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Abstract. The Arctic Oscillation (AO) describes a seesaw
pattern of variations in atmospheric mass over the polar cap.
It is by now well established that the AO pattern is in part de-
termined by the state of the stratosphere. In particular, sudden
stratospheric warmings (SSWs) are known to nudge the tro-
pospheric circulation toward a more negative phase of the
AO, which is associated with a more equatorward-shifted
jet and enhanced likelihood for blocking and cold air out-
breaks in mid-latitudes. SSWs are also thought to contribute
to the occurrence of extreme AO events. However, statisti-
cally robust results about such extremes are difficult to ob-
tain from observations or meteorological (re-)analyses due
to the limited sample size of SSW events in the observa-
tional record (roughly six SSWs per decade). Here we exploit
a large set of extended-range ensemble forecasts within the
subseasonal-to-seasonal (S2S) framework to obtain an im-
proved characterization of the modulation of AO extremes
due to stratosphere–troposphere coupling. Specifically, we
greatly boost the sample size of stratospheric events by us-
ing potential SSWs (p-SSWs), i.e., SSWs that are predicted
to occur in individual forecast ensemble members regard-
less of whether they actually occurred in the real atmosphere.
For example, the S2S ensemble of the European Centre for
Medium-Range Weather Forecasts gives us a total of 6101
p-SSW events for the period 1997–2021.

A standard lag-composite analysis around these p-SSWs
validates our approach; i.e., the associated composite evo-
lution of stratosphere–troposphere coupling matches the
known evolution based on reanalysis data around real SSW
events. Our statistical analyses further reveal that follow-
ing p-SSWs, relative to climatology, (1) persistently negative
AO states (> 1 week duration) are 16 % more likely; (2) the
likelihood for extremely negative AO states (<−3σ ) is en-

hanced by about 40 %–80 %, while that for extremely pos-
itive AO states (>+3σ ) is reduced to almost zero; (3) ap-
proximately 50 % of extremely negative AO states that fol-
low SSWs may be attributable to the SSW, whereas about
one-quarter of all extremely negative AO states during win-
ter may be attributable to SSWs. A corresponding analysis
relative to strong stratospheric vortex events reveals similar
insights into the stratospheric modulation of positive AO ex-
tremes. However, conclusions in terms of causality remain
difficult, in part due to unconsidered confounding factors.

1 Introduction

Day-to-day variability in the northern extratropical
hemispheric-scale circulation during winter is domi-
nated by the so-called Northern Annular Mode (NAM;
Thompson and Wallace, 1998). The surface manifestation
of the NAM is often referred to as Arctic Oscillation (AO).
This variability pattern primarily describes fluctuations
in atmospheric mass over the polar cap with associated
opposite fluctuations on its equatorward flank. In its positive
phase the AO corresponds to decreased mass over the
polar cap with an associated strengthened pressure gradient
across mid-latitudes that goes along with a stronger polar
front/eddy-driven jet that is shifted poleward and more
zonally aligned. Likewise, in its negative phase the jet is
weakened, shifted equatorward and often more meridionally
distorted.

Although a single index cannot represent the entire ex-
tratropical weather, it indicates tendencies towards certain
weather patterns, which in turn can also have strong local
effects. AO values that deviate considerably from 0 (the cli-
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matological mean) are especially rare, by construction, and
can often be associated with strong local weather extremes
(Thompson and Wallace, 2001): for instance, the daily AO
index was around−2.5 in winter 2009/10, which was accom-
panied by record cold snaps and snowfall over large parts of
the United States, Europe and East Asia (Cohen et al., 2010).
In winter 2019/20, extreme storminess over central Europe
occurred during a highly positive AO phase with wind gusts
of up to 177 kmh−1 being recorded over Germany (Haeseler
et al., 2020). Furthermore, Kim et al. (2020) report increased
likelihood of Siberian wildfires in April following positive
AO periods in February and March.

The AO can also be influenced by “external” weather pat-
terns, and one prominent teleconnection exists between the
AO and the stratospheric polar vortex. The latter describes
a strong westerly wind band around 60◦ N extending over
10 hPa, which forms every year in winter (Waugh et al.,
2017). Numerous studies show that, on average, a very strong
polar vortex (SPV) is associated with a strengthened circum-
polar flow in the troposphere – as indicated by a positive
AO index (e.g., Baldwin and Dunkerton, 2001; Lawrence
et al., 2020; Rupp et al., 2021). The reverse is true for a weak
polar vortex, with such events being a special case: the break-
ing of planetary waves in the stratosphere and the associated
westward forcing can lead to a complete breakdown of the
polar vortex. In these cases, the zonal-mean zonal wind re-
verses, and the climatologically dominant westerly winds are
replaced by weak or moderate easterlies. During the vortex
disruption, air masses converge in the center of the vortex
and are forced to sink. The accompanying strong and rapid
adiabatic heating is the reason that such extreme weak vor-
tex events are called sudden stratospheric warmings (SSWs;
Baldwin et al., 2021). SSWs are observed about six times
per decade and are, as described previously, associated with
a negative AO index on average. On synoptic scales, SSWs
have also been tied to subsequently favored occurrence of
certain weather regimes over the North Atlantic (Domeisen
et al., 2020b) and over North America (Lee et al., 2019).

Consistent with the local implications of a negative AO in-
dex, SSWs can for example lead to cold spells in north-
ern Europe and increased storminess over southern Eu-
rope (Domeisen and Butler, 2020, and references herein).
Whether it is generally valid that SSWs and also strong po-
lar vortex events lead to a subsequently more likely occur-
rence of AO extremes (and associated local extremes) is dif-
ficult to analyze because the statistical links are weak in
each case; i.e., not each SSW/SPV event is followed by an
AO extreme. Therefore, a very large sample of SSW and SPV
events are needed to quantify the subsequent risk increase in
AO extremes. However, reanalysis data only cover about 40–
70 years, depending on the dataset, and thus about 30–40
SSWs – too few to robustly determine conditional probabil-
ities (e.g., given a stratospheric extreme event, how likely a
following tropospheric extreme event is).

In order to allow for analyses of larger event sample sizes,
past studies have used, for example, idealized model simu-
lations (e.g., Hitchcock and Simpson, 2014; Jucker, 2016).
Even though such models have proven to be useful to de-
velop a qualitative and conceptual picture, they often show a
weaker tropospheric response to stratospheric events com-
pared to observational data (Gerber et al., 2009). In this
study, we aim to improve the characterization of coupled
stratospheric and tropospheric circulation extremes using
operational, state-of-the-art, extended-range forecasts. Rel-
atively large ensembles, frequent model initializations and
the generation of hindcasts allow us to analyze a large set of
predicted SSWs and SPV events (p-SSWs/p-SPVs; see dis-
cussion in Sect. 2). Although the vast majority of these p-
SSWs did not materialize in the real atmosphere we show
that they nevertheless provide reliable statistical information
about stratosphere–troposphere coupling. Our analyses im-
plicitly assume that each ensemble member corresponds to a
possible real-atmospheric evolution. The diagnosed p-SSWs
include false alarm events (see, e.g., Taguchi, 2020), which
we assume are based on the same underlying physics as those
SSWs that occurred in the real atmosphere. Furthermore, the
individual evolution (related to forecast score) is arguably not
relevant for statistical characterizations of circulation anoma-
lies.

The analysis is thus based on the assumption that the
forecast models simulate the observed variability in the AO
sufficiently well, including its modulation due to strato-
spheric variability. High-top models, in particular, show real-
istic stratosphere–troposphere coupling (Domeisen and But-
ler, 2020; Domeisen et al., 2020a). However, due to the small
sample size of observed events, it is generally difficult to con-
clude whether any discrepancies between model and obser-
vational data are due to model or sampling errors. For this
study, we show that the models agree with observations in
established diagnostics that can be robustly derived from re-
analyses, including, for example, the frequency of SSWs,
their seasonality and their average impact on the subsequent
AO. Although our quantitative statistical analyses cannot be
compared directly to observational data, they may be consid-
ered to be a best estimate given the currently available obser-
vational record and modeling capabilities.

We compute statistical measures that combine conditional
and base rate probabilities for stratospheric and AO extreme
(co-)occurrences and in order to address our following re-
search questions:

1. By how much is the probability of persistently positive
or negative AO phases increased following stratospheric
polar vortex extremes?

2. By how much is the probability of subsequent AO ex-
tremes increased following stratospheric polar vortex
extremes?
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3. What fraction of AO extremes may be attributable to
preceding stratospheric polar vortex extremes?

To illustrate which AO extremes are classified as “at-
tributable”, consider the following scenarios where a strato-
spheric event is followed by an AO extreme: in relation to the
AO extreme the stratospheric extreme may

a. represent a necessary and sufficient cause;

b. represent one among multiple contributory causes;

c. be caused by a confounding factor, which also causes
the AO extreme;

d. not be causal.

