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S1 Weather patterns

S1.1 Weights of weather patterns

S1.1.1 Figure S1: MSLP maps for the 20 weather patterns

Figure S1: Mean sea level pressure (MSLP) anomalies for the 20 weather pat-
terns expressed in standard deviations.

S1.1.2 Figure S2: VWS maps for the 20 weather patterns

Figure S2: Vertical wind shear (VWS) anomalies for the 20 weather patterns
expressed in standard deviations.
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S1.2 TC activity in weather patterns

S1.2.1 Figure S3: TC statistics for the 20 weather patterns

Figure S3: Tropical storm statistics for the 20 weather patterns expressed as
relative deviations from the average.

S1.2.2 Figure S4: Storm formation locations in weather patterns

Figure S4: Storm formation locations for each weather pattern.
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S1.2.3 Figure S5: Histograms of storm durations

Figure S5: Histograms of observed storm durations of all storms that formed
during each weather pattern (blue). The orange histograms show the distribu-
tions from which storm durations are sampled in the emulator.
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S2 Sea surface temperatures (SST)

S2.1 Figure S6: Main development region (MDR)

Figure S6: TC occurrences for the period 1982-2020 and the months August-
October. The main development region (MDR) is indicated by a green rectangle
and spans the area 90W-20W and 10N-20N.
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S2.2 Figure S7: Quantile regression SST vs TC intensity

a b

c d

1990-2020 1982-1990 & 2001-2020

1982-2000 & 2011-2020 1991-2020

Figure S7: Quantile regression between daily maximal sustained wind speeds
of tropical storms and daily SSTs averaged over the MDR. Quantiles for which
the null-hypothesis of no trend can be rejected with a 95% confidence level are
indicated by a star.
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S2.3 Table S1: CMIP6 historical simulations - model list

We construct a CMIP6 historical ensemble by selecting on simulation run from
each of the following models:

ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, AWI-ESM-1-1-LR, BCC-
CSM2-MR, BCC-ESM1, CAMS-CSM1-0, CAS-ESM2-0, CESM2, CESM2-FV2,
CESM2-WACCM, CESM2-WACCM-FV2, CIESM, CMCC-CM2-HR4, CMCC-
CM2-SR5, CMCC-ESM2, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-
1, CanESM5, CanESM5-CanOE, E3SM-1-0, E3SM-1-1, E3SM-1-1-ECA, EC-
Earth3, EC-Earth3-AerChem, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-
Veg-LR, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, GFDL-CM4, GFDL-
ESM4, GISS-E2-1-G, GISS-E2-1-G-CC, GISS-E2-1-H, HadGEM3-GC31-LL,
HadGEM3-GC31-MM, ICON-ESM-LR, IITM-ESM, INM-CM4-8, INM-CM5-0,
IPSL-CM5A2-INCA, IPSL-CM6A-LR, KACE-1-0-G, KIOST-ESM, MCM-UA-
1-0, MIROC-ES2L, MIROC6, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, MPI-
ESM1-2-LR, MRI-ESM2-0, NESM3, NorCPM1, NorESM2-LM, NorESM2-MM,
SAM0-UNICON, TaiESM1, UKESM1-0-LL

Table S1: Models used to estimate the forced trend in MDR SSTs over the
period 1982-2014
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S3 Sensitivity analysis

For each of the emulator components heuristic methodological decision had to
be taken. In the following we show how the emulator performs compared to
alternative methodological choices.

S3.1 Storm formations

S3.1.1 Simplest approach - fig S8b

The probability for a new storm is the number of storm formations during the
weather pattern w(d) of the day d that is emulated divided by the number of
observed days with that weather pattern:

Pgen(d) = Pobs(gen|w(d)) (1)

S3.1.2 Giving more weight to the weather history - fig S8c

As in the main component, the probability of finding a storm formation is
multiplied by the probabilities of finding a storm formation on the following
day of the weather pattern of the day before and respectively two days before.
In contrast to the main component, these additional probability factors are not
normalised by dividing by the overall observed genesis probability squared.

