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Abstract. The relative impact of individual and combined
uncertainties of cloud condensation nuclei (CCN) concentra-
tion and the shape parameter of the cloud droplet size distri-
bution (CDSD) in the presence of initial and boundary con-
dition uncertainty (IBC) on convection forecasts is quantified
using the convection-permitting model ICON-D2 (ICOsahe-
dral Non-hydrostatic). We performed 180-member ensem-
ble simulations for five real case studies representing differ-
ent synoptic forcing situations over Germany and inspected
the precipitation variability on different spatial and temporal
scales. During weak synoptic control, the relative impact of
combined microphysical uncertainty on daily area-averaged
precipitation accounts for about one-third of the variability
caused by operational IBC uncertainty. The effect of com-
bined microphysical perturbations exceeds the impact of in-
dividual CCN or CDSD perturbations and is twice as large
during weak control. The combination of IBC and micro-
physical uncertainty affects the extremes of daily spatially
averaged rainfall of individual members by extending the
tails of the forecast distribution by 5 % in weakly forced
conditions. The responses are relatively insensitive in strong
forcing situations. Visual inspection and objective analysis of
the spatial variability in hourly rainfall rates reveal that IBC
and microphysical uncertainties alter the spatial variability
in precipitation forecasts differently. Microphysical pertur-
bations slightly shift convective cells but affect precipitation
intensities, while IBC perturbations scramble the location of
convection during weak control. Cloud and rainwater con-
tents are more sensitive to microphysical uncertainty than
precipitation and less dependent on synoptic control.

1 Introduction

Weather forecasts are subject to many sources of uncertainty.
The uncertainties originate from, among others, the unknown
true state of the atmosphere, as well as imperfect representa-
tions and approximations of physical processes in numerical
weather prediction (NWP) models. The chaotic nature of the
atmosphere can amplify inherent uncertainties leading to re-
duced forecast accuracy and limited predictability.

Ensemble prediction systems (EPSs) allow us to esti-
mate the forecast uncertainty. In regional convective-scale
EPSs, there are essentially three key sources of uncertainty.
First, initial condition uncertainty is usually implemented
by means of variational or ensemble data assimilation sys-
tems (Bannister, 2017; Schraff et al., 2016). Secondly, lat-
eral boundary condition uncertainty necessary to avoid un-
derdispersion of the ensemble is mostly provided by coarser
ensemble forecasts at regular time intervals throughout the
forecast horizon. Thirdly, there is an incomplete description
of physical processes and an insufficient representation of
the subgrid-scale variability in NWP models also known as
model error.

One of the crucial benefits of convective-scale models is
the possibility to explicitly describe (deep) moist convec-
tion and thus to be able to omit an error-prone parametri-
sation scheme for deep convection that is a known model
error source. Other important physical processes that are
not resolved in models with kilometre-scale grid spacings
and need to be accurately represented to forecast convec-
tive precipitation comprise boundary-layer turbulence, cloud
microphysics and its interaction with aerosols (Clark et al.,
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2016). In the present study, we inspect the relative impact
of a cloud microphysical uncertainty in combination with
different aerosol concentrations both implemented in a full
convective-scale EPS framework including initial and lateral
boundary condition (IBC) uncertainty.

Microphysical processes are essential to forming precipi-
tation. Due to their inherent small spatial and temporal scale
these processes are not only difficult to observe but also to
understand and represent in NWP models. Moreover, many
microphysical processes are insufficiently constrained by ob-
servations. The impact of parameter perturbations in micro-
physics parametrisations has been studied extensively with
mostly single deterministic idealised (e.g. Grant and van
den Heever, 2015; Glassmeier and Lohmann, 2018; Heiken-
feld et al., 2019; Chua and Ming, 2020; Wellmann et al.,
2020) or realistic (e.g. Bryan and Morrison, 2012; Barthlott
and Hoose, 2018; Schneider et al., 2019; Baur et al., 2022;
Barthlott et al., 2022a, b) simulations using a variety of NWP
models and schemes. However, because of the large variabil-
ity between schemes and cases, results from different sys-
tems are difficult to generalise.

The impact of aerosols on microphysical processes in the
formation of convective clouds and precipitation remains
highly uncertain. The amount of aerosol in the atmosphere is
one of the important factors influencing cloud formation. In
general, more aerosol particles, which act as cloud conden-
sation nuclei (CCN), activate condensation and increase the
cloud water content while reducing the average size of cloud
droplets. Smaller cloud droplet sizes and more narrow cloud
droplet size distributions (CDSDs) inhibit the generation
and growth of raindrops primarily caused by the collision–
coalescence process, thus prolonging the lifetime of clouds
(Albrecht, 1989). A smaller droplet size shows a negative im-
pact on precipitation in many cases, but the impact of CCN
perturbations on precipitation is not always straightforward,
as an increase in CCN provides more cloud water. Systematic
responses of varied CCN concentrations on precipitation are
reported in numerous studies with a large variety depending
on the model used and case chosen (Table 1 in Tao and Li,
2016). For example, Fan et al. (2009) show a negative impact
and the dependence of wind conditions in idealised large-
eddy simulations using a bin microphysics scheme, while
Wang (2005) and Baur et al. (2022) show positive ones at-
tributed to convection enhancement and the suppression of
rain evaporation, respectively, using two-moment bulk mi-
crophysics schemes with a grid spacing of around 2 km. Keil
et al. (2019) evaluate the impact of CCN uncertainties on pre-
cipitation and find that the spread of CCN-perturbed ensem-
ble forecasts is greater than the impact due to soil moisture.
This effect is more pronounced during atmospheric condi-
tions when the synoptic-scale forcing is weak.

In current operational NWP systems, grid-scale micro-
physical processes are mostly approximated by cost-efficient
one-moment bulk microphysics schemes due to the limita-
tion of computational resources. In these parametrisations

only the hydrometeor mass is prognostic. In two-moment
microphysics schemes that are widely used in research, the
number concentration of hydrometeors can also be predicted.
It is therefore possible to calculate mean particle radii at each
model grid point and estimate more realistic CDSDs. The
shape of the CDSD is controlled by ν, the pre-defined shape
parameter.

The width of the CDSD is not well constrained by obser-
vations, and previous observational studies revealed a large
range of the shape parameter between 0–14 (see, for exam-
ple, Table 1 in Igel and van den Heever, 2017b). Thus the
shape of the CDSD constitutes a potentially relevant source
of microphysical uncertainty to be included in ensemble sys-
tems.

In general, the broader the CDSD is, the more efficient
the collision–coalescence process will be, since hydrome-
teor particles of various sizes are present in the atmosphere.
Hence the shape parameter perturbation of the CDSD affects
the cloud lifetime and raindrop growth as well. The impor-
tance of the CDSD on precipitation forecasts has been evalu-
ated by means of idealised simulations (e.g. Igel and van den
Heever, 2017a). Recently, Barthlott et al. (2022a, b) showed
that narrowing of the CDSD can produce almost as large a
variation in precipitation as a CCN increase from maritime
to polluted conditions in realistic simulations.

