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Abstract. Subseasonal forecasts of opportunity (SFOs) for
precipitation over southwest Asia during January–March at
lead times of 3–6 weeks are identified using elevated ex-
pected forecast skill from a linear inverse model (LIM),
an empirical dynamical model that uses statistical relation-
ships to infer the predictable dynamics of a system. The ex-
pected forecast skill from this LIM, which is based on the
atmospheric circulation, tropical outgoing longwave radia-
tion, and sea surface temperatures, captures the predictabil-
ity associated with many relevant signals as opposed to just
one. Two modes of variability, El Niño–Southern Oscillation
(ENSO) and the Madden–Julian Oscillation (MJO), which
themselves are predictable because of their slow variations,
are related to southwest Asia precipitation SFOs. Strong El
Niño events, as observed in 1983, 1998, and 2016, signif-
icantly increase the likelihood by up to 3-fold of an SFO
3–4 and 5–6 weeks in advance. Strong La Niña events, as
observed in 1989, 1999, 2000, also significantly increase
the likelihood of an SFO at those same lead times. High-
amplitude MJO events in phases 2–4 and 6–8 of greater
than one standardized departure also significantly increase
the likelihood of an SFO 3–4 weeks in advance. Predictable
atmospheric circulation patterns preceding anomalously wet
periods indicate a role for enhanced tropical convection in
the South Pacific convergence zone (SPCZ) region, while
suppressed convection is observed preceding predictable dry
periods. Anomalous heating in this region is found to distin-
guish wet and dry periods during both El Niño and La Niña
conditions, although the atmospheric circulation response to
the heating differs between each ENSO phase.

1 Introduction

Precipitation over central southwest Asia, defined here as 22–
48◦ N, 50–80◦ E and encompassing Afghanistan, Pakistan,
Iran, Turkmenistan, Uzbekistan, Tajikistan, and Kyrgyzstan,
occurs mainly during the cold season from November–April
and determines the region’s subsequent water supply used
for agriculture and consumption (Agrawala et al., 2001; Bar-
low et al., 2006). It is in this context that accurate precip-
itation predictions are critical, given the effect of water on
food security and livelihoods (Famine Early Warning Sys-
tems Network, 2022) in this semi-arid region (Barlow et
al., 2016). However, precipitation forecasts from dynami-
cal models lack skill by lead times of 3 weeks over south-
west Asia (de Andrade et al., 2018; Pegion et al., 2019).
An alternative endeavor is identifying the smaller subset of
forecasts at lead times of 3 to 6 weeks that are skillful, so-
called “subseasonal forecasts of opportunity” (SFOs; Lang
et al., 2020; Mariotti et al., 2020), by forecasting the fore-
cast skill (Kalnay and Dalcher, 1987). SFOs can arise from
slowly evolving tropical phenomena such as the El Niño–
Southern Oscillation (ENSO; Newman et al., 2003; John-
son et al., 2014; Domeisen et al., 2019; Mariotti et al.,
2020; Albers and Newman, 2021) and Madden–Julian Os-
cillation (MJO; Rodney et al., 2013; Johnson et al., 2014;
Li and Robertson, 2015; Mayer and Barnes, 2021), which
can force atmospheric circulation patterns to the extratrop-
ics through anomalous divergence (e.g., Sardeshmukh and
Hoskins, 1988).

Precipitation over southwest Asia may be a favorable tar-
get variable and location for SFOs, as both ENSO (Barlow
et al., 2002; Nazemosodat and Ghasemi, 2004; Hoell et al.,
2012, 2014a, b, 2015a, b, 2017, 2018a) and the MJO (Barlow
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et al., 2005; Nazemosodat and Ghaedamini, 2010; Hoell et
al., 2013; Cannon et al., 2017; Hoell et al., 2018b) can mod-
ulate precipitation in this region. Hoell et al. (2018a) consid-
ered the sensitivity of southwest Asian precipitation to cen-
tral Pacific (CP) and eastern Pacific (EP) El Niño and La Niña
conditions and found that while both CP and EP El Niño con-
ditions shifted precipitation anomalies towards the upper ter-
cile, a wide range of extreme precipitation outcomes was still
possible. CP La Niña events shifted precipitation towards the
lower tercile, while EP La Niña events did not significantly
shift precipitation in the region. Hoell et al. (2018b) found
that, in the 5 d following MJO phases 2–4 (enhanced east-
ern Indian Ocean convection), negative precipitation anoma-
lies developed as a response to an anomalous upper-level
anticyclone and subsidence. Conversely, MJO phases 6–8
(suppressed eastern Indian Ocean convection) were associ-
ated with anomalous upper-level troughing, ascent, and pos-
itive precipitation anomalies. However, Cannon et al. (2017)
found a nuanced impact of the MJO on extreme western Hi-
malayan snowfall due to competing influences of the MJO on
the dynamic forcing for vertical motion and moisture avail-
ability. The convolved impact of ENSO and MJO activity on
precipitation in the region is cited as an additional confound-
ing factor that can obscure the nature of the two teleconnec-
tions (Schrage et al., 1999; Hoell et al., 2013; Riddle et al.,
2013). Objective methods for considering this combined in-
fluence, as well as how it leads to SFOs, are therefore of in-
terest to both better provide real-time subseasonal forecast
guidance and understand sources of predictability.

