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Abstract. Theory indicates that tropical cyclone (TC) inten-
sity should respond to environmental temperature changes
near the surface and in the TC outflow layer. While the sen-
sitivity of TC intensity to sea surface temperature is well un-
derstood, less is known about the role of upper-level stratifi-
cation. In this paper, we combine historical data analysis and
idealised modelling to explore the extent to which historical
low-level warming and upper-level stratification can explain
observed trends in the TC intensity distribution. Observa-
tions and modelling agree that historical global environmen-
tal temperature changes coincide with higher lifetime maxi-
mum intensities. Observations suggest the response depends
on the TC intensity itself. Hurricane-strength storms have in-
tensified at twice the rate of weaker storms per unit surface
and upper-tropospheric warming, and we find faster warming
of low-level temperatures in hurricane environments than the
tropical mean. Idealised simulations respond in the expected
sense to various imposed changes in the near-surface temper-
ature and upper-level stratification representing present-day
and end-of-century thermal profiles and agree with TCs op-
erating as heat engines. Removing upper-tropospheric warm-
ing or stratospheric cooling from end-of-century experiments
results in much smaller changes in potential intensity or re-
alised intensity than between present day and the end of the
century. A larger proportional change in thermodynamic dis-
equilibrium compared to thermodynamic efficiency in our
simulations suggests that disequilibrium, not efficiency, is re-
sponsible for much of the intensity increase from present day
to the end of the century. The limited change in efficiency

is attributable to nearly constant outflow temperature in the
simulated TCs among the experiments. Observed sensitivi-
ties are generally larger than modelled sensitivities, suggest-
ing that observed TC intensity change responds to a com-
bination of the temperature change and other environmental
factors.

1 Introduction

Understanding how tropical cyclones (TCs) and their im-
pacts respond to climate change is of critical scientific and
societal importance (e.g. Knutson et al., 2020). However,
TC response to environmental change is complex and multi-
faceted. Here, we use observations and idealised models to
examine the TC intensity response to changes in the environ-
mental near-surface and upper-level temperatures.

Historical global surface temperature trend analyses show
significant warming since the mid-1970s, attributed to an-
thropogenic forcing (Meehl et al., 2004, 2012). Yet trends
in the vertical thermal structure and their attribution are
less well understood (O’Gorman and Singh, 2013; Prein et
al., 2017). Since the mid-1970s most datasets show that the
troposphere has warmed, while the lower stratosphere has
cooled (e.g. Thompson et al., 2012; Philipona et al., 2018).
However, analysing these trends is particularly challenging
in the global tropics because of sparse long-term historical
upper-air records and the potential for artificial trends driven
by observing system changes (e.g. Thorne et al., 2011). In-
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deed, Vecchi et al. (2013) showed marked differences in the
magnitude of the thermal changes among a collection of ob-
servational and reanalysis datasets.

Uncertainty in temperature trends also arises from the
complexity of the driving mechanisms and their representa-
tion in reanalyses (Emanuel et al., 2013; Vecchi et al., 2013)
and general circulation models (GCMs). A historical warm-
ing maximum in the upper troposphere can be explained
through moist adiabatic ascent above warming oceans and
has been attributed to increasing greenhouse gas forcing
(Santer et al., 2005, 2008). A shift in the moist adiabat cor-
responds to larger warming aloft than at the surface. For the
lower stratosphere, a strengthened Brewer–Dobson circula-
tion has been proposed as a mechanism contributing to the
cooling (Butchart, 2014). Here, cooling occurs through en-
hanced adiabatic cooling and reduced ozone concentration
due the to upwelling of ozone-poor tropospheric air. At the
same time, observed step changes in cooling have been at-
tributed to the volcanic eruptions of El Chichón in 1982 and
Mt. Pinatubo in 1991 (Fujiwara et al., 2015). Ramaswamy
et al. (2006) isolated the role of changes in ozone, car-
bon dioxide, aerosols, and solar radiation in observed lower-
stratospheric cooling, concluding that anthropogenic factors
were the driver of overall cooling between the late 1970s and
the early 2000s.

The representation of these complex mechanisms differs
among GCMs and may contribute to the wide range in the
magnitude of GCM-simulated profile changes (Cordero and
Forster, 2006; Santer et al., 2008; Gettelman et al., 2010;
Hill and Lackmann, 2011; Hardiman et al., 2014). GCMs
are generally unable to reproduce observed profile change at
the uppermost tropospheric levels (Po-Chedley and Fu, 2012;
Mitchell et al., 2013), though whether this is due to model or
observational error remains unclear. This large spread among
models and disagreement with observations may limit our
ability to project TC intensity. Emanuel et al. (2013) con-
clude that tropopause layer cooling contributed to increased
TC potential intensity in the North Atlantic basin and that
improved process representation of profile changes in GCMs
is critically needed to improve TC projections.

As the thermal profile has changed, so has the distribu-
tion of global TC intensity (e.g. Kossin et al., 2013; Sobel et
al., 2016). A recent analysis of a homogeneous historical TC
intensity record from 1979 to 2017 revealed a statistically ro-
bust increase in global lifetime maximum intensity (Kossin et
al., 2020). The observed intensity distribution has not simply
shifted to higher intensities but has become increasingly bi-
modal (Holland and Bruyère, 2014; Lee et al., 2016; Jewson
and Lewis, 2020).

These changes in the TC intensity distribution may be
attributable to a variety of environmental and internal pro-
cesses, including both natural and anthropogenic effects.
Changes in vertical wind shear (Ting et al., 2019), humid-
ity (Dai, 2006), temperature (at the sea surface, near surface,
and in the TC outflow layer), and the nature of incipient dis-

turbances may all contribute to TC intensity change. It is also
understood that the observational datasets used in these anal-
yses have limitations (e.g. Landsea et al., 2006; Klotzbach
and Landsea, 2015), although recent efforts have reduced
these uncertainties (e.g. Knutson et al., 2019; Kossin et
al., 2020; Emanuel, 2021). TC intensity sensitivity to the un-
derlying sea surface temperature (SST), or more accurately
the thermal disequilibrium between the SST and the near-
surface atmosphere, is relatively well understood (Emanuel,
1987; Elsner et al., 2008; Strazzo et al., 2015; Gilford et
al., 2017). Global average TC intensity scales by 2.5 % per
kelvin SST warming (Knutson et al., 2019). Yet the magni-
tude and mechanistic response of TC intensity to changes in
upper-level stratification and TC outflow layer temperatures
are less well understood.

A Carnot heat engine has been used to link TC inten-
sity with near-surface and TC outflow layer temperatures
(Emanuel, 1986, 1991, 2006; Ramsay, 2013; Pauluis and
Zhang, 2017). This maximum potential intensity (PI) the-
ory suggests that TC intensity changes in response to SSTs
that drive atmosphere–ocean disequilibrium and to the en-
gine’s efficiency (the temperature difference between the sur-
face and the level of the TC outflow) (e.g. Emanuel, 1988;
Holland, 1997). Specifically, the square of PI is propor-
tional to the product of the thermodynamic efficiency and
the thermodynamic disequilibrium. Changes in disequilib-
rium, rather than efficiency, have been shown to dominate
PI variations for seasonal variations (Gilford et al., 2017)
and interannual to decadal variations (Rousseau-Rizzi and
Emanuel, 2021). In idealised axisymmetric simulations un-
der radiative–convective equilibrium, PI increased by about
1 m s−1 per kelvin of lower-stratospheric cooling and by
about 1.5 to 2 m s−1 per kelvin of surface warming (Ramsay,
2013). But the relative importance of disequilibrium and ef-
ficiency likely varies by basin (Gilford et al., 2017). SST and
outflow temperature are strongly linked when the outflow is
confined to the troposphere, thereby limiting TC intensifica-
tion associated with ocean warming (Shen et al., 2000; Hill
and Lackmann, 2011; Tuleya et al., 2016). However, there is
greater potential for larger efficiency changes when the out-
flow extends above the tropopause and occurs in the cooling
lower stratosphere.

