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Abstract. Strong winds associated with extratropical cy-
clones are one of the most dangerous natural hazards in
Europe. These high winds are mostly associated with five
mesoscale dynamical features: the warm (conveyor belt) jet
(WJ); the cold (conveyor belt) jet (CJ); cold frontal convec-
tion (CFC); strong cold-sector winds (CS); and, at least in
some storms, the sting jet (SJ). The timing within the cy-
clone’s life cycle, the location relative to the cyclone core
and some further characteristics differ between these fea-
tures and, hence, likely also the associated forecast errors.
Here, we present a novel objective identification approach
for these high-wind features using a probabilistic random
forest (RF) based on each feature’s most important charac-
teristics in near-surface wind, rainfall, pressure and tempera-
ture evolution. As the CJ and SJ are difficult to distinguish in
near-surface observations alone, these two features are con-
sidered together here. A strength of the identification method
is that it works flexibly and is independent of local charac-
teristics and horizontal gradients; thus, it can be applied to
irregularly spaced surface observations and to gridded anal-
yses and forecasts of different resolution in a consistent way.
As a reference for the RF, we subjectively identify the four
storm features (WJ, CS, CFC, and CJ and SJ) in 12 win-
ter storm cases between 2015 and 2020 in both hourly sur-
face observations and high-resolution reanalyses of the Ger-
man Consortium for Small-scale Modeling (COSMO) model
over Europe, using an interactive data analysis and visual-
isation tool. The RF is then trained on station observations
only. The RF learns physically consistent relations and re-
veals the mean sea level pressure (tendency), potential tem-

perature, precipitation amount and wind direction to be most
important for the distinction between the features. From the
RF, we get probabilities of each feature occurring at the sin-
gle stations, which can be interpolated into areal information
using Kriging. The results show a reliable identification for
all features, especially for the WJ and CFC. We find diffi-
culties in the distinction of the CJ and CS in extreme cases,
as the features have rather similar meteorological character-
istics. Mostly consistent results in observations and reanal-
ysis data suggest that the novel approach can be applied to
other data sets without the need for adaptation. Our new soft-
ware RAMEFI (RAndom-forest-based MEsoscale wind Fea-
ture Identification) is made publicly available for straightfor-
ward use by the atmospheric community and enables a wide
range of applications, such as working towards a climatology
of these features for multi-decadal time periods (see Part 2 of
this paper; Eisenstein et al., 2022d), analysing forecast errors
in high-resolution COSMO ensemble forecasts and develop-
ing feature-dependent post-processing procedures.

1 Introduction

In the midlatitudes, extratropical cyclones can produce some
of the most severe natural hazards, especially during winter-
time. These winter storms can cause high wind speeds, heavy
precipitation, storm surges and, thus, considerable damage.
Prominent examples for central Europe are the storms Lothar
(December 1999; Wernli et al., 2002) and Kyrill (January
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Figure 1. Conceptual model of the 3D structure of a SKC showing
the WJ (red), CJ (blue) and SJ (magenta). In each case, the region
of strong surface winds is indicated by an ellipse. The figure and
caption have been adapted from (Clark and Gray, 2018; their Fig. 7)
to include the CFC (green) and CS (gold).

2007; Fink et al., 2009). The development of extratropical
cyclones is usually portrayed on the basis of the Norwegian
cyclone (NC; Bjerknes, 1919) or the Shapiro–Keyser cyclone
(SKC; Shapiro and Keyser, 1990) model. Both types of cy-
clones evolve along a frontal wave and include the formation
of a warm front followed by a cold front with a warm sec-
tor in between. While the cold front in NCs slowly catches
up with the warm front, resulting in an occluded front, SKCs
develop a frontal fracture (as illustrated in Fig. 1) and ulti-
mately a warm seclusion when the warm front (then often
referred to as a bent-back front) wraps around the cyclone
centre.

High winds are typically associated with four mesoscale
features within the synoptic-scale cyclone (Fig. 1): the warm
conveyor belt jet or, in short, warm jet (WJ); the cold con-
veyor belt jet or, in short, cold jet (CJ); cold frontal convec-
tion (CFC); and the sting jet (SJ), which only occurs within
SKCs. Furthermore, high wind speeds are often detected
within the cold sector (CS) without the formation of a distinct
mesoscale feature. As the cold front itself, the cold sector is
usually convectively active, leading to downward momentum
transport in the vicinity of showers or even thunderstorms.
Distinctive characteristics will be discussed in Sect. 2.

All features can cause damage due to strong gusts; thus, it
is important to accurately forecast them and their associated
wind fields. A widely employed approach to improve fore-
casts (not only of wind) is statistical post-processing (Van-
nitsem et al., 2021), during which the model output is cor-
rected on the basis of past forecast errors. The performance
of various ensemble post-processing methods for wind gusts
has been discussed in a recent paper by Schulz and Lerch
(2022), who found that approaches ranging from classical
statistical methods to novel neural-network-based techniques
significantly improve forecast reliability and accuracy. How-
ever, Pantillon et al. (2018), who applied one of the classi-
cal statistical methods to ensemble forecasts of wind gusts

and analysed the performance for several winter storms over
Germany, found that post-processing can actually consider-
ably worsen the forecast in some cases, as it did, for exam-
ple, for storm Christian (October 2013), which is known to
have developed an SJ (Browning et al., 2015). Similar re-
sults were also found for storm Friederike in January 2018
(not shown). This can generally come from a “mispredic-
tion” of the cyclone track or intensity but could also indi-
cate that the characteristics of individual mesoscale high-
wind features are not well represented. If that was the case, a
feature-dependent post-processing could lead to further im-
provement, as it could consider the specific dynamical char-
acteristics and how they are treated in the forecast model. By
developing an objective identification algorithm for the wind
features shown in Fig. 1, this work lays the foundation for
further exploring this idea.

Hewson and Neu (2015) analysed observations and reanal-
ysis data of 29 wind storms with a focus on the three low-
level jets: WJ, CJ and SJ. They included CFC in their WJ
analysis instead of treating it as an independent feature. They
showed that the three wind features differ in their location
of occurrence relative to the cyclone centre, in their timing
within the cyclone life cycle, and in their duration, strength
and surface footprint, among others. Furthermore, Earl et al.
(2017) looked at the most common causes of high surface
gusts in UK extratropical cyclones and, besides WJ, CJ and
SJ, included several convection-induced high-wind features.
They based the identification of SJs on satellite images, the
location of the gusts within the cyclone and the deepening
rate. As no confirmation with Lagrangian trajectory analysis
was done, the identified features are referred to as “potential
SJs”. Earl et al. (2017) found that, although WJs and CJs are
the most common causes of high winds, the strongest gusts
are caused by CFC and potential SJs. Parton et al. (2010)
categorised strong wind events captured by a wind-profiling
radar in Wales over a 7-year period into cold frontal events
(similar to our definition of CFC), warm-sector winds (sim-
ilar to WJ), tropopause folds/warm fronts, SJs and unclas-
sified events. They found that warm-sector events were the
cause of around 40 % of all strong winds, followed by cold
frontal events (around 24 %).

As all of these approaches are purely subjective, rela-
tively time-consuming and, thus, hard to automate, we aim
to develop an objective analysis of the different mesoscale
wind features that can flexibly be applied to station and grid-
ded data and, therefore, serve as a basis for climatologi-
cal studies, forecast evaluation and post-processing develop-
ment. The strategy that we follow is to start with a subjec-
tive identification (as in previous studies) but to use the re-
sults to then train a probabilistic random forest (RF) to de-
velop an objective procedure that can be applied to cases
outside of the training data set. The identification is de-
signed to be independent of horizontal gradients (and hence
resolution) and can principally be applied to observations
from a single weather station. In addition, the identification
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is based on tendencies over 1 h only, making it applicable
to time series with gaps. Our newly developed method is
referred to as RAMEFI (RAndom-forest-based MEsoscale
wind Feature Identification). Given that the provision of such
a feature-dependent post-processing tool can enhance the
forecasts of strong winds and wind gusts, it can potentially
contribute towards better weather warnings and impact fore-
casting of such events (e.g. Merz et al., 2020). In this paper,
we will show examples using surface stations and Consor-
tium for Small-scale Modeling (COSMO) reanalysis data. A
full long-term climatology is the focus of Part 2 of this paper
(Eisenstein et al., 2022d). The output of the RF are feature
probabilities, rather than binary identification, which allow
for an evaluation of how well individual data points fit the
typical feature characteristics as well as the identification of
hybrid features or transition zones.

The paper is structured as follows: a short description
of each wind feature is given in Sect. 2, based on re-
sults from previous studies; the used data sets and methods
are discussed in Sect. 3; Sect. 4 details our new software
RAMEFI, starting from the subjective labelling of wind fea-
tures through the training of the RF to the display of areal
feature information; Sect. 5 illustrates our approach with a
case study; a statistical evaluation of the performance of the
RF can be found in Sect. 6; strengths and weaknesses of the
approach are discussed on the basis of specific case studies
in Sect. 7; and Sect. 8 summarises our work and discusses
future plans.

2 Characteristics of high-wind features

In this section, the most important high-wind features within
extratropical cyclones are shortly described on the basis of
the existing scientific literature. Figure 1 exemplarily shows
a typical SKC; differences to an NC are discussed in the fol-
lowing. While WJs and CJs are common to both cyclone
models, SJs can only occur in SKCs (Clark and Gray, 2018).
On the other hand, SKCs are rarely accompanied by (strong)
CFC, as their cold front is often weak (Schultz et al., 1998).
The following descriptions of individual features are mostly
based on Hewson and Neu (2015), Earl et al. (2017), and
Clark and Gray (2018). For more details, the reader is re-
ferred to these publications.

2.1 Warm jet

An important feature in extratropical cyclones is the warm
conveyor belt (WCB; Wernli and Davies, 1997; Eckhardt et
al., 2004; Madonna et al., 2014). It starts near the surface
ahead of the surface cold front and later ascends above it.
During the ascent, the WCB splits into a cyclonic and an-
ticyclonic branch as seen by the red tubes in Fig. 1. While
the cyclonic part forms the cloud head and usually causes
heavy precipitation along a narrow region, the anticyclonic

part rises above the warm front and causes more moder-
ate precipitation over a wider area. Overall, the WCB is the
main cause of long-lasting precipitation (Catto, 2016). Fur-
thermore, the WCB can be the cause of strong convection
along the cold front (Hewson and Neu, 2015).

