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Abstract. Automatic determination of fronts from atmo-
spheric data is an important task for weather prediction as
well as for research of synoptic-scale phenomena. In this pa-
per we introduce a deep neural network to detect and classify
fronts from multi-level ERA5 reanalysis data. Model training
and prediction is evaluated using two different regions cover-
ing Europe and North America with data from two weather
services. We apply label deformation within our loss func-
tion, which removes the need for skeleton operations or other
complicated post-processing steps as used in other work, to
create the final output. We obtain good prediction scores with
a critical success index higher than 66.9% and an object de-
tection rate of more than 77.3%. Frontal climatologies of our
network are highly correlated (greater than 77.2%) to clima-
tologies created from weather service data. Comparison with
a well-established baseline method based on thermodynamic
criteria shows a better performance of our network classi-
fication. Evaluated cross sections further show that the sur-
face front data of the weather services as well as our network
classification are physically plausible. Finally, we investigate
the link between fronts and extreme precipitation events to
showcase possible applications of the proposed method. This
demonstrates the usefulness of our new method for scientific
investigations.

1 Introduction

Atmospheric fronts are ubiquitous structural elements of
extra-tropical weather. The term front refers to a narrow tran-
sition region between air masses of different density and/or

temperature (see, e.g. Thomas and Schultz, 2019b). These
air mass boundaries play an important role in understanding
the dynamics of midlatitude weather and are usually related
to clouds. Further fronts are often associated with significant
weather, such as intense precipitation and high gust speeds
(see, e.g. Catto and Dowdy, 2021; Catto et al., 2015; Mar-
tius et al., 2016). Hence, fronts in the sense of separating po-
lar from more subtropical air masses play a vital part of the
communication of weather to the public and the public per-
ception of weather in general, although this aspect may have
lost some attention due to the use of colourful apps. Frontal
surfaces also exist on smaller scales, e.g. in the context of
sea-breeze circulation or local circulation patterns in moun-
tainous regions. Even tropical weather systems might indeed
produce similar features of transition regions of different air
masses, but due to other mechanisms than in extra-tropical
weather systems. The focus here and in much of the literature
is on larger-scale fronts that can extend over several hundred
kilometres and are often associated with extra-tropical cy-
clones (Schemm et al., 2018). In addition, quasi-stationary
fronts can also extend over a large distance, but they do not
move strongly over time, e.g. the Mei-Yu front (e.g. Hu et al.,
2021). These stationary fronts are also foci of significant sur-
face weather. Unfortunately, there is no generally accepted
front definition; see for example the discussion in Schemm
et al. (2018) and Thomas and Schultz (2019a). Thus, the
detection of fronts often relies on different measures, usu-
ally based on physical variables and including physical hy-
potheses or theories as detailed below. Additionally, it is still
debated whether a front detection should be guided by de-
termining surface fronts (such as on the analysis charts of
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weather services) or even more on the physical (horizontal
and vertical) structure (see also the summary in Uccellini
et al., 1992; Sanders, 1999).

Nevertheless, determining the position and propagation of
surface fronts plays an important role in weather forecast-
ing and, of course, in research on synoptic-scale phenomena.
The traditional manual approach to front detection is based
on the expertise of weather analysts at operational meteoro-
logical services, along some (mostly empirical) guidelines.
With the advent of large, gridded datasets, e.g. reanalysis
from different weather centres, such as ECMWF or NCEP,
in the second half of the past century the drive for objective
means to detect fronts automatically set in (see, e.g. Hewson
and Titley, 2010). Currently used methods typically rely on
detecting strong gradients in either temperature and humid-
ity fields (e.g. by using equivalent potential temperature or
wet-bulb temperature) or wind fields (Schemm et al., 2015).
The former methodology goes back to the work by Renard
and Clarke (1965) and is represented by Hewson (1998),
who suggested an automatic method to detect fronts in fairly
coarse datasets based on the so-called “thermal front param-
eters”, derived from thermodynamic variables. In these and
subsequent studies this is often related to the second spatial
derivative of the temperature, and one or more “masking pa-
rameters”, i.e. thresholds of thermal gradients along the front
or in adjacent regions. This or conceptually similar methods
have been used in numerous studies to determine the global
or regional climatological distribution of fronts (e.g. Berry
et al., 2011; Jenkner et al., 2010).

For the investigation of fronts on the Southern Hemisphere
Simmonds et al. (2012) suggested an alternative approach
that investigates the Eulerian time rate of change of wind
direction and speed in the lower troposphere at a given lo-
cation. A comparison of the two methods to identify fronts
on a global climatological scale by Schemm et al. (2015) re-
vealed some agreement between the fronts detected, but also
regional difference and systematic biases in the detection
of certain front types by both algorithms: for example, the
“thermal” method more reliably detects warm fronts than the
method based on lower tropospheric wind speed and direc-
tion. In addition, the orientation of detected fronts differs in
general between the two methods. In consequence Schemm
et al. (2015) also find differences in the global distribution of
fronts and the amplitude of seasonal variations in front oc-
currence frequency.

While it is well known that different front detection meth-
ods provide different outputs (e.g. Schemm et al., 2015;
Hope et al., 2014), an objective ground truth is difficult to
find. Most studies developing or testing automatic detection
schemes rely on manual analysis as the “gold standard” to
test the accuracy and for tuning free parameters in the au-
tomatic detection schemes (e.g. Hewson, 1998; Berry et al.,
2011; Bitsa et al., 2019). However, it should be noted that
manual analysis is affected to a large degree by subjective
decisions, and hence the focus, interest and expertise, of

the person conducting the analysis. Shakina (2014) reports
results from an inter-comparison study of different manual
front analysis carried out independently in different divisions
of the Russian meteorological service up until the 1990s.
Comparing the different archives, agreement on the presence
or absence of a front in any one 2.5◦× 2.5◦ box was found
in 84.8 % of cases. However, if only the presence of fronts
in any one grid box is considered, the agreement dropped to
23 % to 30 % depending on the type of front. Shakina (2014)
further suggests that disagreement mainly arises from the
detection and positioning of secondary or occluded fronts,
which are typically associated with less marked changes in
surface weather. It is likely that the differences between man-
ual analysis by different forecasters in the meantime have not
reduced, but they may potentially be reduced by strict guide-
lines for forecasters on the key decision features for position-
ing fronts.

Despite a non-negligible subjectivity of manual analysis,
it still offers many advantages over automatic methods.

1. In contrast to most automatic detection methods, many
different aspects, including temperature, wind, humidity
fields, surface pressure, surface precipitation and wind,
are taken into account.

2. Manual analysis does not rely strongly on the choice of
(arbitrary) thresholds that are needed in most automatic
front detection algorithms.

3. Experience of analysts can be taken into account, espe-
cially on regional scales (e.g. with complicated terrain
such as in the Alps).

In order to address the over-reliance on specific variables,
some recent studies have suggested methods that combine
not only temperature and humidity data but also include in-
formation on the wind field (e.g. Ribeiro et al., 2016; Parfitt
et al., 2017) or information on Eulerian changes in mean
sea-level pressure (e.g. Foss et al., 2017). Nevertheless these
extended algorithms that are so far mainly used in regional
studies still rely on choosing appropriate thresholds for the
magnitude of thermal gradients or changes in the wind direc-
tion and speed.

The necessity of manually designing metrics and select-
ing thresholds for automatic front detection can be at least
partly overcome by employing statistical methods and ma-
chine learning approaches. The key idea with this approach
is that based on manual analysis a complex statistical method
retrieves as much consistent information on patterns, impor-
tant variables and thresholds as is available in manual analy-
ses and coinciding state of the atmosphere, e.g. from reanal-
ysis datasets. Previous attempts at using machine learning
approaches for front detection are discussed in more detail in
the following section.

Bochenek et al. (2021) used a random forest to predict
fronts over Europe using data from the German Weather Ser-
vice (Deutscher Wetterdienst, DWD). Their results indicate
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that it is possible to detect fronts with this method; however
it does not seem to be very robust, as the probability of object
detection varies greatly between the shown samples.

Recently different groups have used artificial neural net-
works (ANNs) to predict frontal lines from atmospheric data.
Biard and Kunkel (2019) used the MERRA-2 dataset to pre-
dict and classify fronts over the North American continent.
Their network also classifies their predicted fronts using the
four types: warm, cold and stationary fronts as well as oc-
clusions. They used labels provided by the North American
Weather Service (NWS).

Lagerquist et al. (2019) used the North American Regional
Reanalysis (NARR) dataset (Mesinger et al., 2006) to predict
synoptic cold and warm fronts over the North American con-
tinent also using the NWS labels. While the network of Biard
and Kunkel (2019) creates an output on the input domain, the
network of Lagerquist et al. (2019) predicts the probability
for a single pixel and needs to be applied to each pixel con-
secutively. Both methods rely on post-processing steps like
morphological thinning to create their final representation of
frontal data. Additionally, both methods only use a 2D mask
for each input variable, not making use of multiple pressure
or height levels. Matsuoka et al. (2019) used a U-Net archi-
tecture (Ronneberger et al., 2015; Shelhamer et al., 2017) to
predict stationary fronts located near Japan.

In this study we present a new method for automatic front
detection based on machine learning using meteorological
reanalysis as input data and trained with information on sur-
face fronts provided by two different weather services (NWS
and DWD). The overall aim is to investigate the degree
to which machine learning approaches are able to replicate
manual analysis on a case study and climatological scale and
the degree to which the learned features are consistent with
meteorological expectations on the physical properties char-
acterizing a frontal surface. Our provided network uses the
U-Net approach to predict and classify all four types of fronts
and it does not require morphological post-processing. We
evaluate our approach similar to Lagerquist et al. (2019) us-
ing an object-based evaluation method. Unlike the previous
methods, we incorporate data from two different weather ser-
vices, NWS and DWD, and also evaluate the two different re-
gions covered by these datasets. We additionally compare our
predicted fronts against the method developed by Schemm
et al. (2015), using a thermal front parameter (TFP) as an ex-
ample of a conventional automatic front detection method.
We refer to it in the following as the “baseline method”. As
input data we use the ERA5 reanalysis data (Hersbach et al.,
2020) from the European Centre for Medium-Range Weather
Forecasts (ECMWF) on a 0.25◦ grid at multiple pressure lev-
els for each variable. This dataset exhibits a higher resolu-
tion than the NARR data (32km grid) used by Lagerquist
et al. (2019) and MERRA-2 data (1◦ grid) used by Biard and
Kunkel (2019). In contrast to these studies, we also used mul-
tiple pressure levels to refine our results.

Although we are aware of the conceptual differences be-
tween determining surface fronts and the complex 3D struc-
ture of fronts, we use the surface maps as a ground truth, i.e.
as a proxy for the complex structures called fronts. However,
in the later evaluation it turns out that the detected surface
fronts represent the expected physical properties of air mass
boundaries in a meaningful way.