The ultimate impact of various uncertainties described
above varies greatly depending on the prevailing flow con-
ditions. A successful approach to classify convective precip-
itation regimes is to focus on the strength and type of forcing
that is driving convection. An objective measure for such a
classification constitutes the convective adjustment timescale
τc that provides a timescale over which CAPE (convective
available potential energy) is consumed by precipitation. In
strong synoptic forcing situations, when ascending motions
caused by the synoptic-scale flow lead to precipitation and
the continuously produced CAPE is consumed immediately,
the regime is in a kind of equilibrium, in which τc attains
small values. On the other hand, in a weak synoptic forcing
situation, CAPE accumulates until local phenomena that can
initiate convection occur and precipitation shows an intermit-
tent character. In this situation, τc can temporarily increase,
especially before the initiation of convective precipitation in
the afternoon. The strength of the synoptic control is found to
influence the predictability and the impact of different types
of perturbations on precipitation (Flack et al., 2016, 2018;
Keil et al., 2019; Weyn and Durran, 2019).

The goal of the present study is to estimate the relative
importance of microphysical uncertainties of precipitation
in the presence of IBC uncertainties conditional on differ-
ent synoptic control across central Europe. The microphys-
ical perturbations comprise three different aerosol concen-
trations and three different shape parameters governing the
CDSD. We conduct 180-member ensemble experiments us-
ing an operational convective-scale NWP system for 5 d in
August 2020 during different weather conditions. Specifi-
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cally, the following research questions are addressed in this
study:

– What is the relative impact of individual and combined
microphysical uncertainties on convective precipitation
forecasts at different spatial and temporal scales?

– How dependent on the weather regime is that impact?

– What is the impact on convective clouds and does the
impact on cloud content translate into a comparable im-
pact on precipitation?

In the remainder of the paper, we present the numerical
model and the experimental design that allow for the exami-
nation of the relative impact based on different sub-sampling
approaches (Sect. 2). Following the description and classi-
fication of the weather situations in Sect. 3 we present re-
sults of precipitation forecasts and different spatio-temporal
scales in the next section. This is complemented by a brief
discussion about the relative impact on cloud and rainwater
contents. Before concluding with a summary in Sect. 5 we
present aggregated results encompassing five cases.

2 Model and experimental design

2.1 Model description

The numerical simulations are performed with the ICON
(ICOsahedral Non-hydrostatic, version 2.6.2.2) model in its
limited-area mode ICON-D2 covering central Europe (see
Fig. 2). The ICON-D2-EPS has been the operational ensem-
ble NWP system at Deutscher Wetterdienst (DWD) since
February 2021 (Reinert et al., 2021). We use an almost
equivalent configuration with a few exceptions described be-
low. ICON-D2 employs an icosahedral-triangular Arakawa-
C grid with a grid spacing of 2 km (542 040 grid points)
and 65 vertically discretised layers from the ground to 22 km
above mean sea level. Its dynamical core is based on the non-
hydrostatic equations for fully compressible fluids as govern-
ing equations (see Zängl et al., 2015, for the details). Differ-
ent from the operational configuration, the two-moment bulk
microphysics scheme (Seifert and Beheng, 2006) is used to
be able to investigate the impact of number densities and
the size distributions of cloud water droplets (by perturbing
the CCN concentration and shape of the CDSD, respectively,
as in Barthlott et al., 2022a, b). Note that the operationally
used parameter perturbations in ICON-D2-EPS are turned
off here to purely focus on the impact of microphysical per-
turbations that exclusively represent the model error in the
present study.

2.2 Experimental design

To investigate the influence of uncertainties on CCN con-
centration and the shape of the CDSD in the presence of

characteristic IBC uncertainty, we perform numerical exper-
iments using 20 different IBCs, 3 different CCN concentra-
tions and 3 different shape parameters of the CDSD yielding
in total a 180-member ICON-D2 ensemble (Fig. 1a).

The initial conditions are provided by pre-operational
analyses produced by ICON-D2-KENDA (Kilometer-scale
ENsemble Data Assimilation (Schraff et al., 2016)). In
August 2020 conventional measurements like radiosonde,
aircraft and ground-based observations were assimilated
in ICON-D2-KENDA using the local ensemble transform
Kalman filter (LETKF; Hunt et al., 2007). ICON-D2-
KENDA produces 40-member ensemble analyses, while the
first 20 analyses are used as initial conditions for ICON-D2
ensemble forecasts (as in operations at DWD) with 24 h lead
time due to limited computational resources. Lateral bound-
ary conditions are based on ensemble ICON global and EU-
nest simulations initialised 3 h before the initial time of the
ICON-D2 ensemble experiments. The initial conditions for
the global and EU-nest simulations are the operational anal-
yses provided by DWD with a grid spacing of 40 km for
the global domain and 20 km for the nested EU domain.
Different from our ICON-D2 ensemble simulations the one-
moment microphysics scheme and the convection parametri-
sation for deep and mid-level convection are active in the
ICON global and EU-nest simulations. The lateral boundary
conditions are updated hourly using data from the EU-nest
forecasts at lead times from 3 to 27 h.

To examine the microphysical uncertainty we perturb the
width of the CDSD and the amount of aerosol in the at-
mosphere by altering the CCN concentration. In the Seifert
and Beheng (2006) scheme, CCN activation rates are calcu-
lated using a look-up table of activation rates empirically es-
timated by Segal and Khain (2006). To take insoluble CCN
into account, certain portions of CCN are not activated de-
pending on their particle sizes (Seifert et al., 2012). Consis-
tent with Barthlott et al. (2022a, b) we vary CCN concen-
trations between pristine conditions and extremely polluted
conditions. We employ three CCN concentrations: maritime
(NCN= 100 cm−3), continental (NCN= 1700 cm−3) and pol-
luted (NCN= 3200 cm−3). The “maritime” emulates clean,
pristine conditions that have quite small numbers of CCN
like over the sea. The “continental” is the default setting
that mimics the observed CCN concentrations for the Eu-
ropean continental regions (Hande et al., 2016). The “pol-
luted” represents extremely polluted situations caused by, for
example, massive wildfires and considerable anthropogenic
emissions. The different CCN sub-ensembles that share the
same CCN concentration are named with suffixes m(aritime),
c(ontinental) and p(olluted), as shown in Fig. 1a.

The size distribution of hydrometeors is approximated us-
ing the following generalised gamma distribution:

f (x)= Axν exp
(
−λxµ

)
, (1)

where A is dependent on the number density of hydrome-
teor particles, and λ is a coefficient dependent on the av-
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Figure 1. (a) Design of microphysically perturbed ensemble experiments. The colours used throughout the article indicate the nine different
20-member IBC sub-ensembles sharing the same combination of CCN and CDSD parameters. (b) Cloud droplet size distribution with differ-
ent shape parameter ν at fixed cloud water content (QC= 1 gm−3) and cloud droplet number concentration (QNC= 300 cm−3). D denotes
the diameter of the droplets.

erage particle mass. The coefficients ν and µ are parame-
ters that are pre-defined and fixed throughout a simulation.
For example, with µ= 1

3 and ν =− 2
3 , we can obtain the

so-called Marshall–Palmer distribution of raindrops. In this
study we control the widths of the particle size distributions
by varying the shape parameter ν (for details see Barthlott
et al., 2022a, b). With increasing ν the CDSD becomes nar-
rower and more skewed as shown in Fig. 1b, which means
the number concentrations of particles close to the mean size
increase. In this study ν is varied between 0, 2 and 8 to cover
a wide spectrum of the possible shape parameter values (as
in Wellmann et al., 2020; Barthlott et al., 2022a, b). Note
that the default setting is the broadest CDSD ν = 0. Since
the parameters describing the CCN concentration and the
shape of the CDSD are kept temporally and spatially con-
stant throughout the simulation, they rather represent model
error due to the incomplete description of physical processes
than subgrid-scale variability.