Here, we focus on the early stages of the WCB while it
is still near the surface and can cause high winds there, and
we refer to it as the warm jet (WJ). Contrary to Hewson and
Neu (2015), we define the WJ as the region ahead of the cold
front and its convection, and hence ahead of the CFC fea-
ture (see Sect. 2.4), as displayed by the red shaded ellipse in
Fig. 1. Located in the warm sector of the cyclone between
the two rain-active fronts, the WJ is usually characterised
by positive temperature anomalies, decreasing pressure with
time, and little or no precipitation. The WJ is usually asso-
ciated with the first strong winds starting in an early stage
of a cyclone. Maximum gusts of around 25 ms−1 are typical
(Hewson and Neu, 2015). As the warm conveyor belt is an
ascending airstream, the winds at the surface weaken and dis-
appear in later stages when the warm conveyor belt no longer
affects the boundary layer. The jet is long-lived with a dura-
tion of 24 to 48 h and can cause a large surface wind footprint
with a width of 200 to 500 km and a length of up to 1000 km
(Hewson and Neu, 2015). While the predictability was evalu-
ated to be good with a relatively high coherence in space and
time, Hewson and Neu (2015) found that the occurrence of
very high winds within the warm sector was rather unusual,
whereas Parton et al. (2010) associated 40 % of strong wind
events with winds within the warm sector. Such a seeming
contradiction can potentially be resolved with a climatolog-
ical application of the identification algorithm that we have
developed in this paper. Due to generally stable conditions
in the warm sector, wind speeds above the boundary layer
are usually much higher than surface gust speeds. Compared
with the CJ and SJ, the WJ is the most long-lasting, but –
as already mentioned – it typically does not cause the most
destructive winds.

2.2 Cold jet

The CJ is associated with the main airflow of the cold con-
veyor belt that turns cyclonically around the centre of the
low (blue tube in Fig. 1). At first, the CJ moves around the
north-western flank behind the occluded or bent-back front
beneath the cloud head. As it is travelling against the motion
of the low-pressure system, the CJ is hard to see in Earth-
relative winds until it wraps around the cyclone centre. Once
wrapped around, the CJ can cause strong surface gusts near
the tip of the front, as shown by the blue shaded ellipse in
Fig. 1. This usually happens around the time the maximum
intensity is reached. The CJ weakens when the low decays or
shortly before that. The jet mainly stays close to the ground,
i.e. below 850 hPa (Smart and Browning, 2014), or ascends
slightly during its life cycle (Martínez-Alvarado et al., 2014).
With typical maximum gusts of around 30 ms−1, the CJ is
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stronger than the WJ but, with a typical lifetime of 12 to 36 h,
does not last as long (Hewson and Neu, 2015). The impacted
area expands with time, while the cold conveyor belt (and
hence the CJ) wraps around the cyclone centre when the foot-
print can finally reach a width of around 100 to 800 km and a
length of up to 2500 km (Hewson and Neu, 2015). Although
forming later in the life cycle of the parent cyclone than the
SJ, both jets can coexist. A damaging CJ is more common
than an the SJ or WJ over Europe (Hewson and Neu, 2015).

2.3 Sting jet

The SJ is a distinct airstream that descends from mid-levels
within the cloud head into the frontal fracture region of an
SKC (magenta tube in Fig. 1). When the CJ wraps around
the low, the SJ can be replaced by the CJ or merge with it.
Hewson and Neu (2015) suggest an average surface footprint
of less than 100 km in width and up to 800 km in length.
SJs usually last just a few hours but can be active for up
to 12 h in extreme cases. A detailed review can be found
in Clark and Gray (2018). The most common way to iden-
tify SJs is to compute Lagrangian trajectories (e.g. Volonté
et al., 2018; Eisenstein et al., 2020), for which a high reso-
lution is required, horizontally and vertically as well as tem-
porally. Recent work has tried to identify SJs using low-cost
approaches. For example, Gray et al. (2021) introduced an
instability-based precursor tool, while Manning et al. (2022)
developed a kinematic approach looking for reversals in the
vertical gradient of horizontal wind speed along streamlines.

2.4 Cold frontal convection

The passage of cold fronts is often accompanied by heavy
precipitation, sometimes in the form of convective lines,
which, in turn, can cause strong wind gusts associated with
the downward transport of high momentum from above the
boundary layer. CFC is displayed in Fig. 1 as an elongated
line along the front with several darker spots representing in-
dividual convective events. Cold-front-related rain, snow and
graupel are responsible for around 28 % of extreme precipi-
tation events in the midlatitudes (Catto and Pfahl, 2013). The
frontal zone is characterised by a marked change in wind di-
rection and a decrease in temperature (Clark, 2013). In ex-
treme cases, tornadoes can occur in association with CFC,
causing even more hazardous winds (e.g. storm Kyrill; Fink
et al., 2009). Earl et al. (2017) suggest a separation of CFC
into convective lines and pseudo-convective lines. The lat-
ter do not strictly satisfy identification criteria for convective
lines but show characteristics of organised, strong convection
and may fulfil the criteria earlier or later. A convective line
shows a clear signal in radar imagery at 3 to 10 km height
(Parton et al., 2010). In the case of a kata cold front, CFC
occurs at and ahead of the surface cold front (Lackmann,
2011). Although high winds might then, strictly speaking,
occur within the warm sector, we have decided not to asso-

ciate these high winds with the WJ due to their physically
distinct characteristics. In case of an ana cold front, CFC oc-
curs at and behind the cold front, and the distinction is there-
fore more straightforward. SKCs usually have a rather weak
cold front; hence, high winds are less likely to be associated
with CFC (Schultz et al., 1998).

2.5 Cold-sector winds and post-cold-front convection

The cold sector is the region behind the cold front (gold
shading in Fig. 1). In this area, high winds can be caused
by post-cold-front convection as well as by a so-called “dry
intrusion”. This region of a cyclone is generally known for
its instability and turbulent behaviour. A dry intrusion is,
as for an SJ, a descending airstream; however, in this case,
it is one that originates near the tropopause or even in the
lower stratosphere. Thus, it transports dry air down to the
middle and lower troposphere moving towards the cyclone
centre (Raveh-Rubin, 2017). Dry intrusions – and, later in
the cyclone’s life cycle, a dry slot near the cyclone centre –
can often be seen in water vapour satellite imagery. Raveh-
Rubin (2017) state that dry intrusions can cause destabilisa-
tion and increased wind gusts. Furthermore, cold fronts show
a stronger temperature gradient, higher winds and more pre-
cipitation when accompanied by a dry intrusion (Catto and
Raveh-Rubin, 2019; Raveh-Rubin and Catto, 2019). Most
publications consider all high winds on the colder side of a
cyclone to be a CJ or SJ and do not distinguish these features
from other cold-sector winds (e.g. Manning et al., 2022).
Given the relatively large area of the cold sector in many cy-
clones and the appearance of discernible substructures, we
decided to specifically separate out CFC, CJ and SJ here and
then label the remaining strong winds as CS.

3 Data and method

This section introduces the observation and gridded data sets
as well as 12 winter storm case studies used for the training
and evaluation of RAMEFI. Furthermore, it describes how to
assess the probability predictions obtained by the RF.

3.1 Surface observations

The main basis of our analysis is a data set of hourly surface
observations from 2001 to mid-2020. This includes mean sea
level pressure (p), 2 m air temperature (T ), wind speed at
10 m (v), wind direction at 10 m (d) and precipitation amount
(RR). Using T and p, we further compute the surface pres-
sure using the barometric height formula to then calculate
the potential temperature (θ ). Our focus is on Europe – more
specifically, stations within the area from −10 to 20 ◦E and
from 40 to 60 ◦N. Around 1700 stations are included; how-
ever, of these aforementioned stations, less than 400 stations
on average observe all five parameters. For the training of the
RF (Sect. 4), we focus on stations that measure at least three
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of the five parameters. The most frequent missing parameter
in the hourly data is RR, as many stations only measure 3-
or 6-hourly precipitation. However, many stations, especially
over Germany, measure RR only and, hence, are not usable
for the training of the RFs (Sect. 4.2); nevertheless, they are
still helpful to inform our subjective labelling (Sect. 4.1). In
addition, we exclude mountain stations, i.e. those with a sta-
tion height above 800 m, as we suspect these to be dominated
by orographic influences that may blur the feature character-
istics that we want to identify. This leaves around 750 sta-
tions per time step.

In order to take the diurnal and seasonal cycles as well
as location-specific characteristics (e.g. exposed stations in
coastal regions) into account in θ and v, we decided to nor-
malise these parameters by their climatology. For θ , this
means θ̃ = θ/θ50, where θ50 is the median for the specific
location, time of day and day of the year ±10 d. This is done
analogously for v using the 98th percentile, ṽ = v/v98, as we
are mostly interested in high winds in this work. The 98th
percentile is used in analogy to standard high-wind quantities
such as the storm severity index (SSI), which is computed
from stations where measured gusts exceed the local 98th
percentile and provides an integral indication of the strength
of the cyclone and the associated potential damage (see Ap-
pendix A for details). Both θ50 and v98 are computed for the
time period from 2001 to 2019. Moreover, we are interested
in temporal tendencies of p, θ̃ and d, here represented sim-
ply by the difference between the current and the prior time
step (1p, 1θ̃ and 1d respectively). All parameters and their
descriptions are listed in Table 1.

3.2 COSMO-REA6

As an example of a gridded data set, we use COSMO-
REA6 data from the Hans-Ertel-Centre for Weather Re-
search, which are a reanalysis based on the COSMO model
from the German Weather Service (DWD) covering the Eu-
ropean CORDEX domain with a grid spacing of 0.055 ◦, i.e.
roughly 6 km (Bollmeyer et al., 2015). Several parameters,
including wind, temperature, humidity and pressure, are as-
similated using a nudging technique. Observations from ra-
diosondes, aircraft, wind profilers and surface stations are
used for the nudging. However, precipitation is not assimi-
lated, which can lead to larger deviations between the reanal-
ysis and rain gauge or radar observations (Bach et al., 2016;
Hu and Franzke, 2020). The reanalysis is available from 1995
to 2019. This means that one of our case studies, namely
storm Sabine, is not included (Table 2). The same surface
parameters as mentioned in Sect. 3.1 are used. The data set
contains p, T , RR, and the zonal and meridional wind com-
ponents, from which we can compute v and d . Again, we
further calculate θ̃ and the temporal tendencies 1p, 1θ̃ and
1d. Due to the computational cost, we compute θ50 and v98
for the 10-year time period from 2005 to 2015 only, but this
should have a negligible effect on the final outcome. The

data, originally on a rotated grid, are regridded to a latitude–
longitude grid with a grid spacing of 0.0625 ◦, i.e. roughly
7 km, for the area from −10 to 30 ◦E and from 40 to 65 ◦N.

