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Abstract. Even the most advanced climate models struggle
to reproduce the observed wintertime circulation of the atmo-
sphere over the North Atlantic and western Europe. During
winter, the large-scale motions of this particularly challeng-
ing region are dominated by eddy-driven and highly non-
linear flows, whose low-frequency variability is often stud-
ied from the perspective of regimes – a small number of
qualitatively distinct atmospheric states. Poor representation
of regimes associated with persistent atmospheric blocking
events, or variations in jet latitude, degrades the ability of
models to correctly simulate extreme events. In this paper
we leverage a recently developed hybrid approach – which
combines both jet and geopotential height data – to assess
the representation of regimes in 8400 years of historical cli-
mate simulations drawn from the Coupled Model Intercom-
parison Project (CMIP) experiments, CMIP5, CMIP6, and
HighResMIP. We show that these geopotential-jet regimes
are particularly suited to the analysis of climate data, with
considerable reductions in sampling variability compared to
classical regime approaches. We find that CMIP6 has a con-
siderably improved spatial regime structure, and a more tri-
modal eddy-driven jet, relative to CMIP5, but it still strug-
gles with under-persistent regimes and too little European
blocking when compared to reanalysis. Reduced regime per-
sistence can be understood, at least in part, as a result of jets
that are too fast and eddy feedbacks on the jet stream that are
too weak – structural errors that do not noticeably improve
in higher-resolution models.

1 Introduction

1.1 Motivation

There are very few regions of the atmosphere which prove
so stubbornly difficult to model as the Euro-Atlantic tropo-
sphere. Accurately predicting its evolution, or even mod-
elling its climate, requires correctly capturing the interac-
tions of breaking Rossby waves with orography and with
a meandering jet stream, the development and mainte-
nance of persistent blocking events, and the myriad exter-
nal forcings that drive the tropospheric flow: ocean heat
fluxes (Delworth and Zeng, 2016; Delworth et al., 2017),
Arctic sea ice (Barnes and Screen, 2015), stratospheric
signals (Domeisen et al., 2020), and tropical teleconnec-
tions (Rodríguez-Fonseca et al., 2016; Jiménez-Esteve and
Domeisen, 2018) to name a few. Boreal wintertime (DJF) is
particularly challenging in this regard due to the particularly
prominent role persistent blocking (Barriopedro et al., 2006)
and trimodal jet dynamics (Woollings et al., 2010) play dur-
ing this season. The implications of this complexity are far-
reaching. Within the context of weather forecasting, it results
in poor seasonal predictability over Europe (Johnson et al.,
2019), and within the context of climate modelling, it causes
biases in model representations of historical Euro-Atlantic
dynamics (Davini and D’Andrea, 2020) and a wide diver-
gence in model predictions of the impacts of climate change
on Europe, hindering the ability to develop long-term miti-
gation plans (Shepherd, 2014).

If we are to improve our models of the Euro-Atlantic, we
must understand exactly what it is we are getting wrong in
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Figure 1. A schematic showing different kinds of regime variabil-
ity, illustrated with a bimodal, 1D probability distribution, the two
peaks of which could be considered as regimes. (a) Spatial variabil-
ity: the position of the two regime centroids is different between the
two distributions, but their frequency of occurrence is unchanged.
(b) Temporal variability: the two regime centroids are located in
the same position on the x axis in both distributions, but the oc-
currence frequencies are different. (c) Mixed variability: here the
regimes differ both temporally and spatially between the two dis-
tributions, showing shifts in the positions of the regimes and their
occurrence frequencies. In this case there is no unambiguous way
to relate the regimes of one distribution to those of the other.

the first place. In such a strongly non-linear flow, evaluating
simple bulk statistics, such as the mean zonal wind or mean
pressure anomalies, can be misleading, with the potential to
obscure compensating or flow-dependent errors. The analy-
sis of circulation regimes provides a valuable framework for
studying such strongly non-linear flows, allowing for an ex-
plicit consideration of large-scale flow-dependence, with the
added benefits of being computationally cheap and easy to
diagnose from commonly archived variables.

While there is no agreed upon definition of a regime, all
regime approaches aim to identify a small set of qualita-
tively distinct flow configurations, coarse-graining the con-
tinuously evolving atmospheric state into a series of transi-
tions between this finite set of regimes. Such a regime model
approximates the true variability of the system in two differ-
ent ways. The first way is through the “spatial” structure of
the regimes – the different positions of the regime centroids
in phase space (or similarly, the different anomaly compos-
ites associated with the regimes in some target field of inter-
est) which capture the large-scale weather patterns consid-
ered representative of the system. The second way is pro-
vided by the “temporal” structure of the regimes, namely
the occurrence frequency and lifetime distributions of each
of those regimes. When modelling regime transitions as
a Markovian process, as is frequently done, this temporal

structure can be understood completely by fitting a transition
matrix to the regime state sequence, which may be done as
part of the clustering as in hidden Markov model approaches
or after the fact as in the K-means clustering approach. This
reduces each lifetime distribution to a single day-to-day per-
sistence probability. Differences in regimes – whether be-
tween two reanalysis time periods, between models and re-
analysis, between two models, or between two model ensem-
ble members – must manifest by projecting onto variations in
the spatial or temporal structure of the regimes, or both. Fig-
ure 1 visualises these three possibilities using a hypothetical
bimodal, 1D regime system as an illustrative example.

Regimes have a long history (extensively reviewed in
Hannachi et al., 2017), developing from the concept of re-
current weather types used in early operational forecast-
ing (Bowie and Weightman, 1914; Gold, 1920; Baur et al.,
1944; Rossby, 1940) and put on firmer theoretical ground
with the seminal work of Charney and DeVore (1979) which
proposed a link between persistent regimes and theoreti-
cally stable configurations of the large-scale flow. Euro-
Atlantic weather regimes, identified via K-means clustering
of 500 hPa geopotential height data (Z500), were introduced
in Michelangeli et al. (1995) and have tremendous utility for
understanding the flow-dependent predictability of the atmo-
sphere (Frame et al., 2013; Ferranti et al., 2015; Matsueda
and Palmer, 2018), in developing a holistic picture of model
biases (Dawson et al., 2012; Fabiano et al., 2020), and in
modulating the impact of remote teleconnections, such as
from the Madden–Julian Oscillation (Cassou, 2008) or the
stratosphere (Charlton-Perez et al., 2018; Beerli and Grams,
2019). Approaches generalised to cover the entire year have
also been used to understand flow-dependent impacts in ap-
plied settings, such as energy generation (Grams et al., 2017;
Van Der Wiel et al., 2019; Garrido-Perez et al., 2020). A
complementary perspective, focusing on regime behaviour
in the latitudinal meandering of the eddy-driven Atlantic jet
stream, has also developed over the last decade (Woollings
et al., 2010; Franzke et al., 2011; Madonna et al., 2017).

The goal of this paper is to perform a comprehensive as-
sessment of how well state-of-the-art climate models rep-
resent historical regime behaviour in the wintertime Euro-
Atlantic and to what extent CMIP6 improves over CMIP5
in this regard. To achieve this, we will be making use of a
novel framework first developed in Dorrington and Strom-
men (2020) (hereafter DS20) which brings together the two
main regime perspectives – circulation regimes diagnosed
from Z500 anomalies and jet regimes diagnosed from the
jet latitude index – in order to develop a more holistic un-
derstanding of mid-latitude variability. Expecting the reader
to familiarise themselves with a new framework being ap-
plied to a huge amount of data warrants some justification,
which we now aim to provide. The key motivation is the fact
that most applications of regime analysis to weather forecast-
ing and climate change implicitly rely on the assumption that
regime variability, both across time and between models, is
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strictly temporal (as in Fig. 1b), whereas classical and widely
used methods based on clustering Z500 data produce regimes
where the variability is very much mixed (as in Fig. 1c).

To justify this assertion, we remind the reader of the main
applications. Firstly, for weather forecasting, regimes are
used to simplify European weather forecasts by focusing
on the probability of transitions between regimes within a
given forecast window. Surface teleconnections associated
with each regime can then be used to give a “first-order”
weather forecast, and the historical probability of certain
regime transitions can give predictability higher than simple
climatology at longer lead times. This widely used approach
(Ferranti et al., 2015; Lavaysse et al., 2018; Matsueda and
Palmer, 2018; Cortesi et al., 2019) clearly breaks down if the
regimes one can transition into at the time of forecast differ
markedly from historical regimes as neither climatological
transition rates nor historical surface impacts can be expected
to apply anymore. In Fig. S1 in the Supplement, we show a
“worst-case” example of how the inclusion or not of a sin-
gle year can notably change the regime patterns diagnosed
using classical methods, showing that such a potential break-
down cannot be easily ruled out. The second main applica-
tion is to climate change. In the idealised Lorenz ‘63 regime
system, Palmer (1999) noted that external forcing acted to
alter the occurrence rates of regimes (their temporal variabil-
ity) but not their spatial structure: the regime patterns stay
the same, but their persistence and occurrence rates change.
This prompted Palmer to suggest the strategy of understand-
ing future changes to Euro-Atlantic dynamics in terms of just
a handful of numbers, namely the changes to persistence and
occurrence rates of the regimes (see Corti et al., 1999, Cat-
tiaux et al., 2013, Ullmann et al., 2014, and Fabiano et al.,
2021, for various attempts at implementing this strategy).
As before, associated surface impacts can be estimated from
this, giving a “first-order” approximation of climate change,
and, as before, the strategy breaks down if the regime pat-
terns change considerably in the future.