To address individual or combined impacts of forecast un-
certainties mentioned above, we employ a sub-ensemble ap-
proach. A simple selection of different sub-ensembles shar-
ing the same uncertainty allows us to quantify the rela-
tive impact of the various uncertainties. To focus on the
combined impact of the microphysical perturbations, for in-
stance, we can inspect 20 microphysical sub-ensembles con-
sisting of nine members each sharing the same IBC but dif-
ferent combinations of CCN and CDSD parameters (micro-
physical (MP) sub-ensemble). To focus on the impact of the
IBC uncertainties, we have nine IBC sub-ensembles avail-
able consisting of 20 members each (IBC sub-ensemble).

3 Weather situation and classification of cases

Two typical cases are selected for an in-depth investigation
of the relative importance of the different uncertainties con-
ditional on synoptic control. On 11 August 2020, the pre-

cipitation texture shows a spotty distribution over southern
Germany characteristic of convective precipitation in weak
forcing situations (Fig. 2a). In a weak potential equivalent
temperature gradient across central Europe (not shown), lo-
cal trigger mechanisms (like convergence lines in the bound-
ary layer caused by orography) initiate localised intense con-
vection. The diurnal cycle illustrates the typical development
of convective precipitation starting with little precipitation in
the morning and peak precipitation in the afternoon (green
line in Fig. 2c). The daily maximum value of the convec-
tive adjustment timescale τc peaks at about 20 h (red line in
Fig. 2c), exceeding the 6 h threshold used in previous work to
distinguish different synoptic control in Europe (Keil et al.,
2014, 2019; Kühnlein et al., 2014; Baur et al., 2018; Flack
et al., 2018).

The 17 August 2020 represents a strong forcing situation
associated with a weak low-pressure system located over
France that moved eastward towards Germany (not shown).
The cyclonic flow favoured large-scale ascent initiating con-
vection, especially over the western part of Germany, result-
ing in widespread precipitation (Fig. 2b). There was rainfall
from the start of the forecast, and the heaviest rainfall oc-
curred at night followed by a gradual reduction in precipita-
tion until noon (green in Fig. 2d). In the afternoon, there was
a secondary peak of convective precipitation between 11:00
and 18:00 UTC. The daily maximum τc is less than 2 h on
17 August 2020 (Table 1 and red line in Fig. 2d). Such low
values indicate that CAPE was immediately consumed by a
continuous triggering of convection caused by synoptically
forced ascending motion characteristics in a so-called equi-
librium regime.

The comparison of the precipitation time series with area-
averaged radar observations indicates the realism and fidelity
of the ICON-D2 ensemble forecasts (Fig. 2c and d). Charac-
teristic values of the remaining three cases and their classifi-
cation are presented in Table 1.
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Figure 2. Daily accumulated precipitation on (a) a weakly forced day (11 August 2020) and (b) a strongly forced day (17 August 2020).
Ensemble mean daily totals of the IBC sub-ensemble nu0c are shown. The black rectangles indicate the ICON-D2 simulation domain, the red
rectangles depict the German domain used for evaluation, and the blue rectangle depicts the central western German domain used to inspect
the spatial variability in rainfall patterns in Fig. 5. The time series of area-averaged hourly precipitation (green) and the convective adjustment
timescale τc (red) complemented by the radar observed data (black) illustrate the different characteristics of both days in panels (c) and (d).

Table 1. List of case studies for which 180-member ICON-D2 ensemble experiments were performed, indicating the date, the type of synoptic
forcing, the daily maximum convective adjustment timescale (τc) and daily precipitation of different IBC sub-ensemble means with their
microphysical configurations.

Date Forcing τc (h) Precipitation (mmd−1)

default maximum minimum

11 August 2020 weak 20 2.67 (nu0c) 2.95 (nu8m) 2.42 (nu8p)
12 August 2020 weak 7 1.58 (nu0c) 1.73 (nu8m) 1.45 (nu8p)
13 August 2020 strong 3 3.72 (nu0c) 3.90 (nu8m) 3.60 (nu2p)
17 August 2020 strong 2 5.72 (nu0c) 6.00 (nu8m) 5.51 (nu8p)
18 August 2020 weak 6 3.79 (nu0c) 4.07 (nu0m) 3.51 (nu8p)

4 Results

To assess the relative contributions of the various uncertain-
ties we extract different sub-ensembles from the large 180-
member ensemble. First we focus on nine-member MP sub-
ensembles in which each of the sub-ensemble members has
different combinations of CCN and CDSD parameters but
identical IBCs to examine the relative contribution of the
combined microphysical (MP) perturbations on precipita-
tion. Since there are 20 IBCs in the entire ensemble, there
are 20 different MP sub-ensembles with nine members each.
Likewise, there are nine 20-member IBC sub-ensembles,
with one fixed combination of MP perturbations but 20 dif-
ferent IBCs. This different sub-sampling perspective allows

conclusions to be drawn on the relative impact of IBC un-
certainty. Lastly, there are 60 three-member CCN and CDSD
sub-ensembles that inform about their individual contribu-
tion.

4.1 Daily area-averaged precipitation

To estimate the impact of the combined microphysical un-
certainty we first focus on nine-member microphysics (MP)
sub-ensembles sub-sampled from the entire 180-member en-
semble. The relative differences in 24 h accumulated area-
averaged precipitation forecast of all 180 ensemble mem-
bers to their combined MP sub-ensemble mean are shown
in Fig. 3 for a synoptically weak and a strong forcing case
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to contrast the flow-dependent behaviour. Every dot repre-
sents the precipitation difference in a single ICON-D2 fore-
cast to its sub-ensemble mean. Since there are 20 different
MP sub-ensembles composed of nine microphysically per-
turbed members (colour coded as in Fig. 1a), the 180 dots
illustrate the overall variability. Apparently the impact of mi-
crophysical uncertainty is larger during weakly forced con-
ditions, and there is surprisingly high variability between the
different MP sub-ensembles, in particular during weak con-
trol. The largest and smallest range of precipitation differ-
ences amounts to 48 % (+23 % to −25 %) and 11 % (+7 %
to −4 %), respectively (compare members eight and nine
in Fig. 3a). During strong synoptic control the differences
amount to 16 % (+9 % to −7 %) and 4 % (+2 % to −2 %),
respectively (compare members 2 and 18 in Fig. 3b).

Furthermore, it is possible to assess the different micro-
physical impact on precipitation. The average precipitation
differences caused by MP perturbations are displayed by
coloured lines in Fig. 3; for instance, experiment nu8m (nar-
row CDSD and maritime CCN content; dark blue) exhibits
the largest precipitation deviations in both regimes. More
generally, experiments with maritime aerosol load (low CCN
content, blue) show an increase in precipitation, while the
experiments with high CCN concentrations (polluted, red)
show a decrease. Increasing the CCN concentration from
maritime (nu8m) to polluted conditions with narrow CDSD
shape (nu8p) amplifies average precipitation differences to
+11 % and −14 % in the weak forcing case, respectively
(+5 % to −4 % in the strong forcing case). A comparison
between the lines having the same colours but a different
darkness shows that the shape parameter of the CDSD also
exhibits a systematic impact in the weak forcing situation
(e.g. light red (nu0p) and dark red (nu8p) lines in Fig. 3a),
whereas a CDSD’s impact is hardly seen in the strong forc-
ing situation. Narrower CDSD distributions give less precip-
itation, particularly during polluted conditions (nu8p, dark
red). The larger sensitivity to CDSD during weak synop-
tic control and a systematic decrease in precipitation with
increasing shape parameters are consistent with Barthlott
et al. (2022a, b). During strong synoptic control the aver-
age relative difference is governed by the CCN concentration
(Fig. 3b).