3.3 Case studies

In this work, we focus on 12 winter storm case studies be-
tween the years 2015 and 2020, as listed in Table 2. The
selection was based on their SSI over Germany (see Ap-
pendix C), the damage caused and the area impacted. This
includes the eight winter storms with the highest SSI dur-
ing this time period as well as four subjectively chosen more
moderate storms to capture a healthy diversity of cyclones
and features. The selected cases occurred during the ex-
tended winter half-year between the end of September and
the end of March. They vary in terms of their cyclone tracks
(Fig. 2) and their high-wind features, and they include both
NCs and SKCs. Two case studies developed SJs, namely
Egon (Eisenstein et al., 2020) and Friederike. We also in-
clude two storms, named Herwart and Sabine, with an ex-
ceptional large pressure gradient leading to a stronger back-
ground wind field, such that it is more difficult to distinguish
the features and the contribution of them to the storm’s wind
footprint. Further, Sabine stands out as an extremely deep
cyclone with a minimum core pressure of 944 hPa during its
lifetime.

3.4 Assessing probability predictions for multiple wind
features

Probability predictions of three or more classes, such as
the wind features, are typically evaluated by downscaling
to two-class problems, of which the one-against-all and all-
pairs approaches are two well-known examples (Zadrozny
and Elkan, 2002). While the one-against-all approach com-
pares the occurrence of one wind feature against all others
grouped together, the all-pairs approach considers the condi-
tional probabilities of each pair of classes – for example, the
conditional probabilities of the WJ and the CJ when one of
the two features materialises. The one-against-all approach
is used to evaluate how well one specific wind feature is pre-
dicted, whereas the all-pairs approach is used to evaluate the
ability to discriminate between two wind features.

The probabilities are evaluated based on the paradigm of
Gneiting et al. (2007) that a prediction should aim to max-
imise sharpness subject to calibration. Calibration refers to
the consistency of the prediction and the observation, while
sharpness is a property of the prediction alone and refers to
the associated uncertainty. In a nutshell, a probability f is
called calibrated if the conditional event probability (CEP;
conditional on f ) matches f ; for example, if a 20 % pre-
diction is issued 100 times, the event should occur about 20
times. Further, a probability prediction is said to be sharper,
the more confident the prediction is – that is, the closer to
zero or one. Both calibration and sharpness can be assessed

https://doi.org/10.5194/wcd-3-1157-2022 Weather Clim. Dynam., 3, 1157–1182, 2022



1162 L. Eisenstein et al.: Identification of high-wind features within extratropical cyclones – Part 1

Table 1. Overview of the variables considered for the objective identification using the probabilistic RF. The fourth column indicates whether
the variable is used as an input variable for the final version of the RF. The associated percentiles and medians are computed with respect to
the location, time of day and day of the year ±10 d.

Variable Description Unit RF Derivation

v The 10 m wind speed ms−1 – Station observation.
ṽ Normalised wind speed Unitless X ṽ = v/v98, where v98 is the associated 98th percentile
d Wind direction ◦ X Station observation
1d Tendency of wind direction ◦ h−1 X 1d = d − d−1, where d−1 is the observation of the previous hour
p Mean sea level pressure hPa X Station observation
1p Tendency of mean sea level pressure hPah−1 X 1p = p−p−1, where p−1 is the observation of the previous hour
T The 2 m air temperature K – Station observation
θ Potential temperature K – Derived from T and p
θ̃ Normalised potential temperature Unitless X θ̃ = θ/θ50, where θ50 is the associated median
1θ̃ Tendency of normalised potential temperature h−1 X 1θ̃ = θ̃ − θ̃−1, where θ̃−1 is the derived value of the previous hour
RR Precipitation mmh−1 X Station observation

Table 2. Selected winter storm cases from 2015 to 2020 over central Europe, showing the name (as given by the Free University of Berlin),
date, maximum observed gust speed (location), SSI over Germany and associated high-wind features including exceptional large pressure
gradients (SPG). The cyclone tracks are displayed in Fig. 2.

Case Date Maximum observed gust speed SSI Features

above 800 m below 800 m

Niklas 31 March 2015 192 kmh−1 (Zugspitze, D, 2964 m) 148 kmh−1 (Weinbiet, D, 553 m) 20.8 WJ, CFC, CJ

Susanna 9 February 2016
158 km h−1 (Patscherkofel, AT, 2247 m;

158 kmh−1 (Île de Groix, FR, 46 m) 3.6 WJ, CFC, CJ
Pilatus, CH, 2106 m)

Egon 12–13 January 2017 150 kmh−1 (Fichtelberg, D, 1231 m) 148 kmh−1 (Weinbiet, D, 553 m) 5.9 WJ, SJ, CJ

Thomas 23–24 February 2017 158 kmh−1 (Brocken, D, 1134 m) 152 kmh−1 (Capel Curig, UK, 216 m) 3.0 WJ, CJ

Xavier 5 October 2017 202 kmh−1 (Sněžka, CZ, 1602 m) 141 kmh−1 (Saint-Hubert, BE , 563 m) 6.3 WJ, CJ

Herwart 29 October 2017 176 kmh−1 (Fichtelberg, D, 1231 m) 144 kmh−1 (List/Sylt, D, 26 m) 15.2 WJ, CFC, SPG

Burglind 3 January 2018 217 kmh−1 (Feldberg, D, 1490 m) 150 kmh−1 (Wädenswil, CH, 463 m) 15.2 WJ, CFC, CJ

Friederike 18 January 2018 204 kmh−1 (Brocken, D, 1134 m) 144 kmh−1 (Hoek van Holland, NL, 7 m) 18.3 WJ, SJ, CJ

Fabienne 23 September 2018 141 kmh−1 (Feldberg, D, 1490 m) 158 kmh−1 (Weinbiet, D, 553 m) 4.6 WJ, CFC

Bennet 4 March 2019 181 kmh−1 (Cairngorm, UK, 1245 m) 151 kmh−1 (Cap Corse, FR, 106 m) 5.1 WJ, CFC

Eberhard 10 March 2019 194 kmh−1 (Sněžka, CZ, 1602 m) 141 kmh−1 (Weinbiet, D, 553 m) 10.1 WJ, CJ

Sabine 9–10 February 2020 195 kmh−1 (Sněžka, CZ, 1602 m) 219 kmh−1 (Cap Corse, FR, 106 m) 20.0 WJ, CFC, SPG

qualitatively via reliability diagrams, which display the cali-
bration curve (Sanders, 1963; Wilks, 2011). The calibration
curve is a plot of the CEP dependent on the probability f ,
which is close to the diagonal if the predictions are cali-
brated. In addition to the calibration curve, the frequency of
the probabilities is illustrated by a histogram. The more U-
shaped the histogram, the closer the predictions are to zero
and one and, thus, the sharper the prediction. The reliability
diagrams shown in this paper are based on the novel CORP
(consistency, optimality, reproducibility, pool adjacent viola-
tors (PAV) algorithm) approach of Dimitriadis et al. (2021),
which yields optimal calibration curves and eliminates the

need for implementation decisions for the calculation of the
calibration curve.

Quantitatively, calibration and sharpness can be assessed
using the Brier score (BS; Brier, 1950): the lower the score,
the better the prediction. Here, we compare our RF probabil-
ities with the class frequencies observed in the training data
of the RF using the Brier skill score (BSS), which denotes the
improvement of the RF over a prediction based on the class
frequencies in the RF training data, where a negative per-
centage corresponds to worse predictions, 0 % corresponds
to no improvement and 100 % corresponds to an optimal pre-
diction. Details on the evaluation of probability predictions
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Figure 2. Cyclone tracks of case studies from Table 2. Colour indicates the year (purple – 2015, blue – 2016, dark green – 2017, green –
2018, orange – 2019 and red – 2020), and the line style indicates the order of occurrence in that year (solid – dashed – dot-dash – dotted).
The size of the markers corresponds to the minimum mean sea level pressure (p).

are provided in Sects. B1 (practical implementation) and C1
(mathematical formulation) in the Appendix.

4 RAMEFI

Our new method, RAMEFI, focuses on strong but not ex-
ceptionally high wind speeds. These wind speeds are usu-
ally indicated by the 98th percentile. To obtain a sufficiently
large storm area and to base that on a widely used reference,
we decided to include stations reaching 80 % of their 98th
percentile, i.e. ṽ ≥ 0.8. To capture usually narrow and fast-
moving features such as CFC, RAMEFI requires hourly data.
All used parameters are independent of the location of the
station/grid point and horizontal gradients; hence, in princi-
ple, the approach can be applied to a single station and to
data sets with differing horizontal resolution. The approach
evaluates each 1 h interval independently.

RAMEFI includes three steps described in the following
subsections: (1) we subjectively identify the features in sur-
face observations in 12 selected case studies, such that each
station is assigned to a specific feature; (2) these labels are
then used to train RFs for feature prediction on the basis of
a cross-validation approach; and (3) we obtain predictions
on a grid by interpolating the predicted probabilities using
a Kriging approach. For the COSMO-REA6 data, the fea-
tures are identified analogously. Instead of training separate
RFs, we apply the RFs trained on the surface observations.
As the COSMO-REA6 forecasts are already grid-based fore-
casts, the Kriging step is obsolete.

4.1 Subjective labelling using an interactive tool

Given the sometimes unclear distinction between the high-
wind features of interest in realistic cases, we decided to base

our algorithmic development on how experienced meteorolo-
gists would identify the features on the basis of a wide range
of parameters and their evolution in time and space. To accel-
erate and facilitate the subjective labelling of high-wind fea-
tures, we developed an interactive tool using the open-source
Bokeh (Bokeh Development Team, 2021) data visualisation
package for Python, where one can switch between the avail-
able parameters (Table 1) in a graphical display and select
an area to set labels using a mouse-controlled lasso tool. A
screenshot is provided in Appendix D (Fig. D1).

