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Abstract. Extreme stratospheric events such as sudden
stratospheric warming (SSW) and strong vortex events can
have downward impacts on surface weather that can last for
several weeks to months. Hence, successful predictions of
these stratospheric events can be beneficial for extended-
range weather prediction. However, the predictability of ex-
treme stratospheric events is most often limited to around
2 weeks or less. The predictability strongly differs within
events of the same type and also between event types.
The reasons for the observed differences in the predictabil-
ity, however, are not resolved. We extend the analysis of
the predictability of stratospheric extreme events to include
wind deceleration and acceleration events, with SSW and
strong vortex events as subsets, to conduct a systematic
comparison of sub-seasonal predictability between events in
the European Centre for Medium-Range Weather Forecasts
(ECMWF) prediction system. Events of stronger magnitude
are found to be less predictable than weaker events for both
wind deceleration and acceleration events, with both types of
events showing a close to linear dependence of predictabil-
ity on event magnitude. There are, however, deviations from
this linear behaviour for very strong magnitude events. The
difficulties of the prediction system in predicting extremely
strong anomalies can be traced to a poor predictability of ex-
treme wave activity fluxes in the lower stratosphere, which
impacts the prediction of deceleration events and, interest-
ingly, also acceleration events. Our study suggests that im-
provements in the understanding of the wave amplification
that is associated with extremely strong wave activity fluxes
and accurately representing these processes in the model
are expected to enhance the predictability of stratospheric

extreme events and, by extension, their impacts on surface
weather and climate.

1 Introduction

The stratospheric polar vortex (SPV) is a band of strong
westerly winds over the polar region at the height of around
20–50 km during winter. These circumpolar winds result
from a strong temperature gradient in the stratosphere be-
tween the polar and subtropical regions during winter due
to reduced solar heating over the polar regions. As westerly
flow in the stratosphere favours upward wave propagation
(Charney and Drazin, 1961), planetary-scale waves formed at
the troposphere can propagate upwards into the stratosphere
(e.g. Polvani and Waugh, 2004; Sjoberg and Birner, 2012).
Depending on the wave activity and the state of the vortex,
the SPV can undergo periods of weakening or strengthening,
thus largely varying in strength during the wintertime.

The weakening and strengthening of the SPV can be un-
derstood in the framework of wave–mean-flow interaction
(Matsuno, 1970; Holton and Mass, 1976). Before vortex
weakening events, anomalously strong wave activity is ob-
served in the lower stratosphere (Polvani and Waugh, 2004;
Hinssen and Ambaum, 2010). The waves can precondition
the vortex via wave breaking (Limpasuvan et al., 2004; Al-
bers and Birner, 2014), shaping the vortex structure to be
more favourable for upward wave propagation. A precondi-
tioned vortex is associated with a region of large and posi-
tive refractive index (Matsuno, 1970; Simpson et al., 2009;
Karoly and Hoskins, 1982). As the refractive index for sta-
tionary planetary waves is proportional to the meridional

Published by Copernicus Publications on behalf of the European Geosciences Union.



756 R. W.-Y. Wu et al.: Predictability of extreme stratospheric events

potential vorticity (PV) gradient, the meridional PV gra-
dient can be used as a proxy for waveguidability (Albers
and Birner, 2014; Jucker and Reichler, 2018). On the other
hand, when wave activity is weak and the SPV is relatively
undisturbed, the vortex strengthens on radiative timescales
(Limpasuvan et al., 2005; Hitchcock and Shepherd, 2013).
Holton and Mass (1976) demonstrated using a simple mech-
anistic model that when the wave forcing is below a critical
level, the vortex accelerates and approaches a state close to
radiative equilibrium.

There exist various definitions to characterise the weak
and strong states of the SPV. The most commonly stud-
ied events are major sudden stratospheric warmings (SSWs;
Baldwin et al., 2021), characterising the abrupt weakening of
the SPV. SSW events are commonly defined by the reversal
of the SPV mean flow from westerly to easterly (Charlton
and Polvani, 2007; Butler et al., 2017; Palmeiro et al., 2015).
In some studies, for which the primary focus is on the abrupt
dynamical nature of SSW events, a definition based on wind
change is used (Birner and Albers, 2017; de la Cámara et al.,
2019). In contrast, events in which the SPV becomes anoma-
lously strong, with the mean flow accelerating to anoma-
lously strong westerly values beyond a certain threshold, are
characterised as strong vortex events (Tripathi et al., 2015).
Due to the rapid nature of wave forcing, vortex weakening
can be abrupt, whereas vortex strengthening tends to be more
gradual (Limpasuvan et al., 2005). The more rapid nature
and stronger magnitude of vortex weakening than strength-
ening can be observed by comparing the magnitude of the
identified vortex weakening and strengthening events in stud-
ies on SPV variability (e.g. Baldwin and Dunkerton, 2001;
Limpasuvan et al., 2005). The asymmetry is also observed in
the wave activity preceding the events (Polvani and Waugh,
2004) due to the strong relationship between wave forcing
and mean flow.

Weak and strong states of the SPV can have a downward
impact on surface weather that can last for a few weeks to
a few months (Baldwin and Dunkerton, 2001). This down-
ward influence can potentially be used to extend the pre-
dictability limit of surface weather from stratospheric origins
(Domeisen et al., 2020a). In the stratosphere itself, the de-
terministic predictability limit of SSW events is about 10 d
(Domeisen et al., 2020b; Taguchi, 2020), and it is found that
the predictability of SSWs differs strongly between events
(e.g. Karpechko, 2018). The source of predictability of SSW
events is attributed in some studies to the predictability of
wave activity (Stan and Straus, 2009; Karpechko et al., 2018;
Portal et al., 2022) and tropospheric blocking (e.g. Tripathi
et al., 2016) as blocking events often precede SSW events
(e.g. Martius et al., 2009). It is found in ensemble fore-
casting systems that when the forecasts are initialised under
strong blocking conditions, ensemble members of the fore-
casts can undergo bifurcation which leads to large uncer-
tainties (Karpechko, 2018; Lee et al., 2019). However, even
when successfully predicting a preceding blocking event, a

model may still fail to predict a SSW (Tripathi et al., 2016),
suggesting that other factors, e.g. the background state of the
stratosphere, might be important for successful predictions
of SSWs.

Extreme stratospheric events, e.g. SSW and strong vor-
tex events, are often the main focus of stratospheric pre-
dictability studies (e.g. Domeisen et al., 2020b; Taguchi,
2014, 2020). Strong vortex events are shown to be more
predictable than SSW events (Domeisen et al., 2020b). To
our knowledge, the reason for the observed differences in
predictability between event types is, however, not resolved
in existing literature and is often attributed to the different
mechanisms driving these events. The sample size of SSW
and strong vortex events in sub-seasonal prediction systems
tends to be too small to systematically assess their differ-
ences in predictability. Thus, in this study, we expand the
analysis of the predictability of extreme stratospheric events
to wind deceleration and acceleration events. As SSW events
and strong vortex events are periods of strong zonal wind de-
celeration and acceleration, respectively, a better understand-
ing of the predictability of wind deceleration and accelera-
tion events will also contribute to the understanding of the
predictability of SSW and strong vortex events. We aim to
address the following questions. (1) If we expand the event
definitions to wind deceleration and acceleration events, do
we also see a difference in predictability between wind decel-
eration and acceleration events, as for SSW and strong vortex
events? (2) If so, what contributes to the difference in pre-
dictability between events? For example, is predictability re-
lated to event magnitude or event mechanisms? (3) What are
the dynamical precursors for the predictability of the events?
Do those precursors set the predictability limit of the events?