In scenario (a), the AO extreme is attributable to the pre-
ceding stratospheric event, whereas it is not attributable in
scenario (d). In scenario (b), disentanglement of different
contributory factors is difficult. Each involved process can
but does not need to be also a necessary cause. (Consider for
example a situation where an AO extreme would have oc-
curred also without a preceding stratospheric extreme, but
the stratospheric extreme resulted in a stronger or earlier
manifestation.) In this study, we aim to neither disentan-
gle the multiple involved pathways (a–c) nor to provide a
rigorous quantification of causality (which is itself ambigu-
ous in a complex system). Instead, we estimate how many
AO extremes may be attributable to the stratospheric ex-
treme, which refers to the fraction that would have statis-
tically not occurred without the stratospheric event. Impor-
tantly, scenario (c) shows that “without the stratospheric
event” also requires removing any confounding factors. The
analysis follows an observational approach (which is based
on post hoc computation of conditional probabilities) rather
than a counterfactual approach (which is based on active in-
terventions in the system; Pearl, 2009; see Sect. 8 for a more
detailed interpretation of the results with respect to causal-
ity). However, even without disentangling scenarios (a), (b)
and (c), the observational approach provides relevant and
practical insights into the statistical association between and
the importance of stratospheric and subsequent AO extremes.

The paper is organized as follows: Sect. 2 provides an
overview of the extended-range forecasts used in this study.
Section 3 defines stratospheric and tropospheric circulation
extremes and presents basic event statistics. For SSWs, we
validate in Sect. 4 that the predicted events agree, in well-
known diagnostics, with events that are identified in reanaly-
sis data. This motivates Sect. 5, where the probability of AO
extremes following predicted SSWs is analyzed. Conversely,
Sect. 6 shows how often predicted AO extremes are preceded
by predicted SSWs and how many AO extremes may be at-
tributable to preceding SSWs. Section 7 reveals in a similar
fashion the statistical relation between predicted strong polar
vortex events and predicted positive AO extremes, before the
key findings are discussed and summarized in Sect. 8.

2 Description of extended-range ensemble forecasts

The subseasonal-to-seasonal (S2S) prediction project (Vitart
et al., 2017) provides a collection of extended-range (up to
60 d lead time) ensemble forecasts from different weather
services. Forecasts differ in terms of model specifications
(e.g., spatial resolution, parameterizations, maximum lead
time). All forecast systems create hindcasts in addition to
the real-time forecasts in order to calibrate the forecasts
and to allow the construction of the model’s climatology.
For our application, the most relevant demand is an accu-
rate representation of the stratosphere and in particular of
stratosphere–troposphere coupling. Furthermore, a forecast
model with a large number of hindcasts is beneficial because
it allows for more robust analyses by including multiple past
years. Lastly, a large maximum lead time is needed as we
want to identify extreme events in the forecasts and are then
also interested in the time periods before and after the event.

We choose to use European Centre for Medium-Range
Weather Forecasts (ECMWF) and UK Met Office (UKMO)
forecasts for this study as these models best meet the above-
listed requirements. Importantly, both models have been
demonstrated in previous studies to have a realistic represen-
tation of stratosphere–troposphere coupling (Domeisen and
Butler, 2020; Domeisen et al., 2020a).

For the decision on which initialization dates to use for
the analyses, a trade-off has to be made between having as
large a sample as possible and the fact that the forecast mod-
els are updated about every 1–3 years. Since late 2016, the
ECMWF model (CY43R1) has been running at a higher hor-
izontal resolution. Therefore, to avoid mixing forecasts be-
fore and after 2016, forecasts from winter 2017/18 up to and
including 2020/21 are analyzed. Note that a minor model ver-
sion change occurred in 2019, where initial conditions for
the hindcasts are then obtained from ERA5 instead of ERA-
Interim. However, we do not expect this to be a major limita-
tion for our analyses as we are mostly interested in the overall
statistical behavior of stratosphere–troposphere coupling, as
opposed to single forecast performance.

We focus on northern winter dynamics by analyzing fore-
casts initialized between mid-November (16 November) and
end of February (22 February). For the four winter seasons,
the ECMWF model thus features 114 real-time ensemble
forecasts of 51 members each and 2280 ensemble hindcasts
of 11 members each. This results in a total of 30 894 indi-
vidual model runs, all of which we refer to as “forecasts” for
simplicity. For consistency, UKMO forecasts are used from
the same initialization period, leading to 9795 forecasts avail-
able for this model. A summary of the key specifications of
the forecasts is given in Table 1, along with details of the
ERA5 data (Hersbach et al., 2020) used.
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Table 1. Dataset specifications.

S2S ECMWF S2S UKMO ERA5

Type Forecast Forecast Reanalysis

Vertical resolution L91 L85 L137

Time range Days 0 to 46 Days 0 to 60 1979–2021

Real time 51 members, 2 initializations per week 4 members, daily initializations –

Hindcast 11 members, 2 initializations per week, 7 members, 4 initializations –
past 20 years per month, 1993–2015

No. of real-time ensembles used 114 396 –

No. of hindcast ensembles used 2280 1173 –

No. of individual model runs 30 894 9795 –

3 Event statistics of stratospheric and tropospheric
circulation extremes

3.1 Datasets and overall methodology

Each of the forecasts from the total set of 30 894 ECMWF
forecasts provides a 47 d time series of the evolution of the
atmosphere (UKMO: 61 d). In this study, we define specific
events and then scan each forecast for the occurrence of such
an event. If there are multiple events of one event type within
one forecast, only the first event is used. Note that, by def-
inition, all identified events are predicted events, but each
may or may not actually occur in the real atmosphere. To
highlight this aspect, and to avoid confusion with actual real-
atmospheric events, the events identified in the forecasts may
be denoted with a “p” prefix, where “p” stands for “pre-
dicted” (alternatively, it could be thought of as “potential” for
some aspects). In this study, all event composites and com-
puted probabilities refer to predicted events.

For both datasets, ECMWF and UKMO, all individual
forecast runs are treated equally and independently. This as-
sumption is violated especially for forecasts belonging to the
same ensemble. In fact, at initialization time these forecasts
agree entirely except for ensemble perturbations. The indi-
vidual members diverge from each other only with increas-
ing lead time, when the predictability of the atmospheric flow
gradually decreases. For this reason, we analyze only those
events that occur at or after a forecast lead time of 10 d. It
is assumed that initial condition memory has sufficiently re-
duced by this point so that no two individual forecasts fully
match, and the same is thus true for the evolution of the
identified events. This ensures a degree of statistical inde-
pendence. The use of hindcasts further guarantees sampling
of different boundary conditions, such as due to the El Niño–
Southern Oscillation, the Madden–Julian Oscillation or sea
ice variations.

Furthermore, it is ensured that for each identified event
both negative and positive lags can be considered. Due to
the finite maximum lead time of each forecast, this demand
is generally limited. For a predicted event that occurs early in
the forecast (but after 10 d at the earliest), only a short period
before the event can be examined, and the reverse is true for
an event that occurs shortly before the end of the forecast.
Therefore, to ensure a minimum common lag time that can
be analyzed, events are additionally required to occur no later
than 10 d before the end of the forecast. Consequently, events
are allowed to occur between day 10 and 36 for ECMWF
forecasts and between day 10 and 50 for UKMO forecasts.
Thus, for all events, the lag period ±10 d can be examined,
but with increasingly longer positive and negative lag times,
fewer and fewer events contribute to the composite.

Extreme events are defined that refer to exceptional
anomalies in the stratospheric and tropospheric circulation,
respectively. As a measure of the strength of the strato-
spheric polar vortex we use the zonally averaged zonal wind
at 10 hPa at 60◦ N, hereafter referred to as u60.

3.2 Predicted SSWs

We define sudden stratospheric warmings (p-SSWs) as days
when u60 transitions from positive to negative; i.e., the polar
vortex breaks down. As explained above, we do not include
p-SSWs predicted within the first 10 d after forecast initial-
ization. However, for p-SSWs, u60 is required to be solely
positive within these first 10 d to ensure an intact westerly po-
lar vortex at the start of the forecast. Following this event def-
inition, we identify 6101 p-SSWs in the ECMWF and 2716
p-SSWs in the UKMO model.

Moreover, the analyses were repeated with a modified
event definition, which we call dynamical SSWs, in order
to investigate potential sensitivities. Dynamical SSWs were
defined as a subset of SSWs, where in addition to the
sign change, u60 is required to drop at least 20 ms−1 aver-
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aged over −5 to +5 d lag relative to the SSW central date.
Thereby, this event definition forms the intersection between
SSWs (following Charlton and Polvani, 2007) and sudden
stratospheric deceleration events (following Birner and Al-
bers, 2017, ensuring a rapid deceleration around the event
central date). Our results reveal only modest quantitative dif-
ferences between SSWs and dynamical SSWs, and we there-
fore focus on SSWs only to allow better comparison with
other studies.

In Fig. 1 we provide an overview about the distribution of
ECMWF p-SSWs as a function of the year, forecast lead time
and calendar month (see Fig. S1 in the Supplement for a cor-
responding analysis of UKMO forecasts); p-SSWs are found
for all winter seasons considered. Absolute numbers are pre-
sented to show which winter seasons contribute how many
events to the analysis. Due to the real-time hindcast setup,
the number of underlying forecasts varies across winter sea-
sons. Therefore, we additionally provide a proxy for the SSW
probability per winter season to illustrate inter-annual vari-
ability (see Appendix B for details).