The guiding principles for the labelling were extracted
from the scientific literature (see Sect. 2) and are mainly
based on the location relative to the cold front and cyclone
core. For this, analysis charts of the DWD and the UK Met
Office were used for orientation. For a more detailed anal-
ysis, we also used the 3D front detection of the Met.3D in-
teractive visualisation software (Beckert et al., 2022; Raut-
enhaus et al., 2015). In our surface parameters, a cold front
is then mostly identified through the characteristic change of
the sign of1p. It is labelled CFC if a larger area of precipita-
tion along it is observed, while high winds ahead of the front
within the warm sector are labelled WJ. The CJ is mostly
detected through its hook-shaped wind footprint at the tip
of a wrapped-around occlusion or bent-back front as well as
through its proximity to the cyclone centre. An SJ is labelled
when model-based trajectories analogous to Eisenstein et al.
(2020) confirm a descending airstream. The area behind the
cold front that is not associated with the CJ or SJ is labelled
as the CS. An example of the reasoning behind the labelling
is described for one time step of storm Burglind in Sect. 5.

The subjective labelling was done for the introduced 12
extratropical cyclone case studies (see Sect. 3.3). In total, 282
time steps have been analysed. As mentioned above, we ex-
cluded mountain stations and stations where less than three
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of the given parameters were measured. This leaves around
750 stations per time step for the subjective labelling. Over-
all, for the 12 case studies, we have 77 517 data points where
ṽ ≥ 0.8, of which 19 200 (24.77 %) are not associated with a
feature (NF), 21 809 (28.13 %) were labelled as CS, 19 501
(25.16 %) were labelled as WJ, 11 705 (15.1 %) were labelled
as CJ, 3800 (4.9 %) were labelled as CFC and 1502 (1.94 %)
were labelled as SJ. However, the SJ is a small, short-lived
and rare feature, and the characteristics of SJs and CJs in sur-
face parameters are very similar due to the proximity in both
time and space. A first training with SJ and CJ as separate
features showed that a clear distinction is not possible with
the information at hand and that the SJ is mostly detected as
CJ. Therefore, we decided to include it in the more frequent
CJ feature, increasing the values for CJ to 13 207 data points
(17.04 %).

The features were further labelled in all case studies (ex-
cept for storm Sabine, which occurred outside of the reanaly-
sis time period) using the interactive tool for COSMO-REA6
data. These labels are used to evaluate the predictions gen-
erated by the station-based RFs for a grid-based data set
(Sects. 4.2 and 6.1). For computational reasons, i.e. as labels
are set for every grid point rather than an area, we down-
sampled the COSMO grid to every third grid point in the
zonal and meridional directions, resulting in a grid spacing of
0.1875 ◦ (i.e. around 21 km). Moreover, we excluded ocean
grid points, as the characteristics of the high-wind features
might be different from land due to different surface friction
and surface heat fluxes, among other factors. Regions with a
high wind speed not directly associated with a winter storm,
especially over Italy and the Balkans, were not labelled.

4.2 Probabilistic random forest

RF (Breiman, 2001) is a popular, robust machine learning
method for classification and regression problems that does
not rely on parametric assumptions but is instead based on
the idea of decision trees (Breiman, 1984). Given data for
which we want to generate predictions, a decision tree oper-
ates by assigning each sample to one of its so-called leaves,
which is done by subsequent queries at the so-called nodes,
where we check whether one of the input variables exceeds a
certain threshold. Each leaf is associated with that subset of
the training data that satisfies the criteria of the correspond-
ing nodes. Tailored to the specific task, a prediction is then
derived from the associated subset. Here, we obtain proba-
bility predictions by using the frequencies of the observed
wind features among the samples in the corresponding leaf.
The queries at the nodes, i.e. the specific input variables and
corresponding thresholds, are chosen automatically such that
the terminal leaves are as diverse as possible. The maximal
depth, the minimal node size and the diversity criterion are
tuning parameters and can be chosen by the user. An RF
builds a randomised ensemble of decision trees, where the
generation of each tree is based on a different subsample of

the training data, and the generation of each node is based
on a different subset of input variables. To obtain a final pre-
diction from the ensemble, the individual predictions of the
decision trees are aggregated. For further details on RFs, we
refer to Breiman (2001) and Hastie et al. (2009). In a mete-
orological context, probabilistic RFs have already been ap-
plied to predict damaging convective winds (Lagerquist et
al., 2017) and severe weather (Hill et al., 2020) as well as
in a general form for a wide range of applications such as
ensemble post-processing of surface temperature and wind
speed (Taillardat et al., 2016).

Machine learning methods such as RF are often referred
to as “black boxes” due to a lack of interpretability, although
several techniques exist to understand what the models have
learnt and how the predictions are related to the input vari-
ables, typically referred to as predictors (McGovern et al.,
2019). We will apply two of these predictor importance tech-
niques: one to find the most relevant predictors and one that
illustrates the effect of the predictor values on the RF proba-
bilities. The first is the permutation importance of a predictor
(Breiman, 2001). Proceeding separately for each predictor,
the values of that predictor are shuffled randomly within the
test data in space and time such that the physical relation
to the observed wind feature is broken. Then, based on these
permuted predictor values, new predictions are generated and
compared to those obtained with the original data. The worse
the predictions become (with respect to an evaluation mea-
sure), the more important the predictor. Here, we measure
predictive performance with the BS that was introduced in
Sect. 3.4, and the importance measure is referred to as BS
permutation importance. The second technique is given by
the partial dependence plot (PDP; Greenwell, 2017), which
illustrates the effect of a predictor on the prediction. Given
a fixed predictor, a PDP shows the expected RF probability
dependent on the value of the predictor variable while aver-
aging out the effects of the other predictors. Hence, a PDP
illustrates how the RF probabilities depend on the value of a
specific predictor variable, on average. For more details, we
refer to McGovern et al. (2019).

In this study, we apply RFs to generate probabilities of the
wind features presented in Sect. 2. The input variables used
are listed in Table 1. For the station-based observations, we
use a cross-validation scheme on the different winter storm
cases – that is, for each winter storm, the predictions are gen-
erated by an RF that is trained on the data of the remaining
11 winter storms. Training RFs in a similar cross-validation
scheme for the COSMO-REA6 data becomes computation-
ally infeasible, as the underlying data sets become too large.
As the underlying processes should coincide for both the
station- and model-based data, we instead apply the station-
based RFs in the same scheme to generate probabilities using
the COSMO-REA6 data. Details on the implementation, in-
cluding the choice of the tuning parameters, can be found in
Appendix B2.
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Due to normalising θ and v, the trained RF is fairly in-
dependent of location-specific information, such that it can
hopefully be applied successfully to other midlatitude re-
gions around the world affected by extratropical cyclones.
However, before doing that, we recommend a thorough san-
ity check, particularly when using it over the ocean and
mountainous regions.

4.3 Kriging

As it is difficult to envision a coherent area of a certain
wind feature from probabilities at single stations that are dis-
tributed irregularly over the study area, we interpolate the
station-based probabilities to a regularly spaced grid in or-
der to visualise the results. In geostatistics, this is gener-
ally achieved by Kriging (Matheron, 1963). In principle, the
Kriging predictions (here, on the grid) are the weighted av-
erages of the input data (here, the station data), where the
specification of the weights is driven by the covariance of the
underlying random process. Under the assumption of Gaus-
sianity (Rasmussen and Williams, 2005), Kriging provides
the optimal full predictive distribution. The key requirement
for the implementation of Kriging in the context of Gaussian
processes is the specification of the mean and the covariance
function.

In this study, we perform univariate Kriging to obtain
probability maps for each wind feature, where we specify
the mean and covariance function by a constant mean func-
tion and the stationary Matérn covariance function (Matérn,
1986; Guttorp and Gneiting, 2006). For the estimation, we
resort to the method of maximum likelihood estimation for
Gaussian processes. However, as the input data are, in our
case, probabilities and, thus, deviate from the Gaussianity as-
sumption, we perform a data transformation for approximate
Gaussianity. For the production of probability maps, we in-
dependently perform Kriging on each of the class probabil-
ities (hence univariate Kriging) and normalise the resulting
probabilities for each grid point such that, across the multiple
wind feature, the probabilities sum to one. Note that the Krig-
ing predictions are only obtained for areas over land, where
our winter storms occurred and where a sufficient amount of
data was available for a reliable interpolation. More details
regarding the Kriging approach are provided in Sects. B3
(practical implementation) and C2 (mathematical formula-
tion) in the Appendix C.

5 Illustrative case study: storm Burglind

In this section, a full case study for storm Burglind is pre-
sented to illustrate the functionality of the new RAMEFI fea-
ture detection method. Burglind is relatively close to a “text-
book” cyclone and shows a feature evolution largely in con-
cordance with the literature.

5.1 Synoptic evolution

Storm Burglind (also known elsewhere as Eleanor) devel-
oped as a secondary cyclone on 2 January 2018 over the
North Atlantic and reached the British Isles at the end of
that day. The core pressure dropped by more than 27 hPa
in 24 h and, thus, exceeds the criteria for an explosive cy-
clogenesis after Sanders and Gyakum (1980). The minimum
pressure occurred just east of the English North Sea coast
around 03:00 UTC on 3 January. The cyclone then tracked
mostly eastward across the North Sea and Baltic Sea before
heading northeastward in later stages (Fig. 2). The cold front
crossed France and Germany in the first half of 3 January
and caused high winds due to CFC. Ahead of the front, high
winds were associated with the WJ. Later, when the occlu-
sion front wrapped around the cyclone centre, the CJ dom-
inated as the cause of high winds in addition to CS winds
further away from the cyclone core.