The paper is structured as follows: Sect. 2 discusses the
data and methods adopted in this study. Section 3.1 illustrates
the predictability differences between wind acceleration and
deceleration events, Sect. 3.2 discusses the predictability de-
pendence of events on event magnitude, and Sect. 3.3 ex-
plores the predictability dependence on event mechanisms.
Finally, we discuss our results in Sect. 4.

2 Data and methods

2.1 Datasets

The hindcasts (retrospective forecasts) of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) model
from the sub-seasonal-to-seasonal (S2S) prediction database
(Vitart et al., 2017) are used to evaluate the predictability
of stratospheric events in Northern Hemisphere (NH) win-
ter, from November to March (NDJFM), in the period of
1998/99–2017/18, which is the full available hindcast period
for the model versions used in this study. The hindcasts are
initialised twice a week (every Monday and Thursday) for a
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20-year period alongside the real-time operational forecasts.
The hindcasts consist of 11 ensemble members.

The model versions CY43R3 and CY45R1, corresponding
to hindcasts with model version dates of 13 July 2017 to 10
June 2019, are used. Similar model configurations are used in
both model versions, and they both use the ECMWF ERA-
Interim reanalysis (Dee et al., 2011) for initialisation. The
different model versions lead to qualitatively similar results
in terms of prediction skill in their hindcasts (not shown) and
are thus both used for the analysis presented here. The hind-
casts are verified against the ERA-Interim reanalysis.

We evaluate the skill of the hindcasts at various lead times.
Lead time is referred to as the time between the event onset
date and the hindcast initialisation date. For example, a lead
time of−5 indicates a hindcast initialised 5 d before the event
onset. Hindcasts are divided into six lead time groups (LTGs)
according to their initialisation dates, each of which repre-
sents a 5 d lead time window. For example, LTG-30 refers
to hindcasts with initialisation dates of 30 to 26 d before the
event, while LTG-5 refers to hindcasts from 5 to 1 d before
the onset date.

2.2 Definition of stratospheric events

From the daily mean of the zonal mean zonal wind at 60◦ N
and 10 hPa (u) from NDJFM 1998/99–2017/18 of ERA-
Interim, we identify zonal wind acceleration and deceleration
events. Both acceleration and deceleration events are defined
as 10 d events and are identified using a 10 d moving window.
Another event can only be identified 20 d after the start of an
event to prevent identifying the same event. If a stronger de-
celeration is observed within 20 d of the last identified event,
the period with stronger wind deceleration is selected in-
stead, replacing the weaker event. The start date of the event
is defined as day 0 of the event; i.e. the day when accelera-
tion or deceleration starts in the 10 d window. The magnitude
of the identified events is defined as the wind change over
the 10 d event window, i.e. 1u= u(t = 9)−u(t = 0), where
t indicates the lead time. We also impose a criterion that
the ratio of the difference between the maximum and min-
imum wind speed occurring during the 10 d event window
to the identified event magnitude has to be less than 1.2, to
filter out high-frequency variations. Although different pro-
cesses are involved in deceleration and acceleration events,
the duration of wind deceleration and acceleration is found
to be similar (Fig. A1a). The 90th percentiles in the duration
distributions for both wind deceleration and acceleration are
around 10 d. The event magnitude captured by a 10 d window
also shows values comparable to the wind changes in SSW
and strong vortex events (Fig. A1b). Therefore, after a sys-
tematic comparison of different window widths (not shown)
and also for comparability between the event types, we use
the same event window width of 10 d to identify both wind
deceleration and acceleration events.

To compare the identified acceleration and deceleration
events with the extreme stratospheric events, we classify the
identified events into weak and strong magnitude events.
We choose the 60th percentile of event magnitude as the
threshold for strong magnitude events. Events that have an
absolute magnitude above the respective 60th percentile of
the identified acceleration and deceleration events are classi-
fied as strong magnitude events, and those below are clas-
sified as weak magnitude events. The 60th percentiles are
16.94 and−24.55 m s−1 for the acceleration and deceleration
events, respectively, in the reanalysis. In the ECMWF model,
the 60th percentiles of the identified events are 16.77 and
−20.87 m s−1 for the acceleration and deceleration events,
respectively. The thresholds used here are comparable to
the thresholds to define strong deceleration events used in
other studies (e.g. Birner and Albers, 2017; de la Cámara
et al., 2019). Following Birner and Albers (2017), we com-
pute the standard deviation of deseasonalised daily zonal
mean zonal wind, and the standard deviation (σ ) is found
to be around 1 m s−1 d−1. Our chosen 60th percentile from
a 10 d wind change corresponds to daily wind changes of
1.69 and −2.46 m s−1 for strong acceleration and deceler-
ation events, respectively, which corresponds to daily wind
changes in the 95th and 99th percentiles (1.69σ and 2.46σ )
in NH November–March. Thus, the strong magnitude events
we define here have magnitudes comparable to SSW and
strong vortex events.

For the acceleration and deceleration events identified
from reanalysis, we check if they are also associated with
extreme stratospheric events, i.e. SSWs, strong vortex events
and vortex recovery events. SSW events are defined using
the Charlton and Polvani (2007) wind reversal criterion. The
onset date of an SSW event is identified as the first day
that the daily mean zonal mean zonal winds at 60◦ N and
10 hPa are negative. The winds have to be westerly for at
least 20 consecutive days before the event and return to west-
erly for at least 10 d after the event. We classify a decelera-
tion event as being associated with an SSW event if an SSW
occurs within the 10 d event window. The identified deceler-
ation events can also be associated with early final warming
(FW) events. Early FW events are defined as in Butler and
Domeisen (2021) as those that occur at least 2 d before the
median climatological FW date, which is 12 April over the
period 1979–2019 in JRA-55 reanalysis. Since we only iden-
tify events up to March, the number of events associated with
FW events is small, and wave forcing still plays a dominant
role in the FW wind reversal. Therefore, we keep the events
associated with final warmings in the analysis and do not dis-
tinguish them from other deceleration events.

A strong vortex event is defined when u exceeds a thresh-
old value. Following Tripathi et al. (2015) and Domeisen
et al. (2020b), the chosen threshold value at 60◦ N and 10 hPa
is 41.2 m s−1, which is the 80th percentile of the zonal mean
zonal wind averaged from November to March over the
1980–2012 period in ERA-Interim. We classify an acceler-
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ation event as being associated with a strong vortex event if
the wind at any time during the event window is above this
threshold. If the wind at 60◦ N and 10 hPa at any time during
the acceleration event window shows negative wind values,
the event is classified as being associated with a vortex re-
covery event, which occurs after SSW events. Table 1 shows
the identified events from the reanalysis and their respective
event types.