The realised response of the TCs themselves may be quite
different from the response of PI (e.g. Vecchi et al., 2013).
This could be due to the different TC outflow layer temper-
atures in the PI algorithm versus the actual storm. But per-
haps more important are environmental factors such as wind
shear and humidity acting in combination with internal pro-
cesses such as asymmetries in the distribution of moist en-
tropy (Riemer et al., 2010; Alland et al., 2021a, b; Wadler
et al., 2021) or in the distribution of convection (Rogers et
al., 2013; Zawislak et al., 2016; Alvey et al., 2020) that can
limit the TC intensity response. Furthermore, the realised re-
sponse of TCs appears to depend on the TC intensity itself.
Indeed, the highest sensitivity to surface warming resides
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in the strongest storms (e.g. Elsner et al., 2008; Knutson et
al., 2010).

We hypothesise that observed environmental temperature
changes exert predictable influences on TC intensity. Further-
more, we explore whether historic near-surface and upper-
level temperature changes are sufficient to explain past trends
in the TC intensity distribution. Our approach blends histor-
ical data analysis with idealised numerical modelling. Ob-
servational analyses bring together a global homogenised ra-
diosonde temperature dataset with a homogeneous TC inten-
sity record to minimise contamination by artificial trends.
Naturally, observed trends in TC intensity are not due to
changes in temperature alone and respond to changes in other
environmental factors. Our goal is to isolate the influence of
temperature change on TC intensity. We focus on a global-
scale analysis over a 37-year historical period – scales at
which TC intensity should be more strongly constrained by
thermodynamic change than by other environmental or ge-
ographic factors (Deser et al., 2012). Idealised numerical
modelling further isolates and quantifies the TC intensity re-
sponse to observed trends and future changes in environmen-
tal temperatures.

The next section describes the observation datasets and
analysis procedures and the numerical model experiments.
Results of the observational analysis and idealised numerical
model experiments are presented in Sect. 3. A synthesis and
concluding discussion are provided in Sect. 4.

2 Methods

2.1 Historical temperature and TC datasets

We use multiple temperature and TC datasets to characterise
historical trends and the relationships between TC intensity
and thermal structure. Temperature data are compared across
radiosonde soundings and two reanalysis datasets and related
to two historical TC datasets.

Global radiosonde data are obtained from the Radiosonde
Observation Correction Using Reanalyses (RAOBCORE)
v1.5.1, available on a 10◦× 5◦ grid, at 16 pressure levels,
and twice daily (Haimberger, 2007; Haimberger et al., 2012).
RAOBCORE was developed to be suitable for climate appli-
cations and was created by applying a time series homogeni-
sation to the Integrated Global Radiosonde Archive (IGRA;
Durre et al., 2006). This procedure uses temperature dif-
ferences between radiosonde observations and background
forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA-40; Uppala
et al., 2005) to correct discontinuities tied to observing sys-
tem changes and remove persistent biases. These corrections
are particularly important for lower-stratospheric tempera-
tures where measurements are susceptible to radiation errors
(Sherwood et al., 2005). Haimberger et al. (2008) showed
that RAOBCORE compares favourably with satellite-derived

estimates of temperature trends in the upper troposphere and
lower stratosphere, consistent with theoretical and model ex-
pectations. Sounding profiles are sufficiently numerous to
characterise the thermal structure from the 925 hPa level up
to 50 hPa. While sounding locations in TC genesis regions
are sparse, their spatial representativeness for temperature
scales with the large radius of deformation at low latitudes.
In addition, we only use stations that have at least 70 % com-
plete records over the period 1981 to 2017 and do not contain
breakpoints. Breakpoints are detected following the methods
described in Prein and Heymsfield (2020). Briefly, four dif-
ferent breakpoint detection algorithms are applied, and time
series for which more than two algorithms identified a break-
point in the same year were excluded.

The two reanalysis datasets analysed here, both produced
by the ECMWF, are the Interim reanalysis (ERA-I; Dee
et al., 2011; accessed from European Centre for Medium-
Range Weather Forecasts, 2009) and the more recent ERA5
(Hersbach et al., 2020; accessed from European Centre for
Medium-Range Weather Forecasts, 2019). These reanaly-
ses differ in important ways that may affect trends in near-
surface temperatures and upper-level stratification, including
horizontal and vertical grid spacing, model physics, data as-
similation technique, and the data sources assimilated. The
horizontal grid spacings are 79 km (TL255) (ERA-I) and
31 km (TL639) (ERA5), and the numbers of vertical levels
and vertical extent are 60 levels up to 10 hPa for ERA-I and
137 levels up to 1 hPa for ERA5.

ERA-I and ERA5 assimilate vast quantities of in situ, ra-
diosonde, and remote sensing observations, and the observ-
ing systems change over time. This can lead to discontinu-
ities in the simulated time series (Dee et al., 2011; Sim-
mons et al., 2014). ERA-I assimilates the RAOBCORE data,
and ERA5 assimilates radiosonde data that have been ho-
mogenised using a newer procedure that uses neighbouring
stations rather than departure statistics alone. ERA5 contains
a pronounced cold bias in the lower stratosphere from 2000
to 2006 due to the use of inappropriate background error
covariances (Hersbach et al., 2020; Simmons et al., 2020).
This bias has been corrected in ERA5.1, which is a rerun of
ERA5 for the period 2000–2006 only (Simmons et al., 2020;
accessed from European Centre for Medium-Range Weather
Forecasts, 2020). For our analysis we join ERA5 and ERA5.1
by replacing ERA5 with ERA5.1 for the years 2000 to 2006
and continue to refer to this merged dataset as ERA5.

Observations of historical TCs are taken from two sources:
the International Best Track Archive for Climate Steward-
ship version 4 (IBTrACS; Knapp et al., 2010, downloaded
on 14 June 2021) and a reanalysed intensity record provided
by Kossin et al. (2020). The IBTrACS has formed the ba-
sis for many studies of TC variability and change. Here,
we use USA agency data, which are largely derived from
the National Hurricane Center’s HURricane DATa second-
generation (HURDAT2) dataset and reports from the Joint
Typhoon Warning Center. However, spatial and temporal
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variations in the instrumental observing system challenge
the interpretation of TC variability and change, particularly
in the early record (e.g. Landsea et al., 2006; Klotzbach
and Landsea, 2015). Indeed, substantial differences across
the reporting agencies (Knapp and Kruk, 2010) can con-
taminate global climatologies (Schreck et al., 2014). In re-
sponse, Kossin et al. (2013) reanalysed the historical inten-
sity record by applying an intensity algorithm (the advanced
Dvorak technique, ADT) to a homogenised geostationary
satellite dataset (the Hurricane Satellite record, HURSAT).
The resulting ADT-HURSAT dataset was recently extended
to cover the period 1979 to 2017 (Kossin et al., 2020). The
key advantage of ADT-HURSAT compared to IBTrACS is
its consistency in time and space, which makes it suitable
for trend analysis, especially from 1981 onwards. Both TC
datasets are included here to demonstrate the sensitivity of
TC intensity change to artefacts of the datasets and to con-
nect results back to prior work.

The 37-year observational analysis period of 1981 to 2017
is chosen as a balance between data availability and to
roughly coincide with the start of the recent warming trend
(e.g. Rahmstorf et al., 2017, their Fig. 2) and its influence on
global TC behaviour (Holland and Bruyère, 2014).

2.2 Idealised model experiments

We hypothesise that observed environmental temperature
changes exert predictable influences on trends in the inten-
sification rate and maximum intensity of TCs. As discussed
above, previous studies have explored the sensitivity of TC
intensity to both the tropical upper-tropospheric warming
maximum and lower-stratospheric cooling. Changes in tem-
perature stratification near the tropopause may influence the
sensitivity of TC outflow temperature for a given SST warm-
ing (and therefore also influence the thermodynamic effi-
ciency). We use ensembles of simulations from an axisym-
metric model to test these predictions and quantify the mag-
nitude of these influences on TC intensity.

