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Abstract. The extent to which interannual variability in Arc-
tic sea ice influences the mid-latitude circulation has been ex-
tensively debated. While observational data support the exis-
tence of a teleconnection between November sea ice in the
Barents–Kara region and the subsequent winter North At-
lantic Oscillation, climate models do not consistently repro-
duce such a link, with only very weak inter-model consensus.
We show, using the EC-Earth3 climate model, that while an
ensemble of coupled EC-Earth3 simulations shows no evi-
dence of such a teleconnection, the inclusion of stochastic pa-
rameterizations to the ocean and sea ice component results in
the emergence of a robust teleconnection comparable in mag-
nitude to that observed. While the exact mechanisms causing
this remain unclear, we argue that it can be accounted for
by an improved ice–ocean–atmosphere coupling due to the
stochastic perturbations, which aim to represent the effect of
unresolved ice and ocean variability. In particular, the weak
inter-model consensus may to a large extent be due to model
biases in surface coupling, with stochastic parameterizations
being one possible remedy.

1 Introduction

Over the last several decades, Arctic sea ice has been un-
dergoing a precipitous decline (Stroeve and Notz, 2018).
Since this loss is unanimously projected to continue as long
as greenhouse gas concentrations keep increasing (Notz and
SIMIP Community, 2020), a considerable number of stud-
ies have been devoted to understanding what influence this
may or may not have on mid-latitude weather and climate

(see, for example, Barnes and Screen, 2015, for a good
overview). The role of sea ice variability in driving mid-
latitude weather has also been extensively examined on in-
terannual timescales, in which it has, in particular, been sug-
gested as a key source of predictability in seasonal forecasts
of Euro-Atlantic boreal winter (García-Serrano et al., 2015;
Dunstone et al., 2016; Kretschmer et al., 2016; Wang et al.,
2017). Of central importance on both climate and seasonal
timescales is a proposed teleconnection between November
sea ice concentration in the Barents–Kara (BKS) region and
the December–January–February (DJF) North Atlantic Os-
cillation (NAO), where a negative sea ice anomaly forces a
negative NAO anomaly (Deser et al., 2007; Sun et al., 2015).
Because the NAO is the dominant mode of variability in the
Euro-Atlantic sector (Hurrell et al., 2003), such a teleconnec-
tion would provide a direct pathway for sea ice variability to
affect the mid-latitudes.

Both tropospheric and stratospheric mechanisms have
been suggested for such a teleconnection. In the tropospheric
pathway, localized heat flux anomalies triggered by the ex-
posure of the relatively warm ocean to the cold Arctic at-
mosphere may produce stationary Rossby waves (Hoskins
and Karoly, 1981) which can subsequently grow to a large-
scale NAO response (García-Serrano et al., 2015). The strato-
spheric pathway posits that these waves may penetrate all
the way up to the stratosphere, where they break and weaken
the polar vortex: this would be expected to result in a nega-
tive NAO response at the surface in late winter (Peings and
Magnusdottir, 2014; Kim et al., 2014). The importance of a
favourable North Atlantic storm track has been emphasized
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for both mechanisms (Deser et al., 2007; Strong and Mag-
nusdottir, 2010; Siew et al., 2020).

However, there is currently no consensus in the literature
on whether this teleconnection actually exists at all. While
studies looking for predictors of the winter NAO in reanaly-
sis data frequently identify a robust BKS–NAO teleconnec-
tion as the largest source of predictability (Kretschmer et al.,
2016; Wang et al., 2017), this is not straightforwardly repro-
duced using climate model experiments. Indeed, while mod-
els show a weak NAO response to imposed sea ice anomalies
when integrated over a sufficient time period, the signal ap-
pears to be far less consistent over shorter time periods, with
only a weak inter-model consensus (see, for example, Screen
et al., 2018, for an overview). In addition, long climate model
simulations with fixed forcing exhibit decade-long periods
when the correlation between BKS sea ice and the NAO can
be positive, negative, or zero (Koenigk and Brodeau, 2017;
Siew et al., 2021). By considering observational data cover-
ing the entire 20th century, Kolstad and Screen (2019) sug-
gested that such decadal variability is also visible in the real
world, though such analysis is confounded by the reduced
quality of sea ice data prior to 1979 when the satellites came
online1. All this has led some to suggest that the apparently
significant positive correlation seen in the recent observa-
tional record may be purely a result of atmospheric inter-
nal variability (Koenigk and Brodeau, 2017; Warner et al.,
2020; Blackport and Screen, 2021). Some studies have also
hypothesized that the correlations arise due to the existence
of a common atmospheric driver of both sea ice and the NAO
(Peings, 2019; Siew et al., 2021).