Based on past success, this study uses a linear inverse
model (LIM; Penland and Sardeshmukh, 1995) and its asso-
ciated signal-to-noise metric “expected skill” (Sardeshmukh
et al., 2000; Newman et al., 2003) to anticipate SFOs over
southwest Asia. Albers and Newman (2019) used expected
skill to identify SFOs, at the time of forecast, for North Pa-
cific and North Atlantic 500 hPa geopotential height anoma-
lies. They found that periods of elevated expected-skill fore-
cast by the LIM identified more skillful forecasts compared
to the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Integrated Forecasting System (IFS) and
National Centers for Environmental Prediction Climate Fore-
cast System Version 2 (NCEP CFSv2) initialized forecast
systems, implying that sources of predictability are com-
mon among various model types. Albers and Newman (2021)
found that North Atlantic Oscillation (NAO) SFOs could be
identified in both the LIM and the IFS and were driven by a
set of ENSO-related climate modes, reflecting the utility of
the LIM in targeting regional phenomena.

Global processes and their unique interactions with local
precipitation and temperature ultimately produce SFOs and
can be identified by training a LIM on specific regional-
and/or large-scale interactions, as demonstrated in Breeden
et al. (2022) and Albers et al. (2022) for North American 2 m
temperature (2mT). Based on these results, here we develop
a LIM for subseasonal precipitation over southwest Asia that

has been designed in a similar manner. We will show that
precipitation SFOs determined using LIM expected skill can
successfully be identified for subseasonal precipitation over
southwest Asia with a LIM that is regional in precipitation
and temperature but large-scale with the inclusion of hemi-
spheric tropical outgoing longwave radiation (OLR), sea sur-
face temperatures (SSTs), and 200 hPa Northern Hemisphere
streamfunctions (9200). Another beneficial quality of the
LIM is the negligible computational power needed to gener-
ate a long record of hindcasts. This study will focus on LIM
SFOs and does not evaluate the skill of other models, though
past research suggests that forecasts generated elsewise can
similarly be more skillful during LIM-identified SFOs (Al-
bers and Newman, 2019, 2021).

The LIM developed for regional precipitation over south-
west Asia is used to test the hypothesis that SFOs can be
anticipated using theoretical expected skill and are associ-
ated with strong ENSO and MJO events. Section 2 introduces
the reanalysis and satellite products employed, how the LIM
is constructed, and how SFOs are identified using expected
skill. Section 3 shows a comparison of this approach to other
methods of anticipating periods of elevated forecast skill, as
well as the correspondence between forecasts of opportunity
and ENSO and the MJO. Section 4 contextualizes results and
proposes next steps.

2 Data and methods

2.1 Data

To train the LIM, 9200, 2mT, SST, and OLR data from
Japan Meteorological Agency 55-year Reanalysis (JRA-55;
Kobayashi et al., 2015) and precipitation from the Cli-
mate Hazards group Infrared Precipitation with Stations
(CHIRPS; Funk et al., 2015) dataset are used for the pe-
riod January–March in 1982–2020. Variables and their re-
spective domains are listed in Table 1. To consider how fore-
cast skill and forecasts of opportunity change as a function
of the ENSO phase, the Niño3.4 index was calculated us-
ing SST anomalies averaged from 5◦ N–5◦ S, 170–120◦W
(Trenberth, 1997; Trenberth and Stepaniak, 2001). For exam-
ining relationships between skill and the MJO, the real-time
multivariate MJO (RMM) index, a combined tropical OLR
and circulation index that is designed to capture characteris-
tics of the MJO (Wheeler and Hendon, 2004), is employed,
including RMM amplitude, which measures MJO strength,
and each day’s associated MJO phase, which tracks MJO lo-
cation. Finally, based on results in Sect. 3b, we assess the
strength of tropical OLR anomalies in the South Pacific con-
vergence zone (SPCZ; box in Fig. 10), defined as 10◦ S–
2.5◦ N, 140–180◦ E. The time series of OLR anomalies in
this region is considered a third metric, in addition to Niño3.4
and RMM, that might increase the likelihood of an SFO oc-
curring.
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Table 1. LIM variables that compose the state vector x, their do-
main, and the percent (%) variance explained by the retained em-
pirical orthogonal functions (EOFs). Variables include the 200 hPa
streamfunction (9200), the 2 m temperature (2mT), the sea surface
temperature (SST), and outgoing longwave radiation (OLR). Pre-
cipitation (Precip) from the Climate Hazards group Infrared Precip-
itation with Stations (Funk et al., 2015) Version 2.0 dataset (https:
//data.chc.ucsb.edu/products/CHIRPS-2.0/, last access: 21 October
2021) is also used. JRA-55 and CHIRPS are used because they
are available in near real time (2–3 d lag) and serve as the basis
for experimental real-time forecasts and because they are available
back to at least 1982. 9200, SST, and OLR anomalies are used on
a 2.5× 2.5◦ horizontal grid, while 2mT and Precip are used on a
0.5× 0.5◦ grid. The EOFs and principal components (PCs) retained
in x are not sensitive to the gridding used (not shown).