5.2 Application of feature identification

Figure 3 shows the most important parameters, namely p,
RR and 1θ̃ , to distinguish the high-wind features for one
selected time step, i.e. 3 January 2018 at 06:00 UTC, to
illustrate the subjective labelling process, as described in
Sect. 4.1. The cyclone centre was located to the east of
the UK over the North Sea (red “x” in Fig. 3). The cold
front stretched from north-western Germany to France (see
Fig. D4 in Appendix D). The highest winds were observed
ahead of and along the cold front and over western France
(contours in Fig. 3). Figure 3a shows p decreasing strongly
with values of mostly above 3 hPa over southern and eastern
Germany ahead of the cold front. The increase after the front
is a lot weaker with some stations even still showing a weak
decrease, which can, for example, be caused by small-scale
processes like convection. Nevertheless, coinciding with the
location of the front, several stations observe a p increase
of around 2 hPa. This region also coincides with areas of
heavy rain, with values of around 5 mmh−1 to more than
8 mmh−1 (Fig. 3b). Slightly lower amounts were observed
along the occluded front and northern part of the warm front.
Furthermore, we note a change in θ̃ (Fig. 3c), with an abrupt
decrease in the frontal region and a shift of d from south-
westerly to westerly winds (not shown). While 1θ̃ indicates
large tendencies over northern France and western Germany,
it shows noisier behaviour further away from the highest
winds. Following this, we set labels for a WJ in the region
of negative 1p, positive 1θ̃ and ahead of the high values of
RR. CFC is labelled in the frontal region, where the heavy
precipitation occurred. As the occluded front is not wrapped
around the core yet (cf. Fig. D4), implying that a CJ is not
yet occurring at this point in time, the region behind the cold
front is entirely labelled as CS. All set labels are displayed in
Fig. 3d.
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Figure 3. Storm Burglind on 3 January 2018 at 06:00 UTC. Scat-
tered dots show station observations for (a) 1p, (b) RR, (c) 1θ̃ ,
and (d) subjectively identified wind features for stations where
ṽ ≥ 0.8 and at least three of the five initial parameters are mea-
sured (see Sect. 4.1). The contours show the interpolated ṽ (dot-
ted ṽ = 0.8, dashed ṽ = 1 and solid ṽ = 1.2) to display the regions
where the highest winds occurred. The red “x” indicates the cyclone
centre.

The predictions of feature probabilities by the RF, which
is trained on the 11 other cases (Table 2), for 06:00 UTC and
other time steps at a 3 h interval are shown in Fig. 4 after

Kriging was applied to generate a gridded field of probabil-
ities. Moreover, ṽ and p contours are added for orientation.
An animation for the entire lifetime of Burglind is provided
in the video supplement (Eisenstein et al., 2022c).

Comparing Fig. 3d (subjectively identified features) and
Fig. 4b (RF predictions) shows that the features are mostly
in consistent areas with high confidence. CFC is identified in
a smaller region, which is partly due to missing precipitation
observations, because this is the most important variable to
predict CFC, as will be discussed in Sect. 6.2.

As stated, the WJ is the first feature to occur during the
life cycle of a cyclone, as is the case for Burglind. Figure 4a
shows the 3 January 2018 at 03:00 UTC, when high prob-
abilities of a WJ are predicted for most of central France.
This region is followed by a smaller region of CFC along the
front and CS behind it. As the cyclone evolves further, the
cyclone centre and the identified features coherently move
further east, while the area affected by the WJ diminishes
(Fig. 4b). A total of 3 h later the WJ dissolves north of the
Alps while still being followed by a line of identified CFC
(Fig. 4c). At this time step, which is also the time of mini-
mum core pressure, the CJ is identified on the coasts of Bel-
gium and the Netherlands, while CS is detected further away
from the cyclone centre. The highest ṽ values are observed
along the CFC and the remainder of the WJ. The WJ and
CFC vanish completely until 12:00 UTC, when the CJ and
the region of high ṽ extend to western Germany (Fig. 4d)
and move further east following the cyclone centre during
the next 3 h (Fig. 4e). At 18:00 UTC, when the storm and
ṽ weaken, the CJ starts to diminish, and the probabilities of
both CJ and CS decrease as well.

Even though the RF is only dependent on a few meteoro-
logical parameters and their development over the last hour,
looking at all time steps together, the features are largely
coherent, both spatially and temporally, and behave as de-
scribed in the literature (see Sect. 2). While the WJ and CFC
appear during earlier stages of the life cycle (Fig. 4a, b, c),
they disappear during later stages, when CJ and CS dominate
as the cause of high wind speeds. NF is mostly detected at the
peripheries of a cyclone or not connected to one at all during
all time steps, indicating that most of the high wind speeds
in the vicinity of the cyclone are in fact associated with the
introduced wind features and identified accurately.

5.3 Comparison to gridded data

One interesting application of our new algorithm is the com-
parison of gridded data sets with station observations. To do
this successfully, we need to ascertain that such data sets can
be fairly compared.

To provide a visual impression of the differences between
station- and reanalysis-based results, Fig. 5 again shows the
example of Burglind, such that it can be directly compared
to Fig. 4b. Results are mostly consistent with even higher
probabilities most of the time in the reanalysis. Note that

Weather Clim. Dynam., 3, 1157–1182, 2022 https://doi.org/10.5194/wcd-3-1157-2022



L. Eisenstein et al.: Identification of high-wind features within extratropical cyclones – Part 1 1167

Figure 4. RF probabilities f for each high-wind feature after Kriging for storm Burglind on 3 January 2018 at (a) 03:00 UTC, (b) 06:00 UTC,
(c) 09:00 UTC, (d) 12:00 UTC, (e) 15:00 UTC and (f) 18:00 UTC. The dashed contour shows ṽ = 1, and the solid contour shows ṽ = 1.2.
The red “x” indicates the cyclone centre. Light grey contours show COSMO-REA6 p with a 4 hPa interval.

COSMO-REA6 provides complete information on a dense
regular grid, in contrast to the irregularly distributed stations
that have to be interpolated. This leads to more coherent ar-
eas here. Particularly CFC covers a larger region with higher
probabilities. This is due to the higher spatial resolution of
the RR field in COSMO-REA6, the most important parame-
ter for the detection of the CFC feature. Over the UK, high
probabilities of a CJ are predicted by the RF. This contrasts
with the identified CS in station data and the subjective anal-

ysis, where a CS was labelled, as no hook-shaped structure
of high winds was discernible yet. However, the occurrence
of a hook-shaped structure cannot be accounted for in the
spatially independent approach of RAMEFI, making it dif-
ficult to distinguish these otherwise similar features. This is
consistent with the more common over-prediction of CJ in
the COSMO reanalysis than in observations, as will be dis-
cussed in Sect. 6.1.
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Figure 5. RF-derived probabilities f for each feature for Burglind
on 3 January 2018 at 06:00 UTC, as in Fig. 4b but for COSMO-
REA6.

6 Statistical evaluation

In Sect. 3.4, we described how we evaluate probability pre-
dictions for the wind features. Here, we first apply this con-
cept to the RF probabilities for the station data and the
COSMO reanalysis. At the end of the section, we investigate
the relationship between the predictors and the RF probabil-
ities.

6.1 Evaluation of the RF probabilities

The evaluation of the station-based RF probabilities is split
into three parts: (1) we quantitatively compare the RF predic-
tions with the class frequencies in the training data, (2) we
assess how well the RFs predict the individual wind features
in the one-against-all approach and (3) we check how well
the predictions distinguish two features with the all-pairs ap-
proach. For each storm that we predict, the class frequencies
of the other 11 storms are used as a benchmark prediction.
As expected, we find that the RF probabilities outperform
the benchmark in terms of the BS for the prediction of each
winter storm. The overall improvement is 24.7 %; for the dif-
ferent storms, it ranges from 11.8 % to 34.7 %, with 11.8 %
being the skill for Xavier, which is discussed in some detail
in Sect. 7.4.

Figure 6 shows the reliability diagrams of the RF proba-
bilities in the one-against-all approach for the occurrence of
NF and the four specific wind features (WJ, CFC, CJ and
CS). We observe that the probabilities are generally well cal-
ibrated for all five cases, as the calibration curves closely fol-
low the diagonal. The predictions are generally reliable, es-
pecially for small probabilities, which are most frequent in
this setting, as the peaks of the histograms illustrate. There-
fore, the RFs identify the non-occurrence of a specific wind
feature with high confidence (Fig. 6a). For larger probabil-
ities, the predictions of NF, the WJ and CFC are well cali-
brated, as the calibration curves stay reasonably close to the

diagonal (Fig. 6a, b, c); for the CJ and CS (Fig. 6d, e), in
contrast, larger deviations are evident. In both cases, the RF
over-predicts the events – that is, the predicted probability is
generally too large.

The reliability diagrams of the all-pairs approach are dis-
played in Fig. 7 and show that the RFs yield well-calibrated
probabilities for the distinction of all feature pairs except one.
When the RF predicts that the CJ is more likely to occur than
the CS (in case one of those two materialises), the RFs over-
predict the CJ, meaning that the CS occurs more often than
predicted (Fig. 7j). This is consistent with the results from the
one-against-all approach, where we found that the CJ and CS
predictions were not well calibrated for high probabilities,
indicating that the RF fails to distinguish them for large con-
ditional probabilities of the CJ. Further, the histogram of this
pairwise comparison shows that the RF cannot discriminate
between the two features with high confidence. This issue
can be seen best for the storms Herwart and Sabine, which
both did not develop a CJ, although a CJ was identified by
the RFs (see Sect. 7.2). The main meteorological reason for
this problem is the general similarity of the two features and
that the hook-shaped structure, which is used for the subjec-
tive identification of a CJ, cannot be considered in the RF,
such that the distinction is mainly based on p, as will be dis-
cussed in Sect. 6.2. Other than that, the calibration curves
of the other pairs closely follow the diagonal. Moreover, we
note that the WJ is distinguished well from the CJ and CS,
as the U-shaped histograms of the probability distributions
show (Fig. 7f, g).

For the predictions derived from the COSMO-REA6 data,
the RF probabilities are also able to distinguish the features
well, although the RFs used were trained on station-based
data. The predictions exhibit similar characteristics and per-
form (as expected) only slightly worse than for the station
data. As before, the skill of the BS is calculated with respect
to a benchmark prediction based on the class frequencies and
is 19.6 % for all storms. For eight of the selected storms, we
observe improvements ranging from 11.0 % to 37.5 %; how-
ever, for Herwart and Susanna, the skill scores are −0.8 %
and−11.6 % respectively, indicating a decrease in predictive
performance. For Susanna, this is due to a larger high-wind
region ahead of but not directly connected to the cyclone
for multiple time steps. While the predictions for Herwart
look consistent in both data sets at first sight, fewer stations
are available over Poland, where the CJ was over-predicted
(see Sect. 7.2), such that the over-prediction in the gridded
data carries more weight compared with the station data.