2.3 Skill measures

The following metrics are used to assess the predictability of
stratospheric events: mean error, continuous ranked proba-
bility score (CRPS), hit rate (HR) and ensemble spread. The
definitions are stated below.

2.3.1 Mean error

The mean error is the average difference between the hind-
cast (F ) and the observation (O) (here, reanalysis is used
instead of observations as the verification dataset). The in-
dex i denotes the corresponding ensemble member, and N
denotes the ensemble size. For the ECMWF model, N = 11.
The perfect score of the mean error is 0.

Mean Error=
1
N

N∑
i=1

(Fi−Oi) (1)

2.3.2 Continuous ranked probability score (CRPS)

The CRPS measures the difference between the predicted cu-
mulative distribution function (CDF) (Pf(x)) of a variable x
and the observed CDF (Po(x)). For ensemble forecasts, the
predicted CDF is given by the predictions of all the ensemble
members. The perfect score of the CRPS is 0.

As the CRPS is given by the difference between the pre-
dicted and observed distribution, if all ensemble members in
a hindcast predict an event magnitude of 0 m s−1, i.e. close to
a climatological state in which the wind stays relatively con-
stant during a 10 d window, the CRPS of this hindcast will be
equal to the observed event magnitude itself.

CRPS=

∞∫
−∞

(Pf (x)−Po (x))
2dx (2)

2.3.3 Hit rate (HR)

The hit rate (HR) is defined as the fraction of ensemble mem-
bers that successfully predict an event, given by dividing the
number of successful members (M) by the total number of
ensemble members (N ). A successful prediction requires that
the model predicts an event of the same magnitude category
as identified from reanalysis, i.e. a strong or weak magnitude
event, on the same date as the event in reanalysis. The perfect
score of the HR is 1.

HR=M/N (3)

2.3.4 Ensemble spread

The ensemble spread of the ensemble members in a hind-
cast is measured as the standard deviation of the ensemble
member predictions around the ensemble mean

(
F
)
. If the

ensemble members show perfect agreement with each other,
the ensemble spread is 0.

Ensemble Spread=

√∑N
i=1
(
Fi −F

)2
N

(4)

2.4 Dynamical indices and significance tests

As mentioned in the “Introduction”, we can quantify the pre-
conditioning of the vortex background state, which guides
waves towards the vortex, by the refractive index. As the
refractive index is proportional to the meridional PV gradi-
ent

(
qy
)

divided by the zonal mean zonal wind, following
Jucker and Reichler (2018) and Albers and Birner (2014),
we approximate the refractive index using the meridional PV
gradient. Using the formulation of Eq. (5) in Simpson et al.
(2009), we divide the meridional PV gradient in spherical co-
ordinates

(
qφ
)

by the radius of Earth (a) to obtain an equa-
tion of the meridional PV gradient in Cartesian coordinates(
qy
)
:

qy =
qφ

a
=

2�cos(φ)
a

−

[
(ucosφ)φ
a2 cosφ

]
φ

+
f 2

Rd

(
pθ

T

up

θp

)
p

, (5)

where φ is the latitude, overline denotes the zonal mean, and
subscripts denote derivatives. As the term associated with
Earth’s rotation (first term in the equation) is small in ex-
tratropical and polar latitudes and as the third term in the
equation correlates well with the second term in the region
we consider, i.e. over 55–75◦ N at 10 hPa (not shown), we
use the second term in Eq. (5), −

[
(ucosφ)φ
a2 cosφ

]
φ

, as a proxy for

waveguidability, hereafter referred to as uyy . Other than be-
ing a reasonable indicator for the refractive index, uyy is a
measure of the sharpness of the edge of the stratospheric po-
lar vortex and thus also a measure of the strength of the vor-
tex state. Similar to Jucker and Reichler (2018), who used a
polar-cap-averaged meridional PV gradient, we take a latitu-
dinal average of uyy over 55–75◦ N at 10 hPa. As a measure
of upward wave activity in the lower stratosphere, follow-
ing Polvani and Waugh (2004), we use the latitudinal aver-
age of meridional eddy heat fluxes

(
v′T ′

)
over 45–75◦ N

at 100 hPa, where v is the meridional wind, T is the tem-
perature, and prime

(
′
)

denotes the departure from the zonal
mean. It is, however, important to be aware that the indices
uyy and v′T ′ might not be independent. To address the in-
terdependency between the indices, we compare the correla-
tions between the 10 d averaged uyy and the 10 d integrated
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Table 1. Identified acceleration and deceleration events from reanalysis. The numbers in the brackets specify the number of events in each
category.

Acceleration event Weak (51) Strong (34) Total (85) Definition

Strong vortex 14 11 25 Following Tripathi et al. (2015) and Domeisen et al. (2020b)
Vortex recovery 8 11 19 u at any time during event window shows negative values
Other acceleration events 29 12 41 –

Deceleration event Weak (39) Strong (26) Total (65) Definition

SSW 0 10 10 Following Charlton and Polvani (2007)
Other deceleration events 39 16 55 –

sum of v′T ′ at different time lags. We find the lowest cor-
relation (r = 0.3) between uyy averaged over days −10 to
−1 with respect to the start date of the stratospheric events
and v′T ′ integrated over days 0 to 9 during the events (not
shown). Thus, we choose to use the time lags mentioned
above to examine the predictability of uyy and v′T ′ in the
following analyses.

We use a one-sample t test to assess the significance for
the mean of a distribution. When comparing the significant
difference between two distributions, we use a Kolmogorov–
Smirnov test (KS test). For both tests, we use a confidence
level of 95 %. In our analyses, we use linear regression lines
as a reference to compare the relationships between event
magnitude and precursors, as well as between their pre-
dictability in the model. It is to be noted that we do not intend
to imply that the relationships or the dynamics involved are
linear.

3 Results

3.1 Predictability of stratospheric events in northern
hemispheric winter

To illustrate the predictability differences between strato-
spheric events, we compare the skill of the model in predict-
ing different event types as a function of lead time. The mag-
nitude of the events identified in reanalysis (1u), measured
by the wind difference between day 9 and day 0 and predicted
by the model hindcasts, is compared against the same value
in reanalysis for all lead time groups (Fig. 1). The left panel
in Fig. 1 shows the errors in event magnitude for the decel-
eration and SSW events (as a subset of deceleration events).
The right panel, which has a flipped y axis, shows the errors
in event magnitude for the acceleration events and strong vor-
tex events (as a subset of acceleration events). Values above
the zero line indicate an underestimation of the magnitude of
both deceleration and acceleration events, while values be-
low zero indicate an overestimation. The box plots in Fig. 1
of most LTGs lie above zero, indicating an underestimation
of event magnitude for both acceleration and deceleration
events, including strong vortex events and SSWs. The under-

estimation of the event magnitude reduces towards smaller
LTGs. At LTG-5, the model overestimates around 25 % of
deceleration and 5 % of acceleration events, shown by the
bottom of the box and whisker crossing the zero line. The
underestimation of deceleration event magnitude is also seen
in Karpechko (2018), where the model shows an initial weak-
ening of the vortex but underestimates the event magnitude.