Variable Domain % variance No. EOFs
explained retained

SST 20◦ S–20◦ N, 0–357.5◦ E 63 % 8
OLR 20◦ S–20◦ N, 0–357.5◦ E 54 % 23
9200 0–90◦ N, 0–357.5◦ E 63 % 10
Precip 15–48◦ N, 40–80◦ E 70 % 10
2mT 15–45◦ N, 40–90◦ E 77 % 5

2.2 Linear inverse model

A LIM assumes that the evolution of a subset of climate
anomalies, defined in the state vector x, can be approximated
as the sum of a slowly evolving, potentially predictable com-
ponent and a rapidly decorrelating, unpredictable compo-
nent. Here we consider the evolution of the following climate
variables (Eqs. 1–2; Table 1):

x= {SST, OLR, 9200, 2mT, Precip}, (1)
dx
dt
= Lx+Fs, (2)

where the dynamic operator L represents the predictable
component of the evolution and Fs represents state-
independent white noise forcing that is unpredictable. The
LIM employed in this study is created using an L designed to
capture “slow and predictable” weekly-timescale variability,
as in past studies (Winkler et al., 2001; Newman et al., 2003;
Albers and Newman, 2019; Breeden et al., 2020; Hender-
son et al., 2020). Any predictable processes represented by
the variables in x are aggregated in the operator L, and their
net effect on the predictable evolution of the system is lever-
aged in the LIM (i.e., ENSO/MJO variability). To the extent
the key predictable relationships between the LIM variables,
whether truly linear or nonlinear, can be estimated linearly
through the covariance between model variables (Eq. 3), they
can be represented by L. As such, the LIM can include more
information than what is retained in models based on the lin-
earized equations of motion that explicitly exclude nonlinear
effects.

Consistently with focusing on the predictable, weekly
varying component of the system evolution, the climate
anomalies used in the LIM were calculated by removing
the 40-year daily climatology and then applying a 7 d mean.
Practically, one cannot use anomalies occurring after the ini-
tialization date to make a forecast, so instead of a centered 7 d
mean, the prior 6 d is averaged with the initialization date’s
anomalies to create the 7 d running-mean anomalies. Many
variable combinations and regional domains were tested, and
the combination used here was found to produce the highest
precipitation forecast skill during SFOs over southwest Asia.
Since the leading empirical orthogonal functions (EOFs) re-
tained in x are not sensitive to small changes in the 2mT and
Precip domains selected, LIM forecasts and SFOs are also
not sensitive to small changes in the regional domains. Note
that the influence of variables that are not explicitly included
in this LIM, for instance slowly evolving soil moisture, can
still be implicitly included in the LIM variables, such as 2mT.

The instantaneous C0 and 5 d lagged covariance Cτo be-
tween the state vector components are used to determine L:

L= ln
(
Cτo × inv(C0)

)
/τo. (3)

As a practical consideration to reduce the dimensionality
of L, each variable in x is truncated using EOF analysis,
where enough EOFs are retained to capture most of the vari-
ance in each variable and region (Table 1). The covariance
and lagged covariance are then computed using the principal
components that are retained.

A specific training lag τo must be selected to compute the
lagged covariance. If the system were perfectly linear and
forced by white noise, L would not be sensitive to the train-
ing lag, but in practice there are constraints on the range of
training lags that are appropriate, which is determined us-
ing the “τ test” (Penland and Sardeshmukh, 1995). For this
LIM, a training lag of 5 d is used, which is consistent with the
range of stable training lags for LIMs similar to the one used
here (Winkler et al., 2001; Newman et al., 2003; Breeden et
al., 2020; Henderson et al., 2020). For further information
on the sensitivity of weekly LIMs to training lag and addi-
tional parameters, the reader is referred to Sect. 5 of Winkler
et al. (2001).

Similarly to output from numerical forecast models, for
each initialization and lead time τ , the LIM generates fore-
casts of the state vector, x̂(τ ) (Eq. 4; Fig. 1), by propagating
the initial conditions x(0) forward in time. In the LIM, the
propagator G(τ ) is determined from L by solving the homo-
geneous component of Eq. (2) (Penland and Sardeshmukh,
1995). For this study, forecasts are generated at a daily time
step out to a lead time of 42 d. We note that because the LIM
is trained on daily anomalies with a 7 d running mean ap-
plied, the forecasts are also lower-frequency in nature.

x̂(τ )= x(0)exp(Lτ)= x(0)G(τ ) (4)

LIM forecast skill is assessed using 10-fold cross-validation,
done by removing 10 % of the data, re-computing L, and gen-
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Figure 1. Schematic of LIM forecast for a lead time of 15 d.

erating forecasts for the 10 % of initializations that were re-
moved (e.g., Albers and Newman, 2019). This process is re-
peated to generate forecasts for 1982–2020, initialized daily
from 1 January–20 March each year. LIM forecast skill is
assessed in two ways: using the anomaly correlation coeffi-
cient (ACC), where the LIM forecast and un-truncated (i.e.,
full-field) verification precipitation is compared at each grid
point, and using the pattern correlation coefficient (PCC),
where the LIM forecast and un-truncated verification pre-
cipitation are compared at each time step using the uncen-
tered, cosine-weighted correlation between all grid points
over southwest Asia (e.g., Albers and Newman, 2019). The
ACC measures skill over the full period while preserving ge-
ographic information about skill, while the PCC measures
the average skill over the entire southwest Asian domain but
maintains information about how individual forecasts per-
formed. Average forecasts using different lead times are cate-
gorized as follows: week 1 forecast lead times 1–7 d, week 2
forecast lead times 8-14 d, week 3 forecast lead times 15–
21 d, week 4 forecast lead times 22–28 d, week 5 forecast
lead times 29–35 d, and week 6 forecast lead times 36–42 d.
Weeks 3–4 and weeks 5–6 forecasts are determined using the
corresponding 14 d averaged forecasts at the corresponding
lead times.