Pgen(d) = Pobs(gen|w(d))∗
Pobs(gennext day|w(d− 1)) ∗ Pobs(gen2 days after|w(d− 2))

Pobs(gen|all)2
(2)

S3.1.3 Nearest neighbours with weather pattern and SST - fig S8d

For each combination of SST and weather pattern, the 100 nearest neighbours
in the observations are taken and the genesis probability is estimated from these
observations.

We use the Euclidean distance metric and standardise our variables for the
distance calculation.

D(di, dj)
2 =

(SST (di)− SST (dj))
2√

1
N

∑
m(SST (dm)− SST )2

+
(w(di)− w(dj))

2√
1
N

∑
m(w(dm)− w)2

(3)

For the weather patterns, which are not a continuous variable, we consider
their coordinates in the SOM grid as locations and calculate differences between
weather patterns as the sum of the squared differences in row and column num-
bers.

w(di)− w(dj) =
√
(wrow(di)− wrow(dj))2 + (wcol(di)− wcol(dj))2 (4)

8



a b

c d

main equal weight for lag 1 & 2

no weather history 100 NN weather & SST

Figure S8: Seasonal storm formation counts for the main storm formation com-
ponent (a), an alteration where more weight is given to the weather history (b),
an alternation where the weather history is ignored (c) and an alteration where
storm formations are sampled using a nearest neighbors approach based on SSTs
and weather patterns (d). The black line indicates the observed storm counts.
The solid cyan line shows the mean of 1000 cross-validated simulations. The
light shading shows the 95% range of the 1000 simulations, the darker shading
shows the 66% range.

All storm formation components result in similarly high correlation coeffi-
cients between the hindcasted emulations and the observed numbers of storm
formations. Including the information of weather patterns on the two days be-
fore makes the component more sensitive while without this information the
emulations remain close to the long-term mean.
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S3.2 Storm duration

S3.2.1 No averaging over neighboring weather patterns - fig S9b

The length of a storm is sampled from the probability function of all storms
that emerged during the same weather pattern:

D(s) = fg(Dobs[w = w(df )]) (5)

S3.2.2 Independent of weather patterns - fig S9c

The duration of a storm is sampled from the probability distribution of all
observed storms:

D(s) = fg(Dobs) (6)

a b c

d e f

main no neighbors random

Figure S9: Seasonal storm day counts for the main storm formation component
(a), an alteration where the durations are estimated from the current weather
pattern without averaging over neighboring weather patterns (b), a storm for-
mation component that samples from a distribution of all observed storm lengths
(d). The black line indicates the observed storm counts. The solid cyan line
shows the mean of 1000 cross-validated simulations. The light shading shows
the 95% range of the 1000 simulations, the darker shading shows the 66% range.
The second row shows the residuals of the simulations for the respective plots
of the first row.

Variations between the three tested storm duration components are small.
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S3.3 Storm intensity

S3.3.1 Nearest neighbours approach

The storm intensity is sampled from a 100 nearest neighbors distribution with
conditions being characterized by weather patterns, SSTs and the storm inten-
sity on the day before. This is a simpler variation of the main component that
works without the quantile regression between storm strengths and SSTs.