The axisymmetric TC capability of Cloud Model 1 (CM1;
Bryan and Fritsch, 2002; Bryan and Rotunno, 2009a) is well
suited for our experiments. The limitations of axisymmet-
ric simulations are outweighed by the reduced computa-
tional expense, which allows us to run ensembles of simula-
tions. Axisymmetric models have proven useful in the evalu-
ation of TC maximum intensity (e.g. Rotunno and Emanuel,
1987; Bryan and Rotunno, 2009a; Hakim, 2011; Rousseau-
Rizzi and Emanuel, 2019). We acknowledge that some three-
dimensional effects, such as vortex Rossby waves, are known
to be important to TC intensity (e.g. Wang, 2002; Gen-
try and Lackmann, 2010; Persing et al., 2013). So too are
asymmetric thermodynamic processes such as downdraughts
and radial ventilation that can occur as a response to TC–
environment interactions. While axisymmetric models miss
the component of the TC response due to internal thermo-
dynamic and kinematic asymmetries, they offer a controlled

experimental design to start to link theory and observations.
Thus, the response of axisymmetric vortices to changes in the
thermodynamic profile is deemed sufficient to test our hy-
potheses, but fully three-dimensional simulations are needed
to investigate this limitation. The axisymmetric domain in
our simulations features a 4 km grid length, a model top of
25 km (59 vertical levels), and a radial domain length of
1500 km. At radial distances greater than 280 km the grid
length stretches to the larger grid spacing. Sensitivity tests
to a doubling of the radial domain length and a simultane-
ous doubling of the radial distance at which the grid length
stretches showed the sensitivity is small compared to changes
in physics options or responses to temperature changes (not
shown). The horizontal mixing length in this version of CM1
is a linear function of surface pressure, varying from 100 m
at 1015 hPa to 1000 m at 900 hPa (Bryan, 2012).

We initialise CM1 (version r19.10) with the Dunion (2011)
“moist tropical” sounding, derived from western North At-
lantic rawinsonde data from 1995 to 2002 (Fig. 1a). The
model is initialised with a weak vortex (∼ 12 m s−1 maxi-
mum azimuthal velocity in gradient thermal wind balance)
like that in the control simulation of Rotunno and Emanuel
(1987). A potentially important difference between our ex-
perimental design and that of Rotunno and Emanuel (1987)
is that our initial conditions are not in a state of radiative–
convective equilibrium. This is to assess the influence of
temperature profile differences more directly during the TC
intensification stage, although we acknowledge that the TC
begins to modify the environment immediately, and we
have not eliminated these changes in our simulations. Our
present-day simulations feature an SST of 28 ◦C, close to the
near-surface air temperature (following Bryan and Rotunno,
2009b)

We ran the simulations for 8 d, which allowed the idealised
TCs to intensify to a maximum and then equilibrate to a
quasi-steady-state intensity. We recognise that much longer
integrations have been used in several equilibrium studies
(e.g. Hakim, 2011; Ramsay, 2013), but TC modification of
the environment in longer integrations would limit our ability
to detect environmental influences. Shorter simulations also
limit the effect of excessive large-scale drying in the sub-
sidence region, leading to storm weakening found in some
longer CM1 simulations (Rousseau-Rizzi et al., 2021). Given
our goal of examining TC responses to changes in environ-
mental temperatures, we focus on the core steady-state (CS)
period, where intensity varies only slowly after the time of
peak core strength (Rousseau-Rizzi et al., 2021), though we
also present the peak core strength given its approximate
equivalence to lifetime maximum intensity (LMI). Owing to
the sensitivity of simulated TC intensity to various model pa-
rameterisation choices, we ran an ensemble of 21 simulations
for each environmental profile, varying the turbulence, radi-
ation, sea surface, and microphysical parameterisations (Ta-
bles 1 and A1).
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Figure 1. (a) Dunion (2011) moist tropical sounding, (b) tropical temperature change profile derived from an average of 21 CMIP5 GCMs
under the RCP8.5 emission scenario, (c) temperature change profiles extrapolated from hurricane-season tropical trends in the RAOBCORE
database and modified (d) by removal of the upper warming maximum and (e) by removal of stratospheric cooling. Note the differences in
vertical-axis ranges between panels (b) and (c), (d), and (e).

To explore the sensitivity of simulated TC intensity to
changes in the environmental thermodynamic profile, we ran
five additional 21-member ensemble experiments (Table 2).
These were primarily designed to explore TC intensity re-
sponse to extrapolated observational trends based on RAOB-
CORE data discussed in Sect. 2.1 and presented in Sect. 3.1.
The “mid-century” experiment corresponds to conditions ap-
proximately in the year 2050 if current trends are extrapo-
lated, and the “end-of-century” experiment applies changes
extrapolated over a century-long period (Fig. 1c). SSTs for
the mid- and end-of-century experiments were chosen to be
close to the near-surface air temperature. Two additional ex-
periments allow us to isolate the sensitivity of TC inten-
sity to specific changes observed in tropical temperature pro-
files. The “no upper warming maximum” ensemble is based
on a temperature change profile that is nearly constant with

height in the troposphere (Fig. 1d), and the “no stratospheric
cooling” simulations explore the TC response to a tempera-
ture change profile that eliminates lower-stratospheric cool-
ing (Fig. 1e). Recognising the limitations in the extrapolation
of current observational trends, we ran an additional ensem-
ble experiment based on a multi-model mean of IPCC AR5
GCM tropical change profiles for end-of-century conditions
under the RCP8.5 scenario (Fig. 1b; see also Table 2 in Jung
and Lackmann, 2019). For all simulations involving temper-
ature perturbations, relative humidity is held constant, result-
ing in increased water vapour content with warming. This as-
sumption is supported by observations (e.g. Dai, 2006; Wil-
lett et al., 2007) in addition to theoretical and modelling stud-
ies (e.g. Allen and Ingram, 2002; Held and Soden, 2006; Pall
et al., 2007).
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Table 1. CM1 model physics ensemble name list choices for the
surface model (sfcmodel), ocean model (oceanmodel), surface ex-
change coefficients (isftcflx), atmospheric radiation (radopt), relax-
ation term that mimics atmospheric radiation (rterm), and explicit
moisture scheme (ptype); see Table A1 for specific settings for each
of the 21 ensemble members.

Parameter Description

sfcmodel CM1 (1), “WRF” (2), “revised WRF” (3),
GFDL (4), MYNN (6)

oceanmodel Constant SST (1), ocean mixed layer model (2)

isftcflx Donelan (1) or Donelan/Garratt for Cd
and Ce (2)

radopt Simple (0, with rterm= 1), NASA (1),
or RRTMG (2)

ptype Morrison (5) or Thompson (3)

Despite temporal variability, the ensemble-mean inten-
sity appears close to the analytical value predicted by the
Emanuel (1988) maximum potential intensity (E-PI; Ta-
ble 2); we recognise that considerable uncertainty also ex-
ists in the E-PI values owing to various choices that go into
that calculation. We also note that the E-PI algorithm used
here is formulated using a convective available potential en-
ergy (CAPE)-based definition of E-PI, which does not de-
pend explicitly on efficiency and disequilibrium. Rather, it is
based on the equivalence between disequilibrium and the dif-
ference between environmental CAPE and saturation CAPE.
Rousseau-Rizzi et al. (2022) show that the two formulations
are physically linked via parcels’ surface moist static energy,
thus increasing confidence in our use of the CAPE-based for-
mulation.

Based on the thermodynamic and Carnot efficiency con-
siderations mentioned in Sect. 1 and the E-PI calculations
shown in Table 2, we predict a priori that the present-day
simulation would produce the weakest ensemble-mean TC,
followed in order of increasing intensity by the mid-century
and end-of-century simulations. We further expect that simu-
lations omitting the tropical upper warming maximum would
be slightly stronger than the default end-of-century ensem-
ble and that the ensemble removing stratospheric cooling
would be slightly weaker in intensity relative to the default
end-of-century run. We expect the GCM-based ensemble to
yield the strongest storm, given significantly greater warm-
ing. Of course, the numerical simulations are not constrained
to agree with these theoretically motivated predictions.