Previous studies that assessed the predictability of events
using event onset dates have found that SSW events are less
predictable than strong vortex events (e.g. Domeisen et al.,
2020b). This result is confirmed in Fig. 1: the mean errors for
SSW events are larger than for strong vortex events, showing
that SSW events are less predictable. Extending the analysis
to wind deceleration and acceleration events, we also find
that deceleration events are associated with larger errors than
acceleration events at all lead times.

3.2 Predictability dependence on event magnitude

To better understand the nature of the stratospheric events,
we plot the distribution of the events identified from reanaly-
sis (transparent bars in Fig. 2, which are the same in all pan-
els). The events identified from reanalysis show an asymme-
try in event magnitude; that is, deceleration events are asso-
ciated with stronger magnitude than acceleration events. The
median magnitude of the wind changes for deceleration and
acceleration events in reanalysis is −21.25 and 15.32 m s−1,
respectively, and −37.22 and 15.06 m s−1, respectively, for
SSW events and strong vortex events. All SSW events belong
to the strong deceleration events category, whereas the mag-
nitudes of the strong vortex events are spread more evenly
across the weak and strong acceleration event categories (Ta-
ble 1). The stronger magnitude of deceleration events as
compared to acceleration events is consistent with Limpasu-
van et al. (2005), i.e. the daily zonal mean zonal wind anoma-
lies observed for vortex weakening events are stronger than
for vortex strengthening events.

As deceleration events have a stronger magnitude than ac-
celeration events and as the identified events span a wide
range of magnitudes, as a first step, we test if the differences
in predictability between events arise from different event
magnitudes. We plot the CRPS of the model in predicting the
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Figure 1. Mean error in the magnitude (1u) of (a) deceleration events (blue) and SSW events (green) and (b) acceleration events (red) and
strong vortex events (purple) for all LTGs. The y axis for acceleration events (b) is flipped for a more convenient comparison to deceleration
events. The box extends from the 25th to the 75th percentiles of the mean error of the events, with a horizontal line at the median. The
whiskers extend from the 5th to the 95th percentiles. Outliers are plotted as open grey circles. The numbers in brackets correspond to the
number of events in total for each event type in reanalysis.

Figure 2. Distributions of the wind change (1u) of the acceleration and deceleration events identified from reanalysis (transparent bars
with grey outline) and the acceleration (red) and deceleration (blue) events identified from the ensemble members in the hindcasts that are
initialised in NH winter at (a) LTG-30,25, (b) LTG-20,15 and (c) LTG-10,5. Numbers in parentheses indicate the number of identified events
at each lead time. The reanalysis distributions displayed in all panels are identical, and the numbers in brackets refer to the number of
acceleration/deceleration events. The histograms are normalised.

event magnitude against the observed event magnitude at dif-
ferent lead times (Fig. 3). A 1 : 1 grey diagonal line is added
to each panel as a guide to compare the skill of hindcasts to
the skill of a climatological prediction (see Sect. 2.3). Points
above the diagonal line show a poorer skill than a climato-
logical prediction, and the points below show a skill that is
improved with respect to climatology. The closer the points
are to the x axis, i.e. the line of CRPS= 0, the more skilful
the hindcasts are.

For long lead times of around 30 d, the fitted lines lie just
below the diagonal line (Fig. 3a), which suggests that the
hindcasts exhibit a predictability that is just slightly better
than climatological forecasts at these lead times. The fitted
slopes then approach the x axis with decreasing lead time
(going from panels a to c), indicating that, as expected, the

model gains more information from initial conditions, and
the prediction is improved beyond climatological values. The
predictability behaviour of both acceleration and decelera-
tion events can roughly be approximated by a linear fit, indi-
cating that the stronger the event magnitude is, the less pre-
dictable the event is. The linear fits corresponding to the de-
celeration and acceleration events overlap within the 95 %
confidence interval (blue and red shading, respectively) at all
lead times, suggesting that the acceleration and deceleration
events show the same predictability behaviour.

At short lead times, most of the points lie close to zero
CRPS. Some events, for instance the two extreme SSW
events with magnitudes of over 60 m s−1 (marked by yellow
asterisks in Fig. 3), retain a large CRPS and deviate from the
linear fit in the direction of the diagonal line. The fact that the
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Figure 3. CRPS of event magnitude (1u) for the identified wind acceleration (red) and deceleration (blue) events plotted against their
absolute event magnitude (|1u|) from reanalysis for different LTGs. The absolute value of event magnitude (|1u|) is used for a better
comparison between acceleration and deceleration events. Linear regression lines are fitted to each of the LTGs, and m indicates the slope,
including the standard error of the fit. Pearson correlation coefficients (r) are indicated in the legend for acceleration and deceleration events,
and r is statistically significant at 95 % for all panels. The shaded region shows the 95 % confidence interval of the linear fit. Pluses (“+”)
indicate events that correspond to strong vortex events, and crosses (“×”) correspond to SSW events. Yellow asterisks (“∗”) denote the 2009
and 2018 split SSW events.

CRPS remains larger for the two events at LTG-5 suggests
that the model might not be capturing the precursors or that
it might not accurately represent the mechanisms required to
predict these events.

To better illustrate the predictability dependence on event
magnitude, we composite the strong and weak magnitude
events, i.e. events with magnitudes above and below the 60th
percentile, respectively, and compare their averaged skill at
different lead times (Fig. 4). Overall, as expected from the
model capturing more of the required precursors to predict
the events, both acceleration and deceleration events show
an increase in hit rate and a decrease in ensemble spread and
CRPS with decreasing lead time. Strong magnitude events
exhibit poorer skill than weak magnitude events, associated
with a lower hit rate and a larger ensemble spread and CRPS.
As a large ensemble spread can be observed in ensemble
forecasting systems when the forecast is initialised under,
for example, strong blocking conditions (Lee et al., 2019;
Karpechko, 2018), this might indicate that strong magnitude
events are associated with strong precursors or forcings that
are not as well captured by the model as those for weak mag-
nitude events. We will discuss the predictability dependence
on event mechanism in Sect. 3.3.