In Sect. 2 we describe our used network architecture, data
and evaluation methods. In Sect. 3 we explain our evalua-
tion methods and display our evaluation results on the train-
ing and test dataset. In addition we showcase applications
in terms of determining the variation in physical properties
across fronts (Sect. 3.2) and relating fronts to extreme pre-
cipitation events (Sect. 3.3). We close with a summary of the
study and a short outlook for future improvements as well
as further applications of the new method for scientific pur-
poses.

2 Materials and methods

For each spatial grid point our proposed algorithm predicts
a probability distribution, describing how likely it is that the
point belongs to each of our possible five classes: warm front,
cold front, occlusion, stationary front or background. Our
method predicts that probability from a four-dimensional
input consisting of multiple channels located on a three-
dimensional multilevel geospatial grid, which was flattened
to a three-dimensional input by combining the atmospheric
channel and level dimension. For this task we use a convo-
lutional neural network (CNN) architecture to automatically
learn atmospheric features that correspond to the existence
of a weather front at spatial grid points. We use a supervised
learning approach, in which we provide ground truth data
of frontal data sampled from two different weather services
(surface fronts). We adjust hidden parameters of the CNN in
order to optimize a loss function measuring the quality of
our weather front prediction. CNN architecture and training
will be explained in further detail in this section. Our net-
work was implemented, trained and tested using Pytorch 1.6
(Paszke et al., 2019). Parallel multi-GPU training was im-
plemented using Pytorch’s DistributedParallel package. The
provided code was run using Python 3.8.2 and is freely avail-
able (see below).

2.1 Data

We will briefly describe which channels and grid points were
used as training input from the ERA5 reanalysis data (Hers-
bach et al., 2020). Furthermore, we will describe the format
of the corresponding label data of fronts obtained from NWS
and DWD; in the case of the DWD label data, we additionally
describe the pre-processing of the DWD data.
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Table 1. Mean and variance of the individual variables used for nor-
malization of input data.

Variable Unit Mean Variance (in unit2)

T K 275.355461 320.404803
q kgkg−1 5.57926815× 10−3 2.72627785× 10−5

u ms−1 1.27024432 67.4232481
v ms−1 0.10213897 43.6244384
w Pas−1 5.87718196× 10−3 4.77972548× 10−2

sp hPa 865.211548 1494.6063
kmPerLon km◦−1 0.64 0.09

2.1.1 ERA5 reanalysis data

Our model input consists of a multichannel multilevel spa-
tial grid provided by ECMWF’s ERA5 reanalysis dataset.
Each channel denotes a different atmospheric variable, while
levels consist of a subset taken from the L137 vertical level
definition (ECMWF, 2021). Data are represented on a spa-
tial grid with a grid spacing of 0.25◦ in both latitudinal and
longitudinal directions. Since we do not expect to obtain
relevant information from high-altitude data, we decided to
restrict ourselves to every fourth level within the inclusive
interval [105,137], representing nine model levels between
the surface and about 700hPa. This range contains both the
ground level information and the 850hPa pressure level in-
formation, both of which are commonly used to detect fronts.
Pressure values are defined as parameters of an affine trans-
formation of the surface level pressure, which is why we
manually added the surface pressure field to the data using
the merge operation of the Climate Data Operators (CDO)
(Schulzweida, 2019). This allows us to calculate the pres-
sure at each grid point and level. We further only use five
ERA5 multilevel variables as input for our network: temper-
ature (T ), specific humidity (q), zonal wind velocity (u, east–
west), meridional wind velocity (v, north–south) and vertical
velocity (w). In addition the surface pressure (sp) and longi-
tudinal distance per pixel in kilometres relative to 27.772km
(kmPerLon) are considered. The distance between two pixels
at a certain degree latitude is derived by assuming a spherical
shape of the globe and is only used as a single level variable.
Surface pressure on the other hand is used to estimate the
pressure at each model level using the corresponding level
parameter to create another multilevel network input. All re-
sulting data are normalized with respect to a global mean and
variance sampled from data of the year 2016. The resulting
mean and variance values are listed in Table 1.

While ERA5 reanalysis data are available for the whole
globe, the available ground truth labels only reside within the
analysis region of their corresponding weather services. We
therefore cannot use ERA5 data outside these regions. For
this reason we decided to restrict our usage of ERA5 data to
rectangular subgrids, each of which is completely within the
analysis region of the respective weather service analysis.

The extent of these regions is described in Table 2 as
DWDinput and NWSinput. Pixels at the border of our input
may lose critical information to successfully identify a front
due to the input crop. As a result detections on the outer
5◦ (20 pixels) of the input domain are not evaluated during
training. While the network still outputs these pixels, they do
not contain valid detections and should therefore be removed
from the evaluation. As a result the effective output region is
smaller than the input region, as indicated in Table 2. This is
also shown in Fig. 1 as the difference in shade within each
weather service region. Prior to evaluation we create detec-
tions for each sample using the global input data. Evaluations
against the weather service labels are performed using the
corresponding output regions. Comparisons against the base-
line method use the same regions restricted to latitudes span-
ning [35◦,60◦]N instead. The evaluation in Sect. 3.3 does
not rely on the weather service data and is therefore evalu-
ated within [−60◦,60◦]N and [−175◦,175◦]E. The restric-
tion of the longitudes is caused by the smaller output regions,
as explained in this section.

2.1.2 NWS front label data

For training on the North American continent, we use the
HiRes Coded Surface Bulletins (csb) of the North American
National Weather Service (National Weather Service, 2019).
These data range from 2003 up to 2018 and were previ-
ously used by Biard and Kunkel (2019) and Lagerquist et al.
(2019). Each front in a csb file consists of an identifier, de-
scribing the type of front, followed by a series of coordinate
pairs on a 0.1◦ grid, defining a polyline of the front. We do
not perform any pre-processing on these data. In accordance
with our available data, we restricted the use of the latter to
the years 2012 to 2017 using only snapshots in a 6 h interval
to keep the amount of data balanced compared to the DWD
data during training. The NWS dataset contains labels for the
following front types: warm front, cold front, occlusion and
stationary front.

2.1.3 DWD front label data

For training over Europe and the North Atlantic, we use
label data extracted from the surface analysis maps of the
Deutscher Wetterdienst (DWD) for the years 2015 to 2019.
Unlike the coded surface bulletins, these maps are not pro-
vided as polylines but rather as PNG images of a region
containing both the North Atlantic and western Europe (see
Fig. 2a). Each of these images has a resolution of 4389×3114
pixels. To use the labels, we extract each individual front,
by creating coordinate pairs, which describe the front as a
polyline, similar to a csb. Within an image different types
of fronts are colour coded, which allows us to easily sep-
arate them from the background. Our algorithm first filters
all fronts of a specific type by filtering all pixels of the cor-
responding colour. In a second step we erase all additional
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Figure 1. Bounding boxes for the two regions used for training and evaluation against the weather service labels. The brighter area is used
as input but is not used for evaluation.

Figure 2. Example of well-extracted fronts (b) from an image provided by the DWD (a) (source: DWD, 2021). In (b) blue and red lines
correspond to cold and warm fronts as in the original image (a), and green lines correspond to occlusions which are pink in the input image.
Note that stationary fronts are originally depicted as alternating warm and cold fronts. For this reason we cannot distinguish those from
regular cold and warm fronts.

symbols on each line. This includes symbolic identifiers like
half circles and triangles, indicating the propagation direc-
tion of a front, as we do not need this information. Also, oth-
erwise, these symbols could create false positive coordinate
points in the label data. Subsequently, latitude and longitude
coordinate pairs along each line are extracted in order to de-
scribe each front in terms of a polyline. In Fig. 2b we show
an example of a processed image file, redrawn onto the same
projection as the input image. Blue and red lines in both pan-
els correspond to cold and warm fronts respectively, while
green lines correspond to occlusions, which are pink in the
left panel.

In certain cases our method fails to correctly extract the
frontal lines. These cases lead to gaps within a front, wrongly
extracted objects or wrongly connected fronts. Gaps origi-
nate from two factors. One is that another object is drawn
on top of a frontal line, effectively splitting the front into

two parts. The other is an aggregation of multiple front sym-
bols on a short segment. As our method removes sections
where a symbol is placed before reconnecting the remaining
points, crowded placement of these symbols may make the
remaining part of the front too short to be considered rele-
vant and as such will be omitted. Wrongly extracted objects
occur mostly due to tropical storm symbols that are depicted
in the same colour as a warm front. As such our extraction
method wrongly extracts these objects as well. Finally, errors
can occur when we try to sort the extracted coordinate pairs
of a single front. In some cases the sorting method may end
up stuck in a local minimum, resulting in a wrong order of
points. An example of such a faulty extracted image is shown
in Fig. 3. However, these are relatively rare and only account
for a small portion of fronts within a sample, and many are
going to be masked by the lower resolution of ERA5, which
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Figure 3. Example of badly extracted fronts (b) from an image provided by the DWD (a) (source: DWD, 2021). The green circle shows an
object that is not a front but has the same colour coding that is wrongly extracted as a front. The orange circle is an unrelated symbol drawn
over the front. The front could not be extracted completely. The yellow circle is a frontal symbol placed in an area with high curvature. The
curvature is not extracted exactly, as the symbol is removed during the procedure, and the loose ends are connected with a straight line.

is why we ultimately decided to ignore these cases for this
work.

We can extract information for the following front types:
warm front, cold front and occlusion. Since stationary fronts
are indicated by alternating warm and cold fronts, we cannot
extract this information from the images as obtained from
DWD; this would interfere with the classification of warm
and cold fronts.

2.2 Network design and training

2.2.1 Network architecture

Neural networks are a machine learning technique where a
network consisting of several layers is used to extract fea-
ture representations of an input at different levels. Each layer
transforms its input into an output map, the layer’s feature
map. These feature maps can then be used as an input for
consecutive layers, which enables the network to learn more
detailed features within the data. In a convolutional neural
network (CNN) the most common transformation function
is a convolution of the input image with a convolution mask
where each entry is a trainable, latent parameter of the net-
work. During training these parameters are adjusted to op-
timize a loss function, which measures the quality of the
output of the network. In our case we use a U-Net architec-
ture originally introduced by Ronneberger et al. (2015) for
biomedical segmentation. The proposed architecture consists
of several consecutive blocks that gradually extract features
from the data and reduce the spatial dimension of the in-
put data to extract features on multiple scales (Fig. 4). These
blocks are followed by a number of expansive blocks which
gradually increase the resolution up to the original scale. Ad-
ditionally at each resolution scale a so-called skip connec-
tion allows the final feature map of an encoding block to di-
rectly serve as additional input to the corresponding decoding

block, displayed as grey arrows in Fig. 4. These skips im-
prove the networks’ ability to localize the features, as the up-
sampled features only hold coarse localization information.
In our network we use convolutional layers as explained be-
fore. Additionally we use rectified linear unit (ReLU), batch
normalization, pooling, upsampling and 2D-dropout layers,
whose functionality we will briefly explain. The dropout
chance at each 2D-dropout layer is set to 0.2.

