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Abstract. The Arctic atmosphere is strongly affected by an-
thropogenic warming leading to long-term trends in surface
temperature and sea ice extent. In addition, it exhibits strong
variability on timescales from days to seasons. While recent
research elucidated processes leading to short-term extreme
conditions in the Arctic, this study investigates unusual at-
mospheric conditions on the seasonal timescale. Based on a
principal component analysis in the phase space spanned by
the seasonal-mean values of surface temperature, precipita-
tion and the atmospheric components of the surface energy
balance, individual seasons are objectively identified that de-
viate strongly from a running-mean climatology and that we
define as extreme seasons. Given the strongly varying sur-
face conditions in the Arctic, this analysis is done separately
in Arctic sub-regions that are climatologically characterized
by either sea ice, open ocean or mixed conditions.

Using ERA5 reanalyses for the years 1979–2018, our ap-
proach identifies two to three extreme seasons for each of
winter, spring, summer and autumn, with strongly differ-
ing characteristics and affecting different Arctic sub-regions.
Two extreme winters affecting the Kara and Barents seas
are selected for a detailed investigation of their substruc-
ture, the role of synoptic-scale weather systems, and poten-
tial preconditioning by anomalous sea ice extent and/or sea
surface temperature at the beginning of the season. Win-
ter 2011/12 started with average sea ice coverage and was
characterized by constantly above-average temperatures dur-
ing the season related mainly to frequent warm air advection
by quasi-stationary cyclones in the Nordic Seas. In contrast,
winter 2016/17 started with reduced sea ice and enhanced sea
surface temperatures in the Kara and Barents seas, which, to-
gether with increased frequencies of cold air outbreaks and

cyclones, led to large upward surface heat flux anomalies and
strongly increased precipitation during this extreme season.

In summary, this study shows that extreme seasonal con-
ditions in the Arctic are spatially heterogeneous, related to
different near-surface parameters and caused by different
synoptic-scale weather systems, potentially in combination
with surface preconditioning due to anomalous ocean and sea
ice conditions at the beginning of the season. The framework
developed in this study and the insight gained from analyzing
the ERA5 period will be beneficial for addressing the effects
of global warming on Arctic extreme seasons.

1 Introduction

Near-surface atmospheric conditions in the Arctic show a
high variability on synoptic to inter-annual temporal scales,
which is superimposed on a strong, long-term warming trend
(e.g., Serreze and Barry, 2011; Cohen et al., 2014). Key
drivers of variability on the synoptic to weekly timescale are
interactions with the mid-latitudes for instance via air mass
exchanges (e.g., Woods et al., 2013; Laliberté and Kushner,
2014; Graversen and Burtu, 2016; Messori et al., 2018; Pa-
pritz and Dunn-Sigouin, 2020) and air mass transformations
within the Arctic (Ding et al., 2017; Pithan et al., 2018; Pa-
pritz, 2020). Both air mass exchanges and transformations
are found to be related to synoptic weather systems. On
longer timescales, in contrast, memory effects and feedback
mechanisms such as the sea-ice–albedo feedback (Arrhenius,
1896; Curry et al., 1995), the water vapor and cloud feed-
backs (Vavrus, 2004; Graversen and Wang, 2009; Boisvert
et al., 2016), and the temperature feedback (Pithan and Mau-
ritsen, 2014) play an important role. Given this broad spec-
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trum of processes, this leads to the question of how vari-
ability on various temporal scales is inter-connected. In this
study, we focus on the seasonal scale, and it is our goal
to analyze the role of intra-seasonal processes, including
synoptic-scale weather systems, for the emergence of sea-
sonal extremes in the Arctic. The following paragraphs pro-
vide the relevant background on the key near-surface meteo-
rological parameters in the Arctic and how they are interre-
lated. Furthermore, we discuss the role of different synoptic-
scale weather systems for the variability of these parame-
ters and the occurrence of short-term extremes and seasonal
anomalies in the Arctic.

Near-surface temperature, the components of the surface
energy budget – including radiative and turbulent heat fluxes
– and surface precipitation are especially important param-
eters linking the variability of the atmosphere with that of
the ocean and the cryosphere. Large fluctuations in the sur-
face energy budget, which themselves are closely linked to
air temperature fluctuations, contribute to the variability of
sea ice (Stroeve et al., 2008; Olonscheck et al., 2019), the
ocean mixed layer and open-ocean convection (e.g., Mar-
shall and Schott, 1999). Radiative and sensible heat fluxes
drive the variability of the surface energy budget components
over sea ice (Lindsay, 1998), whereas over open ocean turbu-
lent heat fluxes dominate (Segtnan et al., 2011). Precipitation
variability influences snow cover, which is strongly linked to
the albedo feedback, and it affects the freshwater balance of
the Arctic Ocean and the Nordic Seas (Serreze and Francis,
2006; White et al., 2007), which jointly with turbulent heat
fluxes impacts the thermohaline circulation (Dickson et al.,
1996; Talley, 2008).

The three parameters – near-surface temperature, surface
energy budget and surface precipitation – do not vary inde-
pendently from each other, but they are interlinked. Thereby,
the surface boundary conditions, i.e., sea ice vs. open ocean,
strongly affect the type of linkages between parameters as
well as feedback processes due to vastly different heat capac-
ities. On synoptic timescales, for instance, warm and cold air
advection strongly influence heat fluxes over the open ocean,
where the most intense upward fluxes occur in cold air out-
breaks (Harden et al., 2015; Papritz and Spengler, 2017; Pope
et al., 2020). On longer timescales, surface air temperature
changes are largely influenced by variations in the sea surface
temperature via surface sensible heat fluxes (Johannessen
et al., 2016). In addition, incoming shortwave radiation is
absorbed and can be released to the atmosphere later. Over
sea ice, in contrast, temperature is to a large degree deter-
mined by the surface energy balance, which includes radia-
tive and turbulent heat fluxes, conductive heat fluxes across
the ice, and latent energy for freezing and melting (Serreze
and Francis, 2006). In winter, when the incoming shortwave
radiation is strongly reduced, the surface sensible heat flux
and net surface longwave radiation mainly determine the sur-
face energy balance in regions covered by sea ice (Ohmura,
2012). These considerations reveal that a meaningful identi-

fication of extreme seasons in terms of the surface temper-
ature, energy budget and precipitation parameters must take
their co-variability and the underlying surface boundary con-
ditions into account.

The role of synoptic-scale weather systems for inter-
annual variability in the Arctic has been the subject of mul-
tiple recent studies, which emphasized especially the im-
portance of cyclones (Simmonds and Rudeva, 2012; Mes-
sori et al., 2018), blocking anticyclones (Wernli and Pa-
pritz, 2018; Papritz, 2020) and Rossby wave breaking (Liu
and Barnes, 2015). Air mass exchanges between the mid-
latitudes and the Arctic region are often facilitated by cy-
clones, which, on one hand, transport warm and moist air to
higher latitudes (Sorteberg and Walsh, 2008; Messori et al.,
2018), causing an increase in downward heat fluxes as well
as the formation of clouds and precipitation. On the other
hand, the advection of cold and dry air in the cyclones’ cold
sector enhances ocean evaporation and heat fluxes into the at-
mosphere. Additionally, extreme moisture transport into the
Arctic is often associated with events of Rossby wave break-
ing (Liu and Barnes, 2015), which can be strongly linked
to the evolution of surface cyclones (Martius and Rivière,
2016). Air mass transformations within the Arctic can sim-
ilarly result in anomalous conditions. Recent studies em-
phasized the importance of polar anticyclones and block-
ing events in the High Arctic for driving subsidence-induced
adiabatic warming, leading to anomalies in surface tempera-
ture and net surface radiation which cause increased sea ice
melting (Wernli and Papritz, 2018; Papritz, 2020). In win-
ter, radiative heat loss under clear-sky conditions can lead
to extreme cold conditions, whereas cloud formation favors
the trapping of longwave radiation, thus providing a positive
warming feedback and causing an increase in surface temper-
ature (Burt et al., 2016; Boisvert et al., 2016; Woods and Ca-
ballero, 2016). Similarly, a persistent and strong tropospheric
polar vortex over the pole can isolate polar air masses and
result in anomalously cold conditions due to enhanced radia-
tive cooling (Messori et al., 2018; Papritz, 2020). Therefore,
air mass transport and air mass transformation can signifi-
cantly influence the Arctic surface energy balance. Whereas
the modification of turbulent heat fluxes is of particular im-
portance over the open ocean, the impact on radiative fluxes,
for instance due to an increase in the atmospheric moisture
content, is highly relevant in regions covered by sea ice.