2.2.1 Forecasts of opportunity

A common approach to anticipate SFOs is to focus on a spe-
cific predictability source, e.g., strong tropical heating asso-
ciated with ENSO or the MJO. However, many potentially
predictable signals may be evolving at any given time (Al-
bers et al., 2022), and the constructive or destructive interfer-
ence between each signal’s teleconnections may enhance or
degrade the overall predictable forecast signal for variables
that we are interested in, e.g., southwest Asian precipitation.
Thus, it is more desirable to use a method that considers all
relevant signals and their combined influence to anticipate
the overall likelihood of a skillful forecast over the region of
interest. Here, following Sardeshmukh et al. (2000), the the-
oretical expected skill of a perfect, infinite ensemble member
forecast, ρ∞(τ t) (Eq. 5), is selected to identify SFOs, based
on the method’s past success. In particular, ρ∞ is calculated
using the pattern correlation version of the LIM signal-to-
noise ratio, S2 (Eq. 6; Newman et al., 2003), and is evaluated

over the southwest Asian domain for each forecast lead time
τ and each initialization date t . As a result, S2 and ρ∞ are a
function of time but not space:

ρ∞ (τ, t)=
S2(τ, t){[

S2 (τ, t)+ 1
]
S2 (τ, t)

}0.5 , (5)

S2 (τ, t)=
tr[F(τ, t)]
tr[E(τ )]

. (6)

S2 is determined using F(τ, t), the forecast signal covariance
matrix determined at a given lead time, which indicates the
strength of the predictable signal in the forecasts, and E(τ ),
the forecast error covariance matrix which represents lead-
dependent, unpredictable “noise”:

F(τ, t)= 〈x̂(t + τ) x̂(t + τ)′〉, (7)
E(τ )= C0−G(τ )C0G(τ )′, (8)

where ′ denotes the matrix transpose. Note that E is not a
function of time, which is consistent with the assumption of
state-independent noise (Eq. 2), but does vary with forecast
lead time τ .

We define SFOs as the top 20 % of expected-skill forecasts
as this subset accurately identifies significantly more skillful
forecasts for a range of lead times (Fig. 2). The ACC and
PCC during these dates are compared to the skill when, in-
stead of expected skill, the top 20 % of Niño3.4 amplitude
and RMM amplitude values are used to identify periods of
elevated skill. The skill during these three subsets of fore-
casts (ρ∞, Niño3.4, RMM) is compared to the skill of the re-
maining 80 % of expected-skill forecasts, and the 95 % con-
fidence level in the skill differences during the three subsets
is assessed nonparametrically, using bootstrapping with re-
placement. Similar skill differences were found for a range
of 10 %–25 % of the forecasts in the SFO group, and 20 %
was chosen because it provided the greatest number of sam-
ples – useful for further separating forecasts by ENSO and
MJO phase later – but was small enough so that the subset
has significantly elevated skill.

2.2.2 Relative risk

A relative-risk ratio is used to quantify shifts in the likelihood
of an SFO occurring as a function of ENSO, MJO, and SPCZ
OLR strength. This is done, for each index, by determining
the fraction (FRAC) of SFOs initialized on days with index
values of varying amplitude:

FRAC= no. SFOs/no. dates. (9)

For ENSO and SPCZ OLR, changes in SFOs during posi-
tive and negative index values of varying threshold are con-
sidered, while RMM is always positive. Instead, we assess
changes in SFOs during MJO phases 2–3 or 6–7 and increas-
ing RMM thresholds. To determine the relative risk of an
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Figure 2. PDFs of actual skill measured by pattern correlation
(PCC), for the top 20 % and bottom 20 % of expected-skill dates
for weeks of lead times (a) 2 to (d) 5. The green circles represent
the bootstrapped median values, and the black circles represent the
bootstrapped 95th-percentile values.

SFO compared to the probability of one occurring on any
random day, we divide FRAC calculated for each threshold
and index group by 0.2 – since for the top 20 % of expected-
skill dates, the chance of one occurring on any date in the
forecast period is 0.2:

relative risk= FRAC/0.2. (10)

As an example, for weeks 3–4 SFOs when Niño3.4> 1.5,
117 SFOs are found during the 269 d exceeding that thresh-
old, corresponding to FRAC= 0.44 and relative risk= 2.2.
The robustness of these estimates is evaluated by determin-
ing the 95 % confidence bounds around the relative-risk esti-
mates using bootstrapping with replacement.

3 Results

Section 3.1 shows how expected skill can stratify skillful and
unskillful forecasts to identify SFOs and demonstrates how
strong ENSO and MJO phases increase the likelihood of an
SFO occurring. Section 3.2 reveals how anomalous SPCZ
OLR is observed during both wet and dry SFOs, as well as
how predictable patterns during El Niño and La Niña condi-
tions are associated with unique circulation features.

3.1 Identifying forecasts of opportunity

The distribution of LIM forecast skill, measured by the PCC
during the top and bottom 20 % of theoretical expected-skill
forecasts (Eq. 5), confirms that the high-expected-skill group
successfully identifies more skillful forecasts than the low-
expected-skill group (Fig. 2). Note that for each lead time,
the high-expected-skill and low-expected-skill dates iden-
tified are not necessarily the same. For lead times of 2–4
weeks, both the median and the 95th-percentile values of
the PDFs of forecasts initialized on high-expected-skill dates
show statistically significant shifts towards higher PCC, with
the greatest skill increases, relative to the bottom 20 % group,
at the shortest lead time of 2 weeks (Fig. 2a). The distribu-
tion of the week 2 PCC is also the narrowest for the high-
expected-skill group, a reflection of the more deterministic
nature of forecasts at this lead time, particularly during peri-
ods of high signal-to-noise ratios (Eq. 6). As lead time in-
creases, the distribution of skill widens as forecast uncer-
tainty increases, so that by week 5, the medians are indis-
tinguishable between the two PCC distributions. Still, some
skillful forecasts remain at week 5 in the high-expected-skill
group, shown by the statistically significant shift in the 95th
percentile of the PCC.