– ReLU layers are used to introduce non-linearity into the
network. They transform each input x as ReLU(x)=
max(0,x).

– Batch normalization layers normalize the batched input
to a mean of 0 and variance of 1. They can have addi-
tional learnable affine parameters.

– Pooling layers transform several input grid points to a
single output grid point. Common operations are av-
eragePooling or maxPooling where the grid points are
combined calculating the average or maximum of the
input respectively. This operation is used to reduce the
resolution of the feature map.

– Upsample layers are a simple upsampling of a grid point
to increase the resolution of the feature map.

– 2D-Dropout layers randomly set all values in a channel
to 0 to reduce overfitting.

A sketch of the used architecture is shown in Fig. 4. We use
Pytorch’s DistributedParallel package to enable training on
multiple GPUs in parallel. Training is performed on a single
node, with each GPU acting on a fixed shard of the available
data.
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Figure 4. U-Net architecture used in this paper. The first convolution of the input data uses a 1× 1 sized kernel instead of 5× 5. Decode
and encode blocks are explained in the boxes at the bottom of the image. Each decode and encode block consists of three sequential blocks:
convolution, ReLU and BN. U ×V describes the image size per channel. Cin and Cout describe the number of channels of the input and
output of an encode or decode block. The copy operation simply copies the blue box at the start of the arrow into the white box at the end.
The white and blue boxes then describe the concatenation of the output from the copy and upsample operations. The number at the left-hand
side of each block denotes the spatial input dimension. The shown sizes are those used during training; however the initial spatial dimension
can be chosen freely as long as it is divisible by 8. At each red (green) arrow the dimension is divided (multiplied) by 2. The number on top
of each block denotes the number of channels for each block and must not be changed.

Table 2. The input and output regions for the respective weather
service analysis dataset used during training and the global input
region. Levels are only used for network input. The output regions
are also used during evaluation against the weather service labels.
Every fourth vertical level between levels 105 and 137 is chosen to
reduce the amount of input data, also in terms of redundant infor-
mation.

Weather service Latitudes Longitudes Levels

DWDinput [30◦N,75◦N] [−50◦E,40◦E) [105,137,4]
DWDoutput [35◦N,70◦N] [−45◦E,35◦E) –
NWSinput [30◦N,75◦N] [−140◦E,−55◦E) [105,137,4]
NWSoutput [35◦N,70◦N] [−135◦E,−60◦E) –
Global (−90◦N,90◦N] [−180◦E,180◦E) [105,137,4]

2.2.2 Dataset augmentation

In each epoch and for each timestamp, we randomly se-
lect one of the available weather service labels for the given
timestamp. Depending on which weather service was cho-
sen, we crop a 128× 256 pixel sub-grid residing within the
corresponding weather services’ input region (see Table 2)
from the ERA5 data. We use this smaller crop instead of the
complete region to increase the number of training samples,

reduce the memory footprint on the GPU during training and
ensure that all input dimensions are multiples of 8. The ex-
tracted label data are also cropped by removing each vertex,
where neither the vertex itself nor a neighbouring vertex is
located within the extent of the ERA5 crop. To further in-
crease sample count via data augmentation, we also perform
random horizontal and vertical flips on the data. It is impor-
tant to note that, whenever data are horizontally (vertically)
flipped, the sign of the input variable v (u) has to be flipped
as well, as these variables describe a vector field rather than
a stationary value. Flipping of the data might also lead to a
better representation of fronts in the Southern Hemisphere,
which are “mirrored” at the Equator (see Video supplement
Niebler, 2021c).

2.2.3 Training

Our model is trained using stochastic gradient descent with
Nesterov momentum of 0.9 to minimize the loss function.
The initial learning rate is set to 0.005 · #Ranks, where
#Ranks corresponds to the number of processes used for the
parallel training. We train the network for several epochs.
Within each epoch the algorithm randomly trains on a per-
mutation of the complete training dataset. Every 10 epochs
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we measure the training loss. If the test loss does not im-
prove for 10 test phases we divide the learning rate by 10
up to a minimum of 10−7 and reset the count, if the learning
rate was changed. If the test loss does not improve for 20 test
phases (200 epochs) and we cannot reduce the learning rate
anymore we stop training. Additionally we set a maximum
of 10 000 training epochs or 3 d time as stopping criteria. At
each test step, we save a snapshot of the network if the test
loss is better than the currently best test loss. Our final net-
work is the resulting network which yielded the lowest test
error.

2.2.4 Label extraction

As described by Lagerquist et al. (2019), the frontal poly-
lines are subject to two non-negligible causes of bias: inter-
and intra-meteorologist. The first bias describes the effect
of two meteorologists disagreeing on the exact location of a
front, the occurrence of a front at all or which exact shape the
frontal curve follows. The second bias describes the effect of
the same meteorologist being biased on the placement of the
frontal line due to fronts placed at previous analysis times by
the same person.

The transformation of these curves into polylines and the
application onto a different resolution is subject to creat-
ing additional label displacements. While these problems are
present in most human-labelled data, it is more peculiar in
this specific case because the ideal polyline should have a
width of only a single pixel. As a result each ever-so-slight
displacement introduces a large per pixel disparity between
two fronts, as the intersection of the sets of pixels that de-
scribe these fronts ends up being close to nonexistent. This
has at least two negative effects. First, the gradient informa-
tion is really sparse, as a close prediction will be considered
a false positive just as a far off prediction, as can be seen
in the example of Fig. 5a. Further translating the green line
to the right will barely affect the count of intersecting pixels
with the red line, even though one would expect the detection
to become worse the further it moves from the label. Sec-
ondly, the previously mentioned label offset due to personal
bias may lead to the case that a labelled front is not located
exactly at the physical frontal position, essentially creating
a false label with wrong underlying atmospheric properties.
Due to the low intersection count, a correctly placed detec-
tion will now score badly.

One way to handle this might be to widen the extracted
front labels. While this approach introduces further false pos-
itive labels, slight translations in the detection are less penal-
ized as they are more likely to be covered due to the larger
width of the labelled data. Additionally the network is in-
clined to also detect wider frontal lines, making it even eas-
ier to create intersections. In the same way the effect of po-
sitional bias of the label placement is also reduced as the
widened label is more likely to cover the physically cor-
rect location, if a small translational bias exists. However,

Figure 5. Sketch of our label adjustment method. (a) Initial weather
service label with polyline vertices (blue dots) and two possible de-
tections. Detection 1 initially scores lower than Detection 2 due to
a lower intersection with Label. (b) Display of how a vertex of La-
bel might be adjusted within a search radius for Detection 1. The
possibly optimal position for the vertex regarding Detection 2 is not
within the search radius of the vertex. Deformation will therefore
not be able to create a good intersection of the upper part of De-
tection 2 and Label. A similar situation occurs for the three vertices
at the bottom right of Label. (c) Possible resulting Adjusted Label
after each vertex was adjusted. The Label was deformed onto De-
tection 1 as it creates the best matching score. Detection 2 is too far
from several vertices of Label and cannot score a similar matching
score with any deformation of Label. As a result, Detection 1 now
scores higher than Detection 2.

this bias is not completely negated. From our studies and
the results of previous studies (e.g. Matsuoka et al., 2019;
Lagerquist et al., 2019; Biard and Kunkel, 2019) it seems
apparent that a deep learning architecture learns that a bias
in label placement exists and as a result tends to predict en-
larged lines, trying to cover the uncertainty caused by the
bias. Using enlarged labels further enhances this effect, lead-
ing to even larger line width, which in return leads to a low
spatial accuracy of the detections. To regain positional ac-
curacy, previous work used a morphological post-processing
step to extract thin lines from wider network predictions.

In this work we use a different approach, as illustrated
in Fig. 5b and c, to counteract this initial loss of posi-
tional accuracy. Instead of widening the label, we deform
the given polylines prior to evaluation, by translating the ver-
tices within a restricted search radius (panel b). All possi-
ble deformations are considered and evaluated according to
a matching function, and the highest scoring deformation is
then used for evaluation (Fig. 5c). This approach encourages
the network to predict fronts with a high spatial certainty,
as the labels themselves remain thin, while the deformation
models the positional bias.
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A polyline j consists of a series vj of vertices vj,i , where
each vj,i describes the coordinate pair of the vertex as it is
extracted from the weather service label. Additionally each
deformed polyline contains a series of translations trj , con-
sisting of a translation vector trj,i = (uj,i,wj,i), which de-
scribes the translation of vj,i within the polyline j . A seg-
ment of the deformed polyline j is the edge ej,i connect-
ing vj,i+ trj,i and vj,i+1+ trj,i+1. We calculate the matching
score of a segment as follows:

– calculate the positions of pixels of the line connecting
vj,i + trj,i and vj,i+1+ trj,i+1,

– sum the values of all pixels in the network output that
are on this line,

– weight the sum by 1+ exp(−0.5(((uj,i+1)/σ )
2
+

((wj,i+1)/σ )
2)), and

– reduce the result by the number of pixels in the line con-
necting vj,i and vj,i+1.

The matching score of a polyline is considered the sum
of the matching scores of each line segment of the deformed
polyline.

The third step models the assumption that the provided
labels are generally placed correctly and that strong defor-
mations are less likely. Therefore a low deformation is pre-
ferred to a strong deformation if the intersection with the
network output is the same. This matching procedure oper-
ates ignorant of the classification results and only takes the
presence or absence of any type of front at a given pixel
into account. We restricted ourselves to deformations where
−k ≤ uj,i,wj,i ≤ k with k = 3, keeping the deformation ra-
dius small to only counteract the positional bias of the label,
which we expect to be small. Additionally we chose σ = k.
We do not change classification information of the labels dur-
ing the procedure. Thus each front is extracted as the class
provided by the weather service. This matching procedure
was implemented using C++ and Pybind11 v2.6.0 (Jakob
et al., 2017).

This method comes at the risk that instead of predicting
the position of the front the network may end up detecting a
systematic displacement of the front within the range of the
(2k+ 1)× (2k+ 1) grid. We believe this could happen for
two possible reasons: (i) the label bias exhibits a systematic
displacement itself, and (ii) k is chosen too large. In the first
case the error lies within the labels, and it is generally ques-
tionable whether or not these labels are suitable for training
at all. The parameter k controls at which distance from the
labelled front the detection may still be considered correct.
With increasing k the incentive to place the detection close to
the provided label reduces, diminishing the spatial accuracy
of the predictions. Therefore we have chosen k = 3, allowing
each vertex to displace itself up to three pixels in each direc-
tion, limiting the scope of movement to a sensible range.