The presence of mixed variability is perhaps even more
obviously problematic when evaluating model performance,
whether by reference to observational data or other models.
As an example, suppose one has diagnosed a regime pattern
corresponding to the positive phase of the North Atlantic Os-
cillation (NAO), i.e. an NAO+ regime, and suppose that one
is interested in comparing the persistence of this regime in
a given model with the regime persistence estimated using
observational data. If the regime patterns are identical, this
is easy, but in practice this is rarely true. Indeed, the pat-
tern correlation between regimes in models and observations
can easily be as low as 0.4 (Fabiano et al., 2020). For the
NAO+ regime, which corresponds to a zonal jet, such low
pattern correlations typically correspond to biases in the lat-
itudinal position of the jet. Crucially, such mean state biases
in the jet would be expected to produce changes in the persis-
tence timescales of the regime simply because equatorward-
shifted jets are more persistent than poleward-shifted jets

(Barnes and Hartmann, 2010). In particular, it becomes vir-
tually impossible to infer if model biases in regime persis-
tence are due to genuine deficiencies in the representation of
physical processes, such as transient eddy feedbacks (Shutts,
1983), or are simply artefacts of having compared inequiva-
lent regimes. In general, it is unlikely that differences in the
spatial pattern between any two regimes can be assumed to
have a negligible impact on its persistence and occurrence
statistics.

The fact that Z500 regime patterns are not generally com-
parable across different datasets is well known. This is even
true when comparing ensemble members of an initialised
forecast using a single model, prompting Falkena et al.
(2021) to propose modifying the clustering algorithm in or-
der to artificially force more consistent patterns. The fail-
ure of time-invariance across 20th century observational data
was reported in DS20, which showed that standard regime di-
agnostics find notably different patterns depending on which
time period one considers. In practice, many prior regime
studies, both in the context of numerical weather prediction
(Ferranti et al., 2015) and climate modelling (Huth, 2000;
Driouech et al., 2010; Ullmann et al., 2014; Fabiano et al.,
2021), sidestep such issues by simply ignoring variability in
the spatial regime structure. This is often done by prescribing
particular regime patterns as identified in a particular dataset
of choice, such as a particular reanalysis product, and then
identifying regime statistics in other datasets a posteriori.
However, as the discussion in the preceding paragraph makes
clear, this likely introduces additional uncertainties into anal-
ysis. Given the strong internal variability in the Euro-Atlantic
circulation (Smith et al., 2019), this is clearly not ideal, and
indeed there has arguably been little progress made in real-
ising the strategy of Palmer (1999), let alone addressing the
question of what determines if a model will have realistic
regimes or not.

Of course, despite suggestive results using toy models like
Lorenz ‘63, there is no reason a priori to believe the Euro-
Atlantic circulation does exhibit regimes that are not only
time-invariant but also well captured by the majority of cli-
mate and forecast models. Mixed regime variability, time-
varying patterns, and the general difficulty of defining un-
ambiguous regime patterns may simply be sources of uncer-
tainty we have to live with. On the other hand, it is strik-
ing that much of this uncertainty is not present when defin-
ing regimes from the perspective of the eddy-driven jet lati-
tude. While significant deviations from Gaussianity are hard
to detect using Z500 data (Stephenson et al., 2004; Strommen
et al., 2019), the daily distribution of jet latitudes is visibly
trimodal, with peaks robustly centred at particular latitudes,
and there is little to no variability in this structure across
the 20th century (see Fig. S2). Guided by this puzzling mis-
match between the two regime approaches, DS20 identified
three Z500 regimes in the ERA20C reanalysis with vanishing
inter-decadal variability in their spatial structure, obtained by
filtering out the linear variability in the eddy-driven jet speed
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Figure 2. A schematic of the conceptual framework used in this pa-
per. The Euro-Atlantic circulation, visualised here using the North
Atlantic Oscillation (filled contours), is decomposed into orthogo-
nal (i.e. uncorrelated) modes of jet variability: the longitudinal vari-
ability (“pulsing”), as measured by the Gaussian jet speed, and the
latitudinal variability (“wobbling” or “meandering”), as measured
using non-Gaussian regimes. These two modes are then studied in-
dependently: the jet speed with linear methods (linear regression)
and regimes with non-linear methods (changes to persistence and
occurrence).

prior to clustering. DS20 posited that the reason the unam-
biguous multimodality of the jet latitude cannot be seen in the
Z500 phase space is partly due to the confounding influence
of the longitudinal variability in the jet, as characterised by its
speed. Indeed, the jet speed is distributed unimodally, experi-
ences considerable inter-decadal variability (Woollings et al.,
2014), and is largely decoupled from the jet latitude, with the
two quantities uncorrelated on daily timescales (see Fig. S3).

Several studies have highlighted the different nature of the
latitudinal and longitudinal variability in the jet. Besides its
large decadal variability, the jet speed appears to be mostly
unpredictable on seasonal timescales, unlike the jet latitude
(Parker et al., 2019; Strommen, 2020). The two quantities
also respond differently to thermal forcing (Baker et al.,
2017), implying their response to climate change may be
very different. As such, it is natural to want to treat these
two quantities separately, and this approach has often been
adopted in earlier studies (Woollings and Blackburn, 2012;
Barnes and Polvani, 2013). DS20 essentially argued that this
separation should also be used in the context of regime anal-
ysis. This ethos, which is summarised in schematic Fig. 2,
will be the one adopted here.

1.2 Outline

In this paper, we first show that the highly stable spatial struc-
ture of the three regimes found in DS20 for ERA20C can
be seen in an additional four reanalysis products, including
the recent ERA5 reanalysis (Hersbach et al., 2020). By ap-
plying the same jet filtering methodology to model data, we
also show that the same three regimes, which we here term
geopotential-jet regimes due to their hybrid nature, can be
found in the majority of coupled CMIP5, CMIP6, and High-
ResMIP model simulations. In particular, the geopotential-
jet regime patterns are to very good approximation time-
invariant in both reanalysis data and model simulations, and
the patterns seen in reanalysis are extremely well captured
by the models. In other words, and in contrast to classi-
cal regimes, geopotential-jet regime variability is almost ex-
clusively temporal. We view this as strong evidence for the
existence of time-invariant and model-reproducible regimes
a posteriori. Because our jet filtering approach produces
a phase space distribution which is unambiguously non-
Gaussian and easily comparable to the trimodal jet structure,
the reproducibility of geopotential-jet regimes across model
simulations and different reanalysis can also be considered
as strong evidence for the existence of Euro-Atlantic regimes
full stop.

The stability (i.e. time-invariance) of geopotential-jet
regimes in models, along with their fidelity (i.e. the close re-
semblance of their regime patterns to those in reanalysis),
underpins the robustness of all further analysis performed.
Firstly, we are able to easily pick out the minority of mod-
els with particularly poor spatial regime structure and can
clearly relate such deficiencies to deficiencies in the repre-
sentation of the trimodal jet, e.g. a failure to simulate tri-
modality. We show a clear reduction in the number of such
“bad” models from CMIP5 to CMIP6 primarily due to a re-
duction in the number of models with unimodal jets. Next,
we assess regime variability in models over the historical pe-
riod 1900–2015, including biases in regime occurrence, per-
sistence, and inter-decadal variability in both. Finally, we ul-
timately want to understand why some models produce more
realistic regimes than others. As an initial investigation into
this important question, we look at a number of features that
might influence how well regimes are represented by mod-
els, including their horizontal resolution, strength of local
eddy feedbacks, and the representation of remote teleconnec-
tion patterns known to influence the North Atlantic. A multi-
linear model is used to show that much of the inter-model
spread in regime structure can be predicted from these more
general features, which thus provide useful guides for future
research.

In Sect. 2 we describe the model data and variables we
analyse, provide a full description of the metrics and regime
identification methodology we use, and describe the model
features we have considered as possible explanatory vari-
ables for regime representation. Section 3 analyses how re-

Weather Clim. Dynam., 3, 505–533, 2022 https://doi.org/10.5194/wcd-3-505-2022



J. Dorrington et al.: Geopotential-jet regimes in climate models 509

alistically and reliably climate models are able to reproduce
regime patterns found in reanalysis and shows that the three
geopotential-jet regimes found in DS20 are also optimal for
the analysis of CMIP data. We also consider the relation be-
tween geopotential-jet regime and jet latitude regime rep-
resentation. Section 4 looks at the occurrence and persis-
tence of those regimes in models and explores both mean-
state biases and historical variability. Section 5 analyses the
co-variability in models’ mean-state with regime statistics
in order to gain insight into the causes of regime structure
and model biases. Finally we summarise our key findings in
Sect. 6.

2 Data and methodology

2.1 Data

In order to assess the uncertainty in the historical record of
regimes, we make use of five different reanalysis products.
In the case of reanalyses with multiple equivalent ensemble
members, we always use the first member. For each reanal-
ysis we make use of boreal winter (DJF) geopotential height
at 500 hPa (Z500) and zonal wind speed data at 850 hPa
(U850), at a daily temporal resolution and linearly interpo-
lated onto a 1◦ grid, from ERA20C (Poli et al., 2016), the
extended ERA5 (Hersbach et al., 2020), CERA20C (Laloy-
aux et al., 2018), 20CRv2 (Compo et al., 2011), and 20CRv3
(Slivinski et al., 2021). Of these only CERA20C uses a cou-
pled ocean–atmosphere model. Reanalyses produced by the
same centre will share some similarities in the features of the
assimilating model and in data-assimilation procedures and
so therefore are not totally independent. All available data
covering the time period 1900–2010, available at the time of
writing, were used. A summary of each product is given in
Table 1.

We analyse equivalent model geopotential height and wind
speed data drawn from the 5th (CMIP5) and 6th (CMIP6)
phases of the Coupled Model Intercomparison Project: multi-
centre ensembles of earth-system models representing the
state-of-the-art in global climate modelling in 2011 and
2020 respectively. We analyse the historical experiments for
31 single-member CMIP6 models (Eyring et al., 2016) de-
tailed in Table S1 in the Supplement and a total of 71 ensem-
ble members from 28 distinct CMIP5 models (Taylor et al.,
2012) detailed in Table S2. These historical experiments con-
sist of coupled uninitialised climate runs forced with histori-
cal greenhouse gas and aerosol forcings over the 20th century
after a spin-up from a free-running pre-industrial control run.