The governing role of IBC perturbations on precipitation
is evident when comparing the sub-ensemble mean precipi-
tation amounts of the 20 different MP sub-ensembles. Dur-
ing weak control, the variability ranges between 1.9 and
3.6 mmd−1, whereas it ranges between 5.0 and 6.6 mmd−1

during strong synoptic control (lower panels in Fig. 3). This
variability is purely caused by IBC uncertainty driving the
20 different MP sub-ensembles. The similar amplitude of the
variability (1.7 versus 1.6 mmd−1) suggests a larger impact
of IBC uncertainty during weak control when the absolute
rainfall values are roughly only half as large. There is no sys-
tematic relationship between the precipitation amount and
the amplitude of relative differences during both regimes.

That means the microphysical impact is not constrained by
daily precipitation amounts.

Interestingly, a closer inspection reveals that different
IBCs can completely reshuffle the rank of the individual
members in a specific MP sub-ensemble. For instance, ex-
periments with modest aerosol content but different shapes of
the CDSD show extremes for member 11 during weak con-
trol (nu8c (dark green) shows the largest negative and nu2c
(medium green) shows the largest positive impact; Fig. 3a).
This non-systematic and highly varying response of precip-
itation to perturbed microphysical parameters of individual
ICON-D2 experiments points towards a strong sensitivity
to IBC. This finding illustrates the necessity to be cautious
when interpreting results based on a deterministic approach
only to evaluate uncertainty.

Next, we further compress the data to directly compare
and quantify the relative contribution of the various sources
of uncertainty conditional on the weather regime. The re-
sulting relative daily area-averaged precipitation differences
of various sub-sampling strategies are displayed in Fig. 4.
We again calculated the deviations with respect to a sub-
ensemble mean; for instance, the nine different 20-member
IBC sub-ensembles are shown by orange box and whisker
diagrams depicting the medians, interquartile ranges, 5th and
95th percentiles, and outliers.

First, it becomes evident that the magnitude of the impact
of the various uncertainties largely depends on the synoptic
control. The IBC sub-ensembles show a remarkable range
of +38 % to −30 % in daily precipitation sums during the
weak forcing situation (filled orange dots of IBC in Fig. 4).
Although their medians and interquartile ranges have some
variability among the different microphysics configurations,
no systematic dependence is found, and the variability be-
tween the nine IBC sub-ensembles is statistically insignifi-
cant. A corresponding behaviour is found for the strong forc-
ing case with smaller amplitudes between+15 % and−12 %
(open orange dots in Fig. 4).

Secondly, the synergistic effect of microphysical perturba-
tions (grey in Fig. 4) ranges between +22 % and −25 % for
the weak forcing case and± 10 % for the strong forcing case.
Note that the relative differences of the 20 different MP sub-
ensembles (with nine members each), previously discussed
in detail (Fig. 3), are collapsed into one column here.

The individual microphysical perturbations consequently
result in 60 sub-ensembles (with three members each) de-
noted CCN sub-ensemble and CDSD sub-ensemble. Inter-
estingly, the impact of individual CCN perturbations shows
a clear dependence on the CDSD shape and vice versa. The
CCN impact is smallest (± 10 %) with a broad distribution
(shape parameter ν = 0) and increases to a range of +22 %
and−20 % with narrower distributions (increase in shape pa-
rameter). The impact of CDSD perturbations also increases
with an increase in the CCN concentration. This steady in-
crease in impact is also found in the CCN concentrations
during strong forcing, while the shape of the CDSD shows
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Figure 3. Relative difference in daily area-averaged precipitation (in %) with respect to combined microphysical (MP) sub-ensemble means
sharing the same initial and lateral boundary conditions (IBC) for the (a) weak and (b) strong forcing cases. The columns below indicate
absolute precipitation values of the 20 different MP sub-ensemble means. The nine colours indicate all combinations of microphysical
configurations (as in Fig. 1a). The coloured lines show the averages.

a small sensitivity only. Precipitation reacts more sensitive
to microphysical perturbations during weak synoptic con-
trol. In this situation, the interquartile range of the combined
MP sub-ensemble (grey box) becomes smaller than those of
the CCN sub-ensembles with fixed shape parameters (cyan
boxes for fixed ν = 2 and 8) corresponding to a narrower
CDSD. Thus adding CDSD perturbations to CCN uncer-
tainty renders the probability density function of the relative
impact sharper and leads to an extension of the tails of the
distribution (grey dots of MP sub-ensemble).

Finally, the 180-member ensemble including IBC and mi-
crophysical uncertainty shows the largest variability during
weak control. Conditional on the weather regime the ex-
tremes in daily precipitation of individual members deviate

from the ensemble mean by +50 % to −40 % with an in-
terquartile range of ± 15 %. Interestingly the interquartile
range and the 5th and 95th percentiles of the 180-member
ensemble are similar to pure IBC uncertainty (compare black
and orange box and whiskers). Again, microphysical uncer-
tainty particularly affects the tails of the distribution (which
are 10 % of the members represented as dots in Fig. 4).

In summary, IBC uncertainties dominate the impact on
precipitation, while microphysical uncertainties play a sec-
ondary role. CCN has a larger impact than CDSD. Com-
bined perturbations of CCN and CDSD enhance each other
and show larger extremes in precipitation than individual
CCN and CDSD perturbations. While the interquartile range
of the 180-member ensemble and the individual IBC sub-
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Figure 4. Box and whisker diagram showing the relative differences of daily area-averaged precipitation of individual ICON-D2 members be-
longing to various (sub-)ensembles. The perturbations (x labels in colour) and different fixed configurations (grey x labels) are indicated. 180
is the abbreviation of the entire ensemble and IBC, MP, CCN and CDSD are for the different sub-ensembles. The bars, boxes, whiskers and
dots show medians, interquartile ranges, 5th and 95th percentiles, and outliers, respectively. Filled boxes represent weak control (11 August)
and open boxes strong synoptic control (17 August).

ensembles is similar, the extreme members in the full en-
semble surpass the IBC variability by +15 % and −10 %.
Thus, the combination of IBC and microphysical uncertainty
affects the magnitude of the extremes while keeping the in-
terquartile range fairly unaffected.

4.2 Spatial variability based on hourly rain rates

To address the question of how IBC and microphysical un-
certainties affect convective precipitation on different spatio-
temporal scales, we now move from area averages to the
kilometre scale and from daily to hourly accumulations. The
fractions skill score (FSS; Roberts and Lean, 2008) and its
variant believable scale (Dey et al., 2014; Bachmann et al.,
2020) are used to objectively assess differences in spatial
variability caused by different sources of uncertainty. But
first we apply subjective visual inspection on selected pre-
cipitation fields to illustrate differences.

In Fig. 5 a snapshot of hourly precipitation over central
western Germany (blue box in Fig. 2a) for the weak forc-
ing case (11 August) at 16:00 UTC exemplifies the different
impact of IBC and microphysical perturbations. This day is
chosen because of the stronger impact of the perturbations
during weak synoptic control, 16:00 UTC represents the time
of maximum afternoon precipitation within the diurnal cycle
of convective precipitation (see Fig. 2c), and the displayed
sub-domain clearly depicts the typical popcorn-type precipi-
tation structure. In Fig. 5 the transient character of individual
cells is juxtaposed for four different experiments: three of
them share the identical IBC (Fig. 5a–c), CCN concentration
(Fig. 5a, b and d) and shape parameter of the CDSD (Fig. 5a,
c and d), respectively.