Several studies have analyzed short-term Arctic extreme
events and the involved dynamical processes, for instance
the unusual warm event in winter 2015/16, which led to
above-freezing temperatures close to the North Pole (Cul-
lather et al., 2016) and caused significant sea ice melting
in the Kara and Barents seas (Boisvert et al., 2016). Binder
et al. (2017) were able to show that several pathways of
exceptional air mass transport caused this warm event. An-
other example is an extreme melt event on the Greenland
ice shield in July 2012 (Nghiem et al., 2012), which was
found to be related to a blocking anticyclone and associ-
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ated anomalous long-range transport of warm and humid air
masses from the south (Hermann et al., 2020). Such extreme
weather events can have significant long-term effects, partic-
ularly due to their impact on sea surface temperatures and
sea ice extent. For instance, Simmonds and Rudeva (2012)
have shown that a particularly intense Arctic cyclone in sum-
mer caused the dispersion and separation of sea ice, leaving
the main sea ice pack more exposed and thus vulnerable to
further melting. Similarly, the described extreme warm event
in December 2015 caused positive anomalies in sea surface
temperature and negative anomalies in sea ice concentration
in the Kara and Barents seas, which persisted throughout the
year 2016 (Blunden and Arndt, 2017). Single events of ex-
treme weather, causing episodes of strongly anomalous con-
ditions such as exceptionally high or low surface tempera-
tures, can thus have a major impact on seasonal-mean sur-
face temperature, on the formation and melting rates of sea
ice, and on minimum and maximum sea ice extent.

Despite these insights, so far only little attention has been
given to systematically understanding the characteristics of
extreme seasonal-mean conditions in the Arctic and the role
of synoptic weather systems in their formation. Therefore,
our study aims to address the following research questions.

1. How spatially (in)homogeneous are the seasonal-mean
near-surface atmospheric conditions in the Arctic in
winter and summer?

2. How can extreme seasons be defined objectively, based
on a combined analysis of different key surface param-
eters in Arctic sub-regions?

3. In which way do synoptic-scale weather systems such
as cyclones, blocks and marine cold air outbreaks deter-
mine the substructure of extreme seasons?

4. What is the role of surface preconditioning, i.e., of early
season anomalies of sea surface temperature and/or sea
ice concentration for the formation of extreme seasons?

To address these research questions, a novel method will be
introduced to determine the “unusualness” of a season, which
we define based on a combination of various surface parame-
ters. Our study is organized as follows: data and methods are
described in Sect. 2. Section 3 presents an overview of the
seasonal variability of surface temperature, of surface pre-
cipitation and of the surface energy budget components. In
Sect. 4 we define anomalous and extreme seasons in the Arc-
tic based on seasonal anomalies of these parameters and an-
alyze their substructure in distinct Arctic sub-regions. De-
tailed analyses of three Arctic extreme seasons and the in-
volved atmospheric synoptic-scale processes are presented in
Sect. 5, followed by the main conclusions in Sect. 6.

Table 1. List of variable names used in this study.

Abbreviation Variable name Unit

ES sum of HS, HL, RS and RL [W m−2]
HL surface latent heat flux [W m−2]
HS surface sensible heat flux [W m−2]
P precipitation [mm d−1]
RL net surface longwave radiation [W m−2]
RS net surface shortwave radiation [W m−2]
SIC sea ice concentration
SST sea surface temperature [K]
T2 m 2 m temperature [K]

2 Data and methods

2.1 ERA5 data

To perform a detailed analysis of Arctic extreme seasons,
the ERA5 reanalysis dataset of the European Centre for
Medium-Range Weather Forecasts (ECMWF) is used (Hers-
bach et al., 2020). Hourly atmospheric fields and short-range
forecasts were spatially interpolated to a 0.5◦× 0.5◦ hori-
zontal grid on model levels. The study period includes win-
ters (December–February, DJF) from 1979/80 to 2017/18
as well as springs (March–May, MAM), summers (June–
August, JJA) and autumns (September–November, SON)
from 1980 to 2018. Based on the ERA5 dataset, we addi-
tionally consider synoptic features such as extratropical cy-
clones and blocks identified following the methods presented
in Sprenger et al. (2017). Here, cyclones are defined as ob-
jects covering the area around a sea level pressure mini-
mum, delimited by the outermost closed sea level pressure
contour (Wernli and Schwierz, 2006). Blocks are identified
based on the deviation of vertically averaged potential vor-
ticity between 150 and 500 hPa from the monthly climato-
logical mean. Contiguous areas where this value falls be-
low −1.3 pvu are tracked in time, and tracks that persist for
at least 5 d are considered as blocks (Schwierz et al., 2004;
Croci-Maspoli et al., 2007).

Further, we define marine cold air outbreaks (CAOs) based
on the exceedance of the 900 hPa sea–air potential tempera-
ture difference (θSST− θ900) by +4 K (see Papritz and Spen-
gler, 2017), whereby we exclude grid points over land or
with a sea ice concentration of more than 50 %. As outlined
below, particularly anomalous seasons are identified based
on seasonal-mean anomalies of the following six variables
in specific regions: 2 m temperature (T2 m), precipitation (P ,
defined as the sum of convective and large-scale precipita-
tion), surface sensible heat flux (HS), surface latent heat flux
(HL), net surface shortwave radiation (RS) and net surface
longwave radiation (RL). The last four variables are relevant
for the surface energy balance, and their sum is denoted by
ES (see Table 1 for a list of all variable names used in this
study). Positive signs denote energy fluxes into the surface,
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whereas negative signs are indicative of energy fluxes into
the atmosphere. We use short-range forecasts for the fluxes
P , HS, HL, RS, and RL and analyses for the other fields.

To compute anomalies, a transient climatology is calcu-
lated at every grid point as follows. First, daily-mean values
of the variables are smoothed with a 21 d running-mean fil-
ter. In a second step, the 9-year running mean is computed
for each calendar day. Thus, the seasonal cycle is retained in
the climatology, but decadal variations and long-term trends
related to the overall warming of the Arctic are removed.
The climatology is kept constant at the beginning and end
of the study period when no 9-year running mean can be
calculated. Examples of this filtering procedure are shown
in the Supplement, where Fig. S1a and b show the origi-
nal T2 m time series in the Kara and Barents seas and illus-
trate that the 9-year running mean can effectively eliminate
also non-linear long-term trends (T2 m in the Kara and Bar-
ents seas steeply increases in the decade from 2000–2010).
Seasonal-mean anomalies are then defined as deviations of
the seasonal-mean values from this transient climatology.
With this approach (also used by Messori et al., 2018, and Pa-
pritz, 2020), the identified extreme seasons appear relatively
uniform throughout the study period (see Tables 2 and S3–S6
in the Supplement). Throughout the study, we denote daily
anomalies of a variable χ as χ∗, seasonal-mean anomalies
as χ∗ and seasonal-mean absolute anomalies as |χ∗|. Please
note that in the case of absolute anomalies combined with
spatial averaging, we first compute the absolute anomalies
and then perform the spatial averaging.

2.2 Definition of sub-regions

Extreme seasons will be identified in three distinct geograph-
ical regions: the Nordic Seas (NO), endpoint of the Atlantic
storm track (e.g., Wernli and Schwierz, 2006) and area of
deep water formation (e.g., Dickson et al., 1996); the Kara
and Barents seas (KB), which are strongly affected by recent
changes in sea ice concentration (e.g., Cavalieri and Parkin-
son, 2012); and the remaining Arctic poleward of 60◦ N (AR,
containing the Arctic Ocean), which is to some extent dy-
namically de-coupled from the mid-latitudes. Grid points
above land are excluded. It is one goal of this study to analyze
the characteristics of Arctic extreme seasons with respect
to climatological conditions. As the variables, especially the
surface heat fluxes and surface radiation, are strongly depen-
dent on the surface conditions (e.g., Pope et al., 2020), the
regions are additionally subdivided in each season accord-
ing to the climatological seasonal-mean sea ice concentration
(SICclim). A distinction is made between areas where, on all
days of the considered season in the time period covered by
this study, mainly sea ice is present (“ice”, SICclim> 0.9),
mainly open ocean is present (“sea”, SICclim< 0.1), and re-
gions of intermediate SICclim (“mixed”, 0.1≤SICclim≤ 0.9).
Furthermore, we require a minimum size of a sub-region of
105 km2. With these criteria, three sub-regions are defined

in each region, which results in overall seven distinct sub-
regions in JJA and SON and nine distinct sub-regions in DJF
and MAM (Fig. 1). For example, “ARM” denotes the sub-
region with intermediate sea ice cover in the High Arctic and
“NOS” the sub-region with mainly open ocean in the Nordic
Seas. In these sub-regions and based on the surface parame-
ters listed above, anomalous and Arctic extreme seasons are
defined using a method based on principal component analy-
sis (PCA) as detailed in the following.

2.3 Definition of anomalous and extreme seasons

To determine in an objective way whether a season is anoma-
lous or extreme, a PCA is performed for each sub-region.
For that purpose, the seasonal anomalies of the six vari-
ables (referred to as precursors) are standardized with their
inter-seasonal standard deviation to ensure comparability and
equal weighting of the different parameters. Here, the vari-
ables HS, HL, RS and RL, which all contribute to the surface
energy balance (ES), are weighted by the maximum standard
deviation of the four ES components, thus emphasizing vari-
ables contributing more strongly to ES variability. We use
the PCA to reduce the dimensionality of the six-parameter
phase space to two dimensions by focusing on the first and
second principal component (P̃C1 and P̃C2). P̃C1 and P̃C2
maximize the so-called “explained variance”, which is the
explained proportion of the total inter-seasonal variability in
the six-dimensional phase space of the precursors.