D(di, dj)
2 =

(SST (di)− SST (dj))
2√

1
N

∑
m(SST (dm)− SST )2

+
(w(di)− w(dj))

2√
1
N

∑
m(w(dm)− w)2

+
(v(di − 1)− v(dj − 1))2√

1
N

∑
m(v(dm)− v)

(7)

The initial idea for this component of the emulator was this nearest neighbors
approach. As shown in figure S10 there is not enough data to find close enough
neighbors for all possible combinations of weather pattern, SST and intensities
on the day before. This problem is most pronounced for strong storms under
unfavorable weather conditions. Using 20 nearest neighbors instead of 100 only
slightly improves this problem.
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a b c

d e

main nearest neighbors (100) nearest neighbors (20)

Figure S10: First row: Deviation from the storm intensity on the day before
in the nearest neighbor observations for different requested storm intensities
on the day before (x-axis). Second row: Deviation from the requested SST in
the nearest neighbor observations for different requested SSTs (x-axis). Main
emulator (a), 100 nearest neighbors (b,d), 20 nearest neighbors (c,e). The black
line indicates the observed storm counts. The solid cyan line shows the mean
of 1000 cross-validated simulations. The light shading shows the 95% range of
the 1000 simulations, the darker shading shows the 66% range.
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S3.3.2 No SST dependence

The storm intensity is sampled from a 100 nearest neighbors distribution with
conditions being characterized by weather patterns and the storm intensity on
the day before.

Building an emulator without any dependence on SSTs by simply using the
100 nearest neighbors in terms of weather patterns and storm histories leads
to a similar performance in terms of year to year variability. However, there
is a significant trend in the residuals of seasonal major hurricane counts that
shows that the effect of warming SSTs in the region on TC activity cannot
be reproduced without SSTs. As shown in figure S11d this trend is even more
pronounced if seasonal major hurricane counts are plotted against the seasonally
averaged SSTs.

The misrepresentation of major hurricanes leads to a considerable trend in
ACE residuals (fig. S12).

Note that there is a positive trend in the residuals of simulated storm days
which could propagate into major hurricane counts and ACE.

a b

c d

main no SST

Figure S11: Residuals in seasonal major hurricane counts in the main emulator
(a) and an emulator without SST dependence (b). Panels (c-d) show the same,
but against the seasonally averaged SSTs in the MDR instead of years. The
black line indicates the observed storm counts. The solid cyan line shows the
mean of 1000 cross-validated simulations. The light shading shows the 95%
range of the 1000 simulations, the darker shading shows the 66% range.
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a b

c d

main no SST

Figure S12: Residuals in seasonal major hurricane counts in the main emulator
(a) and an emulator without SST dependence (b). Panels (c-d) show the same,
but against the seasonally averaged SSTs in the MDR instead of years. The
black line indicates the observed storm counts. The solid cyan line shows the
mean of 1000 cross-validated simulations. The light shading shows the 95%
range of the 1000 simulations, the darker shading shows the 66% range.
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S3.3.3 No weather dependence

Storm intensities are emulated as in the main component with the only differ-
ence, that the dependence on weather patterns is removed.

Removing the dependence of weather patterns on storm intensification only
slightly alters the emulations. As shown in figure S13, with this variation there
is a tendency towards fewer hurricane and major hurricane strength storms.

a b

c d

main no weather

Figure S13: Residuals in seasonal hurricane (a-b) and major hurricane (c-d)
counts in the main emulator (a,c) and an emulator without weather dependence
(b,d). The black line indicates the observed storm counts. The solid cyan line
shows the mean of 1000 cross-validated simulations. The light shading shows
the 95% range of the 1000 simulations, the darker shading shows the 66% range.
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S3.3.4 No storm memory

Storm intensities are emulated as in the main component with the only differ-
ence, that the dependence on the storm intensity on the day before is removed.

When intensities are estimate irrespective of the intensity of the storm on the
day before the performance of the emulator is considerably poorer. As shown
in figure S14 there are twice as many hurricanes and major hurricanes in the
emulations than observed.

a b

c d

main no memory

Figure S14: Seasonal hurricane (a-b) and major hurricane (c-d) counts in the
main emulator (a,c) and an emulator without memory in the storm evolution
(b,d). The black line indicates the observed storm counts. The solid cyan line
shows the mean of 1000 cross-validated simulations. The light shading shows
the 95% range of the 1000 simulations, the darker shading shows the 66% range.
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