In Sect. 5 we also make use of model data produced as
part of the PRIMAVERA project, detailed in Table S3. These
coupled simulations all follow the HighResMIP protocol
(Haarsma et al., 2016) and are therefore initialised in 1950,
following a short 50-year spin-up. The simulations span the
65 years between 1950 and 2015 and use the same histor-

ical forcings as CMIP6. Six underlying models were used,
each run at a number of different resolutions: CMCC-CM2
(Cherchi et al., 2019), CNRM-CM6 (Voldoire et al., 2019),
EC-Earth3 (Haarsma et al., 2020), ECMWF-IFS (Roberts
et al., 2018), HadGEM3-GC31 (Williams et al., 2018), MPI-
ESM1-2 (Gutjahr et al., 2019), and AWI-CM-1.0 (Sein et al.,
2017).

In total, we consider more than 8400 DJF seasons of cli-
mate model data, derived from 128 ensemble integrations of
76 different climate models, originating from 18 independent
modelling centres. We are therefore able to provide a com-
prehensive analysis of the current state-of-the-art in climate
model regime representation.

2.2 Jet stream metrics

The structure of the low-level eddy-driven Atlantic jet can be
summarised through the jet latitude and jet speed indices in-
troduced in Woollings et al. (2010), which we compute with
the simplified methodology of Parker et al. (2019). In brief,
the jet speed index is defined as the maximum (oriented east-
ward) of latitudinally averaged 850 hPa zonal wind speed,
smoothed to remove synoptic fluctuations, over the Atlantic
domain (15–75◦ N, 0–60◦W). The jet latitude index is com-
plementarily defined as the latitude at which the jet speed is
maximum on a given day. The smoothing timescale varies in
the literature, but here we apply a 5 d low-pass filter to the
winds. Note that this methodology defines a unique latitude
and speed for every day and so cannot account for split jets
or insignificant jet activity, and it also does not contain any
information on the meridional tilt of the jet.

As the probability distribution of the jet latitude in re-
analysis is trimodal, it is difficult to summarise deficiencies
in model jet latitude distribution through simple summary
statistics such as the mean or variance. In order to holisti-
cally quantify the error in the jet latitude and jet speed distri-
butions in models, we make use of the Wasserstein distance.
Also known as the “Earth-mover distance”, this metric pro-
vides a natural way to compare two probability distributions
and can be understood informally as a measure of how much
of the probability density of one distribution must be shifted
to transport it into another. Formally, the Wasserstein dis-
tance (as used here) is defined as the integrated difference be-
tween two distributions’ cumulative density functions, µ(x)
and ν(x):

WD(µ,ν)=

∞∫
−∞

|ν (x)−µ(x) |dx. (1)

This distance was introduced to the atmospheric literature
in Ghil (2015) and has since been applied to the analysis of
both simple climate attractors (Robin et al., 2017) and fully
coupled climate models (Vissio et al., 2020), the latter of
which uses it to evaluate model error, just as we do here. Just
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Table 1. A summary of the five reanalysis products analysed in this paper. For references to full descriptions of the products, see main text.

Reanalysis
name

Generating cen-
tre

Year of production Time period used Observations
included

Assimilating
model

Resolution
(xy,z, t)

20CRv2 NOAA-CIRES 2011 1900–2010 Surface
observations

GFS (2008
experimental)∗

(210 km, 28 levels,
6 h)

ERA20C ECMWF 2016 1900-2010 Surface pressure
and marine wind
observations

IFS Cy38r1 (125 km, 91 levels,
3 h)

CERA20C ECMWF 2018 1901–2010 Surface, wind, and
ocean observations

IFS Cy41r2 (125 km, 91 levels,
3 h)

ERA5 ECMWF 2020 1950–2010 Surface, satellite,
and upper-air
observations

IFS Cy41r2 (31 km, 137 levels,
1 h)

20CRv3 NOAA-CIRES-
DOE

2021 1900–1980 Surface
observations

GFS 14.01 (60 km, 64 levels,
6 h)

∗ “Experimental” indicates that this was not an operational forecast model cycle.

as for the more common Euclidean distance, values close to
zero indicate smaller differences.

Finally, a simpler measure of how well a model captures
the jet latitude distribution can be given by identifying how
many peaks a given model distribution has (i.e. whether it
is trimodal, bimodal, or unimodal) and the location of these
peaks. To do this objectively, we used the python algorithm
scipy.signal.find_peaks to locate, for a given distribution, all
peaks with a height of at least 0.01 which are separated from
each other by at least 4◦. The numbers were chosen based on
inspecting the distribution for ERA5 and the CMIP6 multi-
model mean. Note that this methodology excludes “shoul-
ders” from being classified as peaks.

2.3 Regime computation

We identify atmospheric regimes using the well-established
methodology (Michelangeli et al., 1995; Cassou, 2008; Daw-
son et al., 2012) of computing the leading principal com-
ponents of the daily mean 500 hPa geopotential height field
(Z500), restricted to Boreal winter (DJF) and the Euro-
Atlantic region (30–90◦ N, 80◦W–40◦ E), and partition-
ing this low-dimensional space into regimes using the K-
means clustering algorithm, either with or without a pre-
filtering step. Principal components are calculated using the
eofs Python package (Dawson, 2016). We refer to the stan-
dard approach, which is to directly cluster a number of the
leading principal components without any pre-filtering, as
producing “classical circulation regimes”.

As discussed in Sect. 1, DS20 argued that robust identifica-
tion of non-linear regime structure in the Z500 phase space is
confounded by the impact of noisy and predominately linear
jet speed variability. Following the approach they introduced,
we consider decomposing each of the principal components

of Z500 into a component linearly related to jet speed vari-
ations and a residual component, which we hypothesise to
capture the bulk of the non-linear variability:

PCn(t)= An · ujet(t)+PCn,resid(t)+ cn, (2)

where PCn(t) is the nth principal component of Z500, ujet(t)

is jet speed, and An and cn are a slope and intercept obtained
by a linear best fit. We then cluster only the space of the resid-
uals PCn,resid(t), and we term the regimes obtained through
this method geopotential-jet regimes.

In all cases we use the principal components of each
dataset and the jet speed regression coefficients computed for
each dataset to perform this analysis. In this paper we use
the four leading principal components, as in Dawson et al.
(2012) and Strommen et al. (2019). These explain 50 % of
the variance in the domain and place focus on larger-scale
patterns rather than detailed regional variability, although in
practice, regimes found when using a larger number of com-
ponents are qualitatively identical. While regimes are identi-
fied in principal component space, either unfiltered or resid-
ual, when analysing the associated circulation patterns, we
always return to the full Z500 space over the Euro-Atlantic
domain by compositing the full Z500 fields using all days as-
signed to a given regime. Therefore composites of classical
circulation regimes and geopotential-jet regimes are directly
comparable.

As a note, the K-means algorithm is non-deterministic as
it requires a random seed at initialisation which can cause
convergence to different local minima. In order to assure
repeatability, when we refer to “clustering” a dataset, we
run the K-means algorithm 100 times with different seeds
and use the result that maximises the inter- to intra-cluster
variance ratio (as defined in Sect. 2.4). Therefore, non-
determinism in the clustering method is not the source of the
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sampling variability in regime structure we identify in the
following sections.

2.4 Regime metrics

Here we introduce the metrics used to analyse regimes in
this paper. The variance ratio, regime occurrence, and regime
persistence are commonly found in the literature, while the
regime stability and fidelity metrics are novel.

Variance ratio

The variance ratio provides a measure of how tightly
clustered regimes in a dataset are, evaluated within the
space of principal components used to perform the clus-
tering. It draws its name straightforwardly from its def-
inition; it is equal to the variance between the regime
centroids divided by the average variance between data
points. Therefore high values correspond to reduced
overlap between clusters, indicating a more clearly mul-
timodal dataset.

Regime stability and fidelity

In order to quantify changes in the spatial structure of
regimes, we introduce two new metrics based on eval-
uating the average pattern correlation between regime
composites computed in different datasets. Regime sta-
bility quantifies the degree to which regime patterns
found within subsamples of a single dataset differ to
those regime patterns found in the dataset as a whole.
It therefore assesses the non-stationarity of the regime
patterns, which may reflect slowly changing external
drivers or sampling variability.

Figure 3 illustrates the methodology for four clas-
sical circulation regimes computed in the ERA20C
dataset. First the full record is clustered, in this example
110 years, and anomaly composites of the Z500 field
are produced. This procedure is repeated for subsam-
ples of the dataset, here for three successive 30-year pe-
riods. For each, we first pair every regime pattern found
in the subsample to its closest equivalent in the full
dataset using a linear sum assignment algorithm. The
area-weighted pattern correlation is then computed for
each of the K pairs, which can be averaged to give the
subsample correlation. When this subsample correlation
is averaged across subsamples it gives the regime stabil-
ity. As a correlation, values close to 1 indicate vanishing
non-stationarity.

Formally, for a dataset D divided into N subsamples
{d1, . . .,dn} and considering K regimes, the stability is
given by

Stability=
1
KN

K∑
k=1

N∑
n=1

Corr
(
Dk,dk,n

)
, (3)

where we index also over the K regimes. Regime fi-
delity is a very similar metric but is constructed to eval-
uate how closely regime patterns found in one dataset
resemble those found in another. In our case we al-
ways use this to compare regime patterns found within
a model dataset M , and its subsamples {mn}, to regime
patterns found in a reanalysis dataset R. Again, values
close to 1 indicate near perfect agreement between the
model and reanalysis, while a 0 value would indicate
completely unrelated regime patterns. Formally this is
given by

Fidelity=
1
KN

K∑
k=1

N∑
n=1

Corr(Rk,mk,n). (4)

Regime occurrence and persistence

While stability and fidelity help in analysing spatial
regime structure, the regime occurrence and persistence
are used to quantify the temporal structure of regimes.
Regime occurrence is defined simply as the fraction of
days in a considered time series assigned to a particular
regime, while regime persistence is defined as the prob-
ability that a regime event will persist from one day to
the next. Persistence is calculated by fitting a first-order
Markov chain to the data. The Markovian assumption is
a good fit for the regime lifetime distribution, with only
very slight deviations in the fractions of events lasting
< 3 d (see Strommen et al., 2019, and Fig. S4).