Subseasonal precipitation skill, evaluated using the ACC
for weeks 3–4 and weeks 5–6, is low, as discussed in past
studies, but increases substantially during high-expected-
skill periods (Figs. 3–4). The LIM “all dates” weeks 3–4 skill
of 0.2–0.3 ACCs exceeds the week 3 skill of most of the
subseasonal-to-seasonal (S2S) models evaluated by de An-
drade et al. (2018) for November–March 1999–2009 (com-
pare Fig. 3a to their Fig. 1). Comparing the three approaches
to anticipating SFOs – high expected skill, Niño3.4, and
RMM – expected skill most successfully anticipates SFOs
at both weeks 3–4 and weeks 5–6. The location of maximum
skill shifts southeastward from weeks 3–4 to 5–6, with skill
also weakening at longer lead times as expected. While there
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Figure 3. The anomaly correlation coefficient (ACC) for weeks 3–4 forecasts, evaluated from January–March 1982–2020. (a) The ACC for
all dates in the record; (b) the ACC for the 20 % of forecasts initialized with the highest expected skill; (c) the ACC for the 20 % with the
highest Niño3.4 amplitude; (d) the ACC for the 20 % with the highest RMM amplitude. The black stippling indicates where the skill of
the top 20 % of forecasts in each group is statistically significantly different from the skill of the remaining 80 % of forecasts at the 95 %
confidence level, determined nonparametrically with bootstrapping.

Figure 4. As in Fig. 3 but for weeks 5–6 forecasts.

are some regions experiencing a skill increase during the top
20 % of Niño3.4 and RMM amplitude dates, the increases
are mainly indistinguishable from the skill of the remaining
forecasts (Figs. 3c, d and 4c, d). Splitting the Niño3.4 in-
dex to consider only strong El Niño or La Niña events indi-
cates that some regions do experience elevated skill during
both phases, though in different, localized regions that only
cover a limited portion of the region compared to the fore-
casts identified using expected skill (Fig. S1 in the Supple-
ment).

Considering PCC during the high-expected-skill, Niño3.4,
and RMM dates confirms that forecasts initialized during pe-
riods of high expected skill generally have higher PCCs than

those identified using Niño3.4 and RMM (Fig. 5). For lead
times of between 2–4 weeks, statistically significant median
PCC shifts, as well as the increased probability density of
forecasts with PCC> 0.5, reflect the increase in skill. By
week 5, the distributions of PCC during high-expected-skill
and high-Niño3.4 dates become indistinguishable, which is
consistent with greater similarity in the regions of skill found
using Niño3.4 and expected skill at weeks 5–6 (Fig. 4). Over-
all, the expected-skill metric is more effective at anticipating
SFOs than Niño3.4 and RMM.
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Figure 5. PDFs of the precipitation PCC for all forecasts (black
lines) and the 20 % of forecasts with the highest-expected-skill
(blue), the highest-Niño3.4 (red), and the highest-RMM (green) ini-
tializations. The bootstrapped confidence intervals for the median
and 95th percentile of the distribution are shown with the markers.

Relating SFOs to Niño3.4 and RMM indices

The advantage of using high expected skill to anticipate
SFOs is that it measures when the combined signal of all
forcings (e.g., ENSO, MJO) is high relative to unpredictable
noise. High expected skill occurs during periods of con-
structive interference between signals, while low expected
skill reflects periods of deconstructive interference (e.g., Far-
rell, 1988; Farrell and Ioannou, 1996; Albers and Newman,
2019), and such interference is more intermittent than the in-
dividual forcing elements (Figs. 6, 8). As such, despite what
is shown in Figs. 2–4, many high-expected-skill dates oc-
cur during strong ENSO and MJO events, as indicated by
the overlay of SFOs (black dots) with time series of Niño3.4
(Fig. 6) and RMM (Fig. 8). The bottom 20 % of expected-
skill forecasts are also shown by the vertical light gray
lines to contrast the higher-frequency expected skill with the
lower-frequency Niño3.4 and RMM. The correspondence to
Niño3.4 is considered first. Both El Niño events of 1983 and
2016 coincided with high-expected-skill dates at weeks 3–
4 and 5–6, though on different dates; conversely, the 1998
event was not associated with any high-expected-skill dates
at weeks 5–6 but was for weeks 3–4. Strong La Niña events,
such as in 1999, also reflect periods of high expected skill.
Still, there are many high-expected-skill forecasts initialized
on dates with weak Niño3.4 values, as in 2017, since other
processes – including ENSO-related heating not captured by
Niño3.4 – can produce a high signal-to-noise ratio. More-
over, some of the lowest-expected-skill dates occur during
strong ENSO events, such as in 2016 for weeks 3–4 at the
beginning of February, suggesting other processes may have
been destructively interfering with the ENSO-related compo-
nent.