3.3 Predictability dependence on event mechanism

In the last section, we showed that event magnitude strongly
determines the predictability, with strong events being less
predictable, which can be described mostly by a linear be-
haviour. Some events, however, deviate from this behaviour,
which might be connected to the mechanism of the events.
In this section, we investigate whether the background state
of the SPV and the drivers to the events can have an influ-

Figure 4. (a) CRPS, (b) ensemble spread and (c) hit rate for ac-
celeration events (red) and deceleration events (blue) computed by
validating the hindcasts against the reanalysis. Solid lines indicate
the mean of the strong magnitude events at different LTGs, and the
dotted lines indicate weak magnitude events. The vertical bars indi-
cate the standard errors for each LTG.

ence on the predictability of events. We start this section by
linking the predictability of the events to the related mecha-
nisms through both the influence of the background state of
the stratosphere and the drivers in terms of the upward wave
flux for both the reanalysis and the prediction system.
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3.3.1 Vortex background state in reanalysis

Before strong deceleration events, uyy is significantly
stronger than climatology (Fig. 5a), confirming the existing
literature that preconditioning of the vortex via sharpening of
the vortex edge is often observed before weak vortex events
(e.g. Limpasuvan et al., 2004; Jucker and Reichler, 2018).
During strong deceleration events (days 0 to 9), uyy reduces
to a negative value that is significantly weaker than climatol-
ogy. The vortex recovers at the end of the strong deceleration
event, and the mean value of uyy returns to positive values but
is still significantly weaker than climatology up to 40 d after
the event onset. For weak deceleration events, the values of
uyy before and after the events are close to climatology, and
significant signals are only found during the event window
(day 0 to 9), suggesting that the preconditioning of the vor-
tex background state before event onset might not be as im-
portant for weak deceleration events. For strong acceleration
events, increased uyy is found only at around 25 d before the
events, and a few days later, uyy decreases to values signifi-
cantly lower than climatology (Fig. 5c). During strong accel-
eration events, uyy increases to a value significantly above
climatology and drifts back to climatology after the event.
For weak acceleration events, a few periods of anomalously
weak uyy are observed at around day −25, 0 and 25.

To further illustrate the relationship between uyy and event
magnitude (1u), we plot 1u against uyy averaged over
day −10 to −1 for all events (Fig. 6a and d). A significant
negative correlation is found between uyy and 1u for de-
celeration events; that is, the stronger uyy is, the stronger
the deceleration is. No significant correlation is found for
uyy averaged over day −10 to −1 against 1u for accel-
eration events (Fig. 6d). The averaged uyy for acceleration
events, however, shows more negative values than for decel-
eration events. Comparing the distributions of the averaged
uyy for acceleration and deceleration events, the distributions
are found to be significantly different from each other (not
shown).

3.3.2 Wave activity forcing in reanalysis

In addition to the background state, the forcing by drivers
is responsible for extreme stratospheric events. In particu-
lar, anomalous wave activity in the lower stratosphere drives
the deceleration of the SPV mean flow (Polvani and Waugh,
2004; Hinssen and Ambaum, 2010). The 10 d event win-
dow captures well the onset of wind deceleration (Fig. A2a)
and the anomalously strong wave activity during the event
(Fig. 5b). The wave activity starts to increase from day 0,
peaks around day 5 and then decreases to a value that is
not significantly different from climatology at the end of
the event on day 9. As expected, the wave activity is much
stronger during the strong deceleration events than during
the weak deceleration events. We find a significant negative
correlation when correlating the integrated sum of v′T ′ dur-

ing the event window (day 0 to 9) with the deceleration event
magnitude (1u) (Fig. 6c). The stronger the wave activity dur-
ing the event window is, the more the wind decelerates. For
our definition of deceleration events, using a 10 d event win-
dow, SSWs occur on average around day 6 of the event win-
dow. Therefore, the peak of v′T ′ during the event window is
consistent with our understanding that anomalous wave ac-
tivity precedes SSW events (e.g. Butler et al., 2017). A wave
activity lower than climatology is found around 10 d before
(day−10 to−1) the weak magnitude deceleration events but
not the strong magnitude events, suggesting the occurrence
of weak acceleration events before weak deceleration events.
Wind acceleration is indeed observed 10 d before the weak
deceleration events, and the magnitude of the acceleration
is similar to the magnitude of the subsequent deceleration
events (Fig. A2a). Plotting the integrated v′T ′ for days −10
to −1 against 1u during the event window, we observe a
weak negative correlation (Fig. 6b), which can be explained
by low wave activity preceding the weak deceleration events
and slightly increased wave activity preceding the strong de-
celeration events.

A v′T ′ weaker than climatological wave activity is ob-
served during the acceleration event window (Fig. 5d). The
wave activity is similar for strong and weak acceleration
events but slightly lower for the strong acceleration events.
Although strong acceleration events are associated with
lower wave activity, there is no significant relationship be-
tween the integrated heat flux and event magnitude (Fig. 5f),
indicating that wave activity does not drive the acceleration
event magnitude, and low wave activity might be more of
a threshold criterion for an acceleration event to occur. The
passive role of wave activity in wind acceleration is consis-
tent with our understanding that radiative cooling drives the
wind acceleration when the wave activity is below a critical
level. Interestingly, we observe strong heat flux from around
15 d before the strong acceleration events (Fig. 5d). The same
is observed when we exclude vortex recovery events in the
composite (not shown). We find a significant positive corre-
lation between the integrated v′T ′ for days −10 to −14 and
the wind change over the acceleration event window (day 0
to 9) (Fig. 6e). We find that deceleration events precede about
74 % of the strong acceleration events (not shown). The de-
celeration events that happen before the acceleration events
can weaken the vortex, preconditioning the background state
of the vortex to be more favourable for the onset of accel-
eration events, consistent with the weakening of uyy before
the onset of strong acceleration events from around day −10
(Fig. 5c). The alternation between deceleration and acceler-
ation events is reminiscent of the characteristics of strato-
spheric vacillations as described in the Holton–Mass model
(Holton and Mass, 1976), which shows an oscillation of the
mean flow of the vortex after an initial wave forcing.

It is interesting to note that the two strongest strong vor-
tex events, the events with a magnitude of around 40 m s−1,
are further away from the linear fit, suggesting that factors
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Figure 5. Time evolution of daily values of uyy (a, c) and v′T ′ (b, d) for the strong deceleration (blue, a, b) and acceleration (red, c, d) events
in reanalysis. The solid line is the mean value of all events, and the bold parts of the line indicate lags where the composites are significantly
different from the reanalysis winter climatology (dotted yellow lines) at 95 % using Student’s t test. Weak events are composited separately
and shown in grey. The dotted lines in the corresponding colours indicate the 5th and 95th percentiles of the composite, and the shaded
regions indicate the 25th to 75th percentiles. The numbers in the brackets of the legend indicate the number of events in each composite. Lag
is relative to the first day of the identified 10 d events.

other than low wave activity might play a role for these strong
magnitude events, for example, strong ozone depletion (e.g.
Haase and Matthes, 2019; Lin et al., 2017).

3.3.3 Representation of dynamical processes in the
model

Deceleration and acceleration events are found to be driven
by anomalies in uyy and v′T ′ as described in Sect. 3.3.1
and 3.3.2 using reanalysis. We now assess the ability of the
model to represent these anomalies and relationships. We
start by treating all ensemble members independently and
identify deceleration and acceleration events from each sep-
arate member at different lead times.