As an example, Fig. 5 shows how this algorithm can help
to solve the problem of a correct detection being penalized by
a biased label. We assume that the green line (Detection 1) is
a correct detection with appropriate underlying atmospheric
properties, while the yellow line (Detection 2) is an artefact
caused by unfinished training of the network. Additionally
the red line was drawn biased and is therefore not located
at the appropriate position, regarding the underlying atmo-
spheric features. In Fig. 5a the correct prediction has very
few pixels intersecting with the label, similar to the wrong
prediction. Not performing any deformation would wrongly
count several pixels of the green detection as false positives,
while only resulting in a similarly low number of pixels con-
sidered true positive similar to the yellow detection. How-
ever when using the deformation algorithm most pixels of
the green detection correctly count as true positives, while
the yellow detection is correctly classified as false positive.
A deformation towards Detection 2 does not occur in this ex-
ample, as the yellow line is out of range for most vertices.
Most segments will therefore not intersect with the yellow
line, leading to generally lower matching scores than the dis-
played blue line. The latter further displays the importance of
the choice of k for preventing the label from deforming onto
a wrong detection.

2.2.5 Loss functions

During training we extract the label lines as described in
Sect. 2.2.4. As a loss function we decided to use a loss
based on intersection over union (IoU), which we evaluate
for each output channel individually, before combining them
by a weighted average. This loss function inherently circum-
vents the problem that in each channel most of our output be-
longs to the background as it does not contain a front. While
the original formulation of IoU is used for sets and therefore
a strictly binary labelling, we used an adjusted version that
works with floating point probabilities. This loss function is
also used by Matsuoka et al. (2019). However, they only eval-
uate it on a single output channel. The definition of loss for a
single output channel is given by the following equation:

L(p,x)= 1−
∑
ipi · xi∑

ipi ·pi +
∑
ixi · xi −

∑
ipi · xi

. (1)

Here L denotes the loss function, x is the extracted label
image and p is the prediction of our network. pi and xi are
the ith pixel of either p or x. We subtract the loss function
from 1, as we will minimize our loss function during training,
as the IoU normally increases the better the prediction be-
comes. L(p,0) always evaluates to 1 regardless of p, which
means we do not obtain much information from such a label.
When combining our network’s output channels, we try to
adjust for this problem. We define a variant of L, denoted as
L0, that simply omits evaluation for all L0(p,0) values by
setting the result to 0. In all other cases L0

= L. These omit-
ted cases therefore will not influence the training gradient. As
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our network generates a multichannel output, we calculate a
loss for each channel individually and combine the results.
The first output channel corresponds to the background label,
which corresponds to the absence of fronts. We invert this
output, by subtracting it from 1, to get a value describing the
presence of fronts. As a result we obtain five output channels
describing fronts (front, warm front, cold front, occlusion,
stationary front) denoted as k ∈ 0,1,2,3,4. Additionally in
each batch b we have batchsize samples bn, and for each
bn we have a detection pbn and a label xbn . The respective
data in the channel k are then denoted as pbn,k and xbn,k . For
each bn we calculate Lbn,0 = L(pbn,0,xbn,0). For the classi-
fication channels k > 0, we calculate L0(pbn,k,xbn,k) instead
and denote these results as L0

bn,k
correspondingly. By doing

so, we may omit some samples where no label is present
within the respective channels. To compensate, we define a
weight sb,k = batchsize

nzb,k
for k > 0, where nzb,k is the number

of samples in b where there is any label in channel k. This
weight is used to balance the potentially different counts of
labels for the individual channels. The resulting loss for one
bn ∈ b is calculated according to

Ebn = 0.2Lbn,k + 0.8

∑4
k=1sb,kL

0
bn,k

4
. (2)

The values 0.2 and 0.8 are chosen to formulate a weighted
average over all channels. In the case of nzb,k = 0, we set
sb,kL

0
bn,k
= 0. In this case channel k will not be evaluated at

all within the current batch. The loss for the complete batch
can then be calculated as the mean of all Ebn values within
the batch b:

Eb =

∑
bn∈b

Ebn

batchsize
. (3)

2.3 Baseline method

We compare our results against a baseline method developed
and used at ETH Zurich. The method introduced by Jenkner
et al. (2010) and later modified by Schemm et al. (2015) uses
thermal gradients and other information to predict fronts.
While the method was originally designed to work on a
1◦ resolution grid, we adjusted the hyper-parameters of the
method to allow it to run on a 0.5◦ grid1. In the baseline
method, i.e. that designed for the ERA-Interim dataset with
a grid spacing of 1◦, a minimum equivalent potential tem-
perature gradient of 4×10−2 Kkm−1, a minimum advection
velocity of 3ms−1 and a minimum front length of 500km
are used. We decided to keep these physical values identical
to the original algorithm to retain similar physical proper-
ties of the front. However, we have altered parameters used
for the a priori smoothing of the equivalent potential tem-
perature gradient field (number of filter applications as de-
scribed in Jenkner et al., 2010, increased from five to seven),

1A tuning of the method for the 0.25◦ resolution was not pos-
sible, since features on small scales disturb the evaluation of the
gradients.

the smoothing of frontal lines (smoothing parameter changed
from 5 to 15) and the minimum size of front objects in num-
ber of grid points (increased from 15 to 20). The largest
impact comes from adjusting the smoothing of the equiva-
lent potential temperature gradient field. Using these altered
settings, the number of fronts detected in the northern and
southern extra-tropics increases by about 30 %, but the spa-
tial distribution of fronts is very similar to the original ERA-
Interim dataset with some exceptions in the vicinity of steep
terrain (not shown). Our network works on a 0.25◦ resolution
grid and outputs on the same domain. Therefore, when com-
paring against the baseline method, we resample the network
output to a 0.5◦ resolution using a 2D maximum pooling op-
eration. The authors of the baseline method mention that the
provided baseline should only be applied to the midlatitudes.
When comparing against the baseline, we therefore restrict
ourselves to the midlatitudes of the Northern Hemisphere for
a fair evaluation.

2.4 Evaluation methods

We will briefly explain how the data are processed for the
evaluation and how the critical success index (CSI) is calcu-
lated.

2.4.1 Trained models and dataset distribution

We distribute our data into a test (year 2016) and a valida-
tion (year 2017) dataset and create three training datasets as
described in Tab. 3. We train a total of three models, one
for each training set. The models trained using training NWS
(training DWD) are additionally restricted to only use label
data from the NWS (DWD) during training. Each model is
trained using six GPUs on a single node of the Mogon II clus-
ter of the Johannes Gutenberg University. Each node con-
tains six Nvidia GeForce GTX 1080 Ti GPUs and an Intel
Xeon CPU E5-2650 v4 with 24 cores and hyperthreading.
Data were staged in prior to training to enable reading from
a local SSD rather than the parallel file system. The models
trained using training NWS and training DWD are only used
in Sect. 3.1.1 with results presented in Tables 4 and 5 as well
as in Tables S1 and S2 in the Supplement. In all other cases
the model using training both is applied.

2.4.2 Test data processing

For the evaluation we process each input file in the test
dataset as follows.

– Apply the respective model to the global input region of
the current sample.

– Apply a softmax activation function to the raw network
output to generate a probability mask for the sample.
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Table 3. Distribution of our data into training, validation and test datasets. For each dataset the covered time frame and number of labels are
shown. All models use the same validation and test data.

Dataset Years Samples

Test data 2016 1464
Validation data 2017 1460
Training both 2012–2014, Mar–Dec 2015, 2018, 2019 8526
Training NWS 2012–2014, Mar–Dec 2015 5608 (only NWS label)
Training DWD Mar–Dec 2015, 2018, 2019 4142 (only DWD label)

Table 4. CSI, POD and SR values for D = 250km evaluated on DWD data for 2016. Warm fronts tend to be detected worse than the
other classes while cold fronts are generally well detected. Stationary fronts are not available for DWD labels and are therefore not listed.
Evaluation regions contain latitudes within (35◦,70◦ N].

Training region NWS DWD Both

CSI POD SR CSI POD SR CSI POD SR

Binary 51.1 % 65.4 % 70.1 % 68.4 % 78.7 % 84.0 % 66.9 % 77.3 % 83.2 %
Warm 20.3 % 22.8 % 65.1 % 49.3 % 58.1 % 76.6 % 49.2 % 57.6 % 77.0 %
Cold 39.5 % 47.9 % 69.2 % 56.6 % 67.8 % 77.3 % 56.1 % 66.3 % 78.5 %
Occlusion 35.4 % 44.0 % 64.6 % 51.9 % 69.5 % 67.3 % 52.4 % 67.2 % 70.3 %

– Create a binary mask by setting each entry in the prob-
ability mask to 1 if it is greater than 0.45, otherwise to
0.

– Use one iteration of eight-connected binary dilation and
calculate all different connected components. Each con-
nected component is considered an individual front.

– Filter the labelled image with the undilated binary mask
to remove the dilation effect.

– Remove all fronts that consist of fewer than two pixels.

– Write the binary mask to disc.

During evaluation we then load the corresponding binary
mask from disc and crop it to a sub-region when necessary.
Results of the baseline method and the weather service labels
are already provided in binary format.

2.4.3 Front to object conversion

Prior to evaluation the generated binary masks of our net-
work output are transformed into front objects in two steps.

– Use one iteration of eight-connected binary dilation and
calculate all different connected components. Each con-
nected component is considered an individual front.

– Filter the labelled image with the undilated binary mask
to remove the dilation effect.

The same transformation is applied to the provided weather
service fronts. Note that some provided weather service
fronts are separate lines in the label file but end up as a single

longer front due to being connected due to the coarser grid
used in our analysis.

2.4.4 Front object matching

A predicted front Fp is considered to be matched to the
weather service label if the median distance of each pixel
of Fp to the nearest labelled pixel of the same class in the
weather services’ label image is less than a detection radius
of D. The same is applied vice versa for the weather service
fronts compared against the network output. Each class of
front can only be matched to pixels of the same class; how-
ever each frontal object is matched against the whole set of
pixels of the same class, rather than just a single other object.

For the evaluation we define two distinct regions, namely
(i) the evaluation region, which is the region out of which we
take the fronts we want to match against any other fronts, and
(ii) the comparison region, which is the region in which the
algorithm checks for possible matches for the fronts within
the evaluation region. In our evaluation the comparison re-
gion is the same as the evaluation region with an additional
extension of 10◦ in each direction. The advantage of look-
ing for matches within this comparison region instead of the
evaluation region is to reduce false results caused by the crop
of the evaluation region: for example, fronts at the edge of
the evaluation region may be split into multiple fronts due
to the crop skewing the count of individual fronts. Alterna-
tively a front located at the edge of the evaluation region may
be counted as unmatched because the possible match was
cropped out. Using the comparison region we will resolve
most of these cases. A sketch of this procedure is shown in
Fig. S1. Note that using this larger region for the matching
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Table 5. CSI, POD and SR values for D = 250km evaluated on the NWS data 2016. Warm fronts tend to be detected worse than the other
classes while cold fronts are generally well detected. The network trained purely on DWD data could not learn stationary fronts, as they are
not included in the training data, and stationary fronts are therefore not listed. Evaluation regions contain latitudes within (35◦,70◦] N.