At first glance, it becomes evident that the microphysical
perturbations result in a similar rainfall distribution (Fig. 5a–
c), whereas the member driven with different IBCs shows
a considerably different rainfall field (Fig. 5d). The direct
comparison of the location of intense precipitation caused by
the different perturbations relative to the 99th percentile of
simulation nu8p (black contours in Fig. 5) shows that con-
vective cells of simulations nu0p (broad CDSD, polluted)
and nu8m (narrow CDSD, maritime) are either at the same
location or in close vicinity. Some weak rain cells (e.g. south-
east of Luxembourg; red circle in Fig. 5a) are intensified by
decreasing CCN and shape parameters of the CDSD, thus
in agreement with the spatio-temporal integrated rainfall sig-
nal discussed in the previous section. Positions of strong rain
cells are shifted by the CCN perturbation at a scale of 20–
30 km, whereas an increase in the shape parameter of the
CDSD hardly shows a clear impact. The visual inspection
of many scenes of hourly rainfall caused by convective cells
confirms the systematic behaviour of microphysical pertur-
bations with stronger precipitation with low CCN concentra-
tion and broad CDSD shapes (not shown).

To briefly summarise the visual inspection, we can state
that in polluted CCN conditions both CCN and CDSD per-
turbations impact the spatial variability at almost the same
scale. While microphysical perturbations keep the general
spatial structure, IBC perturbations largely alter the posi-
tion of convective cells. Thus microphysical perturbations
primarily impact the precipitation amount by changing the
precipitation intensity rather than by feedback on dynamical
fields and triggering new cells. Visual inspection of rainfall
patterns of the strong forcing case results in similar findings:
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Figure 5. Snapshot of hourly precipitation at 16:00 UTC for the weak forcing case (11 August). Member 2 of IBC sub-ensembles (a) nu8p,
(b) nu0p and (c) nu8m and (d) member 1 of nu8p in the central western part of Germany (see blue box in Fig. 2). Black contours indicate
grid points that have a larger value than the 99th percentile value in the nu8p sub-ensemble of member 2. The red circle in (a) indicates
single convective cells discussed in the text.

minor shifts of rain cells in microphysics sub-ensembles and
a smaller impact of CDSD perturbations (not shown).

To quantify the spatial (dis-)agreement of hourly precipi-
tation fields in the various simulations we employ the FSS,
a spatial score that shows the similarity between two binary
fields (denoted A and B, two distinct sub-ensemble mem-
bers in our case) within a predefined neighbourhood scale.
The definition of the FSS is given by

FSS= 1−
∑
(fA− fB)

2∑
f 2
A+

∑
f 2
B

, (2)

where fA and fB represent the fraction of rainy grid points
in fields A and B, respectively, at which the precipitation
amount is above a certain threshold value. The second term
on the right-hand side is the ratio of the mean squared error
(MSE) of the fraction fields A and B to the maximum pos-
sible MSE (Roberts and Lean, 2008). If the number of grid
points with a value of 1 within a certain neighbourhood of a
grid point is equal between two fields, the FSS is 1.0, which
means the compared two fields are identical. FSS becomes

smaller as the difference between two fields gets larger, and
it becomes 0.0 when only one of the fields has values and
the other has a complete miss in the respective neighbour-
hood. In this study, we use the 99th percentile of hourly pre-
cipitation as the threshold to generate a binary field to take
into account the strong diurnal cycle of rainfall intensity and
to keep the number of grid points used for FSS calculation
constant. The 99th percentile is useful to capture the posi-
tion of convective cells (see contours in Fig. 5). The FSS
is calculated over Germany with neighbourhood sizes vary-
ing from 2.2 km (1 grid point) to 563.2 km (256 grid points).
Since FSS is a score calculated between two fields, we need
to carefully consider how to compute an ensemble FSS. Fol-
lowing Dey et al. (2014), we calculate the FSS for all combi-
nations of ensemble members belonging to a sub-ensemble.
For instance, FSSs for an IBC sub-ensemble (with 20 differ-
ent IBCs) can be calculated as 20 · 19/2= 190 times. Since
there are nine IBC sub-ensembles in this study, the num-
ber of overall FSSs that shows the impact of IBC pertur-
bations is 190 · 9= 1710. Accordingly, the numbers of FSSs
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for combined microphysics, CCN and CDSD sub-ensembles
are 720, 180 and 180, respectively. Mean values of the FSSs
are shown in Figs. 6 and 7 to objectively represent the spatial
variability given by various kinds of uncertainties.

In addition, we use the believable scale (Dey et al., 2014;
Bachmann et al., 2020) to characterise a typical length scale
that estimates the spatial difference between two fields. The
believable scale is defined as the neighbourhood size when
the FSS exceeds a threshold defined by FSS≥ 0.5+ f0

2 ,
where f0 is the fraction of grid points considered in the FSS
calculation (the 99th percentile threshold gives f0 = 0.01).
Since the FSS is applied on precipitation fields above the
99th percentile values, the believable scale can be consid-
ered in this study as a scale showing how large a mismatch
of intense convective cells is.

Time–space diagrams of the ensemble mean FSSs given
by IBC and combined microphysical uncertainty are depicted
in Fig. 6 for the weak forcing case. Low FSS values rep-
resent large spatial deviations between the location of in-
tense convection, hence a larger spatial variability. The vari-
ability due to the IBC perturbations is considerably larger
than the one forced by combined microphysical perturba-
tions. However, and typical for days with weak control, con-
vective precipitation only forms in the late morning (see,
for example, time series in Fig. 2c and red line depicting
the 99th percentile of hourly precipitation in Fig. 6). The
value of the 99th percentile of hourly precipitation amounts
to 1 mmh−1 at 12:00 UTC, and precipitation is mostly negli-
gible before. Interestingly, at the onset of convective precip-
itation at 12:00 UTC the believable scale exhibits a dip, and
the spatial variability decreases to slightly less than 100 km
and thereafter continuously increases throughout the convec-
tive period until the evening. The reduction in the spatial
variability in the afternoon, representing co-locations of con-
vective cells, is constrained by steady, non-perturbed factors
forcing the dynamical fields involved in cloud and precipi-
tation formation like orography. After 22:00 UTC the hourly
precipitation rates amount again to less than 1 mmh−1, and
the corresponding believable scale exceeds 200 km like be-
fore the onset of convection at night and in the morning. In
contrast, the spatial disagreement caused by combined mi-
crophysical perturbations is smaller, and the mean believable
scale amounts to only 16 km at the peak of precipitation at
16:00 UTC (Fig. 6b). Apparently, the impact of microphys-
ical perturbations on precipitation acting on many pathways
needs time and starts at a much lower spatial scale than IBC
perturbations.

At first sight, individual perturbations of CCN and CDSD
show a similar growth of FSS as the combined microphysical
perturbations (Figs. 6b and 7). Close inspection reveals that
the believable scale of precipitation caused by CCN pertur-
bations (black line in Fig. 7b) starts to increase at the onset of
the precipitation (at 12:00 UTC), 1 h before that of the CDSD
perturbations (Fig. 7a). The CDSD believable scale grows
more slowly and is always smaller (roughly 50 %) than that

of combined microphysical perturbations. Since changes in
CCN have a direct influence on the cloud condensation pro-
cess, while the shape parameter of the CDSD affects ensuing
microphysical processes, this time shift is plausible. Inter-
estingly, the CCN-perturbed believable scale reaches 40 km
after 22 h, the same length scale as the believable scale of
the combined microphysical perturbations. In contrast to the
impact on precipitation amount, combining two sources of
microphysical uncertainty does not increase the spatial vari-
ability.