The largest number of events is identified in the winter
season 2017/18, which also includes the most forecasts (real-
time 2017/18 plus hindcasts related to initializations from
2018/19 to 2020/21). Different factors lead to a highly vary-
ing number of events between the different years. These in-
clude internal dynamic variability; a slightly varying number
of underlying forecasts, due to the real-time/hindcast predic-
tion setup; and the varying number of events per winter due
to the evolution of the polar vortex of the real atmosphere in
the respective winter, which determines the initial conditions
of the forecasts.

A forecast that is initialized with a strong polar vortex
tends to maintain a strong polar vortex and produces fewer
SSWs compared to a forecast with an initially weak polar
vortex. Moreover, forecasts that do not start with 10 consec-
utive days of positive u60 are discarded by default. Thus, if
the polar vortex in the real atmosphere is already easterly
at the initialization time or is predicted to become easterly
within the first 10 d, such forecasts will not contribute any
events to the analysis. This can be illustrated by the example
of the 2009 SSW (24 January 2009; see Butler et al., 2017).
The event had low predictability at lead times longer than
8 d (Karpechko, 2018). Before the event, between the end
of December 2008 and mid-January 2009, the polar vortex
was exceptionally strong, leading to an only marginal SSW
probability in the forecasts and suggesting that the event it-
self was unlikely given the prevailing dynamics1. As a result,
2008/09 shows the lowest number of SSWs: in the first win-
ter half up to initialization dates around mid-January, hardly
any events were predicted due to the relatively strong polar

1This also seems consistent with the interpretation of this event
as falling under the category of self-induced resonance, which re-
quires conditions (e.g., vortex geometry) to be “just right” (see dis-
cussion in Albers and Birner, 2014).

vortex. Later, forecasts predicting the real-atmosphere SSW
only did so at less than +10 d lead time, such that those
events are discarded. Later initializations up to mid-February
are excluded because these do not predict persistently posi-
tive u60 within the first 10 d lead time, due to the preced-
ing SSW. As a result, the winter season 2008/09 contributes
only 64 (UKMO: 22) p-SSWs to the analysis, and at 23 %
(UKMO: 41 %), the approximated SSW probability is the
smallest in the period considered.

Based on the average number of 226 events per day of
lead time in the ECMWF model (cf. Fig. 1c), we estimate
the probability of a SSW between mid-November and the
end of March, which yields 63 % (see Appendix B for de-
tails). This is consistent with the number of observed SSWs
in reanalyses, which is roughly six per decade (Butler et al.,
2015).

While the rate of events per forecast day fluctuates only
weakly in the ECMWF model, it moderately increases with
lead time in the UKMO model (Fig. S1, bottom left panel).
One might expect this to be due to the longer maximum lead
time of the UKMO model (+60 d) compared to the ECMWF
model (+46 d), which may allow more final-warming-like
events. However, we find that the trend is still apparent when
all forecasts initialized in February are excluded from the
analyses (not shown).

Consistent with reanalyses (e.g, Ayarzagüena et al., 2019)
and across both the ECMWF and the UKMO model, the p-
SSW frequency shows a maximum in February (bottom right
panel in Fig. 1). However, Lawrence et al. (2022) find lead-
time-dependent inconsistencies in the seasonal distribution
of SSW probability compared to the observational record.

3.3 Predicted strong vortex events

Past literature has identified stratosphere–troposphere cou-
pling not only following SSWs, but also following strong po-
lar vortex events (SPVs; e.g., Baldwin and Dunkerton, 2001).
However, the definition of a single event in these cases is
somewhat more ambiguous as there is no dynamically mo-
tivated threshold for u60 compared to 0 ms−1 for SSWs. In
addition, the dynamical changes in cases of a strong polar
vortex are generally less abrupt, making it harder to pin down
one particular central event day. For these reasons, we focus
mainly on SSWs in this paper; however, we also provide a
summary of the key results for SPV analyses in Sect. 7. In
these analyses, p-SPVs are defined as the first day on which
u60 exceeds a threshold that, based on percentiles, repre-
sents the “opposite” of the SSW threshold of 0 ms−1. De-
pending on the model’s climatology, this threshold describes
approximately the 91st percentile of the u60 distribution and
is around 47 ms−1.
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Figure 1. Distribution of analyzed p-SSWs in ECMWF forecasts. Absolute event counts (b) and seasonal probability proxy (a), grouped by
winter. Asterisks denote years with real-atmosphere SSWs (Butler et al., 2017). Grouped by forecast lead time (c) and by month (d).

3.4 Predicted AO events

In the troposphere, we define extreme events based on the
Arctic Oscillation index (short: AO; equivalent to the North-
ern Annular Mode index at 1000 hPa, short: NAM1000). The
index is calculated by first area-weighting the geopotential
field between 65 and 90◦N by the cosine of latitude and
then averaging over the entire polar cap. The AO index then
is the negative standardized anomaly of the obtained quan-
tity. For technical details about the deseasonalization via the
hindcasts, the reader is referred to Appendix A. The positive
phase of the AO describes a negative geopotential anomaly
over the polar cap and a thereby induced enhanced circum-
polar westerly circulation. Conversely, a negative AO reflects
a weaker westerly circulation, which is typically associated
with a southward shift in the jet that is also zonally more
distorted.

We define tropospheric extreme events as the first day
when the AO falls below a certain negative threshold (e.g.,
AO−3 corresponds to AO<−3) or exceeds a certain positive
threshold (e.g., AO+3 corresponds to AO>+3). After testing
different thresholds, we opt for thresholds of up to 3 standard
deviations, which represents a tradeoff between severity of
event and sufficiently large resulting sample sizes.

3.5 Conditional probabilities of polar vortex and
AO extremes

In this study, conditional probabilities are computed to es-
timate the modulated likelihood of AO extremes under the
presence or absence of preceding stratospheric extremes. For

example, we expect the probability of at least one AO− ex-
treme during a given time period to be higher if that time
period follows a SSW compared to the case that it does not
follow a SSW. This is somewhat akin to the situation in cli-
mate attribution science, where one aims to quantify the in-
creased risk of an extreme event due to anthropogenic cli-
mate change (e.g., National Academies of Sciences, Engi-
neering and Medicine, 2016) or to the situation in epidemiol-
ogy, where one aims to quantify the increased risk of con-
tracting a disease given an exposure to a particular factor
(e.g., smoking in the case of lung cancer; Peto, 2000). In such
situations one may quantify the additional risk due to the ex-
posure based on the so-called relative risk increase (RRI):

RRI=
risk among the exposed

risk among the unexposed
− 1.

In climate attribution science “exposure” may be thought
of as “under the influence of anthropogenic climate change”,
whereas lack of exposure (the condition in the denomina-
tor) may be thought of as “without the influence of climate
change” (e.g., based on pre-industrial control climate). In our
case of stratosphere–troposphere coupling exposure may be
thought of as “given that a stratospheric extreme occurred”.
However, lack of exposure has to be evaluated with care. For
example, assume that a given day t0 fulfills the condition of
“no stratospheric extreme”, and an AO extreme occurs within
a given period following t0. This AO extreme cannot neces-
sarily be considered “unexposed” as a stratospheric extreme
may have occurred between t0 and the date of the AO ex-
treme. For our analyses that evaluate the increased proba-
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bility of an AO extreme following a stratospheric extreme
event we therefore adopt a modified version of RRI, where
we replace the denominator with the risk of AO extreme
occurrence for the population (i.e., including both exposed
and unexposed). To avoid confusion we refer to this modi-
fied RRI simply as “relative probability increase” (RPI; see
Sect. 5). A negative RPI indicates that AO extremes become
less likely following stratospheric events. The more positive
the RPI, the more likely subsequent AO extremes become
and the better the stratospheric event serves as a predictor for
AO extremes.

One way to circumvent the above-discussed issue of con-
ditioning onto “unexposed” is to swap the conditioning. That
is, we may condition onto the occurrence of an AO extreme
and evaluate the probability that a given preceding time pe-
riod showed at least 1 d with stratospheric extreme occur-
rence; in this case the AO extreme is considered to be “ex-
posed”. Likewise, if the preceding time period shows no oc-
currence of stratospheric extreme, the AO extreme is consid-
ered to be “unexposed”. Using Bayes’ theorem this allows us
to estimate the fraction of attributable risk (FAR) of AO ex-
tremes to a preceding stratospheric extreme. FAR quantifies
the reduction in the fraction (0 to 1) of AO extremes without
preceding stratospheric events (and without any confound-
ing factors; see discussion in Sect. 8). We distinguish FAR
among the exposed and among the population (see Sect. 6).

Relative probability increase and attributable risk among
the exposed and among the population all quantify, from dif-
ferent perspectives, the increased likelihood of AO extremes
following stratospheric events. Mathematical definitions of
how they are derived from base rate and conditional proba-
bilities are introduced in the respective sections. We provide
an overview table here about the event definitions that are be
used (Table 2).