Further, at times, we find high probabilities of mostly the
WJ in COSMO-REA6 in regions where winter storms are
uncommon and where no features were labelled at all, e.g. in
Italy and the Balkans (not shown). However, on the synoptic
scale, the trough still affects some parameters in the region –
that is, decreasing1p on the eastern side of the core and d as
the wind follows the isobars (not shown), which are the most
important parameters to distinguish NF and the WJ (Fig. 9).
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Figure 6. CORP reliability diagrams of the RF probabilities for the individual wind features in the one-against-all approach including all 12
storms.

Figure 7. CORP reliability diagrams of the conditional RF probabilities comparing two wind features in the all-pairs approach including all
12 storms.

Therefore, high winds caused by factors such as mountainous
effects, including the foehn effect or land–sea breeze, might
be falsely identified as a WJ. Thus, the RF should only be ap-
plied to regions affected by extratropical cyclones. As these
regions have not been labelled (see Sect. 4.1), we excluded
them from our evaluation.

The reliability diagrams of the one-against-all approach
for the COSMO-REA6 data (see Fig. D2 in Appendix D)
show that the calibration curves deviate more from the diag-
onal than for the station-based data (Fig. 6) but are still rea-
sonably close to calibrated values. For the WJ and the CJ, we
observe slight over-prediction (Fig. D2b, d), whereas we ob-
serve under-prediction for the CFC (Fig. D2c). For the CS,
we observe a similar calibration curve to the station-based
data (Fig. D2e). The distinction of the individual features,
which we assess via the all-pairs approach in Fig. D3, results
in mostly well-calibrated probabilities. The largest deviations
from the calibration are observed again for the distinction of
the CJ and the CS, as discussed above, and for the distinction
of the WJ and the CFC (Fig. D3e), where the WJ is identified
more frequently than observed. This might be caused by a

spatially extended area of precipitation further into the warm
sector at times due to missing data assimilation for that pa-
rameter (see Sect. 3.2). Overall, the predictions based on the
COSMO-REA6 data are satisfactory considering that the RF
models were trained on data from the station observations.

6.2 Predictor importance

To identify the predictors most relevant for the prediction of
the wind features and the discrimination between two fea-
tures, we calculate the BS permutation importance for the
one-against-all and all-pairs approach. The BS permutation
importance in the one-against-all approach is displayed in
Fig. 8. In general, 1p is the most important predictor vari-
able, especially for the WJ. Only for CFC is it not an impor-
tant predictor, as it can occur slightly ahead of the cold-front-
related pressure trough and, hence, in a region of positive1p,
as described in Sect. 2.4. On the other hand, the absolute val-
ues of p seem to be of less importance for the WJ and NF,
which occur further away from the cyclone centre than the CJ
and CS, for which p indicates the proximity to the cyclone
centre. For CFC, we instead find that RR is the most relevant
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predictor variable (as expected), whereas it is less important
for the WJ, CJ and CS. d seems to be relevant for most fea-
tures, as it is a characteristic of the location relative to the
cyclone centre. This also leads to a high importance for NF
occurring more frequently north or west of the cyclone cen-
tre. However, d is not important for CFC, likely owing to the
fact that convection leads to a more variable wind direction
and due to the characteristic jump in d at cold fronts. On the
contrary, 1d is of minor relevance for all features as well
as1θ̃ . A more important temperature-based predictor seems
to be θ̃ , although it is again less relevant for CFC. Lastly, ṽ
shows its highest importance for NF, as higher wind speeds
are less likely to be found at the boundary of a cyclone.

In the all-pairs approach (Fig. 9), we can attribute the im-
portance of the predictor variables more accurately. The key
to distinguish the WJ from all other features is1p, especially
from the CJ and CS. This is consistent with the one-against-
all discussion above. The large outlier in1p in the WJ vs. CJ
is related to storm Herwart, as further discussed in the follow-
ing section. Of secondary importance is d, particularly when
compared to the CJ, CS and NF. Temperature also plays some
smaller role in the distinction of the WJ. For CFC, the most
important predictor by far is RR, but when compared against
the CJ, p,1p, θ̃ ,1θ̃ and d also contribute. The positive out-
lier in RR is related to storm Fabienne (not shown). The dis-
tinction of the CJ from other features is more complex. p is
relevant in all CJ pairs, as already discussed. The distinction
of CJ from NF additionally hinges upon 1p, θ̃ and d .

The shortcomings of the RFs to distinguish CS and the CJ
are also reflected in Fig. 9 by partly negative values of p,1p
and θ̃ . A negative value indicates that the RF probabilities
perform better, when we break the link to the target variable
by randomly permuting the predictor values. As discussed
further in the following section, this is mostly due to storm
Sabine, which reached an unusually low minimum core pres-
sure of less than 950 hPa over the Norwegian Sea (see Fig. 2).
Because of this, values of p in the CS over continental Eu-
rope were similar to values typical of a CJ.

We do not only want to identify the most relevant predic-
tors, we also want to investigate their effect on the predic-
tions, which is illustrated for the eight predictor variables by
the PDPs in Fig. 10. Again, the largest impact is found for
1p. The probability of observing a WJ is largest for small
values of 1p and declines rapidly as the tendency increases
and switches signs, while the probabilities of the CS and CJ
increase. Probabilities of NF decrease slightly, while changes
for CFC are small. For little RR, the probability of a CFC
is close to zero, but it consistently increases with increasing
precipitation. In turn, probabilities of other features slightly
decrease with increasing precipitation. In general, the CJ and
CS show high probabilities of low values of p, consistent
with their occurrence during the most intense stage of a cy-
clone (see Sect. 2). However, surprisingly, CS shows higher
probabilities than the CJ between 970 and 980 hPa, although
the CJ is usually closer to the cyclone centre. This is again

associated with the unusual behaviour of storm Sabine, with
its deep pressure minimum but no subjectively identified CJ.
As such intense cyclones are rare, we are confident that the
RF performs well in most more ordinary cases. As discussed
previously, d is dependent on the location relative to the cy-
clone centre. As the introduced features are all located south
to west of the cyclone, we focus on values from 90 to 360◦

only. Within the WJ, d values mostly show south-westerly
winds and do not change drastically. Probabilities for CFC
increase with a positive wind shift, leading to more west-
erly and north-westerly winds for CFC but also following
features, i.e. the CJ and CS. 1d shows almost no change
in probabilities for all features, consistent with its low BS
permutation importance. θ̃ shows an increasing trend for the
WJ, while the probabilities decrease for the other features,
most strongly for the CJ, as one would expect. For 1θ̃ , we
see indications of the air mass change at the cold front and,
thus, higher probabilities in CFC for negative values. The CJ
shows a slightly positive trend, whereas all of the others are
flat.

Overall, investigating the importance of the predictor
variables for the predictions, we find that the RFs largely
learn physically consistent relations, as described in Sects. 2
and 4.1.

7 Discussion

Section 5 showed a successful application of the introduced
method to storm Burglind, both in station- and grid-based
data sets. However, extratropical cyclones rarely follow the
textbook NC model exactly. For example, sometimes high
winds are mainly related to an exceptionally strong synoptic-
scale pressure gradient rather than being associated with the
mesoscale features that we have developed an objective iden-
tification algorithm for. As described in Sect. 4, we selected
12 windstorm case studies to train the RF based on surface
observations with the diversity of cyclones and features in
mind, such that the RF is representative for a climatology
over a longer time period.

This section discusses how the trained RF deals with some
well-known deviations from idealised cyclone models, such
as double fronts and convergence lines (Sect. 7.1), large
background pressure gradients (Sect. 7.2), and the specific
characteristics of the SKC and SJ (Sect. 7.3). In addition, we
further discuss the advantages and disadvantages of not using
spatial dependencies in the feature identification (Sect. 7.4).
A complete set of results for all case studies can be accessed
in the Supplement (Eisenstein et al., 2022c).

7.1 Double fronts and convergence lines

Real-world frontal structures of extratropical cyclones can
differ considerably from idealised conceptual models (e.g.
in terms of complex vertical structure, strong tilts, or a sec-
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Figure 8. Boxplots of the BS permutation importance of the RF probabilities for the individual wind features and predictor variables in the
one-against-all approach. The boxplots are calculated over the individual winter storms.

Figure 9. Boxplots of the BS permutation importance of the RF probabilities comparing two wind features for the predictor variables in the
all-pairs approach. The boxplots are calculated over the individual winter storms.

ondary frontal zone parallel to the main front). Here, we
are interested in synoptic systems with double cold fronts
and convergence lines with high winds. While a cold front
is associated with a second low-pressure trough, a conver-
gence line develops where two airflows collide and can oc-
cur independently of a cyclone. The area between a primary
and secondary cold front can have characteristics of a warm
and/or cold sector; thus, high-wind features are predicted

with higher uncertainty by the RF. This can also be the case
for the area between a cold front and a convergence line.

The example from our selection of 12 cyclones that illus-
trates this best is Bennet. On 4 March 2019 at 12:00 UTC,
the cyclone centre was located over the North Sea to the
west of Denmark (Fig. 11a). The primary front was lo-
cated at the north-eastern border of Germany and Bavaria
and had already weakened (see Fig. D5 in Appendix D). A
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Figure 10. Partial dependence plots for the predictor variables and wind features.

secondary strong temperature gradient could be found over
north-western Germany, Luxembourg and France. However,
it is uncertain, if this should be classified as a front or con-
vergence line. While synoptic charts from the DWD show a
convergence line, Met Office charts show an upper-level cold
front at 06:00 UTC and an occluded front 6 h later. As this
feature shows characteristics typical of CFC (see Sect. 2.4),
it was ultimately labelled as such by the first author and is
referred to as a secondary front.

Figure 11a shows the mesoscale wind features identified
by the RF. At this time Bennet caused the highest winds
slightly ahead of the secondary front and in a smaller region
behind the primary front (see the dashed line in Fig. 11a). For
the area between the fronts, the RF predicts both a CS and
WJ with medium confidence. This is to be expected, as some
parameters, especially 1p, θ̃ and 1θ̃ , show the behaviour of
both features with a tendency towards a CS. RF predictions
along the secondary front show only low probabilities of a
CJ and CFC. However, at earlier and later time steps (i.e.
ahead of the primary cold front and behind the secondary
one), the prediction of the WJ, CJ and CS are accurate, as
can be seen in the full animation provided in the Supplement
(Eisenstein et al., 2022c). Thus, looking at the entire lifetime
of the storm, satisfactory identification can be obtained from
RAMEFI.