High Niño3.4 index amplitude during both El Niño and
La Niña events leads to increases in the risk of SFO occur-
rence, though more strongly during the former than the latter
(Fig. 7). There is a greater relative risk for SFOs in weeks 5–
6 than weeks 3–4, suggesting that at longer lead times within
the subseasonal forecast period, ENSO conditions are in-
creasingly important for SFOs. However, it is important to
note that skill during these periods is overall lower than for
weeks 3–4 (Figs. 3–4), which could be due to the limited ca-
pability of ENSO alone to impact predictability and/or to ele-
vated noise. The asymmetric relative risk during El Niño and
La Niña conditions may reflect the fact that there are more
frequent high-amplitude El Niño events than La Niña events,
increasing the number of samples at higher Niño3.4 thresh-
olds. Indeed, Niño3.4 exceeds 1.5 ◦C on 269 d, compared to
192 d where Niño3.4 is less than −1.5 ◦C. The stronger re-
sponse during El Niño conditions than La Niña could also be
consistent with Hoell et al. (2018a), who found precipitation
shifts during both CP and EP El Niño events but only CP La
Niña events, although future work is needed to better explore
these nuances.
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Figure 6. The color shading shows the Niño3.4 index and is the same in both panels. The black dots indicate the top 20 % of expected-
skill forecasts, and the gray vertical lines represent the bottom 20 % of expected-skill forecasts, for weeks 3–4 forecasts (a) and weeks 5–6
forecasts (b).

Figure 7. The black line shows the relative risk, relative to the risk on any given day, of an SFO, meaning one of the top 20 % of expected-skill
dates, occurring when the Niño3.4 index is greater than various thresholds, with 95 % confidence intervals in gray shading.

Discerning a relationship between MJO phases 2–3 and
6–7, the phases that impart known teleconnections to south-
west Asian precipitation (Hoell et al., 2018b), can be more
difficult given the more transient nature of the MJO com-
pounded with transient expected skill (Fig. 8). Only the rela-

tionship between RMM and weeks 3–4 expected skill is con-
sidered, as an MJO teleconnection at 5–6-week lead times is
not physically plausible (e.g., Tseng et al., 2018). Still, we do
find that particularly strong events for phases 2–3 and 6–7 in-
crease the relative risk of weeks 3–4 SFOs, though sampling
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Figure 8. As in Fig. 6 but for the amplitude of the RMM index during (a) MJO phases 2–3 and (b) MJO phases 6–7 and for weeks 3–4
expected-skill dates.

Figure 9. As in Fig. 7 but for weeks 3–4 expected skill and for varying RMM amplitude during either (a) MJO phases 2–3 or (b) MJO
phases 6–7.

introduces spread into these estimates (Fig. 9). Some partic-
ularly high-amplitude MJO events, including phases 2–3 in
1985 and 1993 and phases 6–7 in 2005 and 2018, overlap
with periods of weeks 3–4 high expected skill, while some
weaker-amplitude events overlap with some of the lowest-
expected-skill dates, such as phases 2–3 in late January 2002.
The strong RMM phases 6–7 are also associated with an in-

crease in the relative risk of SFOs, which increases at lower
RMM thresholds compared to in phases 2–3 and does not
display the exponential increase at the highest thresholds.
These subtle differences in relative-risk sensitivity could re-
flect true differences in the MJO teleconnection to the region
or could be due to sampling, as there is high uncertainty in
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the relative-risk estimates given the small number of events
observed at such high thresholds.

3.2 Characteristics of predictable dry and wet
initializations

This section considers the composite patterns preceding pre-
dictable wet and dry periods 18 d earlier, revealing the role of
anomalous heating near the SPCZ. Next, composite wet and
dry periods are split by their Niño3.4 sign, revealing how dif-
ferent circulation responses during each phase produce same-
signed precipitation anomalies over southwest Asia.

3.2.1 All initializations

First, we consider the patterns preceding anomalously wet
and dry periods regardless of ENSO phase, where “wet”
and “dry” are defined using the top and bottom terciles of
southwest Asian precipitation anomalies, respectively. Wet
and dry dates that were associated with weeks 3–4 high-
expected-skill dates initialized 18 d earlier and were also
characterized by a PCC> 0 are considered. A lead time of
18 d is chosen because it falls within the weeks 3–4 forecast
period and provides the clearest circulation structures, which
are similar but weaker at longer lead times (not shown).
An 18 d lag is also consistent with the circulation response
to tropical diabatic heating anomalies discussed in Jin and
Hoskins (1995), which peaked about 15 d after the heating
occurred. For these skillful, high-expected-skill forecasts as-
sociated with the development of anomalously wet or dry
precipitation anomalies, we consider the composite circula-
tion and heating patterns observed at the time of initializa-
tion, meaning 18 d before the anomalous precipitation was
observed.

Figure 10 shows that during weeks 3–4 SFOs initialized
before predictable wet and dry periods over southwest Asia,
anomalies are roughly equal and opposite in sign. Before dry
periods, positive OLR anomalies are located over the western
and central tropical Pacific, signifying suppressed convec-
tion, while a 200 hPa anticyclone (positive 9200 anomaly) is
located over southwest Asia, consistent with downward ver-
tical motion and suppressed precipitation. Conversely, pre-
dictable anomalously wet periods are associated with en-
hanced anomalous central Pacific convection and a cyclonic
9200 anomaly over southwest Asia. One feature present dur-
ing dry initializations is a small but statistically significant
negative OLR anomaly in the eastern Indian Ocean, which
does not have a counterpart during wet initializations. South-
west Asian precipitation is strongly linked to heating vari-
ability in this location (Hoell et al., 2012), and the results
here suggest that the relationship might be particularly im-
portant for anomalously dry periods.