The uncertainty of CCN concentrations has a larger im-
pact than the shape parameter of the CDSD on the spatial
variability in intense precipitation cells. Now we can ask if
this behaviour is by chance and if this finding holds for other
thresholds or percentiles, respectively. For this reason, we
performed additional white noise (WNoise) ensemble sim-
ulations with 20 different IBCs but only for the “default”
microphysics configuration (nu0c) to examine whether the
spatial variability caused, for instance, by microphysical per-
turbations differs from the impact of random, tiny differences
in the temperature field. Following the method of Selz and
Craig (2015) the virtual potential temperature field is per-
turbed by a non-biased Gaussian noise with a standard devi-
ation of 0.01 K at all grid points of the entire model atmo-
sphere at an initial time. The comparison of the microphysi-
cally perturbed ensemble with a pure white noise (WNoise)
experiment shows a similar onset and increase in spatial vari-
ability (Fig. 7c). The spatial variability caused by CCN and
CDSD perturbations is, however, larger than the effect of
the WNoise perturbations. At 16:00 UTC, the mean FSS of
WNoise simulations is close to 1 at scales larger than 80 km,
and the believable scale is about 5 km. Thus the effect of mi-
crophysical uncertainty on the spatial precipitation fields is
systematically exceeding the effect of tiny errors at the ini-
tial time in the WNoise experiment. Less intense precipita-
tion cells detected by the 95th percentile threshold indicate
a similar albeit slightly smaller variability due to IBC and
microphysical perturbations (not shown). Using a 90th per-
centile threshold on hourly precipitation results in values
lower than 0.1 mm at all forecast hours and gives no extra
information.

To further elucidate the combined microphysical perturba-
tions and the interdependence of one perturbation (say CCN)
when the other (CDSD) is kept constant in the presence of
IBC uncertainty, time series of all believable scales calcu-
lated between every combination of ensemble members are
illustrated in Fig. 8. The bold lines in Fig. 8a clearly reveal
that CDSD perturbations result in spatial variability at differ-
ent length scales depending on a certain fixed CCN concen-
tration during weak synoptic control. In clean air conditions
(maritime aerosol content; dark blue lines in Fig. 8a), the
mean believable scale attains 10 km roughly 3 h after the on-
set of the believable scale’s growth. At 22:00 UTC, towards
the end of the diurnal cycle, the value increases to 15 km.
On the other hand, for polluted conditions (dark red and
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Figure 6. Ensemble mean FSS values of hourly precipitation calculated across scales ranging from 2 to 560 km in the German domain for the
weak forcing case of 11 August. The IBC sub-ensembles’ mean FSS is depicted in panel (a) and the combined microphysics sub-ensembles’
mean FSS in panel (b). The black lines show believable scales of mean FSS. The red lines (right axis) show the time series of the mean
99th percentile value of hourly precipitation.

Figure 7. As Fig. 6 but for the (a) CDSD, (b) CCN and (c) WNoise sub-ensembles.

green lines), the mean believable scales attain larger val-
ues: 15 km at 16:00 UTC and 30 to 40 km at 22:00 UTC. The
mean length scale of disagreement given by the CDSD per-
turbations in polluted conditions (high CCN concentrations)
is twice as large as in clean conditions (low CCN concen-
trations). Note, however, that there is large variability among
pairs of ensemble members, and hence the IBC dependence
is larger than the impact of the background CCN condition.
A similar systematic dependence can be found for the CCN
perturbations’ impact with different fixed CDSD shape pa-
rameters. The mean believable scale with the broadest CDSD
(lightest grey lines in Fig. 8b) reaches 10 km at 16:00 UTC
and 50 km after 22 h of lead time. With the narrowest CDSD
(black lines), the mean believable scale of CCN perturbations
is 20 km at 16:00 UTC and increases to 100 km later. Inter-
estingly, the mean believable scale with the narrowest CDSD
is by a factor of 2 larger than the broadest CDSD. This re-
lationship is similar to that found in spatially averaged pre-

cipitation amounts; namely polluted CCN and narrow CDSD
conditions lead to larger variability (Fig. 4).

In strong synoptic control, the situation is slightly differ-
ent (Fig. 8c and d). The believable scales only start to grow
from 07:00 UTC onwards, and the mean values finally reach
a neighbourhood size of 30 km at 22 h lead time. This mono-
tonic pattern of the perturbation growth is similar to the weak
forcing case. However, the mean believable scale for clean
CCN conditions is larger than for the weak forcing case at
22:00 UTC (bold dark blue lines in Fig. 8a and c). There is
no systematic difference in the mean believable scale caused
by CDSD perturbations in the presence of various yet fixed
CCN concentrations (Fig. 8c). On the other hand, given nar-
rower CDSDs, the CCN perturbations cause a slightly larger
spatial variability (Fig. 8d). Nevertheless, the difference be-
tween the broadest and narrowest CDSD simulations is less
pronounced in comparison to the weak forcing case (10–
15 km difference in strong control versus 30 km in weak con-
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Figure 8. Time series of FSS believable scales of hourly precipitation for every combination of (a) the CDSD and (b) CCN sub-ensemble for
the weak forcing case in the German domain. In (a) blue, green and red lines indicate simulations with maritime, continental and polluted
CCN content, respectively. In (b) light grey, dark grey and black lines indicate scales with the broad, intermediate and narrow CDSD. Bold
lines with circles indicate mean values of FSS believable scales sharing the same perturbation. The red lines (right axis) show time series of
the mean 99th percentile value of hourly precipitation. Panels (c) and (d) show the results for the strong synoptic forcing case.

trol at 22:00 UTC). It is interesting to note that the impact of
the microphysical perturbations on the spatial precipitation
pattern only starts to appear in FSS after 7 h of lead time,
although there is continuous rainfall from forecast initiali-
sation during the strong forcing case. In the first hours of
the simulation spin-up effects and the adjustment to the driv-
ing coarser-scale model are still at work, which dampens the
impact of the microphysical uncertainties (see, for example,
Barthlott et al., 2022a). Thus, microphysical perturbations
need a longer spin-up time than IBC perturbations to mod-
ulate dynamical fields, eventually resulting in precipitation
at different locations (see Fig. 8c and d).

Note that there is a difference between the believable scale
of a “mean FSS” (e.g. black line in Fig. 6) that represents a
scale of (dis-)agreement given, say, an ensemble mean FSS
value and the mean over many believable scale values of
paired member-to-member comparisons (Fig. 8). The ensem-
ble mean FSS is useful for an intercomparison of the average
impact given by different perturbations in general, whereas
the mean of member-to-member believable scales (Fig. 8)
provides a scale of actual (dis-)agreement of certain scenes,
for example, the precipitation patterns shown in Fig. 5.

4.3 Relative impact on cloud and rainwater content

To complement the assessment centred on the relative impact
on precipitation, we now turn to important precursors in the
complex process chain to form precipitation and inspect the
contribution of the uncertainties to the cloud and rainwater
content within a full convective-scale EPS framework. Since
we find similar systematic responses in both weather situa-
tions, we show results for the weakly forced case only. In
Fig. 9 we depict the variability caused by IBC uncertainty
in clouds and rainwater. The 24 h mean of hourly values is
computed for the nine different IBC sub-ensembles to exam-
ine the relative impact.

