by prob-
ability shift is perhaps unexpected because previous stud-
ies have noted a one-to-one correspondence between perfect
model skill scores of deterministic and probabilistic fore-
casts (e.g., Tippett, 2019, and references therein). For in-
stance, Tippett et al. (2010) found that the perfect model
Brier skill score (BSS) was a function of the anomaly correla-
tion AC and that BSS≈ 1−

√
1−AC. However, those results

https://doi.org/10.5194/wcd-3-1063-2022 Weather Clim. Dynam., 3, 1063–1075, 2022



1072 M. K. Tippett et al.: Predictability of a tornado environment index

apply when the skill score is computed by averaging over
joint Gaussian-distributed forecasts and observations. Here
the distributions are not Gaussian, and the averages are over
composites, which each have a specific mean (signal) and
variance (noise). In this case, MSESS averaged over compos-
ites is a function of the mean-to-variance ratio alone, but the
probability shift is not, even for Gaussian distributions (Tip-
pett et al., 2010). Here areal sums of TEI are approximately
Gumbel-distributed, and the probability shift for Gumbel dis-
tributions depends on the location and scale parameters sepa-
rately (see Appendix A). Arguably, probability shifts are the
more valid predictability measure in this context since they
measure the difference between forecast and climatological
distributions and since the log skill score is an information-
theory-based measure (DelSole and Tippett, 2007).

TEI is the product of convective precipitation and storm
relative helicity (SRH), and here both factors are sensitive to
the phases of ENSO and the AO, with SRH showing stronger
correlations (Figs. S6 and S7). Tippett and Lepore (2021)
showed that the variance of a product of random variables
is larger when the means of the two factors are larger and
smaller when the means are smaller, which explains the de-
creased TEI variance during inactive phases seen here. The
dependence of both TEI ingredients on ENSO and AO phase
is different from the projected climate change signal in which
a warming climate leads to upward trends in convective avail-
able potential energy (CAPE) and little or downward trends
in SRH or other measures of wind shear (Diffenbaugh et al.,
2013; Lepore et al., 2021). This difference in dependence
might be useful in distinguishing between climate change
and internal variability in observations, especially since some
observational studies that have detected trends in thunder-
storm report data have also found trends in SRH to be the
dominant factor (Lu et al., 2015; Tippett, 2014; Tippett et al.,
2016). Given the relation between Pacific forcing and SRH
seen here, observed trends in the Pacific zonal SST gradient
toward a more La Niña-like state might play a role in ob-
served upward SRH trends, though at present whether the Pa-
cific trends represent forced or internal variability is a topic
of debate (Seager et al., 2019; Watanabe et al., 2021). The
presence of ENSO and AO signals in SRH may also have im-
plications for changes in intensity. Lepore and Tippett (2020)
found that increases in SRH were associated with larger per-
cent increases in the number of tornadoes rated EF2 and
higher than in lower-rated tornadoes. Here the implication
would be that the ENSO and AO phases might modulate the
relative frequency of stronger tornadoes, while the projected
climate change signal would not.

Although the model results here suggest a potential role
for the joint phases of ENSO and the AO in modulating se-
vere thunderstorm activity, a number of questions remain.
Two key questions are whether the ENSO and AO telecon-
nections in TEI found here are present in other climate mod-
els and in reanalysis and whether relations with TEI translate
to relations with severe thunderstorm reports. These ques-

tions have been explored for the ENSO signal (Allen et al.,
2015) but not for the AO and not for ENSO and the AO
jointly. As far as we know, this is the first study to exam-
ine the constructive and destructive interference of the ENSO
and AO signals. Interference of the ENSO and AO signals
may also be present in near-surface temperature and precip-
itation. Regarding the physical mechanisms behind this in-
teraction, one clue might be the fact that the midlatitude jet
stream tends to be farther north during both La Niña and pos-
itive AO conditions.

Sampling variability is a challenge to analyzing climate
signals in severe thunderstorm reports and reanalysis data.
The teleconnection patterns found here could provide guid-
ance when pooling observational data in time and space so as
to reduce noise without diluting the signal. For instance, the
modest signals in April and May would suggest that pool-
ing data across the March–May season would be suboptimal.
In the same vein, analysis of observational data for evidence
of an AO signal may be more effective using daily data be-
cause the persistence of the AO as measured by its autocorre-
lation function tends to be less than 30 d (Keeley et al., 2009;
Domeisen et al., 2018).

Appendix A: Gumbel distribution

The cumulative distribution function (CDF) of a Gumbel-
distributed random variable X is

Prob(X < x)= F(x,µ,β)= e−e
−(x−µ)/β

,

whereµ and β > 0 are location and scale parameters, respec-
tively. The variance ofX is π2β2/6. Defining the exceedance
probability p = Prob(X > x) and solving for x gives

p = 1− e−e
−(x−µ)/β

log(1−p)=−e−(x−µ)/β

log(− log(1−p))=−
x−µ

β

x = µ+β log(−1/ log(1−p)) .

This means that the graph of the return level as a function
of the approximate return period yp =−1/ log(1−p) is a
straight line on an abscissa log-scale plot. The slope of the
line is β, and the intercept is µ. The median xM is found by
setting p = 0.5,

xM = µ−β log(log(2)) .

The approximate return period for the median is y0.5 =

1/ log(2)≈ 1.44. The mean is µ+βγ , where γ is Euler’s
constant≈ 0.577. Since− log(log(2))≈ 0.37, the mean is to
the right of the median.

Forecasts are of the probability of TEI exceeding its me-
dian value conditional on the phases of ENSO and the AO.
Suppose that during a particular phase of ENSO and the AO,
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the Gumbel parameters of the TEI distribution are µ+1µ
and β +1β, where µ and β are the parameters of the cli-
matological distribution. How does the probability of TEI
exceeding its median value change from its climatological
value of 50 %?

P(X > xM)= 1−F(xm,µ+1µ,β +1β)

The power series approximation of F(xm,µ+1µ,β +
1β) is

F(xm,µ+1µ,β +1β)

≈ F(xM)+
∂F

∂µ
1µ+

∂F

∂β
1β

= F(xM)

(
1+ log2

(
1µ

β
− log(log(2))

1β

β

))
. (A1)

This means that positive values of 1µ and 1β increase the
probability, and negative values decrease the probability.
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(NOAA Climate Prediction Center, 2022b). US tornado re-
port numbers (actual) are provided by NOAA/SPC at https:
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