The situation is further complicated by the discovery in
recent years of a so-called “signal-to-noise paradox” in sea-
sonal forecasts of the winter NAO (Scaife and Smith, 2018).
This paradox, in essence, is the fact that while forecast mod-
els initialized in November can now produce DJF NAO pre-
dictions that correlate remarkably well with the observed
NAO, the signal is extremely weak in the forecast models,
and high correlations can only be realized by taking the mean
across a large ensemble forecast (Eade et al., 2014; Dunstone
et al., 2016). In particular, the size of the signal compared
to the level of skill (i.e. the magnitude of the correlation)
implies that the real world may be significantly more pre-
dictable than the models think it is. One possible explanation
for this is that models have systematically under-persistent
circulation anomalies (Strommen and Palmer, 2019), but an-
other is that models fail to capture real-world teleconnections
adequately (Siegert et al., 2016). This raises the possibility
that the Arctic–NAO teleconnection is real and that the weak
and inconsistent signals seen in climate model simulations
are a manifestation, or possibly even the cause, of the signal-

1For example, the widely used HadISST sea ice data are “mostly
climatologies before the 1950s” (Chapman and National Center for
Atmospheric Research Staff, 2013), and for Barents–Kara this can
be seen to also be the case for later years by inspection.

to-noise paradox. A key point here is that it has been noted
in Baker et al. (2018) that not all seasonal forecast models
exhibit skilful winter NAO forecasts, implying the existence
of model error affecting the forced dynamics of the NAO.
It is therefore possible that the weak signal seen in climate
model studies is at least in part due to models not represent-
ing the relevant processes correctly. This naturally begs the
following question: what processes might not be represented
correctly in state-of-the-art climate models that could inhibit
a realistic Arctic–NAO teleconnection?

Many model errors have their origin in processes that
are unresolved, either because they occur below the model
grid-scale or because they are not represented in the model
physics. One increasingly widespread approach to address
this is the idea of stochastic parameterization schemes
(Berner et al., 2017). Stochastic schemes aim to represent
the influence of uncertain processes, such as unresolved sub-
grid-scale physics, using carefully calibrated random noise.
The potential for such schemes to radically improve weather
forecasts is well known (Palmer et al., 2009; Sanchez et al.,
2016; Berner et al., 2017), and a growing body of literature
now suggests that such schemes can also have a beneficial
impact on climate model simulations as well (see, for exam-
ple, Dawson and Palmer, 2015; Watson et al., 2017; Chris-
tensen et al., 2017; Juricke et al., 2017; Strommen et al.,
2019; Vidale et al., 2021, for some examples). Of particu-
lar relevance is the suggestion of Strommen et al. (2017) that
stochasticity can in some cases make teleconnections more
realistic.

In this paper, we will study the impact of including the
stochastic parameterization schemes of Juricke et al. (2013)
and Juricke and Jung (2014) to the sea ice component and
of Juricke et al. (2017) to the ocean component of the fully
coupled EC-Earth3 climate model. We compare an ensem-
ble of six deterministic (i.e. non-stochastic) simulations (la-
belled CTRL) spanning 1950–2015, with an equivalent en-
semble (labelled OCE) with stochastic sea ice and ocean pa-
rameterizations active: see “Data and methods” for details
of the stochastic schemes and the model. We will show that
while the CTRL simulations do not exhibit a systematic re-
lationship between BKS sea ice and the NAO, the OCE sim-
ulations appear to systematically recover a significant tele-
connection roughly comparable to that seen in the reanalysis
product ERA5. Analysis using a linear inverse model (LIM),
along with comparisons against simulations with prescribed
sea surface temperatures (SSTs) and sea ice, suggests that the
stochastic schemes are primarily acting to improve the cou-
pling between the atmosphere, ocean, and sea ice. The abil-
ity of stochastic schemes to profoundly impact atmosphere–
ocean coupling has already been observed in, for example,
Christensen et al. (2017). Our results therefore support the
hypothesis that inadequate ice–ocean–atmosphere coupling
may be a key bias contributing to the weak and inconsis-
tent ice–NAO teleconnection in climate models. A similar
hypothesis has also been emphasized in Mori et al. (2019a)

Weather Clim. Dynam., 3, 951–975, 2022 https://doi.org/10.5194/wcd-3-951-2022



K. Strommen et al.: Arctic teleconnections and stochastic sea ice 953

and Mori et al. (2019b) in the context of surface level tele-
connections, and we add to this by showing that stochastic
schemes aimed at improving ice and ocean variability may
alleviate such coupling biases.

The structure of the paper is as follows. In Sect. 2 we de-
scribe the model and simulation set-up, the stochastic ocean
and sea ice schemes, and the diagnostic methods used in
this study. Section 3 discusses the effects of the stochastic
schemes on the climatology of the model, while Sect. 4 fo-
cuses specifically on the impact of the schemes on the ice–
NAO teleconnections in EC-Earth3. In Sect. 5 we test and
discuss the extent to which improved teleconnections with
the stochastic sea ice and ocean schemes are due to improved
ice–ocean–atmosphere coupling. Finally, Sect. 6 