To define extreme and anomalous seasons, P̃C1 and P̃C2
are first rescaled by their respective standard deviation (σ1
and σ2), such that outliers in both PCs are treated simi-
larly independent of the variance explained by P̃C1 and P̃C2,
thus providing a measure for the unusualness of each sea-
son with respect to each of the principal components (from
now on, we will refer to these rescaled components as PC1
and PC2). Then, the Euclidian distance in the reduced phase
space spanned by the two rescaled components, the so-called
“Mahalanobis distance” (dM), is calculated as

dM =
√

PC12
+PC22

=

√
P̃C1

2

σ12 +
P̃C2

2

σ22 . (1)

This measure dM can now be used to quantify how strongly
a particular season deviates from climatology, representing
the combination of the seasonal anomalies of the six vari-
ables. We therefore refer to dM as “anomaly magnitude” of
a particular season. Seasons with dM ≥ 3 are defined as “ex-
treme seasons”, and seasons with 3> dM ≥ 2 are defined as
“anomalous seasons”.

The phase space of the rescaled principal components can
be illustrated using a biplot (Fig. 2), similar as in Graf et al.
(2017). The axes of such a plot represent PC1 and PC2, re-
spectively, and each dot represents one season in the study
period, whereby anomalous and extreme seasons are shown
as colored dots. The closer two dots are, the more similar the
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Table 2. Extreme seasons in DJF, JJA, MAM and SON, including the affected sub-regions and respective Mahalanobis distance (dM; see
Sect. 2.3); the seasonal-mean anomalies of T2 m, P and ES (standardized seasonal-mean anomalies in parentheses; italics); and affected area
per sub-region. The rank of each seasonal-mean anomaly with respect to all seasons is given in brackets (bold), with “1+” denoting rank 1
in terms of a positive anomaly (e.g., wettest season) and “1−” denoting rank 1 in terms of a negative anomaly (e.g., driest season).

Season Sub-regionsa dM T2 m
∗ [K] P ∗ [mm d−1] E∗S [W m−2] Area [105 km2]

DJF 2004/05 ARS 3.2 −0.13 (−0.07) [21−] +1.30 (+2.73) [1+] −47.10 (−2.00) [1−] 3.5

DJF 2012/13 KBI 3.0 +0.13 (+0.05) [18+] +0.02 (+0.12) [19+] −29.48 (−3.07) [1−] 5.4

DJF 2016/17 KBI 3.4 +0.41 (+0.16) [16+] +0.25 (+1.96) [2+] −29.00 (−3.02) [2−] 5.4
KBM 3.3 +1.61 (+0.59) [13+] +0.67 (+3.44) [1+] −54.20 (−3.03) [1−] 10.7
KBS 3.1 +0.83 (+0.65) [14+] +0.98 (+3.03) [1+] −19.14 (−0.81) [8−] 6.8

JJA 2013 ARI 3.2 −0.53 (−2.90) [1−] +0.32 (+1.75) [4+] −10.9 (−3.21) [1−] 14.3

JJA 2016 KBM 3.1 +1.36 (+3.27) [1+] +0.23 (+1.18) [7+] +0.52 (+0.91) [8+] 11.6
NOM 3.3 +1.13 (+3.47) [1+] −0.37 (−1.10) [8−] +9.27 (+1.65) [4+] 5.1

MAM 1990b NOI 3.7 +0.37 (+0.27) [17+] −0.16 (−0.37) [16−] −1.51 (−0.47) [12−] 1.3
ARI 4.1 +3.08 (+3.45) [1+] +0.25 (+3.81) [1+] +2.36 (+1.23) [4+] 80.9

MAM 1996 NOM 3.3 +1.32 (+1.20) [6+] −0.54 (−1.25) [4−] +33.96 (+2.69) [1+] 5.8

SON 1995 KBM 3.0 +0.68 (+0.42) [16+] −0.06 (−0.27) [15−] −27.11 (−2.99) [1−] 10.7

SON 2007 ARM 3.3 +1.33 (+1.40) [8+] +0.06 (+0.78) [11+] −15.2 (−3.47) [1−] 52.7

SON 2018 ARI 3.2 +1.63 (+1.36) [4+] +0.31 (+3.07) [1+] −2.76 (−1.60) [4−] 32.3

a Sub-regions are shown in Fig. 1. b Extreme season MAM 1990 in sub-region NOI shows rank [1+] for RS, rank [7+] for HS, rank [9−] for HL and rank [1−] for RL.
Although single components of ES show rank 1, but in opposite directions, this leads to an overall medium rank [12−] for ES.

Figure 1. Sub-regions defined based on SICclim in (a) DJF, (b) MAM, (c) JJA and (d) SON. The labels refer to Nordic Seas ice (NOI), Nordic
Seas mixed (NOM), Nordic Seas sea (NOS), Kara and Barents seas ice (KBI), Kara and Barents seas mixed (KBM), Kara and Barents seas
sea (KBS), Arctic residual ice (ARI), Arctic residual mixed (ARM), and Arctic residual sea (ARS). Green and red boxes denote the areas of
the Kara and Barents seas and Nordic Seas regions, respectively.
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Figure 2. Schematic PCA biplot with PC1 along the x axis and
PC2 along the y axis. Grey dots represent single seasons, and red
(orange) dots show extreme (anomalous) seasons. Blue lines rep-
resent the projections of the original parameters onto the first two
principal components. Values of dM = 2 and dM = 3 are shown by
orange and red circles, respectively.

anomalies of the corresponding seasons are. Radial vectors
show the relative contribution of the precursor variables to
PC1 and PC2, whereby the projected values of a vector on
both axes illustrates the weight on the respective PC. In the
case shown in Fig. 2, the vector for T2 m is mainly aligned
along PC2; thus, T2 m variability is important for the second
principal mode of variability in the six-dimensional phase
space. Relatively longer (shorter) vectors indicate a larger
(smaller) contribution of the precursor to the explained vari-
ance. If two vectors are approximately perpendicular, the pre-
cursors are uncorrelated. This interpretation of correlations
is more precise the higher the explained variance by PC1
and PC2 is (Gabriel, 1971, 1972). The relative position of
each season in the biplot (i.e., the scores) with respect to
the precursor vectors indicates the contribution of the dif-
ferent precursor variables to the anomaly magnitude dM in
the considered season. For instance, seasons with a positive
T2 m anomaly are positioned in the direction of the T2 m vec-
tor and seasons with a negative T2 m anomaly in the opposite
direction.

In the example given in Fig. 2, the variables T2 m and P
show no correlation, whereas HS and HL are positively cor-
related and HS and P are strongly anti-correlated. Further,
T2 m shows the largest contribution to the variance explained
by PC1 and PC2 (mainly determining PC2), whereasHL, RS
and RL mostly contribute to PC1. RS contributes the least to
the explained variance. Two seasons with dM ≥ 3 are marked
as extreme season 1 (ES1) and extreme season 2 (ES2). Their
score vectors are roughly orthogonal to each other, which in-
dicates that a different combination of anomalies and thus

different processes are decisive for explaining their large
anomaly magnitudes. In this example, ES1 is mainly deter-
mined by a positive T2 m anomaly, while ES2 is an anoma-
lously wet season with negative surface heat flux anomalies,
as the respective precursor vectors are directed more or less
directly towards (P ) and away (HL, HS) from ES2.

3 Spatial and temporal variability of Arctic seasons

In order to characterize Arctic seasons in general, we first
analyze the co-variability of seasonal-mean anomalies of
surface temperature (T2 m

∗), precipitation (P ∗) and sur-
face energy balance (ES

∗) in the three regions, considering
the varying surface conditions of the different sub-regions
(Fig. 3). We are interested in correlations between the sea-
sonal anomalies, in how their magnitudes vary between the
regions and in aspects of the seasonal substructure (e.g., is an
anomalously warm season constantly warm?). Here, correla-
tions with a p value below 0.05 are defined as statistically
significant.

In winter, warm seasons are generally wetter and cold sea-
sons are drier (Fig. 3a–c), except for sub-regions NOS and
KBS (see also Table S1 in the Supplement). In regions with
SICclim> 0.9 (Fig. 3a), T2 m

∗ and P ∗ are strongly positively
correlated; thus, warm winters are almost always (in 79.8 %
of the cases) wet and tend to have a positive ES anomaly
(and again vice versa for cold winters). In contrast, regions
with SICclim< 0.1 in the Nordic Seas and Kara and Barents
seas show either a weak negative or no significant correlation
between T2 m

∗ and P ∗ (Fig. 3c). Over the open ocean, warm
winters show strongly positive and cold winters negativeES

∗

values. Regions with intermediate sea ice extent (Fig. 3b) do
not show this correlation between T2 m

∗ and ES
∗, but warm

winters tend to be wet and cold winters dry, similar to the
“ice” sub-regions.

In summer, no correlation between T2 m
∗ and P ∗ is found,

but 73.3 % of the warm summers show a positive ES
∗ and

72.5 % of the cold summers show a negative ES
∗, indepen-

dent of the surface conditions (Fig. 3d–f and Table S2). Re-
gional differences are much smaller during summer, indicat-
ing more homogeneous conditions among the sub-regions.