7.2 Strong background pressure gradients

Very intense cyclones are often accompanied by a strong
large-scale pressure gradient (e.g. Fink et al., 2009), which,
in turn, causes high wind speeds that are unconnected to one
of the four mesoscale wind features under study but can be

enhanced by them. With an underlying strong wind field, the
detection and distinction of the features might be more com-
plicated. Good examples from our list of case studies to il-
lustrate this are the storms Herwart and Sabine. Figure 11b
shows Herwart in a late development stage on 29 October
2017 at 09:00 UTC when the pressure gradient was already
weakening (see the light grey contours). Around this time,
the cyclone centre travelled over Poland (outside of the area
shown in the figure). The occurrence of a CJ seems unlikely
in that region, as a typical hook-shaped structure cannot be
seen in wind observations (not shown). The occluded front
was rather weak and did not fully wrap around the cyclone
centre (see Fig. D6 in Appendix D). Therefore, ultimately,
the already high wind speeds caused by a strong background
pressure gradient over Germany (black lines in Fig. 11b)
make the subjective labelling of additionally occurring fea-
tures quite challenging. The RF shows high probabilities of
a CJ for several hours in this region, although it was origi-
nally labelled to be CS. The main reason for this is that the
proximity to the cyclone centre, reflected in the low value of
p, is the most important predictor to distinguish the CJ and
CS (Fig. 9). Nevertheless, even in this unusual case, the pre-
diction by the RF is still reasonable, as both a subjective and
objective identification of the two features here is ambiguous
in surface observations alone.

In the case of Sabine, the cyclone centre did not cross
continental Europe but moved through the Norwegian Sea
(Fig. 2). The minimum pressure reached less than 950 hPa.
Stations over central Europe still observed values of p below
970 hPa, which is lower than the cyclone centres of most of
our other case studies, making Sabine a quite unusual case.
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Figure 11. As in Fig. 4 but for (a) storm Bennet on 4 March 2019 at 12:00 UTC, (b) storm Herwart on 29 October 2017 at 09:00 UTC,
(c) storm Friederike on 18 January 2018 at 12:00 UTC and (d) storm Xavier on 5 October 2017 at 12:00 UTC. Note that, at the time shown,
storm Herwart had already exited the plot area to the east.

As discussed in Sect. 6, this causes difficulties with respect
to distinguishing the CJ and CS of Sabine, which is some-
what similar to Herwart. Although a CJ is identified in an
area of low values of p, this region is not in the vicinity of
the cyclone centre, as was the case for Herwart. An anima-
tion of the feature identification for all time steps of Sabine is
provided in the Supplement (Eisenstein et al., 2022c). In this
case the CJ–CS distinction issue could have been avoided to
some extent by including spatial dependencies in the identi-
fication algorithm at the expense of losing the capability for
flexible application, as discussed in Sect. 4. We will return to
this issue in Sect. 7.4.

7.3 Shapiro–Keyser cyclones and sting jets

As already explained in Sect. 2, cold fronts of SKCs are usu-
ally weaker than those of NCs, such that CFC wind features
hardly occur. A good example for this is storm Friederike.
Figure 11c shows 12:00 UTC on 18 January 2018, when the
cyclone centre just reached the North Sea coast of Germany.
High probabilities of a WJ occur over central Germany, while
a CJ is identified by the RF over north-eastern Germany. CFC
probabilities are very low along the entire cold front. La-

grangian trajectories confirmed an SJ in the region where the
CJ is identified during that time. As the CJ and SJ are con-
sidered together in this work (see Sect. 4.1), the area was
labelled as CJ and, hence, identified accurately. This area
also coincides with the highest wind speeds associated with
Friederike (see the black lines in Fig. 11c). West of the iden-
tified CJ region, a CS feature is detected. This shows that a
CJ and SJ indeed show similar characteristics in surface pa-
rameters and can be considered as one feature in this context.

7.4 Spatial independence

The decision not to use spatial (nor temporal beyond 1 h) de-
pendencies in the identification algorithm makes our method
highly flexible in its application, but the local approach can
also cause issues where features deviate from their stereo-
typical characteristics. One example of the problem is the
CJ of Sabine, as discussed in Sect. 7.2. Another example is
storm Xavier, where many points within the vicinity of the
cyclone show the highest probability of NF for several hours,
rather than the probability of any of the mesoscale wind fea-
tures (Fig. 11d). The main reason for this appears to be that
Xavier was characterised by unusually cool θ̃ and high p (not
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shown), generally two of the most important parameters to
distinguish features (Fig. 8). While one predictor behaving
in an unusual way could be compensated for, such as in the
case of Fabienne (see Eisenstein et al., 2022c), two anoma-
lous behaviours unsurprisingly result in considerably greater
uncertainty.

A possible solution to the issues described here on the
basis of Sabine, Xavier and Fabienne is to not only regard
anomalies from diurnal and seasonal cycles but also to in-
clude some kind of spatial background (e.g. by normalising
p by the core pressure to detect the region close to the cy-
clone centre or by comparing θ̃ to the mean state over Europe
during the period of the storm to detect the warm sector).
However, such a step would bring its own set of problems.
Any spatial mean would require an arbitrary decision about
the considered area, which may vary greatly from cyclone to
cyclone. Moreover, spatial means computed from surface ob-
servations are not representative due to the irregular spacing
of the stations. Essentially, as the features identified by the
RF still occur in the expected areas, as described in Sect. 2,
we conclude that a flexible local approach offers more ad-
vantages than disadvantages overall.

8 Conclusions

High wind and gust speeds can be caused by distinct
mesoscale features within extratropical cyclones, which oc-
cur during different stages of the cyclone life cycle, in vary-
ing regions relative to the cyclone centre and have distinctive
meteorological characteristics (e.g. Hewson and Neu, 2015).
These differences likely imply differences in hazardousness,
forecast errors and, hence, risk to life and property.

To better understand, monitor and predict these mesoscale
features, we developed RAMEFI, a novel objective identi-
fication method that is able to reliably distinguish the four
most important features: the WJ, the CJ, CFC and CS. The
rare and often short-lived SJ is included in the CJ category,
as the surface characteristics of these two features are often
rather similar, and 3D trajectories are required for a clean
distinction (Gray et al., 2021).

The first step was to build a browser-based, interactive tool
to subjectively label surface stations over Europe for 12 se-
lected winter storm cases between 2015 and 2020. Based on
the outcome, we trained a probabilistic RF based on the fol-
lowing eight predictors: ṽ, p, 1p, θ̃ , 1θ̃ , RR, d and 1d.
We note that we set a ṽ threshold of 0.8 to focus on high-
wind areas. However, we do not expect the RF to be sensi-
tive to small changes in the threshold, and, in principle, the
RF can be applied to wind speeds below this level. Being in-
dependent of the spatial behaviour or gradients, the approach
is very flexible and can be applied to single stations or grid
points and various data sets with differing grid spacing. How-
ever, due to the fast movement of meteorological features
in stormy situations, an hourly resolution is required, mak-

ing the algorithm inapplicable to some climate data sets. To
obtain areal information from irregular station data, Kriging
was applied on the station-based probabilities generated by
the RF.

The trained RFs are generally well calibrated. However,
the distinction between a CJ and CS is more challenging, as
the two features show similar characteristics in most param-
eters except for the fact that a lower value of p in the CJ is
located nearer to the cyclone centre. Overall, the RFs learn
physically consistent relations reflected in the importance of
individual predictors. For example, while 1p appears to be
most important for the WJ, CJ and CS, RR is substantial for
the identification of CFC.

A detailed analysis of the RF feature probabilities for the
selected cases shows a high consistency with the subjectively
set labels with only a few disagreements, mostly in cases of
large deviations from standard cyclone models. While the
identification of WJs has the highest confidence, the iden-
tification of CFC is least certain due to relatively few surface
stations reporting hourly precipitation and, thus, less train-
ing data. Even the distinction between the relatively similar
CS and CJ works well in most cases and time steps. In some
cases, however, high probabilities of CJs are predicted by the
RF in areas where no CJ was subjectively identified due to
a missing hook-shaped structure and occlusion front or ow-
ing to an overly large distance from the cyclone centre (e.g.
Herwart and Sabine). Despite the spatial independence of the
method, putting the predicted probabilities together on a hor-
izontal map and following the storm evolution in time shows
a high degree of coherence for each feature, demonstrating
the success of our method.

The station-based RFs are also applied to COSMO reanal-
ysis data without any adaptations to the new data set. Nev-
ertheless, the obtained results are mostly consistent and only
slightly less calibrated. This demonstrates that the method
could be readily applicable to other analysis and forecast data
sets. Although applying RAMEFI over regions other than
that used in the training has not been examined yet, relying
on location-independent predictors suggests that it should be
possible with little or no modification.

Now that the RAMEFI method is fully developed, it en-
ables a number of exciting follow-on studies (see Part 2 of
this paper; Eisenstein et al., 2022d). In a next step, we plan to
use the objective identification approach to compute a long-
term climatology over Europe based on station observations
and COSMO reanalysis data. Although, existing literature
has discussed different causes of winds within extratropical
cyclones, their climatologies have been based on more sub-
jective categorisations for a limited sample size (e.g. Hew-
son and Neu, 2015; Earl et al., 2017). For the first time,
RAMEFI will allow a statistically substantiated analysis of
the characteristics of the mesoscale wind features in terms
of size, lifetime, position relative to the cyclone core, occur-
rence relative to the life cycle of the cyclone and wind char-
acteristics. Furthermore, a systematic forecast error analysis
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will reveal the extent to which forecast errors differ between
the identified features and whether there are any significant,
systematic deficits in their representation in models. Based
on the outcome, we plan to subsequently work on a feature-
dependent post-processing approach using the methods dis-
cussed in Schulz and Lerch (2022). This can ultimately im-
prove the forecasts of strong winds and gust, thereby support-
ing the provision of better warnings with respect to top high
wind gusts and timely forecasts of the associated impacts.