4 Evaluation of stratosphere–troposphere coupling
based on predicted SSWs

To provide a baseline for our more detailed statistical anal-
yses in the following sections, we first evaluate the general
behavior of stratosphere–troposphere coupling based on p-
SSW events in the S2S data. To do so we focus on the lag-
composite evolution of the AO index relative to p-SSWs
compared to real-atmospheric SSWs from ERA5. In addi-
tion, we show the NAM index at 200 hPa (short: NAM200)
because the lower stratosphere has been found to play an
important role in stratosphere–troposphere coupling (e.g,
Karpechko et al., 2017; White et al., 2020).

Figure 2 shows the evolution of u60 (Fig. 2a), NAM200
(Fig. 2b) and AO (Fig. 2c) during SSWs, averaged over all
events, separately for ECMWF and UKMO. In addition to
the composite mean, the 33rd to 66th percentiles across all
ECMWF events on the respective lag day are shown. By
construction, 100 % of all events (ECMWF: 6101; UKMO:

2716) contribute to lag days ±10. For larger positive or neg-
ative lags, some forecasts have reached their maximum fore-
cast lead time or have not yet been initialized. Therefore,
the number of events drops off, which makes the statistics
less robust: for the ECMWF model, the number of contribut-
ing events falls below 20 % for lags smaller than −31 and
larger than+31 d (UKMO: smaller than −44 and larger than
+39 d).

By construction, u60 transitions from westerly to easterly
at lag 0. Anomalies of u60 are slightly positive ahead of
−14 d lag, which we interpret as an indication for vortex
preconditioning (McIntyre, 1982; Albers and Birner, 2014;
Jucker and Reichler, 2018). The anomalies become nega-
tive within the second week prior to the event central date.
The largest average negative anomalies occur only a few
days after the event central day (lag +2 d: −6 ms−1). After-
wards, the vortex re-establishes, and the average anomalies
reach zero again after approximately 35 d. Consistent with,
for example, Baldwin and Dunkerton (2001), both NAM200
and AO are negative following the event. The shift in the
NAM200 happens earlier (at lag day −11), and the timing
aligns well with the weakening of the polar vortex at 10 hPa.
The NAM200 anomaly is also more pronounced (≈−0.5)
compared to the AO (≈−0.3). Interestingly, the AO distri-
bution is slightly shifted toward positive values in the week
prior to the central date, which is also robust for other di-
agnostics like the 10th, 30th, 70th and 90th percentiles (not
shown). At long positive lag times, the NAM indices at
200 and 1000 hPa are still negative (ECMWF: lag +36 d;
UKMO: lag +51 d), but the trend goes to weaker negative
values again.

Overall, the results are in agreement with ERA5 and pre-
vious literature, and especially the evolution of u60 is re-
markably similar. The negative NAM response at 200 and
1000 hPa seems to be slightly stronger in the reanalysis; how-
ever, it is also noisier due to the smaller sample size.

5 Predicted AO extremes following predicted SSWs

In the following, we exploit the larger available sample size
of p-SSW events to diagnose and estimate whether the shift
in the average AO index towards negative values is caused
by (1) more persistent negative AO phases and/or (2) an in-
creased probability of AO− extremes.

5.1 Persistence of negative AO phases

Figure 3 presents a histogram of the duration of predicted
negative AO phases in the ECMWF model, binned into 7 d
chunks. The duration is defined as the number of consecu-
tive days with negative AO. The climatology serves as a ref-
erence including all 30 894 ECMWF forecasts used for this
study. With approximately 62 %, most phases of negative AO
are shorter than 8 d. As another reference, a first-order au-
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Table 2. Definitions for (conditional) predicted SSW and AO events. Subscript wt is short for “within time t”. AO events can be negative
(AO−) or positive (AO+) and may refer to a prescribed threshold; i.e., AO−3

wt and AO+3
wt correspond to “at least 1 d below −3 within time t”

and “ at least 1 d above +3 within time t”.

Event Description

AO Probability that any day shows an AO extreme
AOwt Probability that any period of time t shows at least one AO extreme
AOwt | SSW Given a SSW, probability of at least one AO extreme within subsequent time t
SSWwt Probability that any period of time t shows at least one SSW event
¬SSWwt Probability that any period of time t shows no SSW event
SSWwt | AO Given an AO extreme, probability of at least 1 d with u60< 0 within preceding period of time t
¬SSWwt | AO Given an AO extreme, probability of no day with u60< 0 within preceding period of time t
AO | SSWwt Given a preceding period of time t with at least 1 d with u60< 0, probability of AO extreme on day afterwards
AO | ¬SSWwt Given a preceding period of time t with no day with u60< 0, probability of AO extreme on day afterwards

Figure 2. Lagged composite evolution of u60 (a), NAM200 (b) and NAM1000 (=AO; c) relative to p-SSWs (ECMWF, UKMO) and SSWs
(ERA5). The figure presents the mean across all ECMWF events (orange, solid), the 33rd to 66th percentiles across all ECMWF events
(orange, shaded), the mean of all UKMO events (purple, dash-dotted) and the mean across all ERA5 events (green, dashed). The top panel
further denotes the average u60 anomalies (orange, dashed) and the relative number of contributing events to the composite in the ECMWF
model (gray, dotted). Square brackets denote the total number of events for each dataset.

toregressive model (AR1) was set up with zero mean and
standard deviation of 1, which may serve as a baseline. Its
1 d autocorrelation is chosen to match the ERA5 AO time se-
ries, and for robustness, it is estimated by averaging the 1 d
lag autocorrelation and the square root of the 2 d lag autocor-
relation, yielding 0.91. ECMWF (S2S) and ERA5 agree very
well in terms of climatology and 1 d lag autocorrelation (not
shown). However, the AO climatology shows short negative
phases (≤ 7 d) less often and long negatives phases (≥ 8 d)

more often compared to the AR1 process, indicating that an
AR1 process cannot reproduce AO variability.

In addition, the diagnostic is presented for periods follow-
ing p-SSWs. Here, the AO index is analyzed between lag
day +1 relative to the event date and the maximum available
lag time, which ranges between +10 and +36 d, depending
on the forecast lead time when the event happens. Similar
to the reference climatology, this diagnostic also underes-
timates the occurrence of long negative AO periods as the
forecasts have finite maximum lead time. Nevertheless, pe-
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Figure 3. Histogram of the duration of negative AO periods, quan-
tified by the number of consecutive days of AO< 0 and binned
by 7 d chunks. Periods following ECMWF p-SSWs (orange bars,
right half) are compared to the ECMWF model’s climatology (green
bars, left half) and a random first-order auto-regressive model of the
same 1 d lag autocorrelation as the AO in ERA5 (black, horizontal
lines). ERA5 climatology is not shown but agrees very well with
the ECMWF forecast climatology.

riods following SSWs show a reduced frequency of shorter
and an increased frequency of longer negative AO periods,
compared to the climatology (and thus also to the AR1 pro-
cess): for instance, 38 % of negative AO periods are longer
than 7 d in the climatology, whereas this probability rises to
44 % following p-SSWs, which corresponds to a relative in-
crease of 16 %.

Sampling uncertainties turn out to be negligible within
95 % confidence intervals. A similar analysis based on
UKMO data shows very good quantitative agreement (not
shown), which further confirms the robustness of the results.

5.2 Modulated probability of AO extremes

It is known that SSWs shift the subsequent AO distribution
(see Fig. 2). This also implies an increased daily probabil-
ity of negative and a reduced probability of positive AO ex-
tremes compared to their respective climatological probabil-
ities. Figure 4 shows the probabilities of negative (< 0), ex-
tremely negative (<−3) and extremely positive (>+3) AO
values on a particular lag day t relative to the SSW central
date. Mathematically, these probabilities can be written as
P(AO | SSW). Per construction, lag day 0 describes the SSW
central day. At each lag day, the probabilities are computed
by normalizing the number of events fulfilling the respective
condition with the total number of available events at the re-
spective lag day (which decreases for large positive and neg-
ative lags).

In addition, the overall daily probabilities of AO< 0,
AO<−3 and AO>+3 are presented, providing climatolog-
ical baselines P(AO), which are independent of lag time. In
any forecast, AO events occur at each day with probabilities
of about 49.0 % for AO< 0, about 0.3 % for AO<−3 and
about 0.1 % for AO>+3. Asymmetry between positive and

negative values arises from the AO distribution that is not
perfectly Gaussian (skewness: −0.13).

The fraction of events in the p-SSW composite that have
negative AO values fluctuates around P(AO−0

| SSW)=

50 % at negative lags, with only small deviations from the
climatology. Within the first week following the event, this
fraction increases and appears to saturate around 60 %. Con-
sequently, in the period following a p-SSW, a negative AO
is, at each day, approximately 50 % more likely compared
to a positive AO (60 % vs. 40 %). The results are consistent
between ECMWF and UKMO during the ±4-week period
where the composites for both models consist of more than
30 % of all events.