Overall, the climatology of the model event magnitude is
similar to that observed in reanalysis at all lead times (Fig. 2).
Using a KS test for the model distributions for acceleration
and deceleration events against the reanalysis distributions,
the model and reanalysis distributions are found to not be
significantly different from each other. A similar number of
events is identified at all lead times but slightly fewer at LTG-
20,15. At LTG-30,25, the model shows an overall underesti-
mation of event magnitude and produces more events with
a magnitude close to zero in the model as compared to re-
analysis, which is consistent with the predictions being close
to climatology at long lead times (Fig. 3a). The number of
events with very weak magnitude decreases when events are
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Figure 6. Relationship between the magnitude of the deceleration events (1u) and (a) uyy averaged over days −10 to −1, (b) integrated
v′T ′ over days −10 to −1 and (c) integrated v′T ′ over days 0 to 9. (d)–(f) Same as (a)–(c) but for the acceleration events. The marker “×”
indicates SSW events, and “+” indicates strong vortex events. The solid line indicates the fitted linear regression line, and shading indicates
the 95 % confidence interval. Pearson correlation coefficients (r) are significant at 95 % in all panels. Yellow asterisks (“∗”) in (a)–(c) denote
the 2009 and 2018 split SSW events.

identified at shorter lead times. At all lead times, the model
underestimates the number of extremely strong deceleration
events (shown by the difference between the model and re-
analysis in the negative tails of the distributions). The model
covers the range of acceleration event magnitude well but un-
derestimates the frequency of acceleration events with mod-
erate magnitude, i.e. around magnitudes of 20 m s−1 over the
10 d event window.

To assess the ability of the model in representing the event
mechanisms, we composite the identified strong magnitude
events from the model and compare the model evolution of
the dynamical variables to the observed evolution in reanal-
ysis (Fig. 7). The model shows a time evolution of u sim-
ilar to that from reanalysis. However, as the model under-
estimates the number of deceleration events with extremely
strong magnitude (Fig. 2), the mean evolution of u for de-
celeration events at all lead times in the model stays above
zero, while the winds in reanalysis cross the zero wind line
(Fig. 7a). The 5th and 95th percentiles of the model events
(shadings) shifted towards more positive u as compared to
reanalysis (dotted lines) around the end of the event window,

indicating that the model does not reach values of u that are
as small as those observed in reanalysis. The mean evolution
of u at LTG-30,25 (lightest blue) remains above the values
for all other LTGs throughout the event window until the end
of the forecast.

The vortex background state is well represented in the
model at all lead times for both strong deceleration and accel-
eration events. The model shows near identical mean values
and variability comparable to the reanalysis for events iden-
tified at all lead times (Fig. 7c and d). For the wave forcing
(Fig. 7e and f), the model events do not show the extremely
high values of v′T ′ during strong deceleration events, or
the extremely low values of v′T ′ during strong acceleration
events, at all lead times. The 95th percentile of v′T ′ for the
deceleration events in reanalysis is outside of the 95th per-
centile of the model (colour shadings). Similarly, for the ac-
celeration events, the 5th percentile of the reanalysis compos-
ite is outside that of the model. Before acceleration events,
a peak of v′T ′ is also observed in the model. However, the
wave activity in the model for this peak before acceleration
events peaks at a later time and at a lower magnitude.
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Figure 7. Temporal evolution of u, uyy and v′T ′ for (a, c, e) the strong deceleration and (b, d, f) the strong acceleration events identified
in the model at different LTGs. Solid lines indicate the mean of the event composites, and shadings indicate the 5th and 95th percentiles
of the events in the prediction system. Solid black lines and dotted black lines indicate the mean and the 5th and 95th percentiles for the
reanalysis, respectively. Dotted yellow lines show the winter climatology in reanalysis. The first and last 5 d in the mean evolution in the
model composite are discarded to account for the different start dates within each LTG.

Given the strong relationship observed between event
magnitude and wave activity for deceleration events in re-
analysis (Fig. 6c), the observed underestimation of strong
v′T ′ for deceleration events in the prediction system might
explain the observed underestimation of model deceleration
event magnitude in Fig. 7a. As a sensitivity experiment,
Fig. 7a and e are re-plotted by excluding the events with mag-
nitude above the 90th percentile from the reanalysis compos-

ite of strong deceleration events (Fig. A3). It is found that
the averaged evolution of u and v′T ′ of the model compos-
ite then covers almost the full variability in the re-computed
reanalysis composite, and the evolution of the model com-
posite is near identical to the reanalysis composite and cov-
ers almost the full range of the 5th and 95th percentiles. This
suggests that the model has limitations in producing events
that have equivalent event magnitudes of above the 90th per-
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centile of the reanalysis deceleration events likely due to not
producing the required strong wave activity. The model also
does not show such a low v′T ′ during strong acceleration
events (Fig. 7f). Although we see the model can produce
acceleration events with an evolution similar to reanalysis
(Fig. 7b), showing a good variability in acceleration event
magnitude in the model, the frequency of acceleration events
with moderate event magnitude might still be underestimated
(as earlier discussed in Fig. 2). As discussed in Sect. 3.3.2,
v′T ′ might be more a threshold criterion for acceleration
events to occur. Specifically, if the wave activity produced
in the model is not low enough in some occasions, this can
contribute to an underestimation in the number of accelera-
tion events with moderate magnitude, consistent with Fig. 2.

We found that overall the model is able to produce events
with a range of magnitudes similar to reanalysis and has a
good representation of event mechanisms. The model, how-
ever, has limitations in producing extremely strong anoma-
lies in heat fluxes and thus might be underestimating the
number of moderate magnitude acceleration events and the
number and magnitude of extremely strong deceleration
events. To elucidate the sources of predictability for the
events, we now evaluate the magnitude of the anomalies
in the precursors, i.e. in uyy and v′T ′, captured by the
model when predicting the events identified from reanalysis
(Fig. 8). The lead time shown in Fig. 8 (and Fig. 9) is with
respect to the start date of the events. Since we are taking the
average of day−10 to−1 of uyy and the lead time is defined
with respect to the start date of the event, day −10 to −1 is
out of the time range of hindcasts with a lead time of 10 d or
less. Thus, we do not have data to show plots for LTG-10,5
for uyy .

At LTG-30,25, the anomalies in the precursors captured by
the model are weak, indicated by the predicted distributions
for both acceleration and deceleration events centring around
the climatological values (Fig. 8e and h), which is reflected
in the fact that acceleration and deceleration events at these
lead times are barely separated (Fig. 8a). This is also con-
sistent with Fig. 3 in which the points lie close to the diag-
onal line at long lead times. Nevertheless, the predicted dis-
tributions of 1u are skewed towards the correct signs of the
observed events (e.g. the predicted wind change for decel-
eration events is skewed towards negative values) (Fig. 8a).
The predicted distributions for the precursors of acceleration
and deceleration events are significantly different from each
other for all lead times, showing that the magnitudes of the
precursors captured for acceleration and deceleration events
are statistically distinguishable even at long lead times.