Appendix A: Storm severity index

The SSI was originally developed to estimate windstorm-
related damage to buildings and infrastructure (Klawa and
Ulbrich, 2003). With this aim, daily wind gust maxima
(vg,max) for DWD stations were first scaled by the 98th per-
centile (vg,98,s) to take local conditions into account. Next,
the exceedances above vg,98,s are cubed to account for the
wind destructiveness and are weighted by the population
density as a proxy for the insurance values (damage covered
by insurance). Later developments introduced formulations
for grid-based data, i.e. reanalysis data and climate mod-
els, definition of affected areas (“windstorm footprints”), and
feature tracking (e.g. Pinto et al., 2007; Leckebusch et al.,
2008). Following Pantillon et al. (2018), we use the SSI for-
mulation for station observations over Germany considering
only the meteorological impact (no population weighting):

SSI=
∑

station s

{(
vg,max,s

vg,98,s
− 1

)3
}
vg,max>vg,98

. (A1)

Daily maximum wind gusts over Germany are available from
the DWD surface network (Deutscher Wetterdienst, 2022).
The SSI is calculated for each single day and displayed in
Table 2 for the 12 selected cases. If a storm affects the re-
gion for several days, the maximum SSI of the daily values
is selected. As the aggregated SSI value is dependent on the
number of stations, possible changes in the surface network
need to be taken into account for when analysing longer time
series. For the period of our case studies (2015–2020), the
number of stations remained stable; thus, a comparison of
the SSI values is largely fair. Still, the obtained SSI values
only serve as a comparison for the selected case studies in
this paper and should not be compared numerically to SSI
values from other works.

Table B1. Overview of the tuning parameters of the probabilistic
RF.

Tuning parameter Value

Number of trees 1000
Number of predictors considered at each split 2
Minimal node size 10
Maximal depth Unlimited
Splitting criterion Gini

Appendix B: Implementation details

In this section, we provide technical details on the evaluation
of the RF probabilities, the probabilistic RFs and the Kriging.

B1 Evaluation of the RF probabilities

The CORP reliability diagrams were generated using the re-
liabilitydiag package (Dimitriadis et al., 2021), and the PDPs
were generated using the pdp package (Greenwell, 2017).
Each reliability diagram is based on the RF probabilities and
observations of all storm cases. For the PDPs, one partial de-
pendence curve has to be calculated for each RF generated
in a fold of the cross-validation (i.e. for each winter storm).
The final curves are then obtained by a weighted average de-
pending on the sample size of the folds.

B2 Random forests

RF is implemented via the ranger package (Wright and
Ziegler, 2017) in R (R Core Team, 2021). Table 1 sum-
marises the predictors used, and Table B1 summarises the
chosen tuning parameters. One question in the implementa-
tion is the handling of missing values, which an RF cannot
process. The station-based samples frequently miss values of
one or more predictor variables, especially precipitation is af-
fected. We tried different strategies to handle missing values,
such as leaving out instances with missing values or replac-
ing the missing values with a mean value, and found similar
results. Therefore, we decided to replace the missing values
in order to use the largest sample size possible, which is de-
sirable for the evaluation and the Kriging step. In each fold
of the employed cross-validation scheme, the missing values
(both in the training and test set) are replaced by the mean
value of the associated predictor variable in the training set.

B3 Kriging

In our practical implementation of Kriging, we employ the
fields (Nychka et al., 2017), mvtnorm (Genz et al., 2021),
maps (Original S code by Richard A. Becker and Allan
R. Wilks. R version by Ray Brownrigg. Enhancements by
Thomas P Minka and Alex Deckmyn, 2018) and maptools
(Bivand and Lewin-Koh, 2021) R packages. Additionally,
we transform the probabilities by using the bestNormalize
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package (Peterson, 2021) to achieve approximate Gaussian-
ity, which automatically chooses a suitable transformation
from a set of commonly used transformations. The probabil-
ities on the grid generated via the univariate Kriging need to
be normalised such that they sum to one. However, at some
grid cells distant from the cyclone track, the predicted proba-
bilities are small for all of the wind feature and normalisation
results in unrealistic predictions. Thus, we only perform the
normalisation at grid cells where the accumulated probabil-
ity is larger or equal to 20 %. For the visualisation, we further
drop the grid cells where the largest normalised probability
is smaller than 20 % (which includes the grid cells for which
no normalisation was performed).

Appendix C: Mathematical details

In this section, we provide a more detailed description of
the assessment of probability predictions and the Kriging ap-
proach.

C1 Assessing probability predictions of multiple classes

Consider a multi-class probability prediction f =

(f1, . . .,fk), where f1, . . .,fk ∈ [0,1] and
∑k
i=1fi = 1,

for a nominal target variable Y ∈ {1, . . .,k} with k ≥ 3
classes that are not ordered. In mathematical terms, f
is called (auto-)calibrated if P(Y = i | f )= fi for all
i = 1, . . .,k, where P refers to the joint distribution of
prediction and observation (Gneiting and Ranjan, 2013).
The BS for a probability vector f and the realising class
i ∈ {1, . . .,k} is given by S(f , i)=

∑k
j=1(fj − 1{i = j})2,

where 1 denotes the indicator function (Brier, 1950). Now,
consider a probability prediction f ∈ [0,1] for a dichoto-
mous target variable Y ∈ {0,1}. In mathematical terms, f is
called calibrated if P(Y = 1 | f )= f (Gneiting and Ranjan,
2013). The (binary) BS of a probability prediction f and
realisation y ∈ {0,1} reduces to S(f,y)= (f − y)2. Both
the binary and multivariate BS can be used to evaluate the
improvement of a prediction method over a reference using
the BSS. Given the mean BS of the predictions of interest
Sf and that of the reference predictions Sref, the skill score
is calculated via SSf = 1− Sf /Sref. Positive skill indicates
improvement over the reference, with 100 % referring
to a perfect prediction, 0 % referring to no improvement
and a negative skill referring to a decrease in predictive
performance with respect to the reference.

The one-against-all approach reduces the multi-class pre-
diction problem to a set of k dichotomous problems. For
each class i ∈ {1, . . .,k}, the probability fi is a prediction for
Ỹ = 1{Y = i}, where 1 denotes the indicator function. Note
that evaluating the predictions fi for Ỹ for each class is not
equivalent to checking the multi-class calibration criterion,
as the joint distribution of fi and not that of f is considered
in the one-against-all approach. The all-pairs approach re-

duces the multi-class prediction problem to a set of k(k−1)/2
dichotomous problems. For each pair of classes (i,j), where
i,j ∈ {1, . . .,k} and i > j , we consider only samples with
Y ∈ {i,j}. Then, the conditional probability f̃i,j is a predic-
tion for Ỹ , where

f̃i,j =
fi

fi + fj
and Ỹ =

{
1 for Y = i,

0 for Y = j.

C2 Kriging

Let {X(s), s ∈ R2
} be the spatial Gaussian process

modelling the transformed probability of a certain wind
feature, indexed by the spatial coordinates s that cor-
respond to the latitude and longitude associated with
the (transformed) probability. Further, we denote the
mean function by E{X(s)} = µ(s) and the covariance
function by Cov{X(s),X(s′)} = C(s,s′). Then, for a
given set of station-based data x = {X(s1), . . .,X(sn)}

T ,
the spatial prediction at a grid cell s0 is given
as X̂(s0)= µ(s0)+6126

−1
22 (x−µ), where µ=

{µ(s1), . . .,µ(sn)}
T , 612 = {C(s0,s1), . . .,C(s0,sn)} and

622 = {C(si,sj )}
n
i,j=1. Additionally, one can obtain the pre-

diction variance as Var{X̂(s0)} = C(s0,s0)−6126
−1
22 6

T
12,

and the full predictive distribution is obtained as

X(s0) | x ∼N
(
X̂(s0),

√
Var{X̂(s0)}

)
.

The choice and estimation of the mean function µ(·) and
the covariance function C(·, ·) are key elements of the Krig-
ing implementation. While one can choose any parametric or
nonparametric functional representation for µ(·), the valid
choice for C(·, ·) is limited to the class of positive semi-
definite functions. In practice, the covariance function is of-
ten assumed to be stationary, which implies that the covari-
ance function depends on the spatial locations only through
spatial lags, i.e. C(si,sj )=K(si − sj ) for some positive
semi-definite function K(·). In our implementation, we have
specified the mean function µ(·)= c, c ∈ R to be a function
with a constant value and the covariance function K(·) to be
the Matérn class of stationary covariance function (Matérn,
1986).
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Appendix D: Further figures

Figure D1. Screenshot of the interactive visualisation and labelling tool as part of RAMEFI (Eisenstein et al., 2022a) using the Bokeh (Bokeh
Development Team, 2021) Python package. The user can switch between time steps and loaded winter storms. The top row shows a map of
stations and their parameters, here ṽ, where the user can select an area by mouse with the lasso tool or by clicking on single stations. Labels
for the introduced features can be set for the selected stations. A table includes all data points and parameters. Histograms are shown for
several parameters for the whole region (light blue) and for currently selected stations (dark blue).
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Figure D2. As in Fig. 6 but based on COSMO-REA6 data.

Figure D3. As in Fig. 7 but based on COSMO-REA6 data.

Figure D4. Detected fronts at 850 hPa (green tubes) and wet-bulb potential temperature θW (shading) for storm Burglind on 3 January 2018
at 06:00 UTC using the Met.3D visualisation software (Beckert et al., 2022; Rautenhaus et al., 2015). Data source: ERA5.
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Figure D5. As in Fig. D4 but for storm Bennet on 4 March 2019 at 12:00 UTC.

Figure D6. As in Fig. D4 but for storm Herwart on 29 October 2017 at 09:00 UTC.

Code availability. The interactive visualisation and labelling
tool as well as the trained RF and Kriging code are available
at https://gitlab.physik.uni-muenchen.de/Lea.Eisenstein/ramefi
(last access: 13 May 2022; Eisenstein et al., 2022b); this in-
formation will be updated in future studies and is archived at
https://doi.org/10.5281/zenodo.6541303 (Eisenstein et al., 2022a).

Data availability. COSMO-REA6 data are available from https:
//reanalysis.meteo.uni-bonn.de (last access: 27 April 2022; Hans-
Ertel-Centre for Weather Research, 2019). Daily maximum gusts
over Germany used for the computation of the SSI are avail-
able from https://cdc.dwd.de/portal/ (last access: 27 April 2022;
Deutscher Wetterdienst, 2022). Further observational data over Eu-
rope were provided by the DWD for this work and cannot be made
freely available. The reader is advised to contact the DWD directly
regarding these data (klima.vertrieb@dwd.de).
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Video supplement. The video supplement showing the probability
maps for all 12 selected case studies (Table 2) can be freely ac-
cessed at https://doi.org/10.5281/zenodo.6541277 (Eisenstein et al.,
2022c).
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