Training region NWS DWD Both

CSI POD SR CSI POD SR CSI POD SR

Binary 67.3 % 81.9 % 79.1 % 49.7 % 57.0 % 79.6 % 68.3 % 83.4 % 79.1 %
Warm 37.3 % 56.5 % 52.4 % 22.5 % 44.1 % 31.6 % 36.4 % 58.1 % 49.3 %
Cold 55.6 % 70.1 % 73.0 % 41.2 % 51.8 % 66.8 % 56.8 % 73.1 % 71.8 %
Occlusion 48.7 % 72.5 % 59.8 % 36.1 % 62.7 % 46.0 % 49.0 % 73.4 % 59.5 %
Stationary 44.6 % 59.4 % 64.1 % – 43.2 % 56.2 % 65.2 %

purposes does not add any fronts to the evaluation, nor does
it affect the matching radiusD. This change only allows each
front to better use its search radiusD to find possible matches
unaffected by input crop.

2.4.5 Critical success index calculation

We evaluate the detection quality of our network and the
baseline method by calculating the critical success index
(CSI) similar to Lagerquist et al. (2019). As ground truth the
provided weather service labels of surface fronts are used.
We define nMWS as the count of fronts provided by a weather
service that could be matched against the prediction, while
nWS is the count of all provided fronts. Similarly, nMD de-
scribes the count of all detected fronts that could be matched
against the weather service fronts, while nD describes the to-
tal count of detected fronts. With these values we can then
calculate the critical success index (CSI), probability of ob-
ject detection (POD) and success rate (SR) as described in
Eqs. (4)–(6) respectively.

POD=
nMWS

nWS
(4)

SR=
nMD

nD
(5)

CSI=
1

1
POD +

1
SR − 1

(6)

As mentioned by Lagerquist et al. (2019) these measure-
ments are also applied in other scenarios, like the verification
of tornado warnings by the NWS (Brooks, 2004). The SR de-
scribes the probability that a predicted front corresponds to
an actual front from the labelled dataset, while the POD de-
scribes the probability that an actual front is detected by the
network. SR and POD could easily be maximized at the cost
of the other, by either not predicting anything or classifying
each pixel as a front instead. The CSI serves as a measure-
ment that penalizes such degenerate optimizations as it max-
imizes only when both values yield good results. Generally
speaking, a high CSI score is preferable. Whether it is more
important to have a high POD or SR depends on the task at

hand and whether it is more important that the detection is
more sensitive or more accurate.

3 Results and discussion

In this section we first evaluate the CSI of our network
detections against the weather service data and compare
the detections from the network to those from the baseline
method (Sect. 3.1.1). We additionally create climatologies
for both automatic methods and calculate the Pearson cor-
relation against climatologies created from the weather ser-
vice data (Sect. 3.1.3). Secondly, we present further results
of our networks’ output where we look into physical quan-
tities across the frontal surface to infer physical plausibility
of our network’s detections. Finally, we evaluate the relation
of fronts to extreme precipitation events to highlight a pos-
sible scientific application scenario for the presented method
(Sect. 3.3).

3.1 Performance evaluation and comparison against
baseline

3.1.1 Front detection quality

In Fig. 6 we provide an image showing an example of the
networks’ output compared to the label of the correspond-
ing weather service. The image shows that the network tends
to create thin fronts, as desired. The detections also appear
to have a generally smoother shape compared to the weather
service labels. The general shape of the fronts appears plausi-
ble, even though there are disagreements between the detec-
tions and labels regarding both the shape and class of fronts.
For a better impression of the networks’ output, we also pro-
vide a Video supplement showing the network output on a
global scale (Niebler, 2021c). Further details are provided in
Sect. S4.

To quantify the quality of our predictions, we evaluate the
CSI, POD and SR for a matching radius of D = 250km on
our test dataset. The results are listed in Tables 4 and 5 for
the binary task, which only considers the classes front and
no-front as well as the individual scores for each of the four
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Figure 6. Fronts from provided labels of the NWS (a) and DWD (d) as well as the corresponding network-generated outputs (b, e) displayed
on top of equivalent potential temperature. Colours indicate the frontal type, whereas unclassified fronts are displayed in yellow. The labels
are the same for both rows. The difference images (c, NWS) (f, DWD) show a direct comparison of frontal placement by the weather service
(red) and the network (blue) ignoring classification. All displayed examples are on 14 September 2016 at 00:00:00 UTC.

frontal classes. As evaluation region we use the correspond-
ing weather services’ output region as defined in Table 2.

The scores show that the network excels at the pure front
detection task with CSI scores of 66.9% (DWD) or 68.3%
(NWS). At the same time the network evaluates with a POD
and SR exceeding 77.3%. POD tends to be higher than SR
for the NWS data, while on the DWD data SR tends to be
higher than POD. Considering individual front classes, the
classification scores are overall lower, with a class CSI rang-
ing between 36.4% and 56.8%. Across all tests, warm and
stationary fronts appear to be harder to classify for the net-
work than cold fronts or occlusions. This effect is more pro-
nounced on the NWS dataset. A possible explanation is the
lack of a clear distinction of these two front classes from the
DWD data, which in return leads to more false classifications
due to the ambiguity. We can further see that training on a
single region does not provide a good generalization onto the
other region, which is expressed by lower CSI scores when
training on only the DWD (NWS) data and evaluating on the
respective other region, i.e. NWS (DWD) data. At the same
time training on both regions yields comparable scores as the
networks trained on a single region. This clearly shows that
using the network trained on both regions is preferable. We
will therefore continue our evaluation with only this model.
The difference between the regions may be originating in
different synoptic structures of cyclones and their associated
fronts over the North American continent and over the North
Atlantic. This implies that the inclusion of further datasets,
for example datasets used by Matsuoka et al. (2019) or gen-
erally data of the Southern Hemisphere, may improve the
network performance even further. This would also be in-
teresting with regard to a thorough evaluation of the network
performance on the Southern Hemisphere. We want to point
out here that the inclusion of additional training data of sim-

ilar structure to the used NWS/DWD data can be carried out
easily; the method is designed to be very flexible.

We also evaluated results where each object can only be
matched against a single object of the corresponding class
instead of the whole set. The resulting scores are listed in Ta-
bles S1 and S2. We observe a drop in POD from 77.3 (83.4)
to 70.8 (76.9) when evaluating on DWD (NWS) data, while
SR barely changes. This indicates that our network tends to
not fully cover long frontal regions with a single front but
rather multiple smaller, disjointed fronts. Each of these can
still be matched with the long front, but the long front can-
not be matched with any one of them due to their insufficient
length, leading to the lower object detection rate. Interest-
ingly, we also do not observe the same change in POD when
only considering the classification scores. This further indi-
cates that the previously mentioned fragmentation does not
occur within the individual classes but rather at the transi-
tion between classes. When the weather service labels several
fronts of different classes as connected, the generation of the
binary label merges all these fronts into a single long front.
If the network is then able to detect the individual fronts but
does not detect them as connected, the conversion to the bi-
nary detection will result in several shorter fragments instead.
A similar effect may occur if some parts of the long front are
simply not detected at all. However, the low change in the
classification scores indicates that the first effect is more pro-
nounced. In the bottom row of Fig. 6 an example of such
a fragmentation can be seen, where the network detects the
central front as two separate fronts, while the provided la-
bel is a single connected front. Using the initially introduced
matching method, where each front can be matched with
the whole set of a class the fragmentation problem can be
overcome. At the same time SR and classification scores are
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Table 6. Comparison of the CSI, POD and SR of the baseline al-
gorithm against our network for the data of 2016, restricted to the
midlatitudes in the Northern Hemisphere. As the baseline algorithm
does not classify fronts, we use the binary classification evalua-
tion for our network. (Quasi-)stationary fronts were removed from
the network output as well as the NWS label, because the base-
line algorithm should not identify them. For the DWD label these
could not be reliably removed due to the label’s ambiguity. We can
see that the baseline algorithm is better in predicting fronts in the
DWD region than in the NWS region. Evaluation was performed at
D = 250km for NET and baseline250, while D = 500km was used
for baseline500. However, the network performs better in terms of
all three measures for both regions.

Method Evaluation on DWD region Evaluation on NWS region

CSI POD SR CSI POD SR

baseline250 31.2 % 44.4 % 51.2 % 21.9 % 42.7 % 31.1 %
baseline500 56.4 % 68.0 % 76.6 % 48.1 % 69.9 % 60.7 %
NET 69.9 % 78.0 % 87.1 % 60.2 % 78.8 % 71.8 %

barely affected, which shows that this method is suitable for
our task.

3.1.2 Comparison against baseline

We additionally evaluated the CSI score on a coarser 0.5◦

resolution grid and compare the results against the baseline
algorithm evaluated on the same grid. The used baseline does
not classify its results, which is why we only display and
compare the task of front detection and forgo any classifi-
cation results. Due to the previously mentioned fragmenta-
tion issues, we only evaluate the results where each front
may be matched against the complete set of fronts rather
than just a single front object. The baseline algorithm is only
designed for application in the midlatitudes and should not
detect stationary fronts. Hence for this comparison we fur-
ther restrict our evaluation region to fit within the midlat-
itudes of the Northern Hemisphere and remove stationary
fronts from the labels and network output. There may be an
offset between the placement of a front by the baseline and
the weather services as the baseline locates its fronts at the
centre of a passing front rather than the leading edge. While
we believe that the used matching procedure already respects
such a difference, we also evaluated the baseline method us-
ing D = 500km, i.e. doubling the search radius compared to
that used in the evaluation of our network. As shown in Ta-
ble 6, our network (NET) outperforms the baseline algorithm
(baseline) in all evaluated scenarios and metrics with a CSI
score more than twice as high when usingD = 250km. Even
when the baseline is evaluated with a larger search radius of
D = 500km, the network outperforms it with a difference
in CSI scores of more than 10%, even though the network is
still evaluated using the smaller search radius ofD = 250km.

3.1.3 Comparison of frontal climatologies

To further investigate the soundness of our front detection,
we created frontal climatologies for the year 2016 for the
provided weather service labels, our network and the baseline
method. While the respective weather services only provide
labels within their analysis region, both the network and the
baseline can be executed on the entire globe. As in Sect. 3.1.2
we explicitly remove stationary fronts from both the NWS
label dataset as well as the network output, when creating
those climatologies. This is done as the baseline method does
not include fronts propagating at less than 3ms−1. The base-
line method was designed for application within the midlat-
itudes, and results outside the midlatitudes should be taken
with care. We therefore restrict our quantitative evaluation
to regions within the midlatitudes. We nonetheless present
the climatology on the global area to emphasize the differ-
ence in performance of the network compared to the baseline
method outside the midlatitudes. The resulting climatologies
are shown in Fig. 7.