For shorter lead times, the predicted distributions for ac-
celeration and deceleration become more clearly distinct as
the difference between the predicted deceleration and accel-
eration distribution increases (indicated by greater distance
between the distribution means and higher KS test score at
shorter lead times). At LTG-20,15, the model already shows
a distribution in uyy that is qualitatively similar to reanalysis

(Fig. 8f and g), while this is not the case for integrated v′T ′
(Fig. 8i and k) and 1u (Fig. 8b and d). Even at LTG-10,5,
the model shows a clear underestimation of the very strong
deceleration events (with 1u stronger than −40 m s−1) and
an underestimation in the very high values of integrated v′T ′.
The frequency of values with around 400 mKs−1 are under-
estimated, and values above 400 mKs−1 are scarcely pre-
dicted in the model (Fig. 8j and k). For acceleration events
the distribution of the wind change even includes negative
values in the predicted event magnitude distribution at LTG-
10,5 (Fig. 8c), which is not the case in reanalysis (Fig. 8d).
As a result, the mean of the predicted1u distribution is lower
than for reanalysis. The model predicts more acceleration
events with 1u close to 0 m s−1 per 10 d and some accelera-
tion events with negative 1u. The model also shows a shift
to larger values in integrated v′T ′ than that in the reanalysis
(Fig. 8j and k).

To quantify the contribution of the predictability of the
precursors to the predictability of event magnitude at dif-
ferent lead times, we plot the CRPS of the event magnitude
against the CRPS of the precursors (Fig. 9). A significant
correlation is found between the CRPS of the event magni-
tude and of the precursors for both acceleration and decel-
eration events at all lead times. Consistent with Fig. 8, the
model captures the anomalies of the precursors more accu-
rately with decreasing lead time. Specifically, as the CRPS in
uyy and integrated v′T ′ decreases, the CRPS in 1u also de-
creases. On the other hand, the CRPS of1u shows a stronger
correlation with the CRPS of integrated v′T ′ than uyy , indi-
cating a stronger contribution of the predictability of inte-
grated v′T ′ to the predictability of event magnitude, which
is consistent with the more direct role of v′T ′ than uyy in
forcing the events.

The largest CRPS values in v′T ′ are found for the 2009
and 2018 split SSW events (yellow asterisks in Fig. 9). These
two SSW events were associated with very strong zonal
wavenumber 2 activity (Ayarzagüena et al., 2011; Domeisen
et al., 2018). The large v′T ′ for these events might be out
of the range of v′T ′ that the model can produce, as sug-
gested earlier, or the mechanisms for these events may not
be properly represented in the model. We further investigate
the regional origin of the v′T ′ errors by dividing up the re-
gions of heat flux origin into northern Europe, Siberia, North
Pacific and North America/Greenland (Fig. A4). All regions
contribute to the errors, with the largest contribution com-
ing from the North Pacific and smaller contributions from
northern Europe and Siberia (Figs. A5 and A6). Additional
analysis is needed to further understand the origin of the v′T ′
errors.

4 Conclusions

By expanding the stratospheric event definition to wind de-
celeration and acceleration events using the tendency of the
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Figure 8. Ensemble mean values of 1u (a–c), uyy averaged over days −10 to −1 (e, f) and integrated v′T ′ over days 0 to 9 (h–j) predicted
by the model for the events diagnosed in reanalysis at different lead times. The observed distributions from reanalysis are shown in panels (d),
(g) and (k). Deceleration events are shown in blue and acceleration events in red. The winter climatological values of uyy and integrated
v′T ′ from reanalysis are plotted as dotted yellow lines. The differences of the mean of the distributions from 0 (for 1u) or from climatology
(for uyy and integrated v′T ′) are shown in the legend. “∗” indicates when the distributions are significantly different from 0 in (a)–(d) and
when the distributions differ from the reanalysis climatological value in (e)–(l) using a t test. The histograms are normalised, and a KS test
is used to test the significant difference between the acceleration and deceleration event distributions. KS statistics (ks) are all statistically
significant.

zonal mean zonal wind at 60◦ N and 10 hPa, we systemati-
cally investigate the predictability of extreme events in the
SPV in the ECMWF S2S hindcasts. We demonstrate that,
overall, the ECMWF model represents the variability in the
SPV well in terms of event magnitude and the associated
dynamical drivers, and it has a good representation of the
dynamical processes that are observed in reanalysis. The
model, however, shows limitations in producing events with
extremely strong deceleration magnitudes. We find that this
is associated with the inability of the model to produce ex-
tremely strong wave activity in the lower stratosphere.

The large number of identified deceleration and acceler-
ation events allows us to robustly compare the differences
in the event mechanisms in both reanalysis and the model,

as well as to understand the differences in the predictabil-
ity between events. Consistent with our understanding of the
mechanisms of wind deceleration and acceleration events in
the framework of wave–mean-flow interaction, we find that
deceleration and acceleration events are associated with the
same anomalies but of opposite signs, namely a strengthened
waveguide, in terms of the second meridional derivative of
the zonal wind (uyy), and higher wave activity for decelera-
tion events, measured by the 100 hPa eddy heat flux (v′T ′),
and vice versa for acceleration events. The predicted distri-
butions of the acceleration and deceleration events become
more distinct at shorter lead times, and the respective char-
acteristics of the distributions become better represented. For
example, the long tails of deceleration events towards strong
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Figure 9. Relationship between the CRPS of 1u with (a–b) the CRPS of uyy on day −10 to −1 and with (c–e) the CRPS of integrated v′T ′

over days 0 to 9 for the acceleration (red) and deceleration events (blue) identified from reanalysis. The solid line and the shading correspond
to the fitted slope and 95 % confidence interval of the fit. The Pearson correlation coefficients (r) indicate the correlation in the scatter plots
and are statistically significant in all panels at the 95 % level. Yellow asterisks (“∗”) denote the 2009 and 2018 split SSW events.

events become better represented, although the model con-
tinues to underestimate these long tails, even at short lead
times.

A large part of the predictability differences between
events can be explained by the different event magnitudes.
When we express the predictability of deceleration and ac-
celeration events in terms of event magnitude, we found that
they both show a predictability dependence on event mag-
nitude; that is, events of stronger magnitude are less pre-
dictable. We explain the observed predictability dependence
from two perspectives: (1) in a statistical sense, strong mag-
nitude events lie within the tails of the climatological distri-
bution and are penalised more heavily than weak magnitude
events, and (2) from a dynamical perspective, strong mag-
nitude events are associated with strong anomalies in v′T ′
and uyy . The strong precursor anomalies are often less pre-
dictable in the model and thus can lead to large uncertain-
ties in event magnitude. The same predictability behaviour
with respect to event magnitude for deceleration and accel-
eration events thus suggests that the observed predictabil-
ity difference between the event types can to a large extent
be explained by the difference in event magnitude between

the event types, i.e. the fact that wind deceleration events
are associated with greater magnitudes than wind accelera-
tion events and that SSW events are stronger in magnitude
than strong vortex events. We also show that the predictabil-
ity of the v′T ′ and uyy can explain most of the predictabil-
ity of the events, with v′T ′ contributing a larger part of the
predictability as compared to uyy . The predictability limit
of these dynamical precursors might, therefore, set the pre-
dictability limit of events.