To further test our hypotheses relating changes in TC in-
tensity to environmental temperature changes, we computed
thermodynamic efficiency and thermodynamic disequilib-
rium following Emanuel (1987, 1988) and Gilford (2021).
Given the availability of high-resolution numerical simula-
tions, we also computed the simulated TC outflow tempera-

ture directly, defined as the temperature of air with outward
radial flow exceeding 1.0 m s−1 and cloud ice mixing ratio
exceeding 10−5 kg kg−1. Experimentation with these thresh-
old values demonstrates that this setting works well to repre-
sent the temperature of the cirrostratus outflow layer, though
the ensemble average values obtained were not highly sen-
sitive to changes in the radial velocity or cloud ice mixing
ratio thresholds (not shown). In our analysis of derived out-
flow temperatures, we noted substantial differences between
simulations conducted with “complex” versus “simple” rep-
resentations of radiation and have stratified the results ac-
cordingly.

3 Results

3.1 Historical temperature and TC observations

To begin exploring whether observed changes in near-surface
temperature and upper-level stratification are sufficient to ex-
plain observed trends in the TC intensity distribution, we
start with an analysis of historical data. Historical summer-
time tropical temperature trends are compared across RAOB-
CORE, ERA5, and ERA-I in Fig. 2a. The known upper-
tropospheric warming maximum and lower-stratospheric
cooling are present across all three datasets but vary sig-
nificantly in magnitude and vertical structure. As expected,
ERA-I and RAOBCORE trend profiles agree well with each
other (since ERA-I assimilates RAOBCORE data), with peak
warming located at the 300 hPa level. The ERA5 exhibits
30 % weaker peak warming than RAOBCORE and locates
peak warming higher in altitude, at 175 hPa. Cooling rates in
the lower stratosphere are strongest in ERA5, reportedly due
to the assimilation of radiosonde data adjusted by the RICH
method (Haimberger et al., 2012; Hersbach et al., 2020).
Simmons et al. (2014) suggest that the weaker cooling trend
in ERA-I may be related to a cold bias in the lower strato-
sphere which persisted through the early 2000s and then was
corrected through new assimilation of radio occultation data.

We next examine whether the trend is stable across the
decades or whether the change concentrates in a particular
decade. The rate of change is roughly constant across the 4
decades throughout the troposphere (Fig. 2b). But decadal
changes in the lower stratosphere are less stable, reflecting
the known step changes in temperature linked to volcanic
eruptions (Ramaswamy et al., 2006).

Figure 2c shows that temperature trends proximal to strong
TCs are significantly different from trends for the tropics as
a whole. Proximal is defined here as an average within 0.5◦

of the LMI locations (according to ADT-HURSAT) 2 d be-
fore a TC arrives at the location. Area-averaged soundings
are crude approximations for the spatially varying profiles
the TCs experience (e.g. Zawislak et al., 2016). However, we
consider area-averaged profiles appropriate for this assess-
ment of global trend signals, where spatial profile variations
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Table 2. Ensemble experiments and maximum intensity (i.e. Pmin); values are for time-filtered time series. For the three right columns,
numbers in parentheses represent standard deviation. A Butterworth low-pass time filter was applied to remove high-frequency fluctuations.
Core steady-state (CS) Pmin is taken over simulation hours 150 to 193, while Pmin is peak intensity. “Complex” denotes the 13-member
ensemble subset with complex-radiation parameterisation. Settings for the Emanuel potential intensity (E-PI) calculation, based on the pyPI
software package (Gilford, 2021), include dissipative heating (Bister and Emanuel, 1998), an enthalpy-drag coefficient ratio of 0.9, and a
wind reduction coefficient of 0.9.

Experiment SST E-PI Pmin Pmin CS Pmin
(full ensemble) (complex) (complex)

Present-day 301.2 K (28.0 ◦C) 923.4 hPa (74.7 m s−1) 917.8 hPa (10.8 hPa) 913.3 hPa (8.7 hPa) 920.5 hPa (10.9 hPa)
Mid-century 301.8 K (28.6 ◦C) 920.1 hPa (75.7 m s−1) 913.7 hPa (12.0 hPa) 912.1 hPa (9.8 hPa) 917.2 hPa (13.7 hPa)
End-of-century 302.4 K (29.2 ◦C) 917.1 hPa (76.4 m s−1) 907.0 hPa (10.3 hPa) 906.0 hPa (8.5 hPa) 913.3 hPa (10.5 hPa)
No upper warming max 302.4 K (29.2 ◦C) 916.4 hPa (76.4 m s−1) 909.0 hPa (11.6 hPa) 906.8 hPa (10.5 hPa) 911.0 hPa (13.7 hPa)
No stratospheric cooling 302.4 K (29.2 ◦C) 917.1 hPa (76.4 m s−1) 909.5 hPa (12.0 hPa) 906.5 hPa (8.8 hPa) 916.2 hPa (13.3 hPa)
GCM RCP8.5 304.5 K (31.3 ◦C) 910.9 hPa (77.5 m s−1) 903.5 hPa (12.8 hPa) 901.0 hPa (10.2 hPa) 908.1 hPa (12.9 hPa)

Figure 2. Historical tropical temperature profiles averaged over 0◦ to 20◦ N for August–September–October and 20◦ S to 0◦ for December–
January–February using RAOBCORE, ERA5, and ERA-I are shown as (a) the linear trend over the period 1981 to 2017 (K per decade)
and (b) departures of decadal averages from the 1981 to 2017 average (K) for ERA5 and ERA-I only. Decadal averages are calculated over
the periods 1981 to 1989, 1990 to 1999, 2000 to 2009, and 2010 to 2017. (c) As in panel (a) for ERA5 and including trends for proximal
environments for tropical storms (ADT-HURSAT LMI less than 33 m s−1) and for hurricane-strength TCs (ADT-HURSAT LMI greater than
or equal to 33 m s−1). Proximal environments are defined as averages within a 0.5◦ radius of the LMI locations 2 d before the TC arrives
at the location using ERA5. Filled circles indicate sea surface temperatures (SSTs) where the position on the y axis is chosen for clarity.
Shading, dashed lines, and lines through the filled circles in panels (a) and (c) indicate plus and minus twice the standard error of the trend
lines, approximating the 95 % confidence interval.

specific to individual TCs may be less important. The sam-
ple sizes are 2174 tropical storm environments and 1774 hur-
ricane environments. Strong TC environments have warmed
significantly faster than the tropical mean environment below
the 850 hPa level. The SSTs in strong TC environments have
also warmed faster than the tropical mean SSTs (Fig. 2c) and
are likely driving the rapid warming at low levels. The warm-
ing surface and low-level temperatures would sustain the
thermal disequilibrium supportive of strong potential inten-
sities. The peak warming in the upper troposphere is corre-
spondingly stronger for strong TC environments and located
at a higher level relative to the tropics overall. Trends also

differ between proximal environments for tropical storms
and hurricane-strength storms, but not significantly so. Trop-
ical storm environments also do not trend significantly dif-
ferently from the tropical mean environment.

Our purpose here is not to comment on which tempera-
ture dataset produces the most accurate trends but rather to
document that the choice of temperature dataset matters for
the magnitude and structure of the temperature trend. We
also update previous work (Emanuel et al., 2013; Vecchi et
al., 2013) that compared across reanalysis datasets by includ-
ing the more recent ERA5 combined with ERA5.1. By exten-
sion, analysed relationships between TC intensity trends and
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near-surface temperature and upper-level stratification trends
may also vary by choice of temperature dataset. Later in
this section, we make links between temperature trends and
TC intensity trends. This requires a temperature dataset with
globally uniform coverage. We choose the ERA5 dataset for
this purpose given its higher spatial resolution and newer data
assimilation procedures compared to ERA-I. We next turn
our attention to the changing TC intensity distribution.

At the same time as the global tropical temperatures have
changed, so too has the distribution of global TC intensity.
Figure 3a and b show TC intensity distributions by historical
decade in both the IBTrACS and ADT-HURSAT datasets.
First, we notice the differently shaped distributions between
IBTrACS and ADT-HURSAT. Kossin et al. (2020) explain
that cirrus-obscured TC eyes can cause underestimation of
lifetime maximum intensity (LMI) at around 33 m s−1. It is
likely that this dataset, therefore, over-reports LMI values
less than 33 m s−1, with higher LMI only reported if the al-
gorithm locks onto a clearing eye signature as TCs intensify.
ADT-HURSAT, therefore, sacrifices storm-level accuracy for
improved long-term statistics.