First, we compare the climatology for the North Atlantic–
European region from the manually labelled dataset with the
climatology of network-generated fronts. In the DWD cli-
matology the North Atlantic storm track is clearly visible
as a band of heightened front occurrence stretching from
the East Coast of North America to the English Channel
(Fig. 7c). Frontal activity tampers off inwards of the Euro-
pean west coast. The climatology of the network-generated
fronts has a very similar overall structure with a strongly en-
hanced frontal frequency in the storm track region (Fig. 7a).
Frontal frequency is somewhat larger at the beginning of the
storm track compared to the DWD climatology. This may
be related to the training with North American manual anal-
ysis, which naturally has a stronger focus on the early cy-
clone life cycle than the European data. Over the English
Channel and North Sea coast of Europe, frontal frequency
in the network-generated dataset is somewhat lower than in
the DWD dataset, which may be related to the inclusion of
stationary fronts in the latter but not the former. We have also
seen in the previous section that very weak warm fronts, as
may exist further into the European continent, are often not
detected by the network. In both datasets a slightly enhanced
frontal frequency around Iceland is evident.

Next, we compare the climatology for the North Ameri-
can region from the manually labelled dataset with the cli-
matology of network-generated fronts. The manual labels in-
dicate the onset of the storm track with enhanced frontal fre-
quencies just off the North American East Coast and sec-
ondary peaks in frontal frequencies in the lee of the Rocky
Mountains and along the West Coast (Fig. 7d). The climatol-
ogy of network-generated fronts captures all three maxima in
the frontal frequency in roughly the same location (Fig. 7a).
However, frontal frequency in the lee of the Rocky Moun-
tains and along the West Coast is more pronounced in the
network-generated climatology. We are under the impression
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Figure 7. Global frontal climatologies as derived from the ERA5 data for the year 2016 and climatologies from the weather service datasets.
(a) Global frontal climatology from the network executed on the 0.25◦ grid and resampled to 0.5◦ resolution. The network does not provide a
valid prediction for the outer 5◦, as the effective output domain is smaller than the input domain. For this reason no fronts are displayed here.
(b) Global frontal climatology of the baseline algorithm. Note that the algorithm is not designed for application outside the midlatitudes and
should only be evaluated outside the grey shaded regions. (c) Climatology of the DWD front labels. (d) Climatology of the NWS front labels.
The represented front count was clipped at 70 for visual representation; regions with higher front counts are shown in red. Stationary fronts
are explicitly excluded from the climatology of network-generated data and NWS-labelled data. The global climatology from the baseline
algorithm does not include fronts propagating at less than 3ms−1. The DWD dataset may include stationary fronts, as we were unable to
reliably separate them from warm or cold fronts.

that the network tends to assign labelled warm fronts as sta-
tionary and vice versa. These shifts may explain the different
frontal frequency.

Finally, we compare the global climatology of network-
generated front labels to those generated by the baseline al-
gorithm (compare Fig. 7a and b). The striking first differ-
ence between the two climatologies is the much larger spa-
tial extent of regions with high frontal frequency in the sec-
ond dataset. This is evident both in the storm track regions
on both hemispheres and in the subtropical regions. In the
subtropics, regions of large gradients in equivalent potential
temperature exist, and these are picked up by the baseline
algorithm. However, their structure and origin differ from
fronts in the extratropics. It appears that the network is able to
detect this difference in the structure, while focusing solely
on equivalent potential temperature and frontal propagation
speed is not enough information to differentiate these struc-
tures.

In absence of any manual dataset that can serve as ground
truth, it is difficult to judge the physical meaningfulness of
the climatological patterns emerging from either algorithm
and indeed in the case of the subtropics may strongly de-
pend on the purpose and definition of what is considered a
frontal structure. In the storm track regions on both hemi-

spheres both datasets show consistently enhanced frontal fre-
quencies over similar geographic regions. They only differ
in the zonal extent of the regions with enhanced activity and
the absolute values of frontal frequencies. In the only region
where we have an independent manually generated dataset
often considered as the “ground truth”, the climatology of
network-generated fronts is in closer agreement with the for-
mer than the climatology from the baseline algorithm. For
the Southern Hemisphere or the North Pacific, we currently
do not have any such dataset available.

The second striking difference is the high frontal fre-
quency along orographic barriers in the climatology from
the baseline algorithm, i.e. along the Andes, Greenland, Hi-
malayas and Antarctic coastline. These maxima in frontal ac-
tivity are largely absent from the climatology of network-
generated fronts consistent with the manually labelled
datasets. It appears that the network correctly discriminates
between temperature and humidity gradients arising only be-
cause of the presence of significant topography and those
caused by dynamically generated air mass boundaries. In
contrast, focusing solely on the advection speeds in regions
of large equivalent potential temperature gradients seems not
to suffice.
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Table 7. Extent of the regions used during comparison of climatolo-
gies. These regions correspond to the output regions used during
training limited to [35◦N,60◦N].

Weather service Latitudes Longitudes

DWD (35, 60◦ N] [−45, 35◦ E)
NWS (35, 60◦ N] [−135, −60◦ E)

Overall, the global picture emerging from the extrapola-
tion of the network trained on the North American, North
Atlantic and European domain also performs well on a global
scale and correctly identifies regions of high frontal activity
expected from previous investigations and the known gen-
eral circulation patterns. While physically plausible, this is
of course no vigorous evaluation of the performance of the
extrapolation to different regions of the globe. Future work
should investigate this aspect in a more quantitative manner
with manually labelled datasets from other parts of the globe.
However, overall the investigation of the front climatology
agrees well with physically expected patterns and climatolo-
gies from manually generated frontal datasets. This lends ad-
ditional physical credibility to the network-generated frontal
labels.

A physically plausible global climatological pattern fur-
ther suggests that the learned frontal identification can be ex-
trapolated from the training region. We found that for this it
is necessary to include data from two sufficiently different
geographic regions, i.e. North America and North Atlantic–
Europe, as well as to augment the dataset by also including
zonally mirrored examples of the frontal cases (not shown).
The latter was found to be particularly important for a good
performance in the Southern Hemisphere. This is also visi-
ble in the Video supplement, where the general shape, com-
position and motion of fronts detected in the Southern Hemi-
sphere appear plausible. At first the qualitatively good results
on the Southern Hemisphere appear to contradict our claim in
the previous section, that training on a single region is insuf-
ficient of extrapolation to other regions. However, we believe
that this is due to the fact that this region is mostly covered
by sea. As a result there is far less orographic influence in
the southern regions. As such the simple mirroring of data
from the North Atlantic may be sufficient to learn a seem-
ingly good model for the sea-covered regions of the Southern
Hemisphere. Nonetheless this is only a qualitative observa-
tion that needs to be explicitly evaluated, if appropriate data
are available.

To quantify the former qualitative discussion of the cli-
matologies, we evaluated the Pearson correlation coefficient
of the created climatologies within the regions described
in Table 7. The resulting correlation coefficients, provided
in Table 8, show that our network outperforms the base-
line algorithm in both regions with correlation coefficients
greater than 77.2%. For both regions the network results are

Table 8. Pearson correlation coefficient of the climatology com-
puted with the baseline algorithm (baseline) and our trained network
(NET) against the climatologies created from the provided labels of
the weather services for 2016. The columns denote the weather ser-
vices, against which the methods were evaluated. Correlations are
computed for the midlatitude regions covered by the analysis from
the weather services. Stationary fronts were excluded from all cli-
matologies except the DWD labels.

Method Correlation with DWD Correlation with NWS

Baseline 58.4% 65.7%
NET 79.6% 77.2%

more than 10% higher than those of the baseline. This ef-
fect is more pronounced on the DWD dataset, which might
be caused by the ambiguity of stationary fronts.

3.2 Variation in physical variables across frontal
surfaces

In the previous section we showed that our proposed network
can reliably detect fronts as they are provided by the weather
services. In this chapter we evaluate various physical quan-
tities across the detected frontal zone qualitatively, to assess
whether or not the detected fronts express plausible physical
features. Since some automatic methods such as the base-
line method rely on gradients of certain thermodynamic vari-
ables, we investigate these variables for the fronts detected
by our network. Thus, we can evaluate whether these fronts
are detected in a completely different way or feature simi-
lar frontal characteristics as those detected by the thermody-
namic methods or manual analysis.

For this purpose, we create cross sections perpendicular to
the frontal surface for each pixel that corresponds to a front
in four steps:

– estimate the direction normal vector of the front at the
given point,

– sample points in the normal direction centred at the
given point on the front,

– calculate the mean wind direction along the sampled
points,

– use the sign of the dot product of the mean wind di-
rection vector and the normal front vector to sort the
sampled points along wind direction.

These cross sections are computed at the 850hPa level, since
the TFP methods are usually based on variables on this level.
For the comparison with the thermodynamic front detection
methods, we use the variable equivalent potential temper-
ature (θe). Additionally, the variables temperature, relative
humidity and (absolute) wind speed are chosen, showing
important features of different front types. These variables
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Figure 8. Average value of variables at 850hPa across fronts in the direction of wind. Mean of (a) equivalent potential temperature (θe), (b)
θe gradient and (c) gradient of θe gradient with front positions determined by DWD manual analysis (solid, WS) and by our network (dashed,
ML). For (b, c) we additionally display the 0 level.

are taken from the ERA5 dataset, while the position of the
fronts is determined by our network or the weather service
analyses. We used MetPy v1.0.1 to derive θe and the rel-
ative humidity (May et al., 2021). We further used GeoPy
v2.2.0 (https://github.com/geopy/geopy, last access: 17 Jan-
uary 2022) to calculate the position of our sample points.

The mean cross section for the DWD frontal dataset is pre-
sented in Figs. 8 and 9. The corresponding plots for the NWS
front dataset are shown in the Supplement (Figs. S2 and S3).
In Fig. 8a we evaluated the variation in equivalent potential
temperature (θe) at 850hPa based on front locations (i) iden-
tified by the machine learning algorithm (dashed lines) and
(ii) indicated in the surface analysis from the DWD (solid
lines). For both front location datasets θe is clearly increas-
ing (decreasing) across the frontal surface for cold (warm)
fronts, as would be expected from the physical definition
of these features. For the identified cold fronts the across-
frontal temperature variation is on average larger than for the
DWD labels. For warm fronts the across-frontal change in
θe is similar for both detections, albeit the decrease ahead
of the passing front is stronger for the machine learning de-
tections. Warm fronts identified by DWD are on average lo-
cated at slightly cooler temperatures. This may be explained
by the assignment of some warm fronts with weak tempera-
ture gradients to the additional category of stationary fronts
by our machine learning algorithm, a category non-existent
in the DWD dataset. For occluded fronts there is only a small
across-frontal variation in θe as could be expected, and again
this is consistent across both datasets.