In addition to the previously discussed seasonal-mean
anomalies, the intra-seasonal variability of the individual pa-
rameters is an important and complementary characteristic of
Arctic seasons. As we will show in the following, the strength
of the intra-seasonal variability can depend, in particular, on
the surface conditions. To compare the intra-seasonal vari-
ability of T2 m

∗, P ∗ and ES
∗, we consider in Fig. 4 seasonal-

mean absolute anomalies |T2 m
∗
|, |P ∗| and |ES

∗
|, which are

defined as the seasonal mean of the spatially averaged ab-
solute daily anomalies. They are used as a measure for the
overall spatiotemporal variability of the individual parame-
ters throughout a season. Distinct clusters occur for the dif-
ferent sub-regions in winter (Fig. 4a). Regions mostly over
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Figure 3. Seasonal-mean anomalies of P (P ∗; mm d−1, along x axis), T2 m (T2 m
∗; K, along y axis) and ES (ES

∗; W m−2, color) for 39
seasons in (a–c) DJF and (d–f) JJA for sub-regions with (a, d) SICclim> 0.9, (b, e) 0.1≤SICclim≤ 0.9 and (c, f) SICclim< 0.1. Tables S1
and S2 in the Supplement show correlations and respective p values for the described relations between the different parameters in each
sub-region.

Figure 4. Seasonal-mean absolute anomalies of P (|P ∗|; mm d−1, along x axis), T2 m (|T2 m
∗|; K, along y axis) and ES (|ES

∗|; W m−2,
color) for 39 seasons and (a) nine sub-regions in DJF and (b) seven sub-regions in JJA. Blue symbols mark average values for each sub-region.

sea ice show only small variations in ES
∗ and P ∗, except for

NOI, implying a relatively small amplitude of day-to-day and
inter-seasonal fluctuations of these variables. In the Kara and
Barents seas, sub-regions KBI and KBM show high variabil-
ity in daily and seasonal T2 m anomalies but a similarly small
|P ∗|. Sub-regions over the open ocean, where T2 m anomalies
are typically smaller and less variable, show smaller values of

|T2 m
∗
|. P and especially ES variability is strongly enhanced

over the open ocean due to intensified air–sea interaction.
The clear distinction of the seasonal-mean absolute anoma-
lies between the different sub-regions reveals the spatial in-
homogeneity of Arctic meteorological conditions in winter,
which is due to varying surface conditions as well as dif-
ferences in seasonal variability between distinct Arctic Seas.
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This also serves as an a posteriori confirmation of our ap-
proach to separately consider Arctic extreme seasons in these
sub-regions.

In summer, the variability of the three analyzed parame-
ters is smaller due to reduced meridional gradients of sur-
face temperature and radiation causing smaller T2 m and ES
fluctuations (Fig. 4b). Similar to winter, sub-regions over the
open ocean show a relatively large |ES

∗
|, and a larger vari-

ability of P can be observed in the Nordic Seas compared to
the Kara and Barents seas, probably due to reduced moisture
availability in the latter region. However, as the surface con-
ditions between the sub-regions become more homogeneous,
the regions do appear in less distinct clusters as for winter
with the exception of the sub-region ARI, which covers most
of the perennial sea ice and shows, as in winter, only a small
variability of the three parameters. It is further noteworthy
that |T2 m

∗
| and |P ∗| are positively correlated, indicating a

larger |P ∗| in summer seasons, where T2 m fluctuates more.
To better understand the seasonal substructure of Arc-

tic winters and summers, we compare the seasonal-mean
anomalies with the seasonal-mean absolute anomalies for
T2 m, P and ES in selected sub-regions in DJF (Fig. 5) and
JJA (Fig. 6; for remaining sub-regions see Figs. S2 and S3 in
the Supplement). The ratio of seasonal-mean and seasonal-
mean absolute anomalies, χ∗

|χ∗|
, is indicative of the temporal

persistency of an anomaly throughout a season. Thus, the lo-
cation of a season in the diagrams provides information about
the substructure of the season in terms of the considered pa-
rameter. In general, the further to the right, the more posi-
tive the seasonal-mean anomaly of the shown parameter is,
and the further to the left, the more negative it is. The closer
the seasonal-mean anomaly is to the seasonal-mean absolute
anomaly (dots close to the outer stippled grey line represent-
ing χ∗

|χ∗|
=±1), the more persistent the anomaly is through-

out the season. Thus, seasons with 0.8≤ | χ
∗

|χ∗|
| ≤ 1 have al-

most continuously positive or negative daily anomalies. With
a smaller value of χ∗

|χ∗|
, the seasons are located further away

from the outer stippled grey lines, meaning that positive or
negative anomalies in the respective parameter occur more
episodically throughout the season. The closer a season is po-
sitioned towards the blue dashed line where χ∗= 0 and thus
χ∗

|χ∗|
= 0, the more positive and negative daily anomalies can-

cel each other, leading to a weak overall seasonal anomaly.
The value of |χ∗| is further indicative of the magnitude of the
daily anomalies throughout a season. A season located at the
top of the plot shows stronger daily anomalies than a season
with the same χ∗

|χ∗|
ratio but a smaller |χ∗|.

For example, a season can be anomalously warm, because
the daily-mean T2 m values are larger than the climatology on
almost all days of the season, resulting in T2 m

∗

|T2 m
∗
|
≈ 1. With

a decreasing ratio of the anomaly metrics, e.g., T2 m
∗

|T2 m
∗
|
= 0.5,

the season is still anomalously warm, but it results from sev-
eral warm episodes alternating with weaker and/or shorter
periods with negative T2 m

∗ values. If T2 m
∗

|T2 m
∗
|
≈ 0, cold and

warm episodes cancel each other, leading to a weak overall
seasonal anomaly. Comparing seasons with the same T2 m

∗

|T2 m
∗
|
,

the ones positioned further along the y axis (showing larger
values of T2 m

∗ and |T2 m
∗
|) show a larger variability in T2 m

with more intense warm and/or cold episodes.
The seasonal substructures of the three parameters differ.

In particular during summer, several seasons show continu-
ously positive or negative T2 m

∗ (Figs. 6a–d and S3a–c), in-
cluding several clear outlier seasons (Figs. 6c and d and S3a).
In winter, the overall T2 m variability is much larger than in
summer, and only very few seasons show distinct T2 m

∗ out-
liers (Figs. 5a–d and S2a–e). Further, no continuously pos-
itive or negative P ∗ can be observed (Figs. 5e–h and 6e–h,
respectively Figs. S2f–j and S3d–f), indicating that even in
very wet seasons precipitation is episodic and includes dry
periods. In addition, and maybe less obvious, also the driest
seasons feature some precipitation events. The tilted shape
of the scatter plots for P indicates that wet seasons tend to
show a larger |P ∗| than dry seasons, resulting from the skew-
ness of the parameter P . For ES, in the sub-regions NOM,
KBM and KBS, different distributions of the anomalies oc-
cur in DJF and JJA. Winters with a negativeES

∗, which is of-
ten caused by several episodes of cold air outbreaks (Papritz
and Spengler, 2017), tend to show enhanced ES variability
throughout the season (Figs. 5l and S2l and o) compared to
winters with a positive ES

∗, where CAOs are less frequent.
The opposite occurs in summer, when periods of increased
net surface radiation can cause a positive ES

∗ and enhanced
|ES
∗
| compared to seasons with a negative ES

∗ (Fig. 6i and
k and S3g).

4 PCA results

In the previous section, we discussed the co-variability of
T2 m, P , and ES and regional differences for Arctic winter
and summer seasons as well as the seasonal substructure of
these parameters. In a next step, we identify and then charac-
terize Arctic anomalous seasons, based on the combination
of the seasonal-mean anomalies of the three surface parame-
ters. To this end, a PCA is performed for each season (DJF,
MAM, JJA, SON) and sub-region, as explained in Sect. 2.3.
Figures 7 and 8 show the resulting biplots for DJF and JJA
(for MAM and SON see Figs. S5 and S6 in the Supplement).
Depending on the region and sub-region, the contributions
of the precursor variables to the principal components PC1
and PC2 vary, which usually explain about 80 %–90 % of the
total variance in the combined seasonal anomalies. Further-
more, we can show that, following the method introduced in
North et al. (1982), the first two PCs in DJF and JJA are, with
exception of sub-region ARM in JJA, always statistically dis-
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Figure 5. Seasonal-mean anomalies (χ∗, along x axis) vs. seasonal-mean absolute anomalies (|χ∗|, along y axis) in DJF for (a–d) T2 m (K),

(e–h) P (mm d−1) and (i–l) ES (W m−2) in sub-regions ARI, KBI, ARM and KBM. The ratio of the two measures, χ∗

|χ∗|
, is additionally

visualized by grey dashed lines. χ∗

|χ∗|
=±1 is shown by stippled grey lines, and χ∗

|χ∗|
= 0 is shown by a dashed blue line. Red (orange)

markers represent extreme (anomalous) seasons (see Sect. 2.3), and selected case study seasons are labeled. Remaining sub-regions are
shown in Fig. S2.

tinguishable from the others (see Fig. S4). This implies that
by considering PC1 and PC2, we capture most of the vari-
ance.