The well-established bimodal distribution is present in
both datasets, and both reproduce the known result of an in-
creasing proportion of the strongest storms over time (e.g.
Elsner et al., 2008; Kossin et al., 2020). We also reproduce
the stronger trends in IBTrACS than ADT-HURSAT. For the
proportion of major hurricanes (category 3 and higher on the
Saffir–Simpson scale), Kossin et al. (2020) find the increase
in ADT-HURSAT is about half that in IBTrACS and suggest
that half the trend in IBTrACS is attributable to changes in
observing systems. When considering the proportion of cate-
gory 4 and 5 storms, we find even larger discrepancies. In IB-
TrACS, the proportion of category 4 and 5 storms increases
from 11.3 % in the 1980s to 20.9 % in the 2010s, a factor of
1.85 increase. For ADT-HURSAT, the proportion increases
from 14.1 % in the 1980s to 17.7 % in the 2010s, a factor of
only 1.26 and a rate approximately 3 times lower than in IB-
TrACS. Our finding here is consistent with the greater impact
of observing system change for the strongest storms (Kossin
et al., 2020). Interestingly, we also find that IBTrACS pro-
duces more than half the change between the first 2 decades
(the 1980s to the 1990s), whereas ADT-HURSAT produces
more than half the change between the final 2 decades (2000s
to the 2010s).

We now begin to explore statistical linkages between the
changing TC intensity and near-surface and upper-level tem-
peratures. We use quantile regression models to explore how
the strength of the statistical relationship between LMI and
environmental temperature varies by storm intensity, follow-
ing the approach used in Elsner et al. (2008) and Kossin et
al. (2013). Our quantile regression models specify how the
LMI quantile changes with temperature variation. This al-
lows us to identify whether relationships with the surface
or upper-level temperature differ between strong and weak

storms. We later compare these assessments to those derived
from our numerical simulations.

We start by quantifying temporal trends in LMI to link
back to existing work and provide a starting point from which
to explore trends concerning temperature. When considering
all TCs (Fig. 4a), only those exceeding hurricane strength
(> 33 m s−1) show intensification, but trends are not signif-
icantly different from zero. Kossin et al. (2020) report that
quantile regression can be highly sensitive to the range of
the data. When considering only hurricane-strength storms
(Fig. 4b) we found that intensification is significantly differ-
ent from zero, peaking at 3 m s−1 per decade for a hurricane
quantile of 0.4. These results reproduce those of Kossin et
al. (2020).

We next explore how these trends in LMI quantiles com-
pare to trends in the theoretical maximum potential inten-
sity to determine how strong vs. weak storms have kept
pace with trends in their PI. The theoretical maximum po-
tential intensity is calculated using E-PI (Emanuel, 1988) on
thermodynamic profiles from ERA5 data proximal to indi-
vidual TCs at the time of LMI. The linear trend in mean
E-PI is 1.2 m s−1 per decade for locations of all TCs and
0.9 m s−1 per decade for locations of hurricane-strength TCs
only. Given that tropical-storm-strength TCs show no tempo-
ral trend, they have not kept pace with their rising E-PI. But
hurricane-strength storms exhibit super-E-PI trends and have
therefore closed the gap between realised and maximum po-
tential intensity.

Figure 4c, d, and e show relationships between LMI quan-
tiles over all TCs and SST, temperature at the 300 hPa level
(T300), and temperature at the 50 hPa level (T50). As be-
fore for the calculation of E-PI, representative environmen-
tal temperatures are obtained using LMI proximal values.
In general, we find large and statistically significant rela-
tionships. Intensity has increased substantially with warm-
ing SSTs almost universally across LMI quantiles, but with
a markedly different response between hurricane-strength
storms and weaker storms. Tropical-storm-strength quantiles
have increased by approximately 0.6 m s−1 K−1, whereas the
rate rises rapidly with LMI quantiles above hurricane cat-
egory 1 strength, reaching a maximum of 2.6 m s−1 K−1 at
the highest quantiles. This is markedly different behaviour
from the temporal trends where the higher rates are located
at the middle quantiles. We also note the dip in the trend
at quantiles close to about 33 m s−1. These may not be re-
liable because it coincides with the intensity at which the
ADT-HURSAT determinations can be influenced by cirrus-
obscured eyes.

The response of LMI quantiles to T300 is qualitatively
similar to the response to SST, but trends plateau for the
highest quantiles. This similarity may be expected given
the strong correlation between proximal SST and proximal
T300 (R = 0.78). The reduced rates of change for the high-
est quantiles may also be expected given the larger change in
upper-tropospheric temperature per unit change in SST. As
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Figure 3. (a, b) Distributions of global TC LMI (lifetime maximum 1 min sustained wind speed at 10 m above the surface; m s−1) for the
period 1981 to 2017 split by historical decade using IBTrACS and ADT-HURSAT. The exact years for each decadal period are 1981 to 1989,
1990 to 1999, 2000 to 2009, and 2010 to 2017. Kernel density is estimated using Gaussian smoothing kernels with a standard deviation of
5 m s−1. Panel (b) provides a close-up view of the portion of panel (a) outlined by the dashed grey line.

Figure 4. Trends in global LMI quantiles using ADT-HURSAT over the period 1981 to 2017. (a) Temporal trends for all TCs, (b) temporal
trends for hurricane-strength (> 33 m s−1) TCs only, (c) trends with SST for all TCs, (d) trends with temperature at the 300 hPa level (T300)
for all TCs, and (e) trends with temperature at 50 hPa (T50) for all TCs. Quantiles vary between 0.025 and 0.0975 with an interval of 0.05. The
95 % confidence interval (grey shading) is calculated from bootstrapping with 200 replications. The vertical dashed grey lines are reference
lines indicating hurricane category 1 intensity. The slope of the E-PI trend line is shown with horizontal dashed red lines in panels (a) and (b).
E-PI is calculated using LMI-proximal data. The second x axis along the top of each panel shows the LMI values corresponding to the LMI
quantiles. In panel (b) the second x axis starts at 33 m s−1 (by definition) and remains at 33 m s−1 until the 0.2 quantile. R code is adapted
from Elsner and Jagger (2013) and available at https://rpubs.com/jelsner/5342 (last access: 1 October 2021).
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before for SST, hurricane-strength TCs exhibit markedly dif-
ferent behaviour to weaker storms: they intensify with T300
warming at approximately twice the rate of weaker storms.

The response of LMI quantiles to T50 temperature
(Fig. 4c) shows increasing intensity with cooling across most
LMI quantiles but is statistically significant for tropical-
storm-strength storms only. We, therefore, do not find a sig-
nificant relationship between trends in hurricane intensity
and lower-stratosphere temperature, at least for this global-
scale analysis. This is consistent with the GCM study by Vec-
chi et al. (2013) but inconsistent with idealised simulations of
Ramsay (2013).

In summary, our analysis of historical records finds
that hurricane-strength storms exhibit markedly different
behaviour to weaker storms in environments of chang-
ing near-surface and upper-level temperature. Hurricane-
strength storm intensity increases at twice the rate or more
compared to weaker storms within environments of sea sur-
face temperature warming. Hurricane-strength storm inten-
sity also increases at twice the rate compared to that of
weaker storms in environments of upper-tropospheric warm-
ing. Despite upper warming having a limited correlation with
TC intensity, this result is perhaps unsurprising given the
strong correlation between SST and T300 (not shown). The
response of hurricane-strength storms within environments
of lower-stratospheric cooling was mixed and did not reach
statistical significance.