2.5 Defining a neutral state

Inevitably, some daily fields will not strongly resemble any
of the regime patterns computed, representing transitional
states or comparatively rare flow configurations. It is often
useful to separate out these days, which we refer to as Neu-
tral. This is done by calculating the pattern correlation of
each day’s Z500 anomaly field with regime composites com-
puted in the full dataset and considering only those days with
a pattern correlation ≥ 0.4 to represent active regime events.

A high threshold value is more discerning and focuses
on particularly archetypal flow states, while a low thresh-
old value increases sample size. Using data from ERA20C
as a guide, we aimed to use as low a threshold as possi-
ble while still making sure regimes were associated with
changed blocking probabilities. Figure S5 shows the fre-
quency of spatially and temporally persistent blocking events
as defined in Davini et al. (2012) for the three geopotential-
jet regimes that are the focus of this work and for a range of
correlation thresholds. The value of 0.4 was chosen as it is
the lowest value that ensures each regime is associated with
increased probability of persistent blocking at some longi-
tude in the domain, although in the case of the Atlantic Ridge
regime this is only a slight increase.

Spatial regime composites restricted to only non-Neutral
days are essentially the same as those including them as the
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Figure 3. A schematic highlighting how regime stability is calculated, shown for four classical circulation regimes found in ERA20C.
Reference regimes are obtained from the full length of the dataset, in this case 110 DJF seasons. Regimes are also calculated for a number of
subsamples of the dataset covering different time periods, and the regime patterns are mapped to the reference regime with which they have
the highest pattern correlation. These correlations are then averaged across regimes and subsamples to give an average measure of regime
stability. Note that while only three independent subsamples are shown here in this illustrative schematic, overlapping time periods are used
in practice to increase the number of samples.
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Neutral days themselves have vanishing composites. There-
fore, for simplicity of presentation we apply the neutral fil-
tering only when considering temporal variability.

2.6 Description of predictive model features

In Sect. 5 we aim to understand the reasons that different
models possess differing regime patterns. To that end, we
have selected a small number of model features that have the
potential to explain inter-model spread in regime behaviour.
These features, which we will refer to loosely as “model fea-
tures”, were chosen based on their prominence in the litera-
ture. Note that data are always interpolated onto a common
1◦ regular grid before computation (except for Gulf Stream
sea surface temperature gradients, see below) and that for
quantities computed between 1979 and 2015, all available
data in this period are used (i.e. for CMIP5 models this means
1979 to 2005).

Jet speed

We compute the mean daily DJF jet speed across every
available year. While the geopotential-jet regime frame-
work views the jet speed variability as being orthogo-
nal to regime variability, this does not exclude possi-
ble relationships between the mean jet speed and mean
regime structure. For example, it is known that the mean
strength of the jet is related to its latitudinal variability
(Woollings et al., 2018), and this relationship may also
be expected to manifest in a regime context. Abbrevia-
tion: JetSpeed.

Arctic sea ice

We compute the mean Arctic (40–90◦ N) sea ice
concentration in November between 1979 and 2015.
November sea ice has been extensively discussed as po-
tentially exerting an influence on the jet and NAO on
both seasonal (Deser et al., 2007; Strong and Magnus-
dottir, 2011; Dunstone et al., 2016; Wang et al., 2017)
and climatic timescales (Barnes and Screen, 2015) by
acting as a source of stationary Rossby waves. In Strom-
men (2020) it was shown that these links are also visi-
ble in a regime context. We only consider the November
means here as these may be expected to act causally on
regime variability (which is always computed using DJF
data) without being immediately confounded by the fact
that the winter jet also influences sea ice. While restrict-
ing to November avoids such coupling issues within
a given season, we cannot rule out that the climatic
mean November sea ice state is intimately coupled to
the mean DJF regime variability. Two further provisos
should be noted. Firstly, many studies concerned with
seasonal teleconnections focus on the impact of just the
Barents–Kara region: we choose here to focus on the
entire Arctic as this is common in studies focusing on
longer climatic timescales. A small number of models

were found to be essentially ice free in November and
were not included when computing correlations or ridge
regressions involving sea ice metrics. They are still in-
cluded for all other metrics. These are the PRIMAV-
ERA models MPI-ESM1-2-HR, MPI-ESM1-2-XR, and
the CMIP5 version of EC-Earth (all ensemble mem-
bers). Abbreviation: Arctic Nov-mean.

Eddy forcing strength

The persistence of regime events is closely related to the
persistence of the eddy-driven jet. Many studies have
demonstrated that jet anomalies are reinforced through
transient eddies either via direct forcing or eddy–mean
flow feedbacks (e.g. Robinson, 1996; Lorenz and Hart-
mann, 2003). This suggests that eddy forcing is impor-
tant for regime persistence, a hypothesis which was con-
firmed in Strommen (2020). Inspired by the metric used
in Strommen (2020), as well as the NAO-focused eddy
metric of Scaife et al. (2019), we introduce in this pa-
per a new, simple metric for measuring the strength of
the eddy forcing on the jet. We compute the daily eddy
momentum flux convergence of 250 hPa winds:

E250 :=
∂
(
−u′′250v

′′

250
)

∂y
,

where u′′250 (v′′250) is the zonal (meridional), 2–6 d band-
pass filtered wind field at 250 hPa. Positive values of
this quantity correspond to regions where the transient
eddies are accelerating the westerlies (Hoskins et al.,
1983). The first EOF of DJF mean E250 resembles a
northward zonal shift of the eddies (see Fig. S6). Large
values of the corresponding principal component PC250
would therefore be expected to be associated with an
eddy-induced northward shift of the jet. The strength
of the eddy forcing is then estimated as the regression
coefficient of the normalised PC250 index against the
(non-normalised) DJF mean jet latitude. This number
can plausibly be interpreted as measuring how many de-
grees north the jet shifts in response to a unit measure
of anomalous, northward eddy activity. The PC250 index
was found to correlate strongly, but not perfectly, with
the metric used in Strommen (2020). Unlike the metric
in Strommen (2020), however, the regression coefficient
here does not implicitly assume the existence of a mul-
timodal jet, which is important given that not all models
considered have one. Note that a consistent choice of
sign for the EOF of E250 across datasets is maintained
by requiring a positive pattern correlation with the lead-
ing E250 EOF of ERA5. Abbreviation: EF-JetLat-Regr.

Stratospheric variability

To measure stratospheric variability, we computed the
standard deviation of monthly zonal mean zonal winds
at 10 hPa at the Equator (5◦ S–5◦ N). The region and
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pressure level were chosen so as to capture the quasi-
biennial oscillation (QBO) in a simple manner. The
QBO is now well resolved in many CMIP6 and PRI-
MAVERA models (Richter et al., 2020), unlike in
CMIP5 (Butchart et al., 2018), but several models still
show almost no meaningful stratospheric variability. We
found that the standard deviation computed here was ef-
fective at discriminating between models: models with
an unresolved QBO show almost zero monthly variabil-
ity, while models with a more realistic QBO show vari-
ability comparable to that of ERA5. The potential influ-
ence of the stratosphere on Euro-Atlantic regimes has
been noted in previous studies (Charlton-Perez et al.,
2018; Strommen, 2020; Fabiano et al., 2021). Its impor-
tance for modulating jet stream variability more broadly
is well known (Kidston et al., 2015; Domeisen et al.,
2020). Abbreviation: QBO Std10.

Gulf Stream SST gradient

The Gulf Stream region exhibits a strong sea surface
temperature (SST) gradient which has been suggested
as contributing to regime variability by acting as a
source of heat flux anomalies (O’Reilly et al., 2016).
We measured this gradient by computing longitudinal
means of monthly mean SSTs in the region 30◦ S–
65◦ N, 75–30◦W and computing the regression coeffi-
cient of these against latitude. Months were restricted to
November through February, and latitudes are counted
from south to north: the gradient thus computed is there-
fore always negative. The SST data are interpolated to
a regular 0.5◦ grid prior to regression (with land-points
masked out) in order to allow for a cleaner separation
between reanalysis and high-resolution models (which
have sharp gradients) and low-resolution models (which
have weak gradients). Broadly speaking, this gradient
may be viewed as giving a measure of the resolution of
the Gulf Stream and is therefore closely linked to the
strength of atmosphere–ocean coupling, with sharper
gradients indicative of potentially stronger coupling.
The importance of realistic coupling for Euro-Atlantic
atmospheric variability has been emphasised in several
studies (see Small et al., 2019; Athanasiadis et al., 2020;
Bellucci et al., 2021; Zhang et al., 2021, and references
therein). Abbreviation: NA SST-grad.

Atmospheric horizontal resolution

The hypothesis that relatively high horizontal resolu-
tion may be crucial for the realistic simulation of Euro-
Atlantic regimes was first raised in Dawson et al. (2012)
using a single model with one ensemble member, and
it has since been examined in increasingly larger en-
sembles with multiple models using both forced SST
(Strommen et al., 2019) and coupled simulations (Fabi-
ano et al., 2020). The results of these studies are some-
what inconsistent, with each suggesting different im-

pacts of increased resolution: the results of this paper
will shed further light on this mismatch. The horizontal
resolutions are measured as the approximate grid spac-
ing at the Equator (in kilometres) and were compiled by
referring to tables in the CMIP5, CMIP6, and PRIMAV-
ERA implementation papers. The resolution of reanal-
ysis data is set, by convention, as 1 km. Abbreviation:
Atm Res.