In winter, sub-regions over ice show a positive correlation
between T2 m

∗ and P ∗ (Fig. 7a, d, g). This correlation is par-
ticularly strong in the High Arctic, where precipitation events
during winter are predominantly caused by synoptic weather
systems that transport warm and moist air masses into the
region (e.g., Webster et al., 2019; Papritz and Dunn-Sigouin,
2020). T2 m

∗, P ∗ andRL
∗ mainly determine PC1 and thus the

direction of maximum variance in the phase space spanned
by all precursor variables in “ice” sub-regions. Surface sen-
sible and latent heat flux anomalies are positively correlated

and mostly uncorrelated with T2 m
∗ and P ∗ as they contribute

mostly to PC2.
Similarly, sub-regions with intermediate sea ice concen-

tration show a positive correlation of T2 m
∗ and P ∗ (Fig. 7b,

e, h), although slightly weaker than over ice for regions KB
and NO. Again, the heat fluxes are mostly uncorrelated with
T2 m

∗ and slightly negatively correlated with P ∗, particularly
HL
∗. RL

∗ is contributing less to the variance in mixed re-
gions, which indicates a comparatively lower importance of
radiation compared to heat fluxes for determining the sea-
sonal variability.

Over the open ocean (Fig. 7c, f, i), a positive correlation
between the heat flux anomalies and T2 m

∗ can be observed,
indicating increased surface fluxes from the ocean into the
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Figure 6. Same as Fig. 5 but for JJA in sub-regions ARI, ARM, KBM and KBS. The extreme summer 2016 is labeled in panels (c), (g) and
(k) due to its role in the preconditioning of the extreme winter 2016/17 (see Sect. 5.2). Remaining sub-regions are shown in Fig. S3.

atmosphere during periods with anomalously cold tempera-
tures. Unlike over ice, the maximum variance over open wa-
ter is mainly determined by the surface heat fluxes. P ∗ is
mostly uncorrelated to the other variables and strongly re-
lated to PC2, reflecting that precipitation can occur in warm
conditions (e.g., warm sector of a cyclone) and in cold con-
ditions (CAO).

Arctic summer seasonal variability is mainly determined
by T2 m

∗, P ∗ and RS
∗, whereby T2 m

∗ and P ∗ are mostly
uncorrelated in all regions (Fig. 8). Whereas T2 m

∗ shows
only weak correlations with other parameters in general, P ∗
is strongly anti-correlated with RS

∗ in sub-regions NOS and
ARS (Fig. 8f and i), most likely due to the presence of clouds
during precipitation events. In sub-regions ARI and ARM
(Fig. 8g and h),RL

∗ additionally influences the seasonal vari-
ability and strongly correlates with T2 m

∗, again emphasizing
the importance of clouds in this region.

Arctic extreme and anomalous seasons

As explained in Sect. 2.3, by using a threshold for the
anomaly magnitude (dM ≥ 3), seasons that appear as clear
outliers in their respective PCA biplot are defined as extreme
seasons, whereas seasons located at the edges of the point
cloud formed by all seasons are characterized as anomalous
seasons (3>dM≥ 2). The two thresholds are chosen prag-
matically to distinguish seasons with different anomaly mag-
nitudes and to classify the seasons with the largest anomaly
magnitude as extreme seasons. Using these thresholds we
find two extreme seasons in DJF, JJA and MAM, respec-
tively, and three extreme seasons in SON (Table 2). With this
total number of extreme seasons, the return period of such
a season corresponds to approximately 40 years, which has
been used as an adequate measure for defining extreme sea-
sons by several studies, e.g., Röthlisberger et al. (2021). The
number of sub-regions where one particular season is iden-
tified as extreme varies between one and three; however, the
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Figure 7. PCA biplot for all sub-regions in DJF with PC1 and PC2 along the x and y axis, respectively. Every season is represented by a
grey dot, and red and orange dots show extreme and anomalous seasons, respectively. Blue lines represent the coefficients of the precursor
variables. Red and orange circles represent dM = 3 and dM = 2, the thresholds used for extreme and anomalous seasons, respectively.
Selected case study seasons are labeled.

varying size of the sub-regions and thus significant differ-
ences in the extent of the affected area have to be considered.
Furthermore, we identify on average 3.3 anomalous seasons
per sub-region in DJF, 5 anomalous seasons per sub-region in
JJA, 4.7 anomalous seasons per sub-region in MAM and 4.4
anomalous seasons per sub-region in SON (see Tables S3–
S6).

After identifying Arctic extreme and anomalous seasons
as well as the surface parameters determining their variabil-
ity in the different sub-regions, we are now interested in the
substructure of such seasons with respect to T2 m, P and ES.
Therefore, we briefly reconsider Figs. 5 and 6 and focus on
the extreme and anomalous seasons, shown by red and or-
ange dots, respectively, in comparison to all seasons in the
study period. By design, extreme seasons with dM≥ 3 have

very large anomalies for at least one parameter (see ranks
for seasonal-mean anomalies in Table 2), for example the
strong positive P ∗ in the extreme winter in KBM (Fig. 5h)
or the negative ES

∗ in both extreme winters in KBI (Fig. 5j).
In summer, all extreme seasons are characterized by a strong
T2 m

∗ outlier (Fig. 6a, c, d), which coincides withES
∗ outliers

in ARI and KBM (Fig. 6i and k). Similarly, most anoma-
lous seasons also show outliers or anomalies near the edge
of the point cloud for at least one parameter. However, some
anomalous seasons do not show very strong anomalies in one
particular parameter, which implies that for these seasons it
is the combination of several parameters that makes them
anomalous. In a given region, several extreme or anomalous
seasons can have similar seasonal anomalies, for instance
both extreme winters in KBI (Fig. 5b, f, j) and two anoma-
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Figure 8. Same as Fig. 7 but for JJA. No biplots are shown for the sub-regions KBI and NOI, because they fall below the minimum size
threshold of 105 km2 in summer. The extreme summer 2016 is labeled in panels (b) and (e) due to its role in the preconditioning of the
extreme winter 2016/17 (see Sect. 5.2).

lous and one extreme summer[s] in ARI (Fig. 6a, e, i), in-
dicating similar characteristics and most likely also underly-
ing processes causing the anomalous nature of these seasons.
However, in other regions with multiple anomalous seasons,
they show a similar behavior in one but a contrasting behav-
ior in another variable. For example, the anomalous and ex-
treme winters in KBM both have a positive T2 m

∗ but dif-
ferent signs in their respective ES

∗ (Fig. 5d and l). We thus
expect different processes to be responsible for these seasons
to be anomalous.

Based on the results of the PCA analysis and Fig. 5, the
following winter seasons are chosen for detailed case stud-
ies to better understand their seasonal substructure as well as
the underlying processes: the winters 2011/12 and 2016/17
in the Kara and Barents seas and the winter 2012/13 in ARI.
We do not consider the extreme winter in ARS in 2004/05, as
ARS is only a very small region that consists of two remote

fragments and thus the meaningful analysis of the involved
processes would be less straightforward. Furthermore, this
selection allows us to, on the one hand, contrast two seasons
in the same geographical region and, on the other hand, also
point out differences in terms of the underlying processes in
a region at the edge of the Arctic and in the High Arctic. This
choice of case study seasons is subjective and motivated by
the intention to reveal the diversity and complexity of the
involved processes. It is further strongly limited by the avail-
able amount of suitable seasons for in-depth investigation.
Choosing two winter seasons in the same region allows us to
emphasize inter-annual variability while avoiding additional
effects of seasonal variations.
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Figure 9. Time series of daily-mean (a) T2 m (in ◦C), (b) ES (in W m−2), (c) SIC, (d) P (in mm d−1) and (e) sea level pressure (SLP, in hPa)
averaged in the region of the Kara and Barents seas (KBI, KBM and KBS) in DJF 2011/12 (black lines). The transient climatology is shown
by grey lines. Grey shading shows the standard deviation of daily-mean anomalies in all winter seasons relative to the respective transient
climatology. Blue, orange and green heat maps at the bottom of the figure show the daily-mean coverage of the region by cyclones, blocks
and CAOs, respectively (the darker the color the higher the coverage). Relative frequency anomalies of the three weather systems are given
in percentages. The horizontal axis indicates days since the start of the season with day 1 corresponding to 1 December.

5 Case studies

5.1 DJF 2011/12

The winter of 2011/12 is classified as an anomalous season
in KBI and KBM. In both sub-regions, this winter shows the
largest positive T2 m

∗ during the 39-year study period (Fig. 5b
and d). The time series in Fig. 9a shows that the daily-mean
surface temperature is continuously above the climatology in
the KB region (consistent with the fact that the dots in Fig. 5b
and d are close to the diagonal) and during more than 50 %
of the season outside the sigma range of the anomalies in the
considered period (indicated by grey shading in Fig. 9a–e). In
KBI, T2 m

∗ is the main contributor to this season’s anomaly
magnitude, supported by positive P ∗ and RL

∗ (Figs. 5b and
f and 7a). In KBM, positive T2 m

∗ and HS
∗ mainly determine

the exceptional character of this winter (Figs. 5d and 7b),
which also leads to one of the most positive ES

∗ compared
to all winters in the study period (Fig. 5l).