3.2 Idealised model experiments

Towards the goal of isolating and quantifying the effects
of near-surface temperature and upper-level stratification
changes on TC intensity, we turn to idealised simulations
which are free from other changes. If the results of these
simulations agree with expectations, we can be more con-
fident in attributing observed TC intensity trends to temper-
ature changes, which are perhaps more reliably projected by
GCMs. On the other hand, if the idealised simulations indi-
cate TC intensity trends that differ markedly from observa-
tions, then we can be more confident that other environmen-
tal changes are dominant in driving the observed changes. As
discussed in Sect. 2.2, numerical simulations were conducted
with the CM1 model in an axisymmetric TC configuration.

The 21-member control (present climate) ensemble fea-
tures an initial period of slightly weakening TC intensity,
followed by steady vortex intensification between simulation
hours 12 and 90 (Fig. 5). Considerable ensemble spread de-
velops by hour 50, with central pressure values ranging from
less than 900 hPa to nearly 960 hPa at hour 100. The sim-
ulated ensemble mean TC minimum sea level pressure at-
tained a minimum (maximum intensity) around hour 130,
followed by slight weakening and quasi-steady ensemble-
mean intensity until the end of the simulation. Simulations
using a simple Newtonian cooling radiation parameterisa-
tion generally resulted in weaker TCs (blue lines in Fig. 5),

Figure 5. CM1 time series of axisymmetric TC minimum central
pressure (Pa) for the default present-day ensemble based on the
Dunion moist tropical sounding, distinguishing ensemble members
with complex (black) and simple radiation (blue).

motivating the use of an ensemble subset consisting of the
13 members using more complex-radiation parameterisa-
tions. The complex-radiation subset features reduced ensem-
ble spread and a lower ensemble-mean central pressure (Ta-
ble 2). The intensification phase of TCs in the complex-
radiation members consistently begins earlier in the simu-
lation relative to the simple-radiation subset; for instance,
the time required for Pmin to reach 960 hPa is nearly 24 h
faster for the complex-radiation members (Fig. 5). We evalu-
ate both the maximum ensemble-mean core intensity and the
quasi-steady period around the core intensity period later in
the simulations, consistent with “core steady-state (CS)” in
the nomenclature of Rousseau-Rizzi et al. (2021). The core
intensity roughly corresponds to the LMI.

For the additional experiments, time series of ensemble-
mean maximum near-surface wind speed and minimum cen-
tral pressure sort out precisely as expected based on theoreti-
cal predictions: the present-day simulation features the weak-
est ensemble-mean TC, while the end-of-century simulations
are all stronger, with the mid-century ensemble falling in be-
tween (Fig. 6, Table 2). This overall trend matches the E-PI
calculations in a relative sense (Table 2). One notable differ-
ence is the removal of the stratospheric cooling, which had
no impact on E-PI but weakened the simulated storm slightly.
The GCM-modified end-of-century environment yields the
greatest intensity, with filtered ensemble-mean Pmin values
approaching 900 hPa in the complex-radiation ensemble sub-
set (Fig. 6a). This is consistent with the fact that future
changes under the CMIP5 RCP8.5 scenario exceed that due
to extrapolation of current observed trends (compare purple
and red curves in Fig. 6a and b and abscissa values in Fig. 1b
and c). In all simulations, the ensemble-mean Pmin values
were lower than the E-PI calculations. Note that there is un-
certainty in the E-PI calculation owing to several choices in
parameter settings, as is the case with the CM1 model. But
perhaps the greatest discrepancy arises from our calculation
of E-PI at the initial time, leading to possible differences in
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the E-PI-calculated outflow and the realised outflow temper-
ature in our simulations.

Each ensemble experiment exhibits considerable variabil-
ity, and the ensemble standard deviations are generally larger
than the differences in the ensemble mean between the ex-
periments (Fig. 6b, Table 2). That the relative ranking of the
experimental ensemble-mean intensity matches expectation
from theory is notable, but the large ensemble variability pro-
vides context regarding statistical robustness, or lack thereof.
We refrain from a dichotomous declaration of “statistically
significant” or not (e.g. Amrhein et al., 2019; Wasserstein et
al., 2019). Yet, an inspection of the individual ensemble ex-
periments demonstrates that the relative intensity of the dif-
ferent ensemble members exhibits considerable consistency,
motivating the use of a Wilcoxon signed-rank test (Wilcoxon,
1945), appropriate for paired samples (Fig. 6c). Except for
the mid-century experiment, small p values relative to the
present-day simulation provide more confidence in the sig-
nificance of the results relative to what comparison to the
overall ensemble mean suggests (top labels in Fig. 6c). Com-
parison of the end-of-century with the no-upper-warming en-
semble yields a signed-rank p value of 0.13, and comparison
with the no-stratospheric-cooling ensemble yields a p value
of 0.29 (not shown).

While the smoothed, ensemble-mean changes are highly
consistent with theoretical expectations, neither the changes
predicted by E-PI theory nor those resulting from the numer-
ical simulations are dramatic in terms of Pmin. For extrap-
olations of current RAOBCORE trends, the end-of-century
ensemble mean is characterised by Pmin values that are ap-
proximately 10 hPa lower than for the present-day ensemble.
That is not to say that these intensity increases are insignifi-
cant, however. Changes in the GCM-modified environment
under the RCP8.5 scenario exhibit the strongest changes
in ensemble-mean Pmin, approximately 12 hPa lower. The
strengthening seen in the extrapolated RAOBCORE exper-
iments is consistent with that reported for a 2 K change by
Knutson et al. (2020), while the GCM experiment change,
accompanied by an SST warming over 3 K, is somewhat
less than what would be anticipated from the Knutson et
al. (2020) review.

The consistency between the CM1 simulation results and
the theoretical E-PI intensity calculations suggests that the
interpretation of the simulated TC responses to environmen-
tal change is consistent with the concept of a Carnot heat
engine (e.g. Emanuel, 1988, 1991). Because we use Pmin
to measure storm intensity, we are not concerned with su-
pergradient wind speeds as analysed by Rousseau-Rizzi and
Emanuel (2019), Hakim (2011), and Smith et al. (2008).
Our hypothesis in this analysis is that in the quiescent (un-
sheared) axisymmetric CM1 environment, the TC response
to changes in environmental temperature will be consistent
with PI theory and the concept of thermodynamic engines.
These idealised simulations provide an estimate of the ex-
pected effect of such changes on TC characteristics, allowing

us to relate the simulation responses to the observational TC
statistics presented in Sect. 3.1.

To understand comparisons between our simulated TC in-
tensity and E-PI changes, we compute thermodynamic ef-
ficiency and thermodynamic disequilibrium changes in our
simulations. As stated earlier, the square of PI is proportional
to the product of the thermodynamic efficiency and the ther-
modynamic disequilibrium (Eq. 1 in Gilford et al., 2017).
We therefore examine whether changes in our simulated in-
tensity (V 2

max) are proportional to simulated changes in the
product of thermodynamic efficiency and the thermodynamic
disequilibrium. But first, we compare relative changes in
the thermodynamic efficiency and thermodynamic disequi-
librium terms themselves.

We compute the temperature of cloudy, outflowing air in
the upper troposphere for each ensemble member in each ex-
periment and use this information in conjunction with SST
to compute the thermodynamic efficiency (see Sect. 2.2) ac-
cording to Eq. (1):

Eff=
SST− Tout

Tout
. (1)

Thermodynamic disequilibrium is computed as the differ-
ence between the saturation moist static energy at the sea
surface and a near-surface value of moist static energy. It is
calculated at the initial time, whereas efficiency is calculated
for the CS period.