Extremely negative AO values in the dataset appear
with a climatological probability that is similar to what
would be expected for a (one-sided) 3σ event of a stan-
dard normal distribution (0.27 %). At negative lags, they
occur overall less frequently compared to climatology. In
contrast, around lag 0, the probability increases and per-
sists at P(AO−3

| SSW)≈ 0.40 % for more than 4 weeks.
The increase appears to be larger in the UKMO model;
however due to fewer events the diagnostic is also nois-
ier. The fraction of events with extremely positive AO val-
ues is smaller compared to climatology throughout the en-
tire lag period. This is largely consistent between the mod-
els from ECMWF and UKMO. ERA5 (not shown) overall
reveals higher probabilities of negative AO values follow-
ing SSWs, P(AO−0

| SSW). However, large uncertainties
(95 %-CI≈ [45 %; 85 %]) in ERA5 make it difficult to dis-
tinguish whether observed differences arise from sampling
errors in the reanalysis or from imperfect models. The ERA5
baseline probabilities of AO extremes are modestly lower
compared to the S2S models2 (P ERA5(AO−3)= 0.06 %;
P ERA5(AO+3)= 0.02 %), and not a single AO± 3 extreme
event occurred within a 4-week period following a real-
atmosphere SSW, resulting in P ERA5(AO± 3

| SSW)= 0,
likely due to the very limited sample size.

An altered probability of extreme AO events may be of
higher socio-economic relevance than a small shift in the
mean. However, the absolute daily probabilities of extremely
negative AO events are still small even though the relative in-
crease given the p-SSWs is indeed considerable. In practice,
the relevant question might not be how much the probability
increases on only 1 specific day following a p-SSW. It may
be more relevant to quantify the increased risk for an extreme
AO within a given time period following a p-SSW.

Figure 5 therefore shows the probability of at least one
AO−3 extreme between day 1 and day t as a function of t . We
compare the period following p-SSWs, P(AO−3

wt | SSW) to

2Note that we have standardized the AO in ERA5 such that the
inter-annual standard deviation is 1, similar to the deseasonalization
that is applied to the S2S forecasts. The lower baseline probabilities
are consistent with a non-zero kurtosis of the AO distribution in
ERA5 of ∼−0.3 (ECMWF: ∼ 0.0; UKMO: ∼ 0.1).
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Figure 4. Daily probabilities of AO< 0 (a), AO<−3 (b) and AO>+3 (c) relative to p-SSWs, quantified by the fraction of events fulfilling
the respective condition, separately for ECMWF (orange, solid) and UKMO (purple, dash-dotted). Day 0 corresponds to the p-SSW central
date. In addition, probabilities are compared to the corresponding daily ECMWF climatology (dashed horizontal lines).

Figure 5. Probabilities of at least one AO−3 event within a window of time t following p-SSWs (dashed, mean including 95 % confidence
interval) are compared to climatology (solid), separately for ECMWF (orange) and UKMO (purple). In addition, the climatologies for ERA5
(green) and a random first-order auto-regressive model of the same 1 d autocorrelation (yellow) are presented.

the respective model climatologies, P(AO−3), the ERA5 cli-
matology and an AR1 process of the same autocorrelation as
the AO index in ERA5. Confidence intervals were obtained
for P(AO−3

wt | SSW) by bootstrap sampling all SSW events.
For ECMWF and UKMO climatology, probabilities were

sampled from lead time+10 d3 to lead time+10+ t d within
all forecasts. Similarly, baseline probabilities of ERA5 and
the AR1 process are obtained by sampling from all days t0 of
the time series to day t0+ t , respectively.

3We choose 10 d as we also start to search for p-SSWs at lead
time day 10; however, this choice is arbitrary, and the resulting cli-
matology is not very sensitive to this choice.

Weather Clim. Dynam., 3, 883–903, 2022 https://doi.org/10.5194/wcd-3-883-2022



J. Spaeth and T. Birner: Stratospheric modulation of Arctic Oscillation extremes 893

Clearly, all probabilities increase with t as the time win-
dow for finding at least one AO−3 extreme gets wider. How-
ever, with increasing t , also fewer events contribute to the
composite due to the finite forecast lead time, leading to
larger sampling errors. The results show that p-SSWs are
consistently leading to an increased time-integrated risk of
AO−3 events. For example, the probability in the ECMWF
forecasts of at least one AO extreme within 30 d following
the event is 3.8 %, compared to 2.9 % for its climatology.
Overall, p-SSWs seem to affect the probability more in the
UKMO model as the probability following p-SSWs is higher,
and the climatological baseline is also lower compared to the
ECMWF model. The baseline in ERA5 is slightly lower than
in the ECMWF model but agrees well with the UKMO cli-
matology. All probabilities range considerably higher than
the probability of a one-sided 3σ event for the AR1 process,
and as before, this is a result of the negative skewness of the
AO distribution.

Generally, all probabilities appear approximately linear
in t , but it should be noted that the linear regime only holds
for small enough t as the probability will approach 1 and sat-
urate in the limit of very large t . Furthermore, it is expected
that for much larger t (which cannot be evaluated here, due
to the finite maximum forecast lead time), the effect of a p-
SSW increasing the subsequent extreme AO− probability di-
minishes, and the climatology will approach the one for p-
SSWs.

Based on the presented probabilities, the probability in-
crease of at least one AO event within time t following SSWs
can be estimated relative to the climatological baseline:

relative probability increase=
P(AOwt | SSW)

P (AOwt)
− 1. (1)

A relative probability P(AOwt|SSW)
P (AOwt)

larger than 0 corre-
sponds to an increase in AO probability following SSWs,
while negative values describe a probability decrease. This
ratio is a function of the length of the time window t (see
Fig. S2). In the limit of large t , where the SSW influ-
ence becomes negligible, it is expected to approach 1, such
that the relative probability increase approaches 0. However,
for medium time windows t that correspond to a typical
timescale of stratosphere–troposphere coupling, the relative
probability shows a wide plateau. This motivates the calcu-
lation of the relative probability increase averaged over the
plateau, which is estimated to correspond to 25 d≤ t ≤ 40 d,
based on Fig. S2. The resulting relative probability increase
(Fig. 6) provides an estimate for the extent to which p-SSWs
increase the probability of p-AO extreme events – not limited
to a specific lag day, but time-integrated and thus indepen-
dent of t . Note that the measure is relative to the climatol-
ogy, which also includes AO extremes that occur following
SSWs. The diagnostic can therefore be interpreted as the rel-
ative probability modulation of at least one AO± event within
a certain time period following the occurrence of a SSW, rel-

Figure 6. Probability increase (in percent) for at least one nega-
tive (positive) p-AO extreme below (above) the threshold follow-
ing p-SSWs within a certain period t , relative to climatology, av-
eraged over 25 d≤ t ≤ 40 d, separately for ECMWF (orange, solid)
and UKMO (purple, dash-dotted).

ative to the baseline probability where the stratospheric state
is unknown.

The relative probability increase of AO events around 0
(e.g., at least 1 d below/above 0) is very small as these events
are already almost certain, even in the climatological refer-
ence. Both models show a gradual increase in relative prob-
ability of more negative AO thresholds (e.g., ∼+35 % for
AO<−2) and a gradual decrease for more positive AO
thresholds (∼−40 % for AO>+2), which is consistent with
a shift in the distribution toward more negative values. Quan-
titative differences in the results between the models are ob-
served for AO thresholds of±3. Indeed, sampling uncertain-
ties become considerable for thresholds greater than 2 stan-
dard deviations as well, as indicated by 95 % confidence in-
tervals that are obtained via bootstrap sampling among all
SSW events. However, model discrepancies reach beyond the
indicated confidence intervals, which are briefly discussed in
Sect. 8.

6 Toward attribution of predicted AO extremes to
preceding SSWs

The last section focused on given p-SSWs and subsequent
statistical signatures in AO extremes within a period t :
P(AOwt | SSW). It was shown that AO− extremes are sig-
nificantly more likely following a SSW.

In this section, we aim to evaluate the alternative question:
how many AO− events may statistically be attributable to
preceding SSWs?

AO− extremes occur with and without preceding SSWs.
As outlined in Sect. 3.5, the distinction of whether an AO ex-
treme was or was not exposed to a preceding stratospheric
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Figure 7. Probabilities of at least 1 d u60< 0 within day t and day−1 relative to day 0, where day 0 is either a randomly sampled day (solid),
an AO−3 extreme event (dashed) or an AO+3 extreme event (dotted). S2S ECMWF (orange), S2S UKMO (purple) and ERA5 (green).

extreme requires choosing a time window for the potential
exposure (e.g., whether a given AO extreme was preceded
by a SSW within the preceding 30 d or not).

The basis of the evaluation in this section is that instead
of conditioning on the occurrence of a SSW, we condition
on the occurrence of an AO extreme. This allows the clas-
sification of all AO events according to whether they were
or were not exposed to a preceding SSW within a time win-
dow t . In total, the ECMWF analysis is based on 752 AO−3

and 486 AO+3 events, where asymmetry arises from non-
zero skewness of the AO distribution (UKMO: 299 and 186).