The vertically integrated cloud water content (TQC) in-
creases significantly with higher CCN concentration and
CDSD shape (Fig. 9a). The medians of the ensembles with
different microphysics uncertainty vary by more than 400 %
(TQC is amounting to 0.01 kgm−2 in experiment nu0m
and 0.044 kgm−2 in nu8p). The comparison of sub-
ensembles sharing identical CDSD shape parameters shows
an increase in TQC of up to 300 % when increasing CCN
concentrations from maritime to polluted conditions (com-

Weather Clim. Dynam., 3, 1273–1289, 2022 https://doi.org/10.5194/wcd-3-1273-2022



T. Matsunobu et al.: Microphysical uncertainties in the presence of other key uncertainties 1285

Figure 9. Box and swarm plots for 24 h mean (a) domain-averaged total column cloud water content, (b) cloud fraction and (c) domain-
averaged total column rainwater content over Germany for the weak forcing case. The box plots and dots illustrate the same dataset, but
the dots represent individual IBC sub-ensemble members. The colours are based on the various combination of microphysical perturbations
shown in Fig. 1a. Box plots show medians, interquartile ranges, and maximum and minimum values in that order.

pare experiments nu0m and nu0p in Fig. 9a). Similarly, the
change from the broadest to the narrowest CDSD enhances
TQC by roughly 150 %. These values are more than an order
of magnitude larger compared to the impact of microphys-
ical perturbations on precipitation (compare to orange IBC
sub-ensembles in Fig. 4). An important implication seen in
Fig. 9a is that IBC perturbations cannot encompass the vari-
ability caused by microphysical uncertainties in cloud fore-
casts, which manifests by marginal (or no) overlap of the
distributions which have different CCN and CDSD config-
urations (differently colour-coded in Fig. 9).

The forecast cloud fraction also systematically increases
with higher CCN and shape parameters (Fig. 9b), in agree-
ment with the increase in TQC. Cloudy grid points are de-
fined as grid cells where TQC> 50 gm−2. The medians of
the cloud fraction in IBC sub-ensemble nu0m (light blue),
nu8m (dark blue), nu0p (light red) and nu8p (dark red)
are 0.29, 0.39, 0.47 and 0.55, respectively. Thus, cloud frac-
tion increases with higher CCN and/or CDSD parameters
by 35 %, 62 % and 91 % relative to experiment nu0m. Com-
pared to TQC, a change in CDSD shape parameters shows
an only minor effect on cloud fraction in continental and pol-
luted CCN conditions (e.g. nu8c and nu8p in Fig. 9b). This
is presumably caused by ambient atmospheric conditions as,
for example, humidity sets an upper bound for total cloud
cover. Hence microphysical uncertainty (CCN and CDSD
perturbations) becomes less important, and IBC uncertainty,
which predominantly triggers convection and determines the
upper bound of cloud coverage, governs the variability in
spatial cloud distributions.

Finally, the vertically integrated rainwater content (TQR)
averaged over Germany shows a systematic but opposite re-
sponse compared to TQC (Fig. 9c). TQR decreases with in-
creasing CCN and shape parameters of the CDSD and par-
allels the systematic impact found for precipitation. Com-
pared to TQC the variability caused by microphysical per-
turbations becomes smaller; for instance, the TQR median

of experiment nu0m amounts to 0.033 kgm−2 and nu8p
to 0.014 kgm−2, indicating a decrease by roughly 58 %.

The steady decreasing systematic impact of the micro-
physical uncertainty on cloud water content, rainwater con-
tent and eventually precipitation hints towards some kind of
buffering effects or compensating processes that reduce the
large, positive impact on clouds and eventually even turn it
into a negative impact with respect to rain production. Com-
panion work by Barthlott et al. (2022a, b) and Baur et al.
(2022) shed light on those processes. One major process is
the reduction in warm rain processes. The suppression of col-
lisional growth of cloud droplets in polluted CCN conditions
reduces the formation of raindrops, and small droplets be-
come more likely to evaporate. Moreover, cloud optical prop-
erties are influenced as well through changes in the droplet’s
effective radius. That, in turn, can affect the radiative energy
supply that triggers new convection.

4.4 Quantification of relative impact based on 5 d

Finally, we repeat the analysis and use 180-member ICON-
D2 ensemble experiments performed for 5 d in August 2020
to confirm the previous findings. The classification into dis-
tinct weather situations with different synoptic control results
in three weakly and two strongly forced cases (see Table 1).
The regime-dependent relative impact of the various pertur-
bations is computed as follows: first, the relative difference in
every individual member to its corresponding sub-ensemble
mean is calculated separately for every day (as in Sect. 4.1
and displayed in Fig. 4). Secondly, the median, the interquar-
tile range, and the 5th and 95th percentiles are computed by
aggregating the days for each synoptic forcing separately (i.e.
540 samples for weak and 360 for strong forcing). Finally,
the samples are bootstrapped 100 times with replacement
to get robust results, and the mean of the 100 medians, in-
terquartile ranges and percentile values are finally depicted
in Fig. 10. This procedure takes into account the different
mean values of distinct sub-ensembles on different days (see
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Figure 10. Relative differences in the 180-member ensemble
(black), the averaged IBC sub-ensembles (orange) and averaged
combined microphysical sub-ensembles (grey) aggregated over 5 d
in August 2020 conditional on synoptic control. Relative differences
in precipitation, total column rainwater content (TQR) and total col-
umn cloud water content (TQC) are displayed using filled boxes for
weak forcing situations. Box plots show bootstrapped medians, in-
terquartile ranges, and the 5th and 95th percentiles in that order. For
details see the text.

Table 1) and allows a fair comparison. The 5th and 95th per-
centiles of the relative difference then define the 90 % confi-
dence interval (similar to Craig et al., 2022).

In the full 180-member ensemble, including IBC and com-
bined microphysical uncertainties, the confidence interval of
precipitation deviates for individual experiments from the en-
semble mean by+41 % to−32 %, with an interquartile range
between +15 % to −18 % during weak forcing. The corre-
sponding impact of pure IBC perturbations shows a range
of +36 % to −29 % during weak forcing (orange boxes of
IBC sub-ensemble in Fig. 10). The variability is smaller and
amounts to±23% during strong forcing. The medians have a
slightly negative bias for the weak forcing cases because the
precipitation distribution is slightly positively skewed; i.e.
the mean is larger than the median. That might be an arte-
fact of the given sample size.

The impact of combined microphysical perturbations on
the confidence interval of precipitation (grey bars in Fig. 10)
varies between +12 % and −13 % in weak forcing cases
and ± 6 % during strong forcing cases. Thus precipitation
amounts are twice as sensitive to pure microphysical pertur-
bations during weak control. Adding microphysical perturba-
tions to the IBC sub-ensembles (giving the full 180-member
ensemble) shows a negligible impact on the interquartile
range (compare black and orange bars in Fig. 10) but ex-
tends the tails of the distribution (black and orange whiskers
in Fig. 10) by 5 % for weak forcing conditions.

The same methodology is applied to convective clouds
represented by averaged vertically integrated rainwater con-
tent (TQR in Fig. 10). Microphysical perturbations show a
larger impact than IBC perturbations. The confidence inter-
val of the impact of microphysical perturbations on TQR
ranges between +54 % and −30 % for strong forcing and

between +57 % and −35 % for weak forcing. Forecast vari-
ability is increased by +31 % compared to the pure IBC
impact when taking the microphysical uncertainties into ac-
count, too. The relative impact of IBC perturbations on TQR
ranges between +31 % and −25 % for weak forcing and be-
tween +17 % and −16 % for strong forcing.