First, we examine changes in outflow temperature and
pressure. The outflow temperature is remarkably similar be-
tween the different experiments (Table 3) despite varying
outflow pressures. While the warmest outflow is in the GCM-
modified experiment, as expected, this does not reach sta-
tistical significance. The similarity in outflow temperatures
is consistent with the fixed anvil temperature (FAT) hypoth-
esis (Hartmann and Larson, 2002), which argues that the
environmental cooling rate is largely governed by temper-
ature. This follows from the saturation vapour pressure de-
pendence on temperature via the Clausius–Clapeyron rela-
tion. The temperature at which cooling rates rapidly decrease
with height (and therefore also the temperature of the out-
flow) should remain approximately constant. Surface warm-
ing, therefore, raises the altitude of the outflow but has less
effect on outflow temperature. In agreement, we find that the
average pressure altitude of the outflow exhibits considerable
difference among the experiments, with the present-day en-
semble showing the lowest outflow altitude and the GCM
experiment the highest (∼ 190 hPa, Table 3). Although the
differences are small relative to the ensemble standard de-
viation, the no-stratospheric-cooling and no-upper-warming-
maximum experiments exhibit the expected changes in out-
flow pressure. The FAT hypothesis could be contributing to
the small changes in efficiency in our experiments with mod-
ified upper-level stratification. Interestingly, the average out-
flow pressure generally reflects an altitude above the upper
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Figure 6. Time series of CM1 ensemble-mean (a) maximum wind speed (m s−1) and (b) minimum sea level pressure (Pa) for present-day
simulations with complex-radiation parameterisation. Experiments as indicated in the legend in panel (a). Ensemble-mean time series have
been smoothed with a Butterworth filter to remove high-frequency fluctuations. (c) Box plot showing the distribution of average CS period
minimum central pressure over the 13 complex-radiation ensemble members. Mean values are shown as green triangles; p values are from a
Wilcoxon paired rank-sum test shown at the top for each experiment versus the present climate.

warming maximum, especially for the stronger TCs in the
GCM ensemble.

For the GCM experiment, the slightly warmer outflow
temperature is more than compensated by the increased SST,
resulting in the greatest thermodynamic efficiency among the
experiments. The GCM experiment also produces the lowest
Pmin (Table 2). The numerical simulation experiments ranked
by intensity match exactly the ranking in thermodynamic ef-
ficiency (Tables 2 and 3). However, differences in thermody-
namic efficiency between the ensemble members are small in
magnitude, and relative changes in thermodynamic disequi-
librium with increased SST are much larger. Percent changes
in disequilibrium relative to the default run are +3.8 % for
the mid-century run, +7.8 % for the end-of-century runs (in-
cluding the no-upper-warming and no-stratospheric-cooling
runs), and +22.1 % for the GCM RCP8.5 run. Upper-level
changes have no impact on disequilibrium in our modelling.
Percent changes in efficiency are much less, at +0.9 % for
the mid-century run, +1.7 % for the end-of-century runs,
and +3.1 % for the GCM RCP8.5 run. In contrast to dise-

quilibrium, efficiency does change a little with upper-level
changes, but changes remain small. The lack of change in
efficiency is related to the nearly constant TC outflow tem-
peratures between our experiments.

Having established the dominance of thermodynamic dis-
equilibrium over thermodynamic equilibrium in driving PI,
we now examine how close our simulated intensity be-
haviour is to theoretical expectations. Specifically, we quan-
tify whether our simulated intensity changes are proportional
to changes in the product of thermodynamic disequilibrium
and thermodynamic equilibrium. Quantitative comparisons
are challenging given the differing absolute changes, but we
do so here using percent changes (as also used in Gilford et
al., 2017). Table 4 shows close agreement between percent
changes in the square of the realised intensity and percent
changes in the product of efficiency and disequilibrium. This
indicates that PI theory explains much of the TC responses
to changes in environmental temperature. However, there
are notable discrepancies in the experiments with changed

Weather Clim. Dynam., 3, 693–711, 2022 https://doi.org/10.5194/wcd-3-693-2022



J. M. Done et al.: Tropical cyclones and environmental temperature 705

Table 3. Ensemble-mean thermodynamic disequilibrium, outflow temperature, outflow pressure, and thermodynamic efficiency computa-
tions for the 13-member complex-radiation ensemble subset; radial wind threshold of 1.0 m s−1 and cloud ice threshold of 10−5 kg kg−1.
Ensemble standard deviation (SD) is shown for outflow temperature and pressure. Disequilibrium (defined as the difference between the
saturation moist static energy at the sea surface and a near-surface value of moist static energy) is calculated at the initial time, and all other
values apply to the CS time window of the simulations, hours 150 to 192.

Experiment SST Disequilibrium T outflow, SD P outflow, SD Efficiency
(K) (J kg−1, %) (K) (hPa) (unitless, %)

Present-day 301.15 9342.2,− 224.25,2.73 216.88/14.89 0.3429,−

Mid-century 301.77 9701.0,3.8 224.22,3.31 211.92/17.42 0.3459,0.9
End-of-century 302.39 10072.2,7.8 224.22,3.45 207.34/17.40 0.3486,1.7
No upper warming max 302.39 10072.2,7.8 224.08,3.11 205.87/15.70 0.3495,1.9
No stratospheric cooling 302.39 10072.2,7.8 224.57,3.20 208.05,17.03 0.3465,1.1
GCM RCP8.5 304.46 11410.6,22.1 224.95,3.02 190.59/15.11 0.3535,3.1

Table 4. Maximum intensity (Vmax) and percent changes
on the left-hand side (V 2

max) and right-hand side (effi-
ciency× disequilibrium) of Eq. (1) in Gilford et al. (2017) as
simulated by the complex-radiation ensemble experiments. All
values are for time-filtered time series and represent the core
steady-state (CS) period except for disequilibrium, which is
calculated at the initial time.

Experiment Vmax V 2
max Efficiency×

(m s−1) (%) disequilibrium
(%)

Present-day 66.14 – –
Mid-century 67.59 4.4 4.7
End-of-century 69.13 9.3 9.6
No upper warming max 70.79 14.6 9.9
No stratospheric cooling 69.41 10.1 8.9
GCM RCP8.5 74.44 26.7 25.9

upper-level stratification. Possible explanations for the dis-
crepancies are discussed in the next section.

4 Concluding discussion

In a quiescent environment, theory indicates that TC in-
tensities should exhibit considerable sensitivity to changes
in near-surface temperatures and upper-level stratification
(Emanuel, 1991; Kieu and Zhang, 2018; Tao et al., 2020).
In this paper, we explore whether observed environmental
temperature changes are sufficient to explain observed trends
in the TC intensity distribution, to improve the understand-
ing and interpretation of observed and emerging trends in the
TC intensity distribution. To do so we worked to isolate and
quantify the response of TC intensity to observed trends in
environmental temperature using a combination of historical
data analysis and idealised numerical modelling. While our
choice of axisymmetric modelling misses potentially impor-
tant TC asymmetries, such models are useful tools to begin
to link theory and observations.

Our historical data analysis focused on global scales span-
ning 4 decades to emphasise the scales where thermody-
namic change is large, and circulation change is minimised.
Tropical-storm-strength intensities show no temporal trend
and have therefore not kept pace with rising PI. Hurricane-
strength storms, however, exhibit significant temporal trends
that reach super-PI rates for some intensity quantiles. Storms
at these quantiles have therefore closed the gap between re-
alised and maximum potential intensity. The larger trends in
the more intense storms are consistent with our finding that
hurricane environments have warmed faster than the tropi-
cal mean environment. The faster warming is most apparent
in the lower troposphere and is likely driven by faster SST
warming.

The differing trends in TC environments compared to
the tropical mean environment have implications for climate
change studies that use “storyline” or “pseudo global warm-
ing (PGW)” methods. These methods typically apply a long
time-average change from GCMs to reanalysis conditions
and use those high-resolution conditions to drive regional
model simulations of historical and future weather events
(e.g. Hazeleger et al., 2015; Lackmann, 2015; Gutmann et
al., 2018; Shepherd, 2019). TCs may respond differently
to environmental change more representative of that taking
place locally within TC environments.

In changing our frame of reference from time to tempera-
ture, we again found markedly different sensitivities between
tropical storms and hurricane-strength storms. Hurricane-
strength storms intensified at up to 4 times the rate of tropical
storms per unit increase in surface and upper-tropospheric
temperature. The response of storms within environments of
lower-stratospheric cooling was mixed and did not reach sta-
tistical significance. However, our global scale of analysis
may miss basin-specific sensitivities arising from the differ-
ing TC outflow layer heights relative to the tropopause (Gil-
ford et al., 2017). SST and outflow are strongly linked when
the outflow is confined to the troposphere, but there is greater
potential for larger efficiency changes when the outflow ex-
tends above the tropopause. In addition, the differing trend
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magnitudes among commonly used historical temperature
and TC intensity datasets challenge our ability to understand
relationships using historical data alone.