Figure 7 shows the probability that AO± 3 events are pre-
ceded by at least 1 d of negative u60 within time t , corre-
sponding to P(SSWwt | AO± 3). For example, the probabil-
ity of p-SSW occurrence within 30 d preceding AO−3 ex-
tremes is close to 0.5 in both models, whereas it is around 0.1
preceding AO+3 extremes. The 95 % confidence intervals,
which were derived by bootstrap resampling all AO events,
confirm that the diagnostics get less robust for larger time
windows, due to fewer available events contributing to the
AO composite. The probabilities of the extremes to be
not preceded by at least 1 d of negative u60 are given by
P(¬SSWwt | AO± 3)= 1−P(SSWwt | AO± 3).

We can use the estimated probabilities P(SSWwt | AO± 3)

to evaluate the fraction of attributable risk (FAR) of AO−

events to preceding SSWs as follows. Note that in this study
we neglect potential common drivers of both AO and strato-
spheric extremes, such as due to tropical teleconnections.
Consequently our analyses of FAR may overestimate the part
that is solely due to the stratosphere. Nevertheless, they serve
to quantify the statistical association between stratospheric
extremes and the AO as well as to quantify the predictive
skill due to the stratosphere.

First we define the FAR among the exposed4:

FARe =

risk among the exposed− risk among the unexposed
risk among the exposed

. (2)

This quantifies the fraction of SSW–AO− co-occurrences
(“exposed” category) in addition to fortuitously aligned
events, where the latter risk in the numerator is given by
P(AO− | ¬SSWwt). An FARe of 0 means that the probability
of finding an AO− extreme is independent of exposure to a
preceding SSW. Likewise, an FARe of 1 means that AO− ex-
tremes do not happen without exposure to a preceding SSW.
We can estimate the involved probabilities of AO− events
exposed or not to a preceding SSW using Bayes’ theorem:

P(AO− | SSWwt)=
P(SSWwt | AO−) ·P(AO−)

P (SSWwt)
(3)

P(AO− | ¬SSWwt)=
P(¬SSWwt | AO−) ·P(AO−)

P (¬SSWwt)

=

[
1−P(SSWwt | AO−)

]
·P(AO−)

1−P(SSWwt)
. (4)

Inserting these expressions we obtain for FARe

FARe =
P(AO− | SSWwt)−P(AO− | ¬SSWwt)

P (AO− | SSWwt)

= 1−
P(SSWwt)

P (¬SSWwt)

P (¬SSWwt | AO−)
P (SSWwt | AO−)

. (5)

This expression involves P(SSWwt), which represents the
baseline climatology of the probability that any random day

4FARe is commonly used in climate attribution science, e.g.,
to determine the likelihood that an extreme weather event is at-
tributable to anthropogenic climate change (see, e.g., Allen, 2003;
Stone and Allen, 2005; Stott et al., 2016).
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Figure 8. (a, b) Fraction of AO−2 (dotted) and AO−3 (solid) extremes that are preceded by a SSW within time t that may be attributable
to the SSW (fraction of attributable risk among the exposed/FARe; panel a). Boxplots (quartiles 1 to 3 and 95 % confidence intervals,
obtained via bootstrap resampling) show FARe averaged over time windows 25 to 40 d (shaded gray) as a function of AO threshold (panel b).
(c, d) Fraction of all AO−2 and AO−3 extremes that may be attributable to a preceding SSW within time t (fraction of attributable risk among
the population/FARp; panel c). Boxplots (as in panel b) show FARp averaged over time windows 25 to 40 d (panel d). Note that for larger t ,
fewer events contribute to the diagnostics; hence, observed fluctuations for long time windows t are likely related to sampling uncertainty.
UKMO (purple) and ECMWF (orange).

(i.e., regardless of its AO value) is preceded by a SSW within
time t (full lines in Fig. 7). By definition, P(¬SSWwt)= 1−
P(SSWwt).

Our estimates of FARe are shown in Fig. 8a as a func-
tion of time window t , for two AO event thresholds (−2
and −3). We find that these estimates are not a strong func-
tion of the chosen time window. Figure 8b summarizes the
FARe averaged over time windows of 25 to 40 d: for exam-
ple, based on the ECMWF forecasts we estimate that on av-
erage about 50 % of all AO−3 events that are preceded by
a SSW may statistically be attributable to that SSW. For
the UKMO forecasts this value is slightly higher (∼ 60 %).
For AO−2 events these percentages are somewhat smaller
but overall similar between the models. Boxplots reveal that
associated sampling uncertainties are generally small, but
larger for AO−3 events.

The attributable risk may also be evaluated for any
AO− extreme (from the entire population). In this case one
is interested in quantifying the fraction of AO− extremes that
occur in addition to those that are “unexposed” (were not pre-
ceded by a SSW). The corresponding FAR among the popu-
lation is defined as

FARp

=
risk among the population− risk among the unexposed

risk among the population

=
P(AO−)−P(AO− | ¬SSWwt)

P (AO−)

= 1−
P(¬SSW | AO)
P (¬SSW)

, (6)

where the corresponding expressions from Bayes’ theorem
have been inserted as before. FARp then also quantifies the
fraction of AO extremes that may statistically be attributable
to a preceding SSW. For example, an FARp of 0 means
that SSWs do not increase the probability of AO extremes,

whereas an FARp of 1 means that all AO extremes may be
attributable to a preceding SSW within time t . The same
caveats about common drivers as for FARe should be kept
in mind.

Figure 8c shows our estimates of FARp as a function of
time window t , similar as for FARe. As expected, estimates
of FARp are generally lower than for FARe: the likelihood
of any AO extreme to be attributable to a SSW that may
or may not have happened before the AO extreme should
be much smaller than that of an AO extreme that was in-
deed preceded by a SSW. FARp increases somewhat with
t for small t but tends to saturate for windows longer than
about 2 weeks. For AO−2 events both models saturate near
0.2, whereas for AO−3 events they show slightly larger FARp
of around 0.25–0.3. Overall our estimates therefore suggest
that between 20 % and 30 % of AO− extremes may statisti-
cally be attributable to a preceding SSW (within 2–6 weeks).
Figure 8d summarizes the FARp averaged over time win-
dows of 25 to 40 d. Despite the lower number of contributing
events for larger time windows, associated sampling uncer-
tainties are small (e.g., 95 % confidence intervals for FARp
in ECMWF for AO−3: [21 %; 28 %]).

7 Strong polar vortex events and associated
AO extremes

The previous sections revealed that SSWs increase the prob-
ability of subsequent AO− extremes and that a significant
fraction of AO− extremes may be attributable to preceding
SSWs. In the following, we summarize an analogous analy-
sis for the statistical relationship between strong polar vortex
events (SPVs) and AO+ extremes.

The composite-mean evolution of p-SPVs (Fig. 9) reveals
that u60 anomalies are of opposite sign, somewhat weaker
in magnitude, but otherwise qualitatively similar to p-SSWs
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Figure 9. As in Fig. 2, for p-SPVs.

(lag 0: ∼+20 ms−1 for p-SPVs, ∼−30 ms−1 for p-SSWs;
cf. Fig. 2). Both S2S models agree very well in this respect.
Moreover, for negative lags, there is little difference com-
pared to a corresponding composite based on ERA5 data, but
for positive lags, u60 is slightly stronger in ERA5. The NAM
response at 200 and 1000 hPa (= AO) is qualitatively similar
for p-SPVs and p-SSWs (with opposite sign), but the anoma-
lies are again slightly weaker for p-SPVs, which is consistent
with the weaker u60 anomalies (lag 21: +0.35 at 200 hPa,
+0.25 at 1000 hPa). It is interesting that the NAM200 seems
to react later to p-SPVs than to p-SSWs: while the index for
p-SSWs starts to shift significantly to negative values already
at lag−10 on average, a shift to positive NAM200 values for
p-SPVs is observed only from lag −5 on. As with p-SSWs,
the evolution of the NAM at 200 and 1000 hPa relative to p-
SPVs is less robust in ERA5 due to the smaller sample size;
however, the anomalies tend to be slightly more pronounced
than in the two S2S models. Overall, the composite-mean
evolution of p-SPVs in the ECMWF and UKMO models ap-
pear to be consistent with real-atmosphere SPVs (as revealed
by reanalysis data), as well as with previous studies (e.g.,
Baldwin and Dunkerton, 2001).

Following the same methodology as for p-SSWs, we use
the large event sample sizes to quantify the statistical rela-
tion between p-SPVs and subsequent AO+ extremes. First,
we quantify the relative probability increase for at least
one AO extreme after a given p-SPV within a certain time.
Second, we analyze how many AO+ extremes may be at-
tributable to preceding p-SPVs.

Figure 10. As in Fig. 6, for p-SPVs and subsequent AO extremes
within time t .