Figure 10. Composite OLR (color shading) and 9200 (black-
/gray contours) anomalies, during (a) high-expected-skill initializa-
tions verified on anomalously dry days 18 d later, N = 142 d, and
(b) high-expected-skill initializations verified on anomalously wet
days 18 d later, N = 163. The black contours show positive (anticy-
clonic) streamfunction anomalies, and the gray contours show nega-
tive (cyclonic) streamfunction anomalies, contoured at an interval of
3× 106 m2 s−1 beginning at±3× 106 m2 s−1. Only anomalies that
are statistically significant at the 95 % confidence level are shown.

3.2.2 El Niño and La Niña initializations

Section 3.1 indicated that, while anticipating SFOs based
on the Niño3.4 index alone is less successful than expected
skill (Figs. 3–4), periods of strong ENSO activity increase
the likelihood of a forecast of opportunity occurring, par-
ticularly during the strongest events (Fig. 7). During either
ENSO phase, periods of anomalously high and low precipi-
tation can occur due to transient disturbances forming along
the subtropical jet. However, the manner in which precip-
itation anomalies develop differs between El Niño and La
Niña, due to ENSO’s influence on the mean jet and baro-
clinic waves (Shapiro et al., 2001), whose life cycles differ
under different mean states (Thorncroft et al., 1993). This
section examines how predictable wet and dry initializations
differ by ENSO phase given the hypothesized differences in
teleconnections in each phase.

Splitting dry and wet forecast initializations into periods
when Niño3.4 is positive or negative to reflect El Niño or
La Niña conditions, without losing any samples, indicates
that even when preceding same-signed precipitation anoma-
lies, El Niño and La Niña conditions are associated with dif-
ferent large-scale circulation patterns (cf. Fig. 11a, c and b,
d). By construction, there are clear differences in SST and
OLR associated with El Niño and La Niña conditions, as well
as North Pacific 9200 anomalies associated with ENSO-like
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Figure 11. As in Fig. 10 but for groups divided by Niño3.4< 0 (“La Niña”) or Niño3.4> 0 (“El Niño”) and with negative SST anomalies in
blue contours and positive SST anomalies shown in red, at a contour interval of 0.5 ◦C.

tropical heating (Winkler et al., 2001; Breeden et al., 2020;
Henderson et al., 2020). During La Niña conditions, dry pe-
riods include an anticyclonic anomaly over southwest Asia,
while during dry El Niño initializations there are cyclonic
features north and east of southwest Asia and weak anoma-
lies directly over the region (cf. Fig. 11a, c). In contrast to
the circulation pattern during dry El Niño periods (Fig. 11c),
during wet periods, El Niño conditions are associated with
an amplified 9200 pattern, with two high-amplitude cyclonic
anomalies located over Eurasia (Fig. 11d). Conversely, at the
time of initialization during wet La Niña periods, negligible
9200 anomalies are observed (Fig. 11b).

What distinguishes rainy La Niña or El Niño periods from
dry La Niña or El Niño periods? While the heating and SST
dipole patterns are consistent with each ENSO phase for both
wet and dry periods, there are differences in heating strength
and location (cf. Fig. 11a, b and c, d). Dry La Niña initial-
izations include stronger negative SST anomalies and sup-
pressed convection in the central Pacific compared to rainy
periods, which instead involve enhanced convection over the
Maritime Continent. Dry El Niño periods include stronger
suppressed convection over the Maritime Continent than wet
El Niño dates, coinciding with a hint of a wave train ema-
nating from the eastern Pacific across North America and the
North Atlantic. Dry La Niña dates are more common than
wet La Niña dates, 84 vs. 67 d, while wet El Niño dates are
more common than dry El Niño dates, 96 vs. 57 d, which is
consistent with past research linking seasonal mean depar-
tures of southwest Asian precipitation to ENSO (Hoell et al.,
2018a).

Differencing the dry and wet composites between each
ENSO phase reveals the common element of suppressed
SPCZ convection and cooler central Pacific SSTs during dry

periods relative to wet periods (Fig. 12). Dry periods dur-
ing El Niño conditions are associated with warmer SSTs in
the eastern Pacific than are wet periods (Fig. 12b), while no
such differences in SSTs or OLR are observed in the east-
ern Pacific during La Niña conditions (Fig. 12a). While dis-
tinct from one another, the9200 patterns during both El Niño
and La Niña conditions place an anomalous anticyclone over
southwest Asia during dry events, consistent with suppressed
precipitation. The 9200 patterns during dry versus wet peri-
ods differ, with La Niña conditions displaying weak anticy-
clonic anomalies in the subtropical North Pacific and North
Atlantic and El Niño conditions associated with an upper-
level wave train emanating from the eastern tropical Pacific,
across the North Atlantic to Europe, potentially linked to
the anomaly over southwest Asia. The orientation of such
a wave train is consistent with the evolution described by
Shaman and Tziperman (2005), who found a northeastward-
propagating wave train emanating from the eastern central
Pacific during strong ENSO events, which ultimately mod-
ulated Tibetan snow depth. Thus, while the heating differ-
ence between dry and rainy periods is similar regardless of
the ENSO phase, the impact of the anomalous heating on the
circulation is different but coincidentally yields a reduction
in precipitation over southwest Asia. The different circula-
tion responses are consistent with the modified mean states
of each ENSO phase, though more work is required to fur-
ther understand these nuanced relationships, preferably with
a larger sample size. Dry baroclinic modeling experiments
could be useful in disentangling the role of the basic state
and thermal forcing in producing this response.
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Figure 12. Composite difference, dry−wet, during (a) La Niña
conditions (Fig. 11a–b) and (b) El Niño conditions (Fig. 11c–d).
Plotting conventions are as in Fig. 11, except the contour interval
for SST anomalies (blue and red contours) is 0.25 ◦C.