Finally, the impact on vertically integrated cloud water
content (TQC in Fig. 10) shows less dependence on syn-
optic control than those on rainwater or precipitation. Mi-
crophysical perturbations show a large impact on TQC,
and their impact exceeds the impact of IBC uncertainty.
The relative impact of microphysical perturbations on TQC
ranges between +80 % and −62 % for weak forcing and be-
tween +66 % and −60 % for strong forcing. Forecast vari-
ability is increased by +47 % compared to the pure IBC
impact when taking the microphysical uncertainties into ac-
count. The variability in CCN and CDSD plays a larger role
in narrower CDSD or higher CCN conditions (not shown),
similar to the impact on precipitation discussed in Fig. 4.

Overall, microphysical uncertainty plays a more important
role in the prediction of cloud and rainwater content than
IBC uncertainty, but the impact is buffered during warm rain
processes. The buffering effect that counteracts microphys-
ical perturbations discussed in Sect. 4.3 can thus be quanti-
fied. The microphysical impact on the 95th percentile value
decreases from +79 % for TQC to +57 % for TQR and to
+12 % for precipitation. We find a systematically larger im-
pact of the various uncertainties for precipitation, TQR and
TQC during weak forcing conditions.

5 Summary and concluding remarks

The relative importance of microphysical uncertainties in
cloud and precipitation forecasts in a full convective-scale
EPS framework is assessed on different spatial and tempo-
ral scales conditional on synoptic control in central Europe.
In the present study, we perturb two microphysical parame-
ters that are poorly constrained by observations. Those con-
stitute the cloud condensation nuclei (CCN) concentration
and the shape parameter of the cloud droplet size distribution
(CDSD), both currently not perturbed in operational ICON-
D2 ensemble forecasts. An examination of the synergistic ef-
fect of these microphysical perturbations necessitates the use
of the two-moment bulk microphysics scheme of Seifert and
Beheng (2006) that predicts next to the mass concentration of
different hydrometeors their number density and thus allows
the calculation of the particle size distribution. Their individ-
ual and combined relative impact is estimated in the presence
of initial and boundary condition uncertainty (IBC) available
from operational ensemble forecasting at Deutscher Wetter-
dienst. Nine different set-ups of such combined microphysi-
cal perturbations run with 20 different IBCs add up to 180-
member ICON-D2 ensemble forecasts. The relative impact
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of the various uncertainties is quantified by selecting differ-
ent sub-ensembles that are sharing a common uncertainty.

Based on five real summertime cases we find that the im-
pact of the various uncertainties on precipitation crucially
depends on the synoptic control. It is larger during weakly
forced situations. The IBC uncertainty accounts for most of
the precipitation variability. The confidence interval (that is
given by the 5th and 95th percentiles) of the relative impact
on daily area-averaged precipitation of individual ICON-
D2 experiments ranges between +38 % and −32 % during
weak forcing and ± 23 % during strong forcing (Fig. 10).
Combined microphysical perturbations show a relative im-
pact on precipitation as the confidence interval varies be-
tween +12 % and −13 % during weak forcing and only
± 6 % during strong synoptic control. Thus precipitation
amounts are twice as sensitive to pure microphysical per-
turbations during weak control. The joint effect of IBC and
microphysical uncertainty extends the tails of the forecast
distribution by 5 % in weakly forced conditions. Individual
ICON-D2 members exceed the ensemble mean precipita-
tion by 50 %. However, the interquartile range of the full
ensemble only marginally deviates from the pure IBC sub-
ensembles (Fig. 4).

The in-depth analysis of the weakly forced case further
points towards a synergistic effect of CCN and CDSD per-
turbations that show a large sensitivity to the other back-
ground (fixed) microphysics choice. That stems from the sys-
tematic behaviour of the responses to different microphysics
conditions. Both microphysical perturbations have a system-
atic impact on the intensity and location of individual con-
vective cells identified in the present study with hourly rain
rates, and its spatial variability amounts to O(10 km) quan-
tified with FSS believable scales. In contrast, IBC perturba-
tions scramble the precipitation pattern during weak control
and result in twice the location uncertainty. This suggests that
microphysical perturbations have systematic effects, whereas
IBC perturbations are likely to have stochastic effects. CCN
perturbations cause a larger impact on spatial variability in
precipitation forecasts than CDSD. Individual perturbations
of CCN and CDSD have larger impacts when the other con-
figuration is the narrower CDSD or polluted CCN condition,
respectively.

Clouds react differently to the various uncertainties. The
combined microphysical perturbations largely determine the
variability in daily and area-averaged vertically integrated
cloud water content (TQC in Fig. 10). Different from their
impact on precipitation, the increase in CCN concentration
and shape parameter of the CDSD has a large positive impact
on the production of cloud and rainwater content forming
horizontally larger clouds. Further, this impact is fairly in-
dependent of weather regime. Thus the considerable impact
on cloud variables does not directly translate into precipita-
tion amounts. This suggests that there are some microphys-
ical processes or feedback mechanisms involved that com-
pensate and ultimately reverse the impact of microphysical

perturbations on clouds and precipitation. The systematic be-
haviour of cloud variables is consistent with previous studies
(Seifert et al., 2012; Igel and van den Heever, 2017a; Well-
mann et al., 2020; Zhang et al., 2021), and further discussion
about the detailed processes seen from the deterministic per-
spective can be found in Barthlott et al. (2022a, b) and Baur
et al. (2022). Note that we compare rainfall accumulations
at the ground with averages of 24 hourly snapshot scenes of
vertically integrated cloud and rainwater to facilitate a com-
parison of the respective contribution.

Importantly, a close inspection of the impact of micro-
physical uncertainties in the presence of different IBCs on
precipitation indicates a strong sensitivity to IBC uncertainty
(Fig. 3). This illustrates the necessity to be cautious when
interpreting results based on a deterministic approach only
to evaluate impact of uncertainty. The use of a full ensem-
ble modelling framework including various key sources of
uncertainty as done in this study is essential to assess their
relative importance. This issue becomes even more relevant
when inspecting smaller spatial and temporal scales. Another
major conclusion is the necessity to take the atmospheric
state into account when quantifying the contribution of var-
ious uncertainties. Given that roughly 20 % to 40 % of the
days with summertime precipitation in central Europe are
classified as being weakly controlled (Zimmer et al., 2011;
Kühnlein et al., 2014), the considerable impact during these
conditions is usually veiled when inspecting results indepen-
dent of the synoptic control. A limitation of this study is the
limited dataset covering 5 d in August 2020 only. More ro-
bust results require a larger database containing more cases
that comprise different synoptic conditions. Based on the five
cases we cannot draw general conclusions. However, we be-
lieve that the findings are robust enough to provide a scien-
tific basis for future research.

Our results suggest that the consideration of CCN and
CDSD uncertainties increases precipitation variability and
can contribute to the reduction of the long-standing issue
of underdispersion of near-surface variables in convective-
scale EPS forecasts (see references in, for example, Keil
et al., 2019) and thus ultimately benefit the improvement of
NWP ensemble forecasting. It is beyond this study to assess
to what extent the microphysical perturbations contribute to
a better probabilistic forecasting skill compared to observa-
tions. Given the increasing importance of satellite observa-
tions used in convective-scale data assimilation, the system-
atic impact of microphysical uncertainties will attract inter-
est in future. Microphysical uncertainties strongly influence
forecasts of cloud coverage and droplet sizes, both represent-
ing important ingredients used in satellite forward operators
to compute synthetic reflectances (e.g. Scheck et al., 2020)
to be used in data assimilation algorithms.
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