Further work is needed to understand the potential rea-
sons as to why the model has limitations in producing ex-
tremely strong wave activity. Events preceded by strong wave
activity often coincide with large errors remaining in the
prediction even at short lead times. For example, the split
SSW events in 2009 and 2018, the events with the two
strongest event magnitudes of all deceleration and accelera-
tion events investigated in this study, are preceded by anoma-
lously strong zonal wavenumber 2 wave activity (Harada
et al., 2010) and are reported to be more unpredictable than
other SSW events (Rao et al., 2018). The large errors associ-
ated with certain events even at short lead time suggest that
these events might be associated with mechanisms that are
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different from weaker magnitude events. For example, in-
ternal stratospheric dynamics might play a more important
role (e.g. Plumb, 1981; Matthewman and Esler, 2011; Birner
and Albers, 2017; Domeisen et al., 2018), which might not
be well represented in the model. In fact, the ability of the
model to capture the non-linear dynamics, which are known
to be relevant in particular for SSWs with strong magni-
tude, has not been explored in this study. These non-linear
processes include the complex behaviour of wave breaking,
which depending on its exact location and temporal variabil-
ity can have different effects on the polar vortex; for instance,
high-frequency wave activity can strengthen the polar vor-
tex rather than weaken it (Harnik, 2009). Furthermore, vortex
preconditioning may also be an important factor in determin-
ing predictability. For example, certain geometrical configu-
rations of the initial state of the vortex might be more suscep-
tible to vertical wave propagation and weak breaking (Albers
and Birner, 2014; Matthewman and Esler, 2011; Esler and
Matthewman, 2011). Remote precursors from the tropical
stratosphere (Garfinkel et al., 2018; Gray et al., 2020, 2022),
the tropical troposphere (Domeisen et al., 2015; Garfinkel
and Schwartz, 2017) and the extratropical troposphere (Mar-
tius et al., 2009; Karpechko et al., 2018; White et al., 2019;
Peings, 2019) can also further enhance predictability on sub-
seasonal to seasonal timescales. As such, one might want to
investigate how the 2009 and 2018 split SSW events dif-
fer from other deceleration events in terms of their precon-
ditioning processes and to see whether the mechanisms, in
particular the non-linear processes, associated with the two
events are well represented in the model. A better represen-
tation of the wave amplification mechanisms and extremely
strong wave activity in the model can potentially enhance the
predictability of stratospheric events and by extension their
impacts on surface weather and climate.

Appendix A

To choose a suitable event window width for identifying ac-
celeration and deceleration events, we study the variability in
the SPV through the tendency in the zonal mean zonal wind
at 60◦ N and 10 hPa in reanalysis. We identify periods that
show consecutive days of wind acceleration and deceleration
by counting the number of consecutive days that the daily
wind change is of the same sign. If the wind changes sign on
one day, that day is counted as a new period of wind change.
The number of days in the identified wind change period is
defined as the duration.

The duration distribution for wind acceleration and de-
celeration is qualitatively similar to each other, both follow-
ing an exponential distribution (Fig. A1a). The magnitude is
given by the wind change over the duration of a given identi-
fied period. The duration and event magnitude shows a close
to linear relationship (Fig. A1b).
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Figure A1. Periods of wind acceleration (red) and deceleration
(blue) in reanalysis. (a) Duration and (b) the relationship between
the magnitude and duration of the wind acceleration and deceler-
ation periods. For acceleration periods (red), refer to the red axis
on the left. For deceleration periods (blue), refer to the blue axis
on the right. The solid lines mark the linear fit to the scatter plots,
and the shading marks the 95 % confidence interval of the fit. The
histograms are normalised.

Figure A2. Time evolution of daily values of u for the strong decel-
eration (blue) and acceleration (red) events in reanalysis. The solid
line shows the mean value, and the bold line indicates where the
composites are significantly different from the reanalysis climatol-
ogy using Student’s t test. Weak events are composited separately
and shown in grey. The dotted lines in the corresponding colours in-
dicate the 5th and 95th percentiles of the composite, and the shaded
region indicates the 25th to 75th percentiles. The dotted yellow line
shows the winter climatology u in reanalysis. The number in the
brackets of the legend indicates the number of events in the com-
posites. Lag is relative to the first day of the identified 10 d events.
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Figure A3. Like Fig. 7a and e but excluding events with magnitude
above the 90th percentile in the reanalysis composite.

As an extra analysis, we have separated the reanalysis
data of meridional heat flux into contributions from four re-
gions that are selected based on the existing literature and
on our own analysis. Specifically, based on the meridional
heat flux composite of deceleration events (Fig. A4a), we di-
vided the 45–75◦ N latitude region equally into four regions
as indicated in Fig. A4: (a) northern Europe (40◦W–50◦ E),
(b) Siberia (50–140◦ E), (c) North Pacific (140◦ E–130◦W)
and (d) North America/Greenland (130–40◦W). The com-
posites with respect to day 0 to 9 of the deceleration events in
comparison to the November to March average show anoma-
lously positive heat flux in the three regions, namely, north-
ern Europe, Siberia and North Pacific, and anomalously neg-
ative averaged heat flux in the region North America/Green-
land. The composite for acceleration events shows similar
patterns. Thus, we choose to average the heat flux over the
same four regions for both deceleration and acceleration
events to examine the predictability of the wave activity cap-
tured by the model at different lead times.
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Figure A4. Composite v′T ′ at 100 hPa averaged over day 0 to 9
(during the event window) of (a) deceleration events, (b) accelera-
tion events and (c) November to March average in reanalysis. Blue
lines mark the regions of investigation: northern Europe (40◦W–
50◦ E), Siberia (50–140◦ E), North Pacific (140◦ E–130◦W) and
North America/Greenland (130–40◦W). Numbers in parentheses
indicate the number of events in the composite, and unhatched re-
gions in (a) and (b) indicate areas found to be significantly different
from (c) using a t test.

Figure A5. Mean error of the composite v′T ′ at 100 hPa for decel-
eration events over (a) northern Europe, (b) Siberia, (c) North Pa-
cific and (d) North America/Greenland predicted by the hindcasts
at different lead times.
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Figure A6. Same as Fig. A5 but for acceleration events.

Code availability. Python packages numpy (Harris et al., 2020),
matplotlib (Hunter, 2007), scipy (Virtanen et al., 2020) and proper-
scoring (https://pypi.org/project/properscoring/, The Climate Cor-
poration, 2015) were used to carry out analyses and visualisations
in the study.

Data availability. The ERA-Interim data were ob-
tained from https://apps.ecmwf.int/datasets/ (last access:
8 March 2021, Dee et al., 2011), and the S2S data
were obtained from https://apps.ecmwf.int/datasets/data/
s2s-reforecasts-instantaneous-accum-ecmf/levtype=pl/type=cf/
(last access: 9 June 2022, Vitart et al., 2017).
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