https://doi.org/10.5194/wcd-3-1097-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Supplement of

The composite development and structure of intense synoptic-scale Arctic cyclones

Alexander F. Vessey et al.

Correspondence to: Alexander F. Vessey (alexander.vessey@axaxl.com)

The copyright of individual parts of the supplement might differ from the article licence.
Figure S1. The difference in timestep (i.e., 6-hours) between each cyclone’s point of maximum filtered T42 850 hPa relative vorticity and point of full resolution minimum mean sea level pressure (MSLP) that contribute to the a) winter (DJF) North Atlantic (NA) Ocean cyclone composite, b) winter Arctic cyclone composite, and c) summer (JJA) Arctic cyclone composite.
Figure S2. Timeseries showing the occurrence per year of each cyclone in the sample of the 100 most intense a) winter (DJF) North Atlantic (NA) Ocean cyclones, b) winter Arctic cyclones, and c) summer Arctic cyclones, between 1979 and 2020 identified in the ERA5 reanalysis dataset.
Figure S3. Horizontal 10-metre earth-relative wind speed (m s\(^{-1}\)) composite structure at the time of maximum intensity (i.e., minimum MSLP), of a) winter (DJF) North Atlantic (NA) Ocean cyclones, b) winter Arctic cyclones and c) summer (JJA) Arctic cyclones. The large arrow indicates the direction of storm propagation.