In DJF 2011/12, T2 m
∗ is +6.6 K in KBI and +4.7 K in

KBM. In the whole region, during December, T2 m values
are continuously around +6 K above climatology, before ap-
proaching more average levels at the beginning of January
(Fig. 9a). The largest T2 m

∗ values are reached in February.

The SIC anomaly shows an opposite behavior and is contin-
uously negative, reaching values close to climatology only
at the beginning of the season and during the period with
reduced T2 m

∗ in January (Fig. 9c). Similarly to the other
variables, here we calculate the SIC anomaly using a tran-
sient climatology, as this effectively removes non-linear SIC
trends in the Kara and Barents seas (see Fig. S1c and d in the
Supplement). Daily-mean ES values are strongly correlated
with daily-mean T2 m, resulting in mostly positiveES

∗ during
the particularly warm episodes and shorter periods of nega-
tive ES

∗ when T2 m
∗ is reduced (Fig. 9b). The positive ES

∗ is
mainly due to a strongly positive HS

∗, i.e., strongly reduced
heat fluxes into the atmosphere. During the period with the
largest T2 m

∗ in February, when the surface air temperatures
exceed 0 ◦C at several grid points on multiple days, even pos-
itiveHS values occur over the open ocean (not shown). Daily
P values show only small deviations from climatology, ex-
cept for the first 5 d of the season and in the beginning of
February (Fig. 9d).

It is now interesting to compare the time series of the ba-
sic variables with the occurrence of specific weather systems.
The colored heat maps at the bottom of Fig. 9 provide infor-
mation about the occurrence of cyclones, blocks and CAOs in
the Kara and Barents seas. As each weather system is identi-
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fied as an object described by a two-dimensional binary field
(grid points that belong to a system have a value of 1 and
other grid points have a value of 0), the weather system fre-
quency field is calculated by time averaging of these binary
fields. For example, if a cyclone mask covers a grid point at
25 % of all times, then time averaging of the binary fields
yields 0.25, corresponding to a cyclone frequency of 25 %.
Here, the color intensity is representative for the daily-mean
weather system frequency averaged over the area of the sub-
region; thus, it indicates the percentage of the sub-regions’
area that overlaps with a cyclone, blocking or CAO mask on
a daily basis. The relative frequency anomaly of a specific
weather system in a specific season is calculated as

fseas− fclim

fclim
· 100, (2)

where fseas and fclim denote the spatially averaged seasonal-
mean weather system frequencies for the season and the
climatology, respectively. The repeated passage of cyclones
(Fig. 9, blue heat map) originating from the Nordic Seas (not
shown) ensures the continuous transport of warm and moist
air into the Kara and Barents seas during several periods,
mostly in December and February. Yet, in the wintertime
average, cyclone frequency in this region was slightly be-
low climatology (as further discussed in Sect. 5.3). At the
same time, CAO frequency (Fig. 9, green heat map) was
strongly reduced while blocking frequency was substantially
increased (Fig. 9, red heat map) in this season compared
to climatology. CAOs, which often occur after the passage
of a cyclone in the cyclones’ cold sector, as can be seen
for example around days 30, 43 and 77, usually lead to a
strong decrease in T2 m and ES (associated with intense sur-
face fluxes). Therefore, the relative lack of CAOs in this win-
ter favors the persistence of above-average T2 m. In addition,
several blocking episodes around days 34, 61 and 71 are as-
sociated with notable peaks of T2 m and ES. Animations S1–
S3 in the Supplement show daily synoptic plots for the three
case studies and further illustrate the interplay of the synoptic
systems and the occurrence of the anomalies in the consid-
ered surface parameters.

5.2 DJF 2016/17

The winter 2016/17 is classified as extreme in all sub-regions
of the Kara and Barents seas. The PCA biplot shows that
in KBI and KBM the anomaly magnitude of this winter is
mainly determined by negative surface flux anomalies, es-
pecially of HS (Fig. 7a and b). In KBS, a positive P ∗ is the
strongest contributor to the anomaly magnitude (Fig. 7c), and
in KBM this winter occurs with a strong positive P ∗ outlier
(Fig. 5h). In fact, it is the winter with the most precipitation
in the Kara and Barents seas during the study period. Further,
in KBI and KBM, a strongly negative ES

∗ occurs as a clear
outlier with respect to other winters (Fig. 5j and l). Finally,

T2 m
∗ shows a positive anomaly in KBM and KBS, which,

however, is not exceptional (Fig. 5d).
Several precipitation events result in the strongly positive

P ∗, which often can be linked to the passage of a cyclone
(Fig. 10d, blue heat map). Only very few episodes show P ∗

values below climatology, e.g. at the beginning of Febru-
ary when the occurrence of a block causes dry conditions
(Fig. 10d, red heat map). The positive T2 m

∗ results from
several episodic warm events with a duration of ∼ 5–10 d
(Fig. 10a), each deviating more than+5 K from climatology.
There are, however, also several periods that are colder than
climatology and characterized by CAOs (Fig. 10, green heat
map), leading to a small seasonal-mean anomaly. A negative
SIC anomaly occurs throughout the season (Fig. 10c), which
is especially pronounced in KBM (not shown), with strong
decreases in SIC following warm and wet episodes linked to
the passage of cyclones (Fig. 10, blue heat map). In Fig. S7
we show an example, using PIOMAS sea ice data (Schweiger
et al., 2011), of how the passage of several cyclones between
days 17 and 24 can be associated with the momentarily re-
duction of the sea ice coverage in the Kara and Barents seas.

In general, daily-mean ES correlates well with daily-mean
T2 m. The frequent occurrence of CAOs favors strong upward
surface heat fluxes (i.e., strongly negative ES), further en-
hanced by the increase in open-water area due to the preced-
ing sea ice retreat. Most cyclones pass the Kara and Barents
seas from west to east during this winter (animation S2 in the
Supplement), often causing the consecutive passage of the
cyclones’ warm and cold sector in the considered sub-region.
The resulting positive relative frequency anomaly of CAOs in
combination with the negative SIC∗ causes a strongly nega-
tive ES

∗ (Fig. 10b), which is particularly pronounced in KBI
and KBM and results mainly from negative HL

∗ and HS
∗.

As pointed out previously, the anomalous conditions dur-
ing this winter are related to different synoptic weather sys-
tems. Figure 11 exemplifies three characteristic but different
synoptic circulation patterns associated with anomalously
warm conditions (Fig. 11a and c) and anomalous surface
fluxes (Fig. 11b and d). In January, a sequence of multiple
cyclones continuously transports warm air from the south-
west towards the Kara and Barents seas (Fig. 10, blue heat
map, and animation S2 in the Supplement). Figure 11a shows
a typical situation where a cyclone from the Nordic Seas
propagated into the Kara and Barents seas region, leading
to anomalously warm conditions in its warm sector and pre-
cipitation along its cold front. Figure 11b shows the case of
a strong CAO in the wake of a cyclone. It causes enhanced
upward surface heat fluxes over the open ocean, resulting in
a strongly negative ES anomaly as discussed in the previ-
ous paragraph (Fig. 11d). The persistent large-scale situation
during a warming episode in February 2017, when a station-
ary block over northern Scandinavia in combination with a
strong cyclone to the south of Greenland leads to anoma-
lously warm conditions in its northern periphery (Fig. 10, red
heat map, and animation S2 in the Supplement), is shown in
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Figure 10. Same as Fig. 9 but for DJF 2016/17. Purple vertical lines indicate the three time steps shown in Fig. 11: 9 January 2017 (day 40),
31 January 2017 (day 62) and 7 February 2017 (day 69).

Fig. 11c. Next to the enhanced poleward transport of mid-
latitude air favored by this pattern, subsidence-induced adia-
batic warming additionally causes high surface temperatures
for the duration of the block (see Papritz, 2020). At the same
time, the presence of the block suppresses precipitation in
the region, resulting in one of the driest periods of the season
(Fig. 10d). In Fig. S8, we show the differences in the air mass
origin for the warm events in mid-January and mid-February
(days 47–50 and 73–76, respectively) by using air parcel tra-
jectories.