To see whether these general features can predict model
regime structure, we perform a multi-linear regression anal-
ysis over the whole dataset in Sect. 5. All model features
and regime metrics are standardised to zero mean and unit
variance before performing the regression. Individual miss-
ing values in the predictors (at most 5 over 70 values) have
been filled with the dataset mean. For models with more than
one member, the multi-member mean is considered for both
the predictors and the regime metrics. Cross-correlations be-
tween the predictors are generally low (below 0.3 for most
combinations), with the exception of QBO-std10 and jet
speed (−0.37), QBO-std10 and atm-res (−0.32), and jet
speed and EF-JetLat-regr (−0.30) (see Fig. S7). To assure
that the partial colinearity is not influencing the regression,
we adopted a ridge regression strategy that adds a penalty for
large regression coefficients (Hoerl and Kennard, 1970). An
a posteriori check showed that the regression coefficients cal-
culated in this way differ by less that 1 % from those of the
standard multi-linear regression.

Importantly, we originally considered a wider set of pre-
dictors, including polar vortex variability and mean North
Atlantic SSTs. We used the adjusted R2 metric to assess
which, and how many, predictors should be used in the fi-
nal regression model and found that for a plurality of regime
metrics, the six predictors listed above are optimal. Figure S8
shows the impact on the adjusted R2 when using only a sub-
set of the listed predictors.

3 Climatological representation of regimes

3.1 Geopotential-jet regimes in reanalysis

In DS20, three geopotential-jet regimes, capturing a negative
North Atlantic Oscillation (NAO−), Atlantic Ridge (AR),
and European Blocking Pattern (BLK), were identified in
ERA20C as having particularly stable regime patterns over
different periods of the 20th century. We review the fea-
tures of those regimes here as we find in this work that they
are also stable in other reanalyses and many models, and
we will be considering their representation in detail. Fig-
ure 4 shows composites of DJF Z500, U850, jet latitude, and
jet speed for these three geopotential-jet regimes, as com-
puted with the ERA20C reanalysis over the period 1900–
2010 (regime composites computed using other reanalyses
are qualitatively identical). The AR regime features a low-
latitude ridge, with an anomalous low to the northeast, and
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Figure 4. Regime composites for three geopotential-jet regimes in ERA20C. Top: 500 hPa geopotential height anomalies. Middle: 850 hPa
zonal wind speed anomalies. Bottom left: distribution of jet latitude. Bottom right: distribution of jet speed.

tends to feature a northerly, zonally oriented jet latitude on
the poleward flank of the ridge, with reduced wind speed on
the equatorward flank. The NAO−, also referred to in the lit-
erature as a Greenland blocking pattern, features a strong an-
ticyclone over Greenland, low pressure in the mid-Atlantic,
and a correspondingly strong reduction in wind speeds equa-
torward of the block. The eddy-driven jet is displaced south-
ward and will tend to merge with the high-level subtropi-
cal jet (Li and Wettstein, 2012). While almost all southerly
jet events are assigned to the NAO− regime, the correspon-
dence is not one-to-one, and there are many days when a cen-

tral jet is coincident with the NAO− geopotential-jet regime.
The BLK pattern features a meridional dipole with a high
over Scandinavia, suggesting a wavy jet structure. The BLK
regime is the most weakly coupled to the jet position, featur-
ing a trimodal latitude distribution, but it does feature a pref-
erence for central jet activity, as well as having the same pat-
tern of positive poleward wind anomalies and negative equa-
torward anomalies as in the AR regime, the latter of which
produces the low wind speeds over continental Europe which
are characteristic of a European blocking.
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Figure 5. Regime stability and fidelity, calculated with 30-year subsamples, as a function of regime number for both the classical circulation
and geopotential-jet regime frameworks. Lines show the mean value for each dataset, while shading shows the ensemble interquartile range.

By regressing out jet speed from the principal components
prior to clustering, our regime identification prioritises fea-
tures of the Z500 field that link to the spatial structure of
the jet stream rather than variations in the strength of the jet.
Nevertheless, the NAO− regime does feature a small but sta-
tistically significant coincidence with faster jet speeds, indi-
cating a weak non-linear component to the jet–blocking rela-
tionship.

Unlike many regime frameworks used in the literature,
there are no zonal flow states contained within this set of
three geopotential-jet regimes. In the absence of a general
definition of a regime, it is to some extent a matter of choice
as to what range of flow states we wish to include in a regime
framework. We take the perspective here that the purpose of
a regime framework is not simply to categorise flow states
but to identify dynamically meaningful recurrent states asso-
ciated with some underlying non-linearity in the flow. While
historically the movement between zonal and blocked flows
has often been framed as an approximately symmetric tran-
sition between two persistent regimes (Charney and DeVore,
1979; Trevisan and Buzzi, 1980; Legras and Ghil, 1985;
Molteni and Kucharski, 2019), there is far more evidence that
strong non-linearities impact blocking dynamics than quasi-

zonal flows. This includes the observed extended persistence
of blocking (Masato et al., 2009), consistent with the posited
non-linear impacts of eddy feedbacks (Shutts, 1983) and
breaking Rossby waves (Tyrlis and Hoskins, 2008), and fun-
damentally non-linear theoretical models of blocking such as
Yamazaki and Itoh (2013) and Nakamura and Huang (2018).
Further, there is a growing understanding of the role asym-
metric order-to-chaos regime transitions might play in atmo-
spheric systems (Shen et al., 2021). For example, Faranda
et al. (2016) suggest that quasi-zonal flows are best viewed as
a continuum of states within an attractor basin, while Green-
land blocking can be associated with intermittent excursions
to the vicinity of an unstable fixed point. This is consistent
with the perspective put forward in Woollings et al. (2008)
that wave breaking triggers transitions to blocked flows from
a default, or “neutral”, zonal state. The theoretical picture
is not entirely clear however: as a counterpoint, Hochman
et al. (2021) show signs of particularly stable zonal flow
regimes. Nevertheless, we conjecture, following DS20, that
zonal flows are best understood through the linear variation
in jet speed, while blocking regimes are best captured by
clustering methods, as summarised in Fig. 2. We find in the
following sections that these blocking regimes offer us sig-
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nificant insight into model performance, justifying their use
a posteriori.

3.2 Geopotential-jet regimes in CMIP5 and CMIP6

For all climate model datasets, subsamples were constructed
by taking 30-year windows of DJF data at 10-year intervals
such that four subsamples would be computed for a 60-year
dataset and nine subsamples for a 110-year dataset. This was
done to provide a good number of subsamples for each model
or reanalysis product while also maintaining a reasonable de-
gree of independence between each sample. Contiguous win-
dows were used rather than bootstraps in order to correctly
sample any inter-decadal variability in regime patterns that
might be present.

The representation of spatial regime structure in reanal-
yses, and in the CMIP5 and CMIP6 model ensembles, is
shown in Fig. 5, as summarised in terms of the regime sta-
bility and fidelity metrics defined in Sect. 2. Metrics were
computed using both the classical circulation regime and
geopotential-jet regime frameworks, as well as for cluster
numbers varying from 2 to 10.

Just as was found using only ERA20C data in DS20,
the regime stability in the reanalysis ensemble is maxi-
mal for three geopotential-jet regimes, and in most cases
the geopotential-jet regimes are more stable than their clas-
sical circulation counterparts, with the only exception be-
ing the two-regime case, in which the classical circulation
regimes capture the two phases of the NAO with high ro-
bustness. Quite strikingly, we see that both the CMIP5 and
CMIP6 ensembles show the same stability maxima for three
geopotential-jet regimes as reanalysis, identifying them with
even more confidence than the NAO dipole in the classical
circulation regime framework. That we see high stability for
these three regimes, even in uninitialised climate models, in-
dicates that this is not simply a chance feature of 20th cen-
tury weather variability but instead a property inherent to the
structure of the Euro-Atlantic circulation. This validates the
hypothesis and conclusions of DS20 that the regression of
jet speed prior to clustering would identify more stationary
regime patterns.

We note however that the extended set of five regimes also
considered in DS20 does not appear robust when consider-
ing multiple reanalyses and model data. Instead, a secondary
stability peak is seen in reanalysis when using seven regimes,
both for classical and geopotential-jet regimes. This more de-
tailed discretisation of the circulation produces regime pat-
terns which are qualitatively similar to the seven regimes
of Grams et al. (2017) (patterns shown for ERA20C in
Fig. S9), with only their zonal and Atlantic trough regimes
having no direct analogue. As those regimes were shown to
be highly relevant for energy applications, the set of seven
geopotential-jet regimes may be of interest for exploring
inter-decadal variability in surface impacts, although this is
left for future work.

There are no statistically significant differences in the
regime stability of the CMIP5 and CMIP6 ensembles, but
the CMIP6 models have robustly higher regime fidelity than
CMIP5, showing clear progress towards a more accurately
resolved Euro-Atlantic circulation. For both stability and fi-
delity, the spread of the CMIP6 models is reduced com-
pared to CMIP5, indicating a greater degree of agreement,
at least in this regard, between the latest generation of mod-
els. CMIP6 also follows more closely the variations in sta-
bility seen for reanalysis, with a sharper maxima for three
geopotential-jet regimes and minima for four classical circu-
lation regimes than is visible in CMIP5.

The fidelity and stability of the three geopotential-jet
regimes – AR, NAO−, and BLK – considered separately are
contrasted with their equivalents in the four classical circu-
lation regime framework in Fig. 6. Here we also assess the
sensitivity of our results to the subsample window size used
to calculate stability and fidelity, which is varied from 20 to
100 years while maintaining the same 10-year sampling in-
terval. The geopotential-jet regimes are robustly more stable
and have higher fidelity in all datasets for all sampling win-
dows. This is particularly pronounced in regime fidelity for
the AR regime and in both metrics for the BLK regime, while
the classical circulation regime framework already captures
the NAO− regime relatively well. For the geopotential-jet
regimes, both CMIP ensembles have slightly lower stability
than seen in reanalysis, most notable in the 20-year subsam-
ples, and the fidelity of CMIP6 is uniformly ∼ 5 % higher
than in CMIP5, regardless of regime or subsample window
size considered.