For most automatic front detection algorithms the across-
frontal θe gradient is of importance; this quantity is shown
in Fig. 8b. The θe gradient is calculated using finite differ-
ences using the sampled temperature cross sections. Again
we see very similar patterns for both the DWD and our front
dataset. In both datasets the frontal surface is located at the
onset of a region with strong change in the horizontal θe gra-
dient. This is consistent with the physical definition of frontal

zones and agrees with the manually designed automatic front
detection algorithms. Generally the network-detected fronts
exhibit a stronger gradient compared to those in the weather
service analysis for all types of front. Taking the gradient of
the θe gradient (see Fig. 8c), we obtain a magnitude similar
to the TFP, where the direction is defined by the normal of
our detected front with respect to the wind direction instead
of the 2D gradient of θe. For simplicity we will refer to it as
approximate TFP in the following.

Several conventional methods place the front at the posi-
tion where the gradient of the TFP is zero. We can clearly see
this for the provided DWD labels, where all three types of
front have a minimum of the approximate TFP at the frontal
position. For cold fronts our networks’ placement seems to
agree with this. For stationary fronts the signal is less clear,
but the front also appears to be located at the extremum of
the approximate TFP. Differently, warm fronts and occlu-
sions are placed with an offset of approximately 60km to the
extremum of the approximate TFP. Nonetheless we also be-
lieve that this offset is reasonable. This shows that both our
used labels and the network’s detections are plausible with
respect to the theoretical background used for TFP methods.

As mentioned before, fronts are typically placed where the
gradient of the TFP equals zero, which is thought to describe
the leading edge of a front, such as it occurs with the weather
service labels. The used baseline method however is differ-
ent in that regard as it locates a front where the TFP equals
zero, which corresponds to the centre of the frontal area. This
of course creates an inherent offset in the front position. Fol-
lowing our evaluation as described above, we can estimate
this offset is approximately 130km (80km) for warm (cold)
fronts. Note that both distances are lower than the evaluation
distances of 250 and 500 km used for the computation of per-
formance scores in the preceding section. This highlights that
the difference in CSI should not be fully accounted for by
methodological difference but rather supports our statement
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Figure 9. Average value of variables at 850hPa across the front in the direction of the wind. (a) Mean of the equivalent potential temperature
(θe), (b) temperature, (c) relative humidity and (d) absolute wind speed with front positions determined by DWD manual analysis (solid,
WS) and by our network (dashed, ML).

that the network is better at the detection and placement of
fronts than the baseline.

In Fig. 9 we additionally show the temperature (b), relative
humidity (c) and absolute wind speed (d) across the frontal
zone. The temperature variation across the frontal zone
is quite similar for network- and weather-service-detected
fronts and is physically reasonable. For instance, the tem-
perature difference for warm and cold fronts is clearly vis-
ible; also, the values agree quite well. For the relative hu-
midity, there are some differences in the absolute values; the
network-detected fronts usually have enhanced relative hu-
midity values. However, qualitatively the variation in rela-
tive humidity across the frontal zone is well captured. For
warm fronts, and also occlusions, there is a pronounced max-
imum in RH ahead of the front, which indicates the typical
frontal cloudiness. A similar signature can be seen for cold
fronts, where the maximum is only slightly shifted relative

to the surface front position. For the absolute wind speed,
we see similar values for the different fronts (detected by
network and weather services), but no pronounced structure.
Note here that the mean absolute wind speed for stationary
fronts is quite high (|u| ∼ 6–8 ms−1) compared to the thresh-
old criterion used by the TFP method. However, the standard
deviation is also quite high (σu ∼ 4ms−1). A reason for this
might be that the position of stationary fronts is not well cap-
tured by the network (also because they are only available
in the NWS training dataset). Due to the uncertain position,
the mean values are smeared out over a large range around
the detected position. Nevertheless, the absolute wind speed
at stationary fronts is much smaller than the wind speed at
the others, which matches with the physical expectation that
stationary fronts are moving quite slow – a feature still well
captured by the network.
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When comparing the frontal zone structure over North
America according to NWS labels and our generated labels,
generally consistent structures are also found (see Supple-
ment), with deviations broadly mirroring those identified for
the DWD data.

Overall, from the good agreement in physical structures
across the identified frontal surfaces as detected by our al-
gorithm and from the manual weather service analysis, we
conclude that our algorithm detects physically meaningful
positions. The positioning of the frontal surfaces is further
consistent with physical intuition and interpretation preva-
lent in literature, and also with the physical constrains for the
detection of fronts by an automatic method based on thermo-
dynamic variables.

We can finally remark that even using the surface front as
a proxy for the synoptic-scale phenomena front (as transi-
tion of air masses), the related structures for either the fronts
manually determined by the weather services or automati-
cally determined by our network are physically meaningful.
This analysis shows that indeed we can use surface fronts as a
ground truth for the detection of fronts in reanalysis datasets.

3.3 Correlation to extreme precipitation events

In the previous section we showed that our model detects
fronts in accordance with physical expectations. We further
showed that our method generally agrees with the theory of
TFP methods, further demonstrating that our model predicts
physically plausible fronts. In this chapter we will further
validate our results and at the same time provide an exam-
ple of how our proposed method may be applied in a scien-
tific context aside from pure front detection for operational
weather forecasts. To do this we evaluate how weather fronts
as detected by our network are connected to extreme precip-
itation. We present the results (i) for the occurrence of ex-
treme precipitation if there is already a front (Sect. 3.3.2),
and (ii) for the presence of a front if an extreme event occurs
at a grid point (Sect. 3.3.4).

3.3.1 Data and terminology

Catto and Pfahl (2013) previously investigated the co-
occurrence of fronts and extreme precipitation using a front
detection algorithm based on thermal front parameters (TFP)
and the ERA-Interim dataset. Due to the used front detec-
tion algorithm, they evaluated their results on a 2.5◦ spatial
resolution, and they only use the 6-hourly accumulated pre-
cipitation variable of ERA-Interim.

Differently to Catto and Pfahl (2013), our front detection
can be applied to the 0.25◦ resolution of the ERA5 dataset
to provide a more detailed evaluation. Additionally, ERA5
provides data at an hourly interval, allowing us to evalu-
ate at a 6 times higher temporal resolution. Unlike Catto
and Pfahl (2013), we decided to use the 1-hourly accumu-
lated total precipitation to match the temporal resolution of

our data samples. As all evaluation data are taken directly
from the ERA5 grid, we do not need to perform any resam-
pling of data. We evaluate the data for a near-global region
spanning from [−60◦N,60◦N] and [−175◦E,175◦E]. Grid
points poleward of 60◦ are excluded as in Catto and Pfahl
(2013), while the restriction in the longitudinal direction is
caused by our network’s reduced output domain size. We fur-
ther mask regions with high topography (> 2000m) from the
evaluation. This filtering mostly removes stationary fronts as-
sociated with mountainous terrain.

Extreme precipitation is defined as any precipitation ex-
ceeding the 99th percentile of precipitation at a given grid
point over the considered 9-year period (2010–2018). The
correlation of fronts with extreme precipitation events and
vice versa is investigated for the year 2016 only. We con-
sider a grid point to be associated with any event (e.g. a
front or extreme precipitation) if such an event occurs within
a predefined attribution radius. If not explicitly stated oth-
erwise, the attribution radius is chosen similar to Catto and
Pfahl (2013) to be 2.5◦, albeit our attribution radius is a bit
more accurate, due to the higher resolution of the ERA5 grid.
To decide whether a connection between extreme precipita-
tion and fronts is significant, we conduct a statistical test us-
ing statsmodels v0.12.2 (Seabold and Perktold, 2010) for the
quantile regression. For our investigations, we adopted the
test procedure as described in the study by Pfahl and Wernli
(2012). A more detailed description of the methodology of
this section can be found in Sect. S5.

3.3.2 Extreme precipitation associated with fronts

In Tables 9 and 10 the proportion of extreme precipitation
events at grid points that can be associated with a front (R1)
is presented for different regions. For comparison with the
former work by Catto and Pfahl (2013), we report values
for the global evaluation, i.e. including the tropics, although
the application of front detection methods in these regions
remains questionable. In addition, we present a more de-
tailed analysis for different parts of the midlatitudes (Ta-
ble 10). We can clearly observe that a high proportion of
extreme precipitation events can be associated with fronts
when considering sea-covered regions. Filtering out moun-
tainous regions, the correlation between extreme precipita-
tion and fronts increases compared to the full midlatitude
dataset. Over flat terrain, the frontal systems can develop
in a quasi idealized fashion; thus warm, cold and occlusion
fronts can develop quite undisturbed. Thus, extreme precip-
itation is mostly linked to the large-scale features, whereas
over (steep) terrain local effects can disturb the frontal devel-
opment and/or generate extreme precipitation by other pro-
cesses. This effect also explains why R1 is higher for the
southern midlatitudes or hemisphere compared to their north-
ern counterparts. Further we can see that R1 is higher for
the midlatitudes than for the tropics for all types except sta-
tionary fronts, where we observe the opposite effect. This is

https://doi.org/10.5194/wcd-3-113-2022 Weather Clim. Dynam., 3, 113–137, 2022



132 S. Niebler et al.: Automatic detection and classification of fronts

expected as it coincides with the frontal frequency at these
locations and the presence of other processes generating ex-
treme precipitation, e.g. organized deep convection. While
stationary fronts are more often detected near high-altitude
regions, above land surface and at the Intertropical Conver-
gence Zone (ITCZ), the other types of fronts tend to occur
more often over the ocean, e.g. the storm tracks in the At-
lantic and Pacific. This is in accordance with the correlations
shown in Tables 9 and 10, where we can see the same con-
nections for R1.

Figure 10 displays R1 for each frontal type at each grid
cell. For this plot all high-altitude regions are shaded grey
(light grey), while all regions where no significant con-
nections between fronts and extreme precipitation could be
found are shaded white. Further, we masked all regions
where no extreme precipitation event was found using a dark
grey overlay. This occurs since extreme precipitation is de-
fined using all years from 2010 to 2018, while correlations
to fronts are only investigated for the year 2016. In some
storm track regions over the ocean, more than 90% of all
extreme precipitation events can be associated with a front.
Overall extreme precipitation appears to be more often as-
sociated with cold fronts than warm fronts. In the northern
midlatitudes we can see that extreme precipitation events as-
sociated with warm fronts occur farther north than those as-
sociated with cold fronts. For occlusions this is even clearer
as the highest proportion of extreme precipitation associated
with occlusions is found close to 60◦ N. For the Southern
Hemisphere, a similar tendency can be seen, even though the
local maxima in the correlation are not as clearly visible. As
previously mentioned, stationary fronts are less often found
over midlatitude oceanic regions, and therefore unsurpris-
ingly almost no extreme precipitation events are associated
with stationary fronts there. In contrast, extreme precipita-
tion events in the tropics, especially at the ITCZ, are more
likely to be associated with stationary fronts. Similarly the
eastern parts of North America and land surfaces near the
northeastern Pacific coast of Asia also have a relatively high
percentage of extreme precipitation events associated with
stationary fronts.