3.2.3 Relative risk associated with SPCZ OLR

Given the OLR anomalies in the SPCZ region noted during
both predictable wet and predictable dry forecast initializa-
tions (Figs. 10, 12), a time series of OLR over the region was
selected for a final metric to consider related to weeks 3–
4 SFOs. Similarly to considering Niño3.4 and RMM, the
relative risk of an SFO occurring increases significantly as
the standard deviation of SPCZ OLR anomalies increases
(Fig. 13). The response during negative and positive SPCZ
OLR anomaly values is more symmetric than the risk associ-
ated with an increasing Niño3.4 threshold, which indicated a
greater relative-risk increase during El Niño than during La
Niña conditions (Fig. 7), or comparing the impact of MJO
phases 2–3 vs. 6–7 (Fig. 9). This symmetry is further sup-
ported with the 18 d lagged regression of the southwest Asian
precipitation time series with OLR (Fig. S2), although the
regression pattern OLR anomalies are weaker than the com-
posite OLR during the SFOs considered in Figs. 10 and 12.
The SPCZ OLR time series is correlated with the Niño3.4 in-
dex at r =−0.25, an indication that the SFOs associated with
SPCZ OLR are not redundant with Niño3.4-related SFOs
and therefore contain additional information about SFOs re-
lated to tropical variability. As such, the expected-skill ap-
proach to SFOs benefits from measuring shifts in the like-
lihood of a forecast of opportunity captured by several dis-
tinct indices tracking tropical variability, Niño3.4, RMM, and
SPCZ OLR, a distinct advantage over using an index that
tracks only one of these processes (Figs. 3–4).

Figure 13. As in Fig. 7 but for using the standard deviation of the
SPCZ OLR anomaly time series, calculated using the boxed region
in Fig. 10 and for weeks 3–4 expected skill.

4 Conclusions

In this study, precipitation SFOs are considered over south-
west Asia using LIM expected skill, a metric related to the
forecast signal-to-noise ratio that leverages the constructive
interference of all signals impacting predictability. Strong El
Niño, La Niña, and MJO phase 2–3 and phase 6–7 condi-
tions increase the chances that an SFO occurs. A third trop-
ical heating index, based on anomalous OLR in the SPCZ
region, also increases the risk of an SFO (Fig. 13). The cor-
respondence between expected skill and several indices high-
lights the advantage of using expected skill, in that all of
these flavors of tropical heating are registered as high sig-
nals. However, there are still SFOs that do not correspond to
any one of these indices, since other processes, potentially
not tropically driven, can produce a high signal too. Future
work could focus on categorizing all SFOs to examine these
potential additional factors.

In addition to the confirmed influence of ENSO and MJO
activity on southwest Asian precipitation, anomalous heat-
ing across the SPCZ region is a common element among
predictable wet and dry initializations and increases the rel-
ative risk of an SFO. Heating in this region is also associ-
ated with different circulation patterns during El Niño and
La Niña conditions (Fig. 12). How these different circulation
patterns are related to similarly located anomalous heating
anomalies is currently not well understood but likely involves
the modified tropopause-level waveguide present during each
ENSO phase, which modulates the extratropical response to
tropical heating (Sardeshmukh and Hoskins, 1988; Newman
and Sardeshmukh, 1998; Shapiro et al., 2001). Dry baroclinic
modeling experiments with idealized heating could be used
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to quantify the contribution of tropical heating over the In-
dian Ocean and western Pacific affecting the circulation over
southwest Asia on subseasonal timescales. We also note that,
while widely used, ENSO indices such as Niño3 or Niño3.4
do not capture the full spectrum of ENSO variability (Pen-
land and Sardeshmukh, 1995; Newman et al., 2009; Gehne
et al., 2014; Henderson et al., 2020; Albers and Newman,
2021). Future work could employ the dynamical decoupling
approach of Henderson et al. (2020) to isolate the ENSO sig-
nal and its impact on precipitation SFOs more holistically.

The association between forecasts of opportunity and the
MJO is less constrained given the higher-frequency nature
of the MJO and small sample size once RMM is sorted by
phase, but it still indicates a role for strong MJO events in
phases 2–3 or 6–7 to increase the likelihood of a weeks 3–
4 SFO occurring, consistent with prior studies (Cannon et
al., 2017; Hoell et al., 2018b). Further suggesting a role
for MJO-like heating, predictable heating patterns associated
with forecasts of opportunity indicate a role for anomalous
convection over the Indian Ocean during dry periods, con-
sistent with MJO phases 2–3 suppressing southwest Asian
precipitation (Fig. 10a). Future work could employ large cli-
mate simulation output to enhance sample size and revisit the
MJO–expected-skill relationship and the extent the model
can reproduce the mean state and the MJO itself. Another
remaining question that could be addressed more aptly with
a larger sample size is how ENSO and the MJO act together
to impact SFOs for southwest Asian precipitation events, par-
ticularly concerning their magnitude and duration, which was
beyond the scope of this study but merits further investiga-
tion.
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