3.3 Jet latitude regimes in CMIP5 and CMIP6

There are also substantial improvements in the representation
of the jet latitude regimes themselves in CMIP6. Figure 7
shows the fraction of models in both CMIP ensembles with
one, two, or three jet latitude peaks, as well as the average
central latitude at which those peaks occur. While a larger
fraction of CMIP6 models properly resolve the trimodal jet
latitude distribution than in CMIP5, the main improvement
comes from a large reduction in the number of models with
unimodal jet latitude distributions. The positioning of the
southern and central peaks is improved, and the number of
peaks occurring at latitudes avoided in reanalysis is reduced,
with the exception of the northern jet latitude peak, which
seems to have a degraded representation in CMIP6 shifted
too far south. The northern peak (associated with the AR
regime) seems to be harder for models to capture as most bi-
modal models are missing this peak (not shown). Strikingly,
even in CMIP5, half the models considered produce a tri-
modal jet distribution, giving a less pessimistic assessment
of model performance than presented in Anstey et al. (2013),
which found only a few models could capture jet trimodality.
This disagreement likely results from the much larger num-
ber of models included in this paper.
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Figure 6. Regime stability and fidelity as a function of subsample window size. Ensemble mean values are shown for each atmospheric
regime pattern as identified using both four classical circulation regimes and three geopotential-jet regimes.

The full distributions of jet speed and jet latitude in
CMIP5, CMIP6, and reanalysis are shown Fig. S10. In or-
der to holistically quantify the model error in these distribu-
tions we make use of the Wasserstein distance introduced in
Sect. 2, which measures how different reanalysis and model
jet latitude distributions are, with a distance of zero indi-
cating perfect agreement. We can compute the Wasserstein
distance between the jet latitude distribution of each model
and the multi-reanalysis mean distribution, and by looking at
the cumulative density of distance across the model ensem-
ble, we can see not only if CMIP6 has lower distances (i.e.
smaller errors) than CMIP5, but also if this is due to generic
improvements or a reduction in outliers. We show such a cu-
mulative density for jet latitude and also jet speed in Fig. 8.
The average Wasserstein distance is 33 % and 38 % lower in
CMIP6 than in CMIP5 for the jet latitude and jet speed distri-
butions respectively, indicating more realistic distributions.
For the jet latitude this is particularly a result of the reduc-
tion in the number of models with large errors in CMIP6, as
visible in the diverging of the cumulative density functions
for distances exceeding 0.002.

Of course biases in jet speed and latitude are not indepen-
dent of each other, and models that do better at represent-
ing one aspect of the Euro-Atlantic circulation generally do
better at representing other aspects. Figure 9a shows a posi-
tive correlation between the jet speed and jet latitude Wasser-
stein distances, significant at the 1 % level – a relationship
that is seemingly stronger in the CMIP6 ensemble. Figure 9b
shows that a smaller jet latitude Wasserstein distance is in

Figure 7. (a) The percentage of climate models identified as hav-
ing one, two, or three peaks in their DJF jet latitude distributions.
(b) Histograms of the latitude at which climate models produce jet
latitude peaks, with vertical lines showing the true location of peaks
found in ERA5.

turn predictive of a model having high fidelity in the three
geopotential-jet regime patterns, with strong negative cor-
relations between the two measures again significant at the
1 % level. Jet speed errors are weakly negatively correlated
to regime fidelity (corr=−0.25 –−0.4), but this can be ex-
plained entirely by the co-variability with jet latitude errors;
when we regress out the Wasserstein distance in jet latitude
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Figure 8. Cumulative density functions over model ensembles of the Wasserstein distance between model jet latitude and jet speed distribu-
tions and the multi-reanalysis mean distributions. Dashed vertical lines indicate the ensemble mean distances.

from the Wasserstein distance in jet speed and correlate the
residual with regime fidelity as in panel c, we see there is no
remaining correlation. The reverse approach – computing the
residual of jet latitude distance after regressing out jet speed
– produces a residual which is still strongly correlated with
regime fidelity (not shown). This suggests that errors in jet
latitude are related to errors in jet speed and in spatial regime
structure but that biases in the model jet speed do not in-
dependently relate to the quality of the anticyclonic regime
structure, although we cannot rigorously assert causal rela-
tionships from a post hoc analysis. Results are very similar
when correlating jet errors with the fidelity of the four clas-
sical circulation regimes, except that the negative correlation
between jet latitude errors and fidelity is weaker (not shown).

4 Historical regime variability

In the previous section we have established that CMIP6 mod-
els, and even many CMIP5 models, have an adequate repre-
sentation of geopotential-jet regime patterns – the positions
of the highs and lows associated with blocking anomalies.
We now turn our attention to the representation of the tempo-
ral characteristics of those regimes – their lifetime and prob-
abilities of occurrence – as well as their historical variability.

Regime occurrence and persistence, as defined in Sect. 2,
have been computed in 30-year rolling windows for all re-
analyses and all CMIP models in order to highlight the inter-
decadal climatic variations in the regimes. The ensemble-
mean 30-year regime occurrence for each dataset is shown
in Fig. 10, in which all models/reanalyses that have data for
each full 30-year period are included in the average (Fig. S11
shows the exact amount of data included in each window).
The full ensemble spread is shaded, and for the CMIP6 and
reanalysis datasets, long-term mean values are also indicated.

Observational variability in regime occurrence is quite
substantial and is markedly higher for the Neutral and NAO−
regimes than for the AR and BLK regimes, which show
less pronounced variation. The previously documented mid-

century peak in NAO− occurrence that has been related to
reductions in forecast skill in Weisheimer et al. (2017) is vis-
ible here, and we now also document a clear decrease in oc-
currence of the Neutral regime over 1970–1990. Between the
reanalyses there is a fair amount of spread in the exact oc-
currence statistics, which is notable given the almost perfect
equivalence between regime patterns found in the reanalyses.
This is most pronounced in the early century Neutral and AR
regimes in which reanalyses disagree by as much as 3 %–4 %
but can also be seen right into the modern era, such as in the
case of the BLK regime occurrence.

The biases in CMIP6 are similar to those in CMIP5: Neu-
tral flow states are too common, and the BLK regime occurs
too infrequently, both by∼2 %. There is no noticeable bias in
the NAO− or AR occurrence, which represents an improve-
ment in the NAO− relative to CMIP5. These coupled models
do not reproduce the actual historical variability seen in re-
analysis, and the ensemble mean occurrence is almost flat
across the century, consistent with the perspective that slow
SST variability – which will not be coherent across an aver-
age of coupled models – is a major driver of decadal regime
variability. Analysing regime statistics in atmosphere-only
experiments could validate this claim and is left for future
work. This emphasises the importance of evaluating model
regimes against an appropriately long historical benchmark.
For example, looking only at the years 1980–2010, CMIP6
would seem to have a positive NAO− occurrence “bias”,
while between 1955 and 1985 it would seem to have a large
negative bias of 5 %. Comparing centennial averages how-
ever, there is no NAO− occurrence bias at all.

Regime persistence and its variability is shown in Fig. 11.
Here the disagreements between reanalysis estimates of his-
torical regime persistence are even larger than for occur-
rence, and a worryingly divergent spread in NAO− persis-
tence is seen between reanalyses in the first half of the 20th
century. It is quite possible that this spread is a result of
poor historical data constraints, which are particularly severe
in the higher latitudes around Greenland. CMIP6 shows a
bias towards reduced persistence for both BLK and NAO−
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Figure 9. (a) Correlations between the Wasserstein distances in jet latitude and jet speed in each climate model simulation. (b) The same
but showing correlation between Wasserstein distance in jet latitude and the fidelity of the three geopotential-jet regimes. (c) The correlation
between regime fidelity and the residual of the jet speed distance after co-variability with the jet latitude distance has been regressed out.
Correlations in panels (a) and (b) are significant at the 1 % level, while no significant correlations are present in panel (c).

Figure 10. The 30-year rolling windows of regime occurrence for the multi-reanalysis, CMIP5, and CMIP6 ensembles, with the x axis
marking the central year of the window. Thick lines show the ensemble mean, while shading indicates the spread between the maximum and
minimum values in the ensemble. Dashed red and black lines show the 1900–2010 average occurrence for reanalysis and CMIP6 respectively.
Figure S11 shows the number of datasets included for each 30-year period.
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Figure 11. As in Fig. 10 but showing regime persistence.

regimes of approximately 2 %, while the AR regime shows
no persistence bias, and there is a tendency for CMIP6 to
produce Neutral events that are too persistent. This is consis-
tent with the known biases in climate models towards overly
zonal flows and under-persistent regimes, as is the lack of any
substantive improvement in these biases between CMIP5 and
CMIP6 (Davini and D’Andrea, 2016).

The variability in the CMIP ensemble means is of course
far smaller than of the reanalysis mean, and it is also valuable
to consider whether the individual models are able to repre-
sent the correct levels of slow variability in occurrence and
persistence, as well as their mean values. Figure 12 shows
the standard deviation in time of the occurrence and persis-
tence metrics for a range of smoothing timescales; e.g. the
1-year smoothing timescale captures inter-annual variability,
while the 30-year smoothing timescale isolates multi-decadal
variability. This approach was found to be more robust than
a more conventional Fourier spectra analysis due to the non-
stationarity in some of the reanalysis time series and the pres-
ence of model time series of different lengths.

The inter-annual variability in occurrence and persistence
is well captured in models for all regimes, but biases ap-
pear on longer timescales of variability. In particular, mod-
els underestimate the inter- and multi-decadal variability in
the Neutral and NAO− regime occurrence and to a lesser ex-
tent for BLK occurrence as well. Low-frequency variability
in regime persistence however is too high in CMIP6, repre-
senting a notable departure from CMIP5, which has little bias
in persistence variability.