Note that for the tropics the detection of fronts is quite
questionable. However, for comparison with Catto and Pfahl
(2013) using a TFP front detection method, these regions are
included, although front detection methods are generally de-
signed for and therefore applicable in a meaningful way only
for the extratropics. Overall our results are in good agreement
with those derived in Catto and Pfahl (2013).

3.3.3 Extreme precipitation associated with fronts
relative to frontal frequency

In Fig. 11 we display R1 as a function of the frequency of a
point being associated with a front (Pa(fr)) at all. Additionally
we plotted the 1st and 99th percentiles derived from the sta-
tistical test (for details see Sect. S5.2) as well as the identity

Figure 10. Proportion of extreme precipitation events, which are
associated with a front. Regions with high topography are shaded
in light grey, while areas where no extreme precipitation events oc-
curred in 2016 are shaded in dark grey. Regions where no significant
correlation between extreme precipitation and fronts was found are
blank. Results are shown for (a) any front, (b) warm fronts, (c) cold
fronts, (d) occlusions and (e) stationary fronts.
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Table 9. Average proportion of extreme precipitation events associated with a front for different regions in 2016. Results are shown sep-
arately for the entire globe ([−60◦60◦]N), Northern Hemisphere and Southern Hemisphere ([0◦,60◦]N and S respectively), and tropics
([−30◦,30◦]N).

Region All Warm Cold Occlusion Stationary

Global 0.591762 0.207308 0.259069 0.137746 0.152227
Northern Hemisphere 0.523959 0.158889 0.205674 0.115030 0.176706
Southern Hemisphere 0.658888 0.255434 0.312175 0.160145 0.127472
Tropics 0.419067 0.074942 0.144921 0.023774 0.225288
Global land 0.426572 0.097443 0.168555 0.080147 0.186018
Global sea 0.665551 0.256384 0.299502 0.163476 0.137133

Table 10. Average proportion of extreme precipitation events associated with a front for different regions in 2016 for the midlatitudes
([30◦,60◦]N and S respectively).

Region All Warm Cold Occlusion Stationary

Midlatitudes 0.761661 0.337388 0.372848 0.248444 0.080310
Northern midlatitudes 0.678892 0.270840 0.311021 0.212936 0.133108
Southern midlatitudes 0.843307 0.402863 0.432948 0.284470 0.027839
Midlatitudes no mountain 0.780816 0.354091 0.383997 0.260504 0.071064
Midlatitudes sea 0.851108 0.415874 0.425085 0.295962 0.029676
Midlatitudes land 0.565787 0.165520 0.258460 0.144388 0.191187
Midlatitudes land, no mountain 0.596549 0.192130 0.276355 0.167556 0.179444

as orientation. The lines and box plots can be interpreted as
follows: if the box plot is above the 99th percentile line, we
can conclude that the correlation between extreme precipita-
tion events and fronts is significant in terms of our statistical
test.

For warm fronts, cold fronts and occlusions, we find that
both the median and the mean of each bin exceed the 99th
percentile even for small front frequencies; i.e. a significant
correlation between fronts and extreme precipitation exists.
For stationary fronts this appears less clear: up to 20% frontal
frequency the curve connecting the medians indicates a sig-
nificant correlation between extreme precipitation and sta-
tionary fronts, before flattening towards points with larger
frontal frequencies. Considering all types of fronts together
(Fig. 11a), the mean and median R1 exceed the 99th per-
centile for all frontal frequency bins except the largest Pa(fr)
bin. This clearly indicates a strong connection between fronts
and extreme precipitation.

3.3.4 Fronts associated with extreme precipitation

In the previous section we have shown that a high percentage
of extreme precipitation events are associated with a front.
We also found that outside the tropics this connection is sta-
tistically significant according to the performed test (details
found in S5). However, we are also interested in the propor-
tion of fronts that are associated with extreme precipitation
events (R2). Similar to Fig. 10 we plotted R2 per grid point
in Fig. 12. Light grey and white shaded regions are masked
as before, while regions where no front of the correspond-

ing type occurred are shaded in dark grey. In general, over
large swaths of the midlatitudes more than 40% of fronts are
associated with extreme precipitation. Also, regions where
a front is less likely to occur tend to have a higher percent-
age of fronts associated with extreme precipitation. This is
very clear for the occlusions: according to the climatology
presented, earlier occlusions are predominantly found in the
more poleward midlatitude region, but occlusions occurring
close to 30◦ N/S are almost always associated with extreme
precipitation. The decrease in R2 for regions with a higher
relative frontal frequency (Pfr) can at least partially be ex-
plained by the definition of extreme precipitation events, as
it inherently limits the number of such events. If Pfr exceeds
that amount, it is likely that several fronts may not be associ-
ated with an extreme precipitation event, even though strong
precipitation still occurs. This is somewhat dampened by the
fact that for R2 a grid point with a front only needs to be
within the attribution radius of an extreme precipitation event
to give each front several grid points to be associated with.
Compared to Catto and Pfahl (2013), our results show the
same tendencies, but in our analysis a larger fraction of fronts
are associated with extreme precipitation events than in their
work.

Overall our results show a significant connection between
extreme precipitation and fronts detected by our network.
Our results generally agree with the results of the previous
study by Catto and Pfahl (2013). We additionally investigated
the correlation between fronts and extreme precipitation at a
higher resolution, i.e. for two smaller attribution radii of 5 px
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Figure 11. Fraction of extreme precipitation events grouped by
frontal frequency as boxplots. Including 1st and 99th percentiles
of the statistical test. Results are shown for (a) any front, (b) warm
fronts, (c) cold fronts, (d) occlusions and (e) stationary fronts.

Figure 12. Proportion of fronts that are associated with an extreme
precipitation event. Regions with high topography are shaded in
light grey, while areas where no fronts of the corresponding class
were detected in 2016 are shaded in dark grey. Regions where no
significant correlation between extreme precipitation and fronts was
found are blank. Results are shown for (a) any front, (b) warm
fronts, (c) cold fronts, (d) occlusions and (e) stationary fronts.
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(1.25◦) and 2 px (0.5◦). The qualitative features (i.e. the re-
gions with high correlations) remain the same, but the corre-
lation magnitude is reduced due to the smaller radius of in-
fluence. The respective figures can be found in Fig. S4. This
once again highlights the potential of our network to be used
in future scientific research. Such investigations cannot be
carried out with classical TFP methods, since they are on a
global scale (i.e. using fixed thresholds) most likely restricted
to low-resolution datasets. This underlines the benefit of our
new method over existing ones.

4 Conclusions

Atmospheric fronts are important features that are usually as-
sociated with synoptic-scale weather systems. Since fronts
are usually connected with significant weather, e.g. clouds
and precipitation, and occasionally with extreme precipita-
tion events, they are of high interest for weather forecasts but
also in terms of scientific research of such events. While the
term front refers to a sharp transition between air masses of
different characteristics (e.g. in terms of temperature and hu-
midity), there is unfortunately not a generally accepted defi-
nition of a front. This is also reflected in many different ap-
proaches to detect fronts automatically, e.g. using (multiple)
gradients of thermodynamic variables, or even recently using
machine learning techniques.

In this study we present a new method for automatic front
detection based on a neural network, which uses ERA5 re-
analysis data. As a ground truth for training and validation,
we use surface front data from two different weather services
(NWS and DWD) covering significant parts of the Northern
Hemisphere; for validation a disjoint subset of this dataset
is used. We train the network on a loss function that al-
lows to classify and predict fronts across the input regions.
Our applied loss function results in the network predicting
clearly localized fronts without the need of morphological
post-processing thinning operations. The network is able to
predict fronts with a critical success rate higher than about
66.9 % and an object detection rate higher than about 77 %.

For a better evaluation of the quality of the method, we
compare the network output with a baseline method, which
uses a traditional approach operating on thermodynamic
variables (TFP approach). For both methods a climatology of
fronts is derived. In this direct comparison, the new method
outperforms the baseline method in the direct comparison
with the data from the weather services. We can show that
we cannot simply transfer a locally trained network onto any
other region but rather need to train on several datasets to
obtain a reliable general front detection. The climatology re-
sults indicate that a transfer to oceanic regions may be fea-
sible; however this has to be evaluated in future research. It
is also desirable to further investigate up to which degree ex-
trapolation onto different regions is possible and to investi-

gate whether or not generalization onto global data is possi-
ble from just a few subregions.

The evaluation of physical properties relative to the
network-detected fronts shows that our detected fronts gen-
erally exhibit similar properties as those usually looked for
in classical methods. As an example gradients in the equiv-
alent potential temperature are shown. In addition, a simi-
lar quantity as for classical TFP methods is determined from
equivalent potential temperature. In the comparison of these
quantities relative to fronts determined by the weather ser-
vices and detected by the network, we find very good agree-
ment; in addition, they exhibit the same features as would be
detected by a TFP method. This also shows that our ground
truth data, surface fronts originating from two weather ser-
vices, are a suitable choice; although surface fronts are de-
tected, they show the correct structure in terms of thermody-
namic variables. Thus, surface fronts can serve as a proxy for
the detection of fronts; however our analysis shows that the
resulting fronts are meaningful.

In a final application, we investigate the connection of
fronts with extreme precipitation events. This investigation is
guided by the former investigation by Catto and Pfahl (2013);
however, our network allows us to fully use the available res-
olution of ERA5 and to investigate characteristics of fronts at
a high spatial and temporal resolution, leading to a more de-
tailed investigation. For the midlatitudes the connection be-
tween extreme precipitation events and front occurrence is
found to be most prominent, with the strongest correlation
over flat terrain, especially over the ocean. This application
shows that our new front detection method is not only just
a tool for operational weather forecasting but also useful for
scientific investigations. Since the method can be applied to
high-resolution data, this is a clear benefit of the new method
over existing TFP methods, which are usually restricted to
low-resolution datasets or heavily rely on smoothing opera-
tors. In addition, the method is quite flexible, and it is quite
straightforward to include new training datasets, such as sur-
face fronts for the Southern Hemisphere. In addition, there is
no principle obstacle for using meteorological datasets with
higher resolution as input for the method.

In future work separating the detection from the classifica-
tion task may be beneficial, seeing the good detection rates of
the presented network in the binary case. We would also like
to further explore the application and effect of other meth-
ods to handle the label bias, such as the method described by
Acuna et al. (2019). In terms of research in the field of me-
teorology, we want to apply this method for further research
on the connection of frontal systems with other phenomena,
e.g. for the investigation of clouds at different heights around
fronts or transport phenomena associated with frontal sys-
tems.
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Code and data availability. The latest code is available at
https://doi.org/10.5281/zenodo.5783934 (Niebler, 2021b).
ERA5 reanalysis data can be accessed via the ECMWF cli-
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at https://doi.org/10.5281/zenodo.5785816 (Niebler, 2021a).
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