Besides synoptic processes, preconditioning potentially
plays an important role for the occurrence of an extreme sea-
son, as we aim to discuss now. From Fig. 10c, it can be seen
that SIC in the Kara and Barents seas was already exception-
ally low at the start of the winter season; in fact, the sea ice
extent on 1 December was the lowest on this date for the en-
tire study period. The sea surface temperature (SST) shows
a significantly positive anomaly of about +1 K on average,
which favors a delayed freeze-up in the region and at the
same time also more intense upward sensible and latent heat
fluxes. These initial surface conditions provide an important
precondition for the strongly negativeES

∗, which itself is de-
cisive for the anomaly magnitude of this winter. Analyzing
SIC and SST anomalies in the Kara and Barents seas during

the previous seasons in 2016 shows that they developed since
the previous winter (SIC) or spring 2016 (SST; see Fig. 13b,
which is discussed in Sect. 5.3). At the end of 2015, an ex-
treme warm event (e.g., Boisvert et al., 2016; Binder et al.,
2017) led to a significant thinning of the sea ice in the Kara
and Barents seas, causing an early start of the melt season in
2016 and subsequently increased SST values in MAM, coin-
ciding with a positive T2 m

∗ in the same region. The summer
of 2016 does occur as an extreme season in sub-regions KBM
and NOM (Fig. 8b and e) and as an anomalous season in KBS
(Fig. 8c), mainly due to a strong T2 m

∗ of on average +1.4 K
in the Kara and Barents seas, which was facilitated by a re-
duction in total cloud cover and thus strongly enhanced RS.
Together with the already existing positive SST anomaly, this
extremely warm summer led to record low SIC and ice-free
conditions in the Barents Sea from July to September (Petty
et al., 2018). Strong blocking over large parts of the Arc-
tic during October and November 2016 caused positive sur-
face temperature anomalies across the whole Arctic region
(Tyrlis et al., 2019) as well as strong positive ES anomalies,
favoring the persistence of the negative SIC and positive SST
anomalies (Blunden and Arndt, 2017) until the beginning of
DJF 2016/17. In summary, the winter 2016/17 was extreme
in the Kara and Barents seas due to a combination of pre-
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Figure 11. Synoptic situation on (a) 9 January 2017 (day 40), (b) 31 January 2017 (day 62) and (c) 7 February 2017 (day 69). Daily anomaly
of potential temperature at 900 hPa (θ900; K, color). Sea ice edge (SIC= 0.5, solid yellow line), climatological sea ice edge (SICclim= 0.5,
dashed yellow line), cyclone mask (dashed black contour) and blocking mask (dashed green contour) at 00:00 UTC on the considered days.
Daily ES anomaly (ES

∗; W m−2, color) on 31 January 2017 (day 62) is shown in panel (d). Sea level pressure (SLP) is shown by grey
contours in intervals of 10 hPa. The region of the Kara and Barents seas is marked by orange hatching.

conditioning and favorable synoptic conditions, resulting in
strong precipitation and surface heat flux anomalies.

5.3 Comparison of DJF 2011/12 and DJF 2016/17

Comparing both anomalous winters in the Kara and Bar-
ents seas, it becomes already evident from the PCA biplots
(Fig. 7a and b) that the processes leading to their respective
anomaly magnitude differ strongly, as the vectors pointing
to the two seasons in the biplot are nearly orthogonal. As
discussed in the previous subsections, the winter of 2011/12
is dominated by continuously positive daily T2 m anomalies
favored by a reduced frequency of CAO events, whereas in
DJF 2016/17 the negative heat flux anomalies and exception-
ally positive P ∗, enhanced by strongly reduced sea ice cover,
are most important. We have further seen that both seasons
feature large variability in the substructure of the respective
parameters. To better understand the underlying processes
leading to these differences, we will now analyze the syn-
optic situation in both seasons in more detail.

In DJF 2011/12, cyclone frequency was strongly enhanced
over the Nordic Seas concomitant with a reduction in the

Kara and eastern Barents seas (Fig. 12a), which favored
the frequent advection of warm air masses into the Bar-
ents Sea. Enhanced cyclone activity was restricted to the
Nordic Seas and the western Barents Sea, where several
cyclones slowed down and became stationary (see anima-
tion S1 in the Supplement). As a result, during several days
of this winter, the warm sector of a cyclone was located in
the Barents seas, causing an increase in surface tempera-
tures, whereas its cold sector was positioned in the Nordic
Seas. Thus, the frequency of cold air outbreaks was reduced
in the region of the Kara and Barents seas, favoring the
formation of a positive T2 m

∗. In addition, recurrent blocks
over the Ural Mountains (Fig. 12c) contributed to above-
average surface temperatures. In DJF 2016/17, in contrast,
cyclone activity was close to climatology (Fig. 12b) as cy-
clones crossed the region (see animation S2 in the Supple-
ment), but instead blocking frequency over Scandinavia was
strongly enhanced (Fig. 12d). Subsidence-induced warming
and long-range transport of warm air masses contributed to
several warm episodes (see Fig. S8 in the Supplement). How-
ever, an enhanced frequency of CAOs, facilitated by the fre-
quent passage of cyclones combined with reduced SIC and
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Figure 12. Seasonal-mean (a, b) cyclone frequency and (c, d) blocking frequency anomalies for (a, c) DJF 2011/12 and (b, d) DJF 2016/17.
Region of the Kara and Barents seas is marked with green contour.

warm ocean temperatures, limited T2 m
∗ but contributed to a

strongly negative ES
∗. Thus, the patterns of synoptic activ-

ity were partly reversed between the two seasons, yet they
contributed substantially to their anomalous nature. Further,
it becomes evident that the impact of cyclones on surface
anomalies depends critically on their track relative to the re-
gion of interest.

In addition to the synoptic activity, we found the influ-
ence of preconditioning in SIC and SST values to be of great
importance for DJF 2016/17. Figure 13b shows persistent
negative SIC∗ and positive SST∗ throughout the preceding
1.5 years. Comparing the initial conditions for the winter
of 2011/12, the influence of the previous seasons appears
smaller, as SIC and SST values are close to normal at the be-
ginning of the winter and seasonal-mean anomalies in spring,
summer and autumn 2011 show much weaker anomalies than
in 2016 (compare Fig. 13a and b).

5.4 DJF 2012/13

After analyzing two anomalous winters in the Kara and Bar-
ents seas, we now discuss another Arctic anomalous winter
in the High Arctic to better understand the different dynam-
ical processes leading to such seasons in Arctic regions with
distinct surface conditions. In the region of the High Arctic,
the winter of 2012/13 is classified as strongly anomalous in
ARI mainly due to its negative T2 m

∗ and P ∗ (Fig. 7g), mak-
ing it one of the coldest and driest winters in this sub-region
(Fig. 5a and e). A negative RL

∗, i.e., less net longwave ra-

diation, resulting in an overall strongly negative ES
∗ con-

tributes additionally to the anomaly magnitude of this winter
(Fig. 5i). Figure 14a shows that the T2 m anomaly mainly re-
sults from deviations up to −8 K from the climatology dur-
ing the second half of the season, which is quite a substantial
anomaly considering the size of the spatially averaged area,
whereas the first half of the season is close to climatology.
From mid-January on, ES values are also consistently below
average and little to no precipitation occurs until the end of
the winter (Fig. 14b and e). It is evident that only the second
half of the season features exceptional conditions, indicating
that anomalies do not have to persist throughout a whole sea-
son to make it anomalous.

The anomalies during the second half of the season coin-
cide with a decrease in synoptic activity over the High Arc-
tic. Specifically, the relative cyclone and blocking frequency
anomalies in ARI are slightly and strongly reduced, respec-
tively, especially in the second half of the season. In Decem-
ber, several cyclones and blocks affect the prevalent condi-
tions in the High Arctic (Fig. 14, blue and red heat maps and
animation S3 in the Supplement). Between days 20 and 25,
a strong intrusion of warm and moist air facilitated by adja-
cent blocking and cyclone systems in the Bering Sea causes
a strong precipitation event, coinciding with increasing sur-
face mean temperatures and a local decline in sea ice cover-
age (Fig. 14a, c, d). At the same time, a displacement of the
polar vortex occurs, which subsequently leads to a splitting
of the polar vortex and a sudden stratospheric warming event
at the beginning of January 2013 (Coy and Pawson, 2015;
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Figure 13. Standardized seasonal-mean anomalies of SIC (SIC∗; along x axis) and SST (SST∗; in K, along y axis) in the Kara and Barents
seas for the entire study period (grey dots) including all seasons. Colored dots highlight the eight seasons preceding (a) the anomalous
winter 2011/12 and (b) the extreme winter 2016/17, and the grey line shows the pathway of these seasons’ anomalies.

Figure 14. Same as Fig. 9 but averaged in sub-region ARI in DJF 2012/13.

Nath et al., 2016). As the region of the High Arctic is posi-
tioned beneath the saddle point of the resulting two cyclonic
vortices in the stratosphere, relatively calm conditions lead to
the development of a high-pressure system in the Laptev Sea,
which evolves into a strong and persistent polar high during
January (Fig. 14e). Figure 15 shows that there is no upper-
level anticyclone or block present in the High Arctic during
that period. This suggests that the strong high-pressure sys-
tem at the surface is most likely of a thermodynamic origin
caused by cold and dense air below an inversion layer (as
can be seen in the skewT–logp diagram in Fig. 16), resulting

from persistent radiative cooling and inducing a first drop in
T2 m

∗ at the end of January (Fig. 14a).
In February, the calm conditions in the High Arctic remain

and prolong the isolation of the cold and dry air in this re-
gion. Again, a lack of notable upper-level forcing can be ob-
served (see Fig. S9). With the increasing dryness of the air,
persistent longwave radiative cooling of the surface results in
a dome of very cold air, causing the formation of another sur-
face high-pressure system during the second half of February
and one of the strongest negative monthly T2 m anomalies in
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Figure 15. Synoptic situation on (a) 20 January 2013 (day 51) and (b) 24 January 2013 (day 55). Daily-mean geopotential height at 300 hPa
(in m, color). Sea level pressure (grey contours, in intervals of 10 hPa) and blocking mask (dashed green contour) at 00:00 UTC on the
considered days. Black star at 78.5◦ N, 173◦ E shows location of skewT–logp profile in Fig. 16. Sub-region ARI is marked by orange
hatching.

this region. The formation of the dome of cold air is evident
as a strong inversion in the skewT–logp diagram (Fig. S10).