5 Physical predictors of regime representation

In the previous sections we have explored the spatial and
temporal representation of regime dynamics across the CMIP
ensembles. We have seen that there is considerable variability
between models in the fidelity, occurrence, and persistence of
regimes, and this naturally prompts us to ask why some mod-
els have more realistic regimes than others. In this section, we
use the CMIP models as an ensemble of opportunity in order
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Figure 12. Standard deviation of seasonal regime occurrence and persistence as a function of smoothing timescale, showing the variability of
the regime statistics on a range of timescales. Thick lines indicate ensemble means of each model’s standard deviation, while shading shows
the model spread. Red, black, and blue lines indicate multi-reanalysis mean, CMIP6, and CMIP5 standard deviations respectively.

to relate regime representation to the model features speci-
fied in Sect. 2.6, including now also the HighResMIP dataset.
This approach is of course imperfect: the limitations of treat-
ing CMIP datasets as true independent ensembles have been
noted in Knutti et al. (2013), and there are many more differ-
ences between climate models than the small number of fea-
tures we consider here. Further, a diagnostic approach cannot
establish causal relationships, which would require targeted
single-model experiments with controlled parameter varia-
tions. Nevertheless, the dozens of coupled climate model in-
tegrations in the CMIP and HighResMIP datasets provide
tens of thousands of years of associated data, which would
be computationally prohibitive to replicate in a purer fash-
ion. The suggestive links between model features and regime
representation we detect here can then provide direction for
more focused modelling work in the future.

We analyse 11 metrics of regime representation: the occur-
rence and persistence probabilities of the three geopotential-
jet regimes and the Neutral state, as well as three spatial
regime metrics: the regime stability, the regime fidelity eval-
uated against ERA20C, and the variance ratio. We con-
sider both univariate correlations between model features and

these regime metrics and also fit a multivariate ridge regres-
sion model, as described in Sect. 2.6.

5.1 Spatial regime structure

We start by considering the spatial regime metrics, for which
we have discussed the stability and fidelity in detail in
Sects. 3 and 4, and large values of the variance ratio im-
ply a stronger multimodality and so an overall more regime-
dominated dynamics. Figure 14 shows the regression coef-
ficients for each model feature within the ridge regression
model, while Fig. 13 shows the fraction of inter-model vari-
ance the ridge regression model can explain, shown also for
different numbers of model features included. We see that the
variance ratio is the most predictable of the spatial regime
metrics, followed by regime fidelity, while regime stability
is not explained so easily, with only 25 % of the variance
explicable in terms of the considered model features. Con-
jecturally, this may be because many models have stability
close to 1, and so inter-model variability is lower overall (see
Fig. 6). Despite variations in predictability, all three spatial
regime metrics show significant negative correlations with
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Figure 13. The fraction of inter-model variance in regime metrics explained by the multi-linear ridge regression model as a function of the
number of predictors included.

Figure 14. Regression coefficients from the six-predictor multi-linear ridge regression model, trained on CMIP5, CMIP6, and HighResMIP
models, for spatial regime representation (a), regime occurrence fractions (b), and regime persistence probabilities (c). Where the explanatory
power of a predictor for a metric is significant at the 95th (99th) percentile, it is marked with a small (large) dot.

model resolution (remembering that smaller values of res-
olution are better), which can be seen most strongly for fi-
delity. This advances previous work showing the beneficial
impact of increased resolution on regime structure (Daw-
son and Palmer, 2015) and on blocking as a result of im-
proved orography (White et al., 2019; Davini et al., 2021),
now showing it holds in an essentially linear manner across

the very wide range of resolutions (between 25 and 400 km)
spanning HighResMIP, CMIP6, and CMIP5 in a multi-model
context with multiple ensemble members. Figure S12a and b,
which show the model distribution of fidelity and variance
ratio vs. resolution in detail, highlight that this span of reso-
lutions is important for capturing this correlation robustly.
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Figure 15. The covariation between eddy feedback strength and variance ratio (a) and regime persistence (b–d) in CMIP5, CMIP6, and
HighResMIP datasets. Dots mark the value for each climate model, while a square indicates the multi-model mean value. A star and triangle
mark the values estimated from the ERA5 and ERA20C reanalyses respectively. For models with multiple ensemble members, the ensemble
mean values have been used. Trend lines show the best fit linear relationship for all models, with the Spearman correlation indicated as the
value C in each subplot title. The correlation between variables for each individual model dataset is shown in the subplot captions.

Another important feature linked to the variance ratio is
the strength eddy feedbacks on the jet stream, as captured
by EF-JetLat-Regr. Figure 15a shows climate models tend
to have both overly weak eddy feedbacks and variance ra-
tios, and we see that when this bias is reduced (i.e. eddy
feedbacks are stronger), models’ variance ratios are closer
to reanalysis. Further, both fidelity and variance ratio are sig-
nificantly higher in models with lower jet speed and a more
variable QBO, which, as shown in Fig. 16, both represent a
reduction in model bias. Low jet speeds are a natural result
of increased stirring of momentum and wave activity asso-
ciated with blocking (Nakamura and Huang, 2018), and so
this observed correlation aligns well with theory; however,
the link between regime structure and the QBO is not as con-
ceptually clear. Figure 16b and d show a clear group of mod-
els with very low QBO variability, primarily from CMIP5,
which upon visual inspection (not shown) were seen to be
models with essentially no QBO at all. While some mod-
els without a QBO have reasonably high regime fidelity, all
models with a fidelity below 0.8 lacked a QBO. This is in

agreement with the well-known importance of stratospheric
dynamics for tropospheric regime structure (Baldwin and
Dunkerton, 2001; Beerli and Grams, 2019) both due to di-
rect forcing of the QBO on the subtropical jet and through
a forcing on the NAO modulated by the polar vortex (Gray
et al., 2018).

Finally, in Fig. 14 we see that a weaker Gulf Stream merid-
ional SST gradient (note that this is a negative quantity) is
correlated with higher fidelity and stability in models. The
link is particularly strong for regime stability, and model
SST gradients are in fact the main source of predictive skill
for the stability. We can understand this, somewhat conjec-
turally, as weak meridional SST gradients being a conse-
quence of unresolved Gulf Stream eddies and thus a sign
of weak ocean–atmosphere coupling (Bellucci et al., 2021;
Zhang et al., 2021). If the coupling is weak, then there will
be less forced tropospheric variability on decadal timescales
and so less inter-decadal variation in regime structure. This
might be expected to result in higher regime stability. How-
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ever, we are not able to assess the validity of this conjecture
in this work.

5.2 Regime occurrence

Figure 13 shows that the different occurrence rates of
regimes between models can also be partially explained, ex-
cluding variability in BLK occurrence. The central panel of
Fig. 14 shows that the strongest single relationship is the
positive correlation of jet speed with AR occurrence. This
was hinted at in Barnes and Polvani (2013), which found
models with faster jet speeds were biased towards a more
northerly jet latitude. Improving model resolution increases
the number of Neutral days at the expense of the number of
NAO− days, consistent with the elimination of the CMIP5
NAO− occurrence bias in CMIP6 (see Fig. 10). Increasing
the strength of eddy feedbacks has the opposite impact, in-
creasing the amount of NAO− days, as well as AR days,
by reducing the number of Neutral days. Given that CMIP6
models have weak eddy feedbacks compared to reanalysis,
we might expect CMIP6 to show under-occurrence biases for
the NAO− and AR and too many Neutral days. While we do
indeed see a bias towards too many Neutral days, there are no
corresponding biases in the AR and NAO− regimes. Instead
it is BLK that occurs too infrequently in models. This may
suggest the existence of a compensating model error that we
have not managed to isolate in our analysis here.

5.3 Regime persistence

Figure 13 shows variability in regime persistence can be
more fully explained than regime occurrence, which is not
obvious a priori as persistence is generally speaking a more
noisy metric than occurrence. Again, variations in BLK per-
sistence are the least explicable. We see in Fig. 14c that low
jet speed is highly correlated with high persistence across all
regimes, especially in the Neutral regime, suggesting a link
to longer but sparser blocking events. This is a particularly
robust result and as shown in Fig. S13 holds for each of the
three model datasets considered independently. Woollings
et al. (2018) showed that low jet speeds are associated with
increased latitudinal jet variability but did not distinguish be-
tween inter- and intra-jet regime variability. The increased
persistence and variance ratio we see associated with low jet
speeds would be conceptually most consistent with a sce-
nario of more intra-regime variability, i.e. wobbling around a
particular peak, but a more detailed investigation outside the
scope of this paper would be needed to assess this. Strong
eddy feedbacks are also important for the persistence of the
active regimes, and the relationship is shown in detail in
Fig. 15b, c, and d. This is in line with the hypothesised role of
eddy vorticity fluxes as an important mechanism of blocking
maintenance (Shutts, 1983). The fact that the clearest rela-
tionship between eddy forcing and persistence is seen for the
NAO− regime can be understood in terms of earlier studies

(Lorenz and Hartmann, 2003; Barnes and Hartmann, 2010),
which show that equatorward-shifted jets are more persis-
tent than poleward-shifted jets owing to stronger eddy feed-
backs closer to the Equator. Lower levels of November Arctic
sea ice also seem linked to high AR persistence. While res-
olution only significantly explains variability in BLK persis-
tence within the context of the multi-linear ridge regression,
all regimes show a correlation between improved resolution
and decreased blocking persistence, as seen in Fig. S12c–f,
which serves to exacerbate model bias.

6 Discussion and conclusion

In this paper we have analysed how well two important as-
pects of the wintertime Euro-Atlantic circulation – the vari-
ability in the eddy-driven jet and transitions between anticy-
clonic blocking regimes – are represented in current-state-
of-the-art climate models, as captured by the CMIP6 ensem-
ble. Through comparisons with the previous generation of
CMIP5 models, and including a glimpse of the next gener-
ation of models with HighResMIP, we have carried out the
most comprehensive analysis of model regime and jet be-
haviour to date, including more than 70 separate models.
We have made use of the geopotential-jet regime framework,
introduced recently in Dorrington and Strommen (2020),
which filters out the linear variability in jet speed prior to
clustering in order to focus on the impact of fundamen-
tally non-linear jet latitude variations on the geopotential
height field. With the aid of this large dataset and this hybrid
methodology, we have made several key points.