Figure 10 shows the relative probability increase of AO ex-
tremes following SPVs relative to climatology as a function
of the AO threshold, for both S2S models and averaged over
time windows 25 d≤ t ≤ 40 d:

relative probability increase=
P(AOwt | SPV)
P (AOwt)

− 1. (7)

Consistent with the positive shift in the AO distribu-
tion following SPVs, the risk gradually increases for posi-
tive AO extremes, whereas it gradually decreases for nega-
tive AO extremes. For extreme thresholds of up to 2 stan-
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dard deviations, the relative probability change appears to be
of similar magnitude compared to periods following SSWs
(≈ 30 %–40 %; see Fig. 6). Larger thresholds reveal a re-
duced probability change compared to SSWs; however, 95 %
confidence intervals mark increasing sampling uncertainty,
especially for AO+3

wt events.
Figure 11 shows our estimates of the fraction of positive

AO extremes that may be attributable to a preceding p-SPV
within a time period t :

FARe =
P(AO+ | SPVwt)−P(AO+ | ¬SPVwt)

P (AO+ | SPVwt)
(8)

FARp =
P(AO+)−P(AO+ | ¬SPVwt)

P (AO+)
, (9)

where FARe and FARp denote exposed and population at-
tributable risk, as in Sect. 6 for SSWs and AO− events.
Among all AO+3 events that are preceded by at least one
SPV event within 4 weeks, about 55 % (UKMO) to 65 %
(ECMWF) may be attributable to the SPV (Fig. 11a and b).
However, significant sensitivities to the exact time window
are observed, as well as differences between the models. One
problem is the strong seasonal dependence of SPV events as
most events occur in December, when the polar vortex is gen-
erally strongest. AO extremes that happen later in the winter
therefore have a smaller probability to be preceded by a SPV
event within a short time window than AO extremes that oc-
cur in December or January. AO+2 events reveal a fraction
of attributable risk among the exposed to preceding SPVs of
around 40 % to 55 %, similar to SSWs and AO−2 events.

Finally, the fraction of all AO+ extremes that may be at-
tributable to preceding SPVs is slightly larger but similar
to that for AO− extremes and SSWs, with a population at-
tributable risk of around one-quarter for AO+2 and around
one-third for AO+3 extremes for preceding time windows of
25 to 40 d (Fig. 11c and d).

More detailed analyses that apply the diagnostics pre-
sented in Figs. 3–5 to positive AO extremes and p-SPVs are
shown in the Supplement.

8 Conclusions

Our results, based on a large number of extended-range en-
semble forecasts, provide further evidence for stratospheric
modulation of large-scale weather patterns near the sur-
face, broadly consistent with previous results (Domeisen
and Butler, 2020, and references therein). Previous stud-
ies generally suffer from relatively small available sample
sizes, which hampers estimation of robust statistical rela-
tionships between stratospheric and tropospheric extremes
(= rare events). In this study, by analyzing extended-range
forecast periods around predicted extreme events (e.g., p-
SSWs), we effectively boost the available sample size by
more than a factor of 100 and are therefore in the position

to obtain robust estimates in response to our research ques-
tions:

1. By how much is the probability of persistently positive
or negative AO phases increased following stratospheric
polar vortex extremes?

Climatologically, 38 % of negative AO phases (days
with consecutive AO< 0) are longer than 7 d. Following
p-SSWs, this is increased to 44 %, which corresponds
to a relative increase of 16 %.

Following p-SPVs, the probability of positive AO
phases that last longer than 7 d is increased from 40 %
to 44 %.

2. By how much is the probability of subsequent AO ex-
tremes increased following stratospheric polar vortex
extremes?

Following p-SSWs, the probability of subsequent
negative AO extremes increases, whereas it decreases
for positive AO extremes. For instance, AO−3 events
are about 40 % (ECMWF forecasts) to about 80 %
(UKMO forecasts) more likely following p-SSWs.
However, the absolute probabilities are still low; i.e.,
only 3.5 % of SSWs are followed by AO−3 within 4
weeks, based on ECMWF forecasts (UKMO: 4 %).

Following p-SPVs, the probability of AO+3 is increased
by about 25 % relative to climatology, whereas AO−3

occurs about 40 % (ECMWF) to 60 % (UKMO) less of-
ten.

3. What fraction of AO extremes may be attributable to
preceding stratospheric polar vortex extremes?

About 50 % (ECMWF) to 60 % (UKMO) of AO−3 ex-
tremes that occur following a SSW may be attributable
to that SSW (fraction of attributable risk among the ex-
posed). A total of 20 %–30 % of all AO−3 events may be
attributable to preceding SSWs (fraction of attributable
risk among the population). “Attributable” does not nec-
essarily imply strict causality (see discussion below) but
refers here to the fraction of SSW–AO− co-occurrences
in addition to fortuitously aligned events.

While our stratospheric-event definitions are based on ab-
solute thresholds of the zonal-mean zonal wind, the tropo-
spheric response is quantified via standardized anomalies of
averaged geopotential. The construction of an appropriate
corresponding climatology is crucial, in particular for the
analysis of extreme events. However, it is also not unam-
biguous. Standardized anomalies are computed by normaliz-
ing differences from a population mean with the population
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Figure 11. As in Fig. 8, for positive AO extremes that may be attributable to preceding SPV events within time t .

standard deviation (taking into account seasonal variations).
As the population is usually finite, any additional data point
may change the population mean and will change the pop-
ulation standard deviation, resulting in a small adjustment
of all previous (standardized) data points. On the one hand,
the effect is negligible in the limit of a large population. On
the other hand, it is generally larger when the additional data
point is an outlier with respect to the previous distribution.
For this study, S2S forecasts were deseasonalized using the
available hindcasts. The assumption is that these hindcasts
sufficiently sample different kinds of variability, such that (a)
extreme events that occurred in individual years do not sig-
nificantly distort the population distribution and thereby also
the population mean and standard deviation and that (b) the
constructed population is robust across different initialization
dates (e.g., a given event that is equally predicted at two dif-
ferent lead times corresponds to the same standardized event
in both model integrations).

Do the analyses of modulated probabilities allow conclu-
sions about causal links between stratospheric and tropo-
spheric circulation extremes?

A definition of (probabilistic) causality is provided by
Pearl (2009):

P(effect | do(cause)) > P (effect | do(¬cause)), (10)

where the do operator denotes an intervention that forces the
occurrence or non-occurrence of the cause5. In the atmo-
sphere, such controlled situations can usually only be sim-
ulated using numerical model experiments. In this study, a
post hoc analysis of an existing dataset is presented. No in-
terventions are performed, and therefore, no strict causal re-
lations can be inferred following the provided definition. In-
stead, conditional probabilities are computed, which Pearl
(2009) calls a predictive or observational approach, e.g.,

P(AO− | SSW) > P (AO− | ¬SSW). (11)

5This definition relies on counterfactual dependence; i.e., if
there had not been the cause, then there would not have been the
effect (and if there had been the cause, then there would have been
the effect).

Our knowledge of coupled stratosphere–troposphere dy-
namics suggests that a causal connection does in principle
exist6. This connection manifests in observed conditional
probabilities, which may, however, be modulated also by fur-
ther possibly involved pathways.

First, conditional probabilities may in practice overes-
timate the (direct) causal link between stratospheric and
AO extreme due to the existence of confounding factors
(see scenario c listed in the introduction). For example, the
Madden–Julian Oscillation (MJO) may lead to modified risk
of AO extremes (Barnes et al., 2019) while at the same time
modifying the likelihood of SSWs (Garfinkel et al., 2012).
On the other hand, the dynamical coupling between the MJO
and the AO may involve a stratospheric pathway (Garfinkel
et al., 2014), and in such cases the stratosphere does repre-
sent a causal driver of AO modulations. Similar arguments
hold for impacts due to climate variability, such as Arctic
sea ice concentrations (Kretschmer et al., 2016) and the El
Niño–Southern Oscillation (ENSO) (Domeisen et al., 2019).
Causal pathways may in such cases be disentangled using
a causal inference-based network (Kretschmer et al., 2021).
We have carried out preliminary analyses using such a frame-
work to distinguish causal pathways during different ENSO
phases, which suggest that the direct pathway polar vor-
tex → AO extremes is significantly stronger than those via
ENSO. A detailed analysis of these pathways is left for fu-
ture work.

However, even if common drivers can be neglected the
statistical nature of inferred fraction of attributable risk can
only quantify an effective causality in the following sense.
Assume, for the moment, that all SSWs cause an AO− ex-
treme, but AO− extremes additionally occur due to inter-
nal tropospheric variability. In this case some of the ob-
served AO− extremes may have happened due to internal tro-
pospheric variability alone while additionally be forced/en-
hanced by a preceding SSW (see scenario b listed in the in-

6It is important to keep in mind that the coupling is, in general,
mutual, and causality works in both directions (even though, as al-
ways, some cause has to precede the effect).
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troduction). A probability analysis (e.g., estimating the FAR
among the population) will then always underestimate the
actual causal link and can only reveal an effective causality.
This also represents a limitation of the binary classification
(AO extreme/no AO extreme).

Despite these caveats, conditional probabilities may pro-
vide useful insights. The conversion into statistical metrics
such as RPI and FAR may thereby facilitate the practically
relevant interpretation. For example, RPI of AO extremes
due to the prior occurrence of a stratospheric extreme does
serve to quantify the state of the stratosphere as a predic-
tor of subsequent AO extremes, which may be of practi-
cal value regardless of its underlying causal nature. Further-
more, FAR provides an estimate of how many AO extremes
would statistically be expected less without preceding strato-
spheric events, when keeping in mind that “without a preced-
ing stratospheric event” would also require removing con-
founding factors.

How should the observed differences between the
ECMWF and UKMO model be interpreted? Overall, our
analyses show that the probability modulations of AO ex-
tremes up to about 2 standard deviations given preceding
stratospheric extremes are similar between the ECMWF and
the UKMO model. AO extremes of 3 standard deviations,
i.e., AO<−3 and AO>+3, reveal discrepancies between
the models. Our bootstrapping approach, e.g., for the relative
probability increase (Fig. 6), shows that especially analyses
based on UKMO forecasts become less robust. However, the
observed discrepancies cannot be solely attributed to sam-
pling uncertainty, given that they exist also beyond the re-
spective 95 % confidence intervals. Which model better rep-
resents the dynamics of the real atmosphere is difficult to
assess as the observational record is too short to allow for
robust, similar analyses. Potential causes of the observed dif-
ferences are numerous, involving differences in wave–mean
flow feedbacks or external forcings, e.g., from the tropics.
Augier and Lindborg (2013) show that the eddy kinetic en-
ergy spectrum in the ECMWF model is still in part unrealistic
and that the model may be too dissipative even at large scales,
clearly indicating that models are unable to reproduce real-
atmosphere dynamics perfectly accurately. Lawrence et al.
(2022) investigate biases in different S2S models and find a
modest cold bias in the ECMWF and a modest warm bias in
the UKMO model in the extra-tropical lower stratosphere. As
the lower stratosphere has been shown to play an important
role in stratosphere–troposphere coupling, we speculate that
occurrences of tropospheric extremes following stratospheric
circulation anomalies are sensitive to temperature biases in
this region. However, a detailed analysis would be beyond
the scope of this study.

In general, we note that any two different imperfect mod-
els will likely always reveal quantitative differences in the
analysis of extreme events for a sufficiently strict extreme
threshold. In the present study, we find such differences, e.g.,
for the relative risk, at a threshold of around 3 standard devia-

tions. It is possible that more data are needed to conclusively
attribute the differences to particular dynamical processes.
Nevertheless, we argue that our analyses, even at a threshold
of 3 standard deviations and given the associated uncertain-
ties, are able to provide insightful quantitative estimates, es-
pecially as no obvious a priori estimate exists, even for the
order of magnitude of the investigated probability metrics.

In addition to the particular points already mentioned, fu-
ture work should address the question of how much of the
predicted surface impact following predicted stratospheric
extremes, i.e., following p-SSWs and p-SPVs, can be ex-
plained by the AO. Lastly, we conclude that the analysis of
predicted events offers potential for improved statistical char-
acterization of other atmospheric extreme events, provided
that the forecast model is capable of truthfully representing
the event of interest.

Appendix A: Deseasonalization of S2S forecasts

In addition to real-time forecasts, all S2S forecasting systems
also create hindcasts (or “reforecasts”), which allow the con-
struction of the respective model’s climatology. In the fol-
lowing, we describe the procedure7 we applied to compute a
climatology of a forecast that starts on some date d (month
and day of month).

1. Compute the ensemble mean of the hindcasts
(Fig. A1a).

2. Compute the inter-annual mean of the hindcast ensem-
ble means. In case of the ECMWF forecasts for exam-
ple, the hindcasts cover the past 20 years (see Fig. A1b).

3. Select all (inter-annually averaged) hindcasts that start
within± 14 d relative to the date d (the start of the fore-
cast of interest). In case of the ECMWF model, this se-
lection subsumes nine (inter-annually averaged) hind-
casts since hindcasts are available for every Monday and
Thursday (see Fig. A1c).

4. Average the hindcasts obtained in step 3 such that the
forecast valid times match (e.g., average forecasts for
22 February, 23 February, . . . as opposed to matching
forecast lead times, e.g., forecasts with lead time +4,
+5, . . ., see Fig. A1c).

5. Apply, to the resulting time series, a 7 d running mean
filter (Fig. A1d).

6. Due to the ± 14 d window, the resulting time series
starts earlier than date d and covers a period that is

7Based on the ECMWF article Re-forecast for medium
and extended forecast range (https://www.ecmwf.int/
en/forecasts/documentation-and-support/extended-range/
re-forecast-medium-and-extended-forecast-range, last access:
23 August 2021).
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Figure A1. Schematic workflow for the computation of a climatology for a S2S forecast model, based on hindcasts. Gray planes illustrate
that forecasts belong to the same hindcast year, where the axis from left to right denotes time.

longer than the forecast of interest. Cut the time series
at the beginning and at the end such that it matches the
time series of the forecast of interest. This gives the cli-
matology (see Fig. A1d).

Anomalies are obtained by subtracting the climatology
from the raw field. Standardized anomalies can be computed
by dividing the anomalies through a climatology standard
deviation, which is computed similarly to the climatological
mean, but where

– (adapted step 1) instead of the ensemble mean, the un-
perturbed control run is selected (or any other single en-
semble member; using the ensemble mean would result
in a too small inter-annual standard deviation at long
forecast lead times (see step 2) because at long lead
times, the ensemble mean always tends to the clima-
tological mean state);

– (adapted step 2) instead of the inter-annual mean, the
inter-annual standard deviation is computed.

The presented deseasonalization procedure comes with
several implications, for example,

– the climatologies for real-time forecasts and for hind-
casts are always based only on hindcasts;

– by computing anomalies from a climatology, model er-
rors that are a function of the season are mitigated;

– by computing anomalies from a climatology, model er-
rors that are a function of the forecast lead time (“model

drift”) are not mitigated because the climatology aver-
ages information that stems from different forecast lead
times (see step 4);

– in case of the ECMWF model, 9 hindcast ensembles/4-
week window× 20 years× 11 ensemble member=
1980 integrations contribute to the construction of one
climatology.

Appendix B: A proxy for annual SSW probability

From observations, the annual probability of SSWs can be
derived by normalizing the number of winters with SSWs
with the total number of winters. In the S2S model frame-
work, it is however less straightforward to compute the fre-
quency of SSWs per winter as the maximum lead time is
shorter than a winter period, and many forecasts overlap. It
is reasonable to tie a 0 % SSW probability to the case where
there is not one ensemble member in any of the forecasts
that predicts a SSW. The 100 % upper boundary is less clear:
should the probability be 100 % if all ensemble members in
all forecasts show a SSW? In that case, a longer maximum
lead time would result in a higher SSW probability even for
the same model. Should the probability be 100 % if there is
at least one ensemble forecast in a winter where all mem-
bers show a SSW? Again, the result would depend on the en-
semble size, i.e., the technical setup, not solely on the model
physics.

In this study, we compute a proxy for the model’s seasonal
SSW probability based on the number of SSWs per forecast
day, as described in the following.
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For each winter season i, forecasts with initialization dates
between mid-November and mid-February are analyzed, re-
sulting in a total of Ñ =

∑
iÑi forecast runs (counting en-

semble members separately). We search for p-SSWs only in
forecasts that have solely positive u60 within the first 10 d af-
ter initialization, resulting in N =

∑
iNi forecasts (N ≤ Ñ ).

We find Ei p-SSW events in the winter seasons, respec-
tively, and group those by daily lead time (similar to Fig. 1c),
yielding Ei,d p-SSWs in winter i at lead time +d days. As
Ei,d is approximately constant over the lead time, we com-
pute the average number of p-SSWs in winter i per day of
lead time: Ei = Ei,d , where the overbar denotes the mean
over lead times. Hence, the probability that a random fore-
cast in winter i at a random lead time shows a p-SSW is
pi,daily=

Ei
Ni

. The probability of no SSW for an entire winter
(≈ 135 d from mid-November to the end of March) is there-
fore (1−pi,daily)

135. Finally, the probability of at least one
SSW in winter i becomes pi = 1− (1−pi,daily)

135, as pre-
sented in Fig. 1a. The model’s average seasonal SSW proba-
bility becomes p = [pi], where the brackets denote the aver-
age over different seasons.

Note that the computed probabilities p and pi quantify
the model’s tendency to predict SSWs. Particularly, this al-
lows for inter-annual comparison and comparison between
different models. However, the probabilities themselves re-
quire careful interpretation, which is why we refer to a SSW
probability “proxy”. Note the following.

– The probability quantifies SSW occurrences beyond
10 d lead time. Thus, inter-annual variations in SSW
probabilities arise only from phenomena that are pre-
dictable at more than 10 d ahead. This is also the main
reason why real-atmosphere SSWs have only a limited
effect on the computed SSW probability.

– The SSW probability becomes 0 % if there are no en-
semble members that predict SSWs at any time be-
yond 10 d lead time. A 100 % probability is only
reached if all ensemble members predict SSWs at each
day of lead time. Figure B1 shows the analytical rela-
tion between daily probability pi,daily and the associated
seasonal probability pi . For instance, a daily probability
of 2 % already leads to a seasonal probability of about
90 %. In addition to the analytical relation, the proba-
bilities are shown for all seasons as derived from the
ECMWF forecasts.

– Seasonality is not explicitly resolved in the calculations
but assumed to average out when enough forecasts are
sampled.

Figure B1. Estimating a seasonal SSW probability proxy based on
daily SSW probabilities. Colored points show the computed sea-
sonal probability proxy for different winter seasons as applied to
the ECMWF forecasts.
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