Comparing winter 2012/13 in ARI with the two anomalous
winters in the Kara and Barents seas reveals fundamentally
different characteristics, resulting mainly from the regionally
varying synoptic activity but also the prevalent surface condi-
tions. While preconditioning does not play an important role
in the High Arctic, which is mainly covered by sea ice, the
long-term development of SIC and SST anomalies in areas
with varying SIC can significantly influence the initial con-
ditions of winters in the Kara and Barents seas. Each of the
three seasons has its own substructure and different combi-
nation of anomalies resulting in the respective anomaly mag-
nitude. Besides the rather straightforward persistent anomaly
in one parameter as is the case for DJF 2011/12, we show
that, with our approach to define extreme and anomalous sea-
sons based on a multi-variate anomaly magnitude, there are
many different pathways for such a season to develop. In DJF
2012/13, several weeks of consistent extreme conditions re-
sulted in a whole anomalous season, although the first half of
the winter was relatively normal. And in 2016/17, it was not
only extraordinary atmospheric conditions but also the pre-
conditioning by an anomalous evolution of the surface con-
ditions during the previous months that led to an Arctic ex-
treme winter.

6 Discussion and conclusions

In this study, Arctic winters (DJF) and summers (JJA) have
been characterized based on seasonal anomalies of surface
parameters including temperature, radiation, heat fluxes and
precipitation for distinct regions considering varying surface
conditions. In winter, strong spatial differences can be ob-
served dependent on the prevailing surface conditions (i.e.,
open ocean vs. sea ice), especially in terms of the surface
energy balance components (ES), whereas in summer there
is less spatial variability due to reduced surface temperature
and radiation gradients. Regions with a climatological sea
ice concentration of above 90 % show only small ES vari-
ability mainly determined by changes in the net surface ther-
mal radiation, as solar radiation and air–sea interactions are
strongly reduced, particularly in the high latitudes. In con-
trast, areas with predominantly open water surface show a
large seasonal variability in the surface energy balance pri-
marily driven by fluctuations in the surface heat fluxes. Tem-
perature anomalies do show a distinct spatial variability as
well, featuring relatively large fluctuations in sea-ice-covered
areas in the Kara–Barents seas and Nordic Seas and reduced
variability over the open ocean. The Nordic Seas are fur-
ther characterized by an increased precipitation variability
compared to the Kara and Barents seas and the High Arctic,
whereby the latter shows smaller variability for all analyzed
parameters.

We further characterized Arctic seasons based on the sea-
sonal substructure of surface temperature (T2 m), precipita-
tion (P ) and ES. Persistent seasonal anomalies, indicating
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Figure 16. SkewT–logp diagram at 78.5◦ N, 173◦ E (black star in
Fig. 15). Temperature is shown along the x axis (in ◦C) and pressure
along the y axis (in hPa). Black lines show the ambient temperature
profile for 20 January 2013 (day 51; dotted line), 22 January 2013
(day 53; dashed line) and 24 January 2013 (day 55; solid line)
at 00:00 UTC. Grey lines show isobars (horizontal) and isotherms
(skewed), respectively. Colored dashed lines denote dry (red) and
moist (blue) adiabats, respectively. Green dotted lines denote con-
stant saturation mixing ratios.

constantly anomalous conditions of the same sign through-
out a whole season, can be observed for T2 m and ES except
for the open ocean, where strong surface heat flux variability
prevents continuously positive or negative daily ES anoma-
lies. Distinct outlier seasons can be observed featuring ex-
ceptional seasonal-mean anomalies in one or several param-
eter(s).

To define and identify anomalous and extreme seasons ob-
jectively, we introduce a multi-variate method. Using PCA,
we define anomalous and extreme seasons by means of an
anomaly magnitude based on the combination of seasonal
anomalies of T2 m, P , surface heat fluxes and surface net ra-
diation. Unlike conventional, univariate approaches, we do
not pre-define and thus prioritize one particular parameter
by simply choosing, e.g., the warmest or wettest seasons.
Instead, our multi-variate approach has the advantage that
it also allows us to identify seasons that arise from an un-
usual combination of seasonal anomalies that taken alone are
not particularly unusual. This consequently leads to different
types of extreme seasons in terms of their individual anoma-
lies which, however, share a similar unusualness as expressed
by the anomaly magnitude dM. In order to reach a signifi-

cant dM value, at least one of the considered variables or a
combination thereof must be clearly exceptional compared
to other seasons. All of our extreme seasons have very large
anomalies for at least one parameter and thus would most
probably be found to be extreme with a more conventional
approach as well. We show that our identified anomalous
seasons often result from various combinations of unusual
seasonal anomalies, which allows us to analyze a broader
spectrum of unusual seasons with regard to their underly-
ing processes and atmospheric dynamics. Further, using a
multivariate approach allows us to compare Arctic extreme
and anomalous seasons considering the heterogeneity of the
Arctic surface. We analyze sub-regions with climatologically
high, mixed or low sea ice cover separately, thus accounting
for regional differences in the surface conditions, which have
a strong impact on the variability of these parameters.

Based on this definition of extreme seasons, we analyzed
the atmospheric processes leading to three selected extreme
and anomalous winter seasons by evaluating the relative
importance of different synoptic features, namely cyclones,
blocks and cold air outbreaks (CAO). This helps improve
the understanding of the formation of such seasons and un-
derlines the manifold processes that can cause a season to
become particularly unusual. The results of our analysis for
three different case studies can be summarized as follows.

1. Seasonal substructure. Arctic extreme and anomalous
winter seasons show a high variability in their sub-
structure and the synoptic processes determining their
anomaly magnitude. This magnitude can be due to a
persistent seasonal anomaly of the same sign in one pa-
rameter such as it is the case for the constantly positive
temperature anomaly during the exceptionally warm
winter 2011/12 in the Kara and Barents seas. However,
also the combination of several noticeable but not ex-
ceptional seasonal anomalies can result in a similarly
large anomaly magnitude. Furthermore, extreme condi-
tions do not need to persist during a whole season as
we can see for the winter of 2012/13 in the High Arc-
tic, where several weeks of persistent cold and dry con-
ditions caused seasonal anomalies that are sufficiently
large for the season to be identified as anomalous.

2. Atmospheric processes. Various synoptic processes can
cause Arctic winters to become anomalous or extreme.
An increase in cyclone frequency often leads to en-
hanced transport of warm and moist air into the respec-
tive region, which is particularly important for the for-
mation of precipitation in the higher latitudes. Episodes
of prevailing atmospheric blocking usually favor the
persistence of positive surface temperature anomalies
due to subsidence-induced adiabatic warming. Recur-
rent synoptic events such as cyclones, blocking and
CAO episodes can strongly influence the entire season,
depending on their location relative to the considered re-
gion. Similarly, the absence of synoptic activity can be
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important for the development of extreme conditions as
can be seen in the case of the extreme High Arctic win-
ter 2012/13. Contrasting synoptic conditions can lead to
extreme seasons in the Kara and Barents seas, which,
however, show very different characteristics. Further,
the frequency of CAOs strongly influences surface tem-
perature anomalies and changes in ES mainly due to the
impact on air–sea interaction.

3. Surface preconditioning. Regions with varying sea ice
coverage can experience preconditioning due to long-
term anomalies in sea ice concentration (SIC) and sea
surface temperature (SST), leading to anomalous ini-
tial conditions at the beginning of the season and thus
influencing the sea ice formation and ES throughout
the following winter. Large SIC and SST anomalies,
which developed and persisted throughout the preced-
ing 1.5 years, led to record-low SIC and above-average
SST in the Kara and Barents seas at the beginning of
the winter of 2016/17. Due to the increased amount of
open-water area, predominantly negative surface heat
flux anomalies prevailed throughout the season, result-
ing in an exceptionally negative seasonal ES anomaly.
This suggests that extreme and anomalous seasons in
regions with a climatological sea ice concentration be-
tween 10 % and 90 % can be caused by such a precondi-
tioning, whereas extreme and anomalous seasons in re-
gions with continuous sea ice extent are mainly driven
by atmospheric processes.

One of the main limitations of this study is the short time pe-
riod for which the ERA5 data are currently available. As our
goal is to study anomalous seasons, the number of suitable
cases is strongly limited. Future analysis of large ensemble
simulations of the Community Earth System Model (CESM)
will allow us to further statistically quantify and confirm the
results of this study. The importance of long-term compo-
nents such as the near-surface ocean processes leading to
possible preconditioning of anomalous seasons has only been
briefly considered in this study. Further analysis of anoma-
lies in surface oceanic heat transport and its influence on sea
ice formation and melt and sea surface temperatures will al-
low us to quantify the relative importance of short-term at-
mospheric and long-term oceanic forcing in driving the pro-
cesses leading to Arctic extreme seasons.

Code and data availability. ERA5 data can be down-
loaded from the Copernicus Climate Data Store (https:
//climate.copernicus.eu/climate-reanalysis; Copernicus Cli-
mate Service, 2021). The PIOMAS dataset can be obtained from
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projects/arctic-sea-ice-volume-anomaly/data/; Polar Science
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