– The three geopotential-jet regime patterns introduced in
DS20 were reproduced in five reanalysis products and
almost all models considered. They were also found
to have more stable spatial regime patterns, and were
better captured in models, than for any other choice of
cluster number in either of the regime frameworks con-
sidered. This makes them particularly suitable for, for
example, inter-model comparisons or analysis of slow
atmospheric variability and suggests that they are cap-
turing a genuine multimodality of the underlying cir-
culation. The ability of models to reproduce well these
regimes, which were adopted solely with the aim of
increasing spatial regime stability, suggests that much
of the previously observed poor performance of spatial
regime structure in models may simply be a result of
differing random internal variability in their jet speeds.

– The spatial structure of anticyclonic blocking regimes
and the distributions of daily jet latitude and speed have
significantly improved between CMIP5 and CMIP6.
This is primarily due to a reduction in the number of
poorly performing CMIP6 models: almost all models
have a multimodal jet latitude distribution, and a major-
ity capture all three peaks, while the three geopotential-
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Figure 16. Panels (a) and (c) as in Fig. 15 but showing the covariation between mean DJF jet speed and regime fidelity and variance ratio.
Panels (b) and (d) are the same but showing the relationship with QBO standard deviation measured at 10 hPa.

jet regime patterns observed in reanalysis – associ-
ated with blocking anomalies – are more accurately ob-
served, with average regime fidelity increasing by 6 %.

– The average CMIP model has a faster jet speed and
weaker eddy feedbacks on the jet latitude than found
in reanalysis-related variables which indicate insuffi-
cient stirring of momentum in the jet core. Models with
lower jet speeds and strong eddy–jet feedbacks were
found to have stronger and more persistent regimes, in-
dicating that these biases are probably key issues in the
under-persistence of the NAO− and BLK regimes. Im-
portantly, while models with improved horizontal res-
olution exhibit stronger, more stable, and more realis-
tic regime behaviour, they tend to have slightly reduced
regime persistence, and high-resolution models do not
have significantly reduced biases in jet speed and eddy
forcing. It is clear then that resolution upgrades alone
will not eliminate the biases in blocking regimes.

– Model biases in the occurrence and persistence of
regimes have not improved in general, moving from
CMIP5 to CMIP6. The average climate model visits
the BLK regime too infrequently, and BLK and NAO−

events do not persist for long enough. Neutral condi-
tions, without a clear regime anomaly, are too preva-
lent. The sign of these biases is completely consis-
tent with the documented under-occurrence of Euro-
pean blocking and under-persistent Greenland and Eu-
ropean blocks, as identified with blocking indices in
other works.

– Reanalysis shows considerable low-frequency variabil-
ity in the occurrence and persistence of regimes, espe-
cially in the NAO− regime. Coupled climate models
are unable to reproduce these precise patterns of vari-
ability, suggesting a chaotic origin to such variability,
driven by the specific oceanic initial conditions of the
real world. Just as with weather, to assess bias in the
regime statistics of uninitialised models it is vital that
a large range of this chaotic variability is sampled, and
so it is therefore important to compare models against a
suitably long historical record. Another option is to use
an initialised/prescribed ocean state which should elim-
inate this chaotic variability and so allow biases to be
identified from shorter series.
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The cross-correlations between model errors in jet and
regime dynamics that we have shown in this paper clearly
indicate that the jet stream and blocking events are strongly
interacting phenomena and should be understood as parts of
a larger coupled system of non-linear variability in the Euro-
Atlantic. That is, accurately resolving blocking regimes and
the trimodality of the jet are two sides of the same coin.
However, much historical work on the Euro-Atlantic has fo-
cused either on blocking regimes or on jet variability individ-
ually, with notable exceptions such as Madonna et al. (2017),
which leaves many potentially enlightening areas of research
– such as how meridional jet shifts causally relate to the onset
of blocking and vice versa – under-explored.

By adopting the hybrid geopotential-jet regime framework
in this paper, we have shown that stable, well-reproduced
regimes can be found in climate models which connect to
both shifts in the jet latitude and to anticyclonic blocking
events. The increased stability of the regimes reduces the
sampling error in regime variability, and so we have been
able to obtain confident estimates of model regime bias, and
potential causal factors, in a statistically significant fashion.
Another benefit of the geopotential-jet framework is that by
considering regime variability only along the latitudinal vari-
ability in the jet, our results can be more easily related to
studies considering the jet in a non-regime context. For ex-
ample, the result of Woollings et al. (2018) relating the lati-
tudinal jet variability and the mean jet speed finds a natural
interpretation in our framework: no such clear interpretation
seems apparent using the classical circulation regimes. More
fundamentally, our framework can be viewed as a natural ex-
tension to that of Barnes and Polvani (2013), with the lati-
tudinal variability in the jet between peaks (the “wobbling”)
interpreted as synoptic regime variability. Because the jet lat-
itude is multimodal, we posit that the use of regime tech-
niques may be crucial to properly account for this variability.

The improvements in regime structure we observe are con-
sistent with improvements in classical regimes in CMIP6
(Fabiano et al., 2020). While some prior regime studies
(Dawson et al., 2012; Cattiaux et al., 2013) have suggested
climate models often struggle to reproduce the regime pat-
terns found in reanalysis, we find models do fairly well
at reproducing geopotential-jet regime structure. Potentially,
much of the previously observed poor performance may
be a combined result of the higher inter-decadal variabil-
ity present for classical regime patterns and the use of rela-
tively short reanalysis periods to compare against. When us-
ing classical circulation regimes computed with 80+ years
of data or geopotential-jet regimes computed with 30+ years
of data, climate models typically achieve very high regime
fidelity. The documented bias towards under-occurrence of
the BLK regime, and the under-persistence of both BLK and
NAO− regimes, are consistent with biases in blocking fre-
quency statistics (Davini and D’Andrea, 2020; Schiemann
et al., 2020), demonstrating that these model errors emerge
from very different methods of analysis. As long as these

persistent model errors remain, there will be a correspond-
ing degradation in the ability of models to accurately repre-
sent wintertime extremes. Concretely, with too few persistent
Greenland and European blocking events in CMIP6 models
and an overestimation of non-blocked days, we might expect
biases towards too few extreme cold events (Brunner et al.,
2018) and, in theory, too many extreme rainfall events (Sousa
et al., 2016), although in the latter case, current generation
model bias in rainfall is dominated by parameterisation er-
rors (Prein et al., 2015).

While the impacts of resolution, eddy feedbacks, and mean
jet speed on regime structure were particularly clear, we
also gained some suggestive insights into stratospheric and
oceanic influences on regimes. The variability in a model’s
QBO correlated significantly with stronger, more realistic
regime structure, and models without a clearly resolved QBO
often – but not always – had major deficiencies in their
regimes. This suggests that regime structure is amplified by
stratospheric teleconnections, either directly through induced
changes in the subtropical circulation or via forcing on the
polar vortex – an atmospheric feature we did not examine in
this work. That some models with a poor QBO still showed
good regime structure could be a result of compensating
model errors or a sign that stratospheric forcings on the tro-
posphere can be adequately parameterised. While some sig-
nificant impacts of mean November Arctic sea ice and the
meridional Gulf Stream SST gradient were seen on regime
metrics, and we have conjectured possible mechanisms, the
connections are still unclear, and more focused work is re-
quired in the future to reveal if these are indeed robust corre-
lations and if so to understand the causal pathways involved.
We found that our predictive model could explain more than
30 % of the inter-model variance in regime representation for
most metrics. The exceptions are regime stability, which was
close to 1 for most models and so did not exhibit a very
large amount of inter-model variability, and the persistence
and occurrence of the BLK regime. The BLK regime shows
the most pronounced model biases in CMIP6, and so un-
derstanding the origin of these biases is of key importance.
Clearly, the predictive variables we considered are missing
some key driver of European blocking dynamics. Given that
European blocking is impacted much more by the land pro-
cesses and continental orography of western Europe than the
Greenland blocking and Atlantic Ridge, it is perhaps not sur-
prising that its behaviour is more complex to understand. One
major influence on blocking we have not examined here is the
influence of diabatic processes, which are increasingly be-
ing recognised as important for blocking development (Pfahl
et al., 2015; Steinfeld et al., 2020), and so this may also con-
tribute to the low explicability of BLK dynamics.

There are many avenues for future exploration and ex-
tensions of this current paper. Having obtained a detailed
understanding of how well climate models capture histori-
cal regimes, a natural next step is to consider future regime
changes under anthropogenic warming. In future work, based
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upon the PhD thesis of the first listed author (Dorrington,
2021), we will show that geopotential-jet regimes allow for
clear forced signals in both spatial and temporal regime
structures to be detected.

Another important open question is whether the exact pat-
tern of regime occurrence and persistence variability ob-
served in reanalysis can be reproduced by AMIP (Atmo-
spheric Model Intercomparison Project) models or fully ini-
tialised multi-decadal forecasts. Whether such inter-decadal
fluctuations are chaotic or predictable may have important
consequences for decadal forecasting and near-term climate
change impacts on western Europe. The stability metric in-
troduced in this paper could in fact be a useful tool in fu-
ture studies focusing on ocean-driven regime variability or
indeed in analysing non-stationary regime frameworks. The
causes of the BLK regime bias need to be isolated before they
can be improved, and the reasons for the overly weak eddy
feedbacks on the jet – responsible for much regime under-
persistence – need to be understood and eliminated. There is
also work needed on the analysis of surface impacts associ-
ated with the geopotential-jet regimes used in this paper and
whether models capture those impacts. Finally, as mentioned,
it is likely that to achieve a deeper understanding of Euro-
Atlantic variability, it is important to view the eddy-driven
jet stream and persistent blocking events as interconnected
phenomenon, and there is still much work needed to develop
a holistic understanding of how the jet and blocking co-vary
and influence one another.
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