We then turned to idealised modelling to further isolate,
quantify, and understand the effects of near-surface tempera-
ture and upper-level stratification change on TC intensity and
to interpret the empirical statistics. Idealised TC simulations
responded in the expected sense to various imposed changes
in environmental temperatures and generally agree with TCs
operating as heat engines. We found close agreement be-
tween percent changes in the square of the realised inten-
sity in our simulations and percent changes in the product of
efficiency and disequilibrium. This indicates that PI theory
explains much of the TC responses to changes in environ-
mental temperature. Removing upper-tropospheric warming
or stratospheric cooling from the end-of-century experiment
resulted in much smaller changes in E-PI or realised inten-
sity than between present day and the end of the century. The
larger proportional change in thermodynamic disequilibrium
compared to thermodynamic efficiency in our experiments
(in agreement with Rousseau-Rizzi and Emanuel, 2021) also
suggests that disequilibrium, not efficiency, is responsible for
the intensity increase from present day to the end of the cen-
tury in our simulations. Possible explanations for residual
differences between realised intensity change and PI change
include (i) necessary differences in the timing of the effi-
ciency and disequilibrium computations, (ii) limitations to
the model related to axisymmetry and parameterisations, and
(iii) assumptions in the E-PI algorithm.

The weak influence of lower-stratospheric cooling on TC
intensity in our simulations and our observational analysis is
consistent with the GCM study by Vecchi et al. (2013). How-
ever, axisymmetric simulations out of radiative–convective
equilibrium by Ramsay (2013) showed stronger vortex inten-
sity with stronger imposed lower-stratospheric cooling rates.
This was despite much of the outflow being confined to the
upper troposphere. We agree with Ramsay (2013) and Fer-
rara et al. (2017) that it is challenging to reconcile contrasting
results across different models with different parameter set-
tings and analysis procedures and across studies using lim-
ited historical datasets.

Analysis of TC outflow found little change in the out-
flow temperature but a rising mean pressure outflow altitude
that is located above the altitude of peak upper-tropospheric
warming. The near constancy of outflow temperatures lim-
ited thermodynamic efficiency changes with surface warm-
ing, and upper-level temperature change mattered less than
we originally thought. The FAT hypothesis appears to ex-
plain our findings well and would limit thermodynamic effi-
ciency change under changed upper-level stratification. Fur-
ther work is needed to understand, at a process level, the
extent of applicability of the FAT hypothesis for TCs. For
tropical convection it has support from observational analy-
sis (Xu et al., 2007) and convection-resolving idealised nu-
merical simulations (Kuang and Hartmann, 2007). Some ad-

ditional supporting evidence for a FAT for TCs is provided
by idealised cloud-resolving modelling (Khairoutdinov and
Emanuel, 2013) and by analysis of TC cloud top tempera-
tures in ADT-HURSAT data (Kossin, 2015). However, de-
tecting trends in TC cloud top temperatures is complicated
by a poleward trend in the latitude of LMI (Kossin, 2015).

Increasing thermodynamic disequilibrium with warming
may also explain the fastest temporal trends in intensity
for the middle LMI quantiles. With warming, middle-LMI-
quantile TCs are closing the gap with PI. The strongest
storms, however, were already close to their PI, and weaker
storms are more strongly limited by other environmental fac-
tors such as shear or dry air. Techniques to simulate weaker
storms within the idealised modelling framework are needed
to test this hypothesis.

The magnitude of the simulated changes, even for extrap-
olated trends, is relatively small compared to observed trends
in TC characteristics. This suggests that environmental tem-
perature changes contributed to some of the observed TC
intensity change but that other environmental factors dom-
inated as the root causes, including, for example, changes in
vertical wind shear, humidity, incipient disturbances, or in-
ternal asymmetries.

Extrapolated observational temperature trends resulted in
weaker TC intensity trends relative to change profiles based
on an ensemble of CMIP5 GCMs under the RCP8.5 emis-
sion scenario. Future extensions of this work could omit
the GCM-based tropical upper warming maximum or strato-
spheric cooling to determine whether a more substantial
change results relative to these exercises with the extrapo-
lated observations. The use of CMIP6 trends would also be
informative. Future work could also start from a different
base sounding other than the Dunion (2011) North Atlantic
moist tropical sounding. It is possible that different magni-
tude sensitivities between the historical data analysis and the
idealised simulations could be due, in part, to our use of this
single profile that allows all simulated storms to reach the
highest observed intensities. Base soundings representative
of the observed tropical storm and hurricane-strength storm
environments may yield more nuanced sensitivity to envi-
ronmental temperature change, given permitted variations
in outflow altitude. Future work should also include tests
with fully three-dimensional TC simulations; such simula-
tions would include the effects of potentially important in-
ternal asymmetries and also allow examination of changes
in intensification rate and timing. Finally, more comprehen-
sive physical process studies are needed to interpret the em-
pirical and idealised modelling findings reported here and
work towards untangling the factors driving observed inten-
sity changes.
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Appendix A

Table A1. Description of name list settings for axisymmetric CM1
ensemble simulations.
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do
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rt
er
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pt
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1 1 1 1 0 1 5
2 2 2 2 0 1 5
3 2 1 1 0 1 5
4 2 1 2 0 1 5
5 3 2 2 0 1 5
6 3 1 1 0 1 5
7 3 1 2 0 1 5
8 3 2 2 2 0 3
9 4 1 1 0 1 5
10 1 1 1 1 0 5
11 2 2 2 1 0 5
12 2 1 1 1 0 5
13 2 1 2 1 0 5
14 6 1 1 1 0 5
15 3 1 1 1 0 5
16 6 1 2 1 0 3
17 4 1 1 1 0 3
18 2 2 2 2 0 3
19 6 1 1 2 0 3
20 4 1 1 2 0 3
21 1 1 1 1 0 5

Code and data availability. The pyPI Python software
package, developed by Daniel Gilford, is available from
https://doi.org/10.5281/zenodo.3985975 (Gilford, 2020).

The ECMWF reanalysis datasets are available at
(https://apps.ecmwf.int/datasets/, last access: 22 June 2022;
European Centre for Medium-Range Weather Forecasts, 2009,
https://doi.org/10.5065/D6CR5RD9; European Centre for Medium-
Range Weather Forecasts, 2019, https://doi.org/10.5065/BH6N-
5N20; European Centre for Medium-Range Weather Forecasts,
2020, https://doi.org/10.5065/CBTN-V814). The results contain
modified Copernicus Climate Change Service information 2020.
Neither the European Commission nor ECMWF is responsible
for any use that may be made of the Copernicus information
or data it contains. IBTrACS data are available from NOAA
(https://www.ncdc.noaa.gov/ibtracs/, last access: 22 June 2022;
Knapp et al., 2010, https://doi.org/10.1175/2009BAMS2755.1).
ADT-HURSAT data are available in the supporting information
of Kossin et al. (2020, https://doi.org/10.1073/pnas.1920849117).
RAOBCORE data are available at https://www.univie.ac.at/
theoret-met/research/raobcore/ (last access: 22 June 2022;
Haimberger, 2007, https://doi.org/10.1175/JCLI4050.1).
CMIP5 model output was obtained from the Program for
Climate Model Diagnosis and Intercomparison (PCMDI).
The pyPI software used for the E-PI calculations are avail-

able from Gilford (2021, https://doi.org/10.5194/gmd-14-
2351-2021). R code for the quantile regression modelling
presented in Fig. 4 is available at from Elsner and Jagger
(2013, https://doi.org/10.1093/oso/9780199827633.001.0001).
The CM1 axisymmetric TC model is available from https:
//www2.mmm.ucar.edu/people/bryan/cm1/ (last access: 22 June
2022; Bryan and Fritsch, 2002, https://doi.org/10.1175/1520-
0493(2002)130<2917:ABSFMN>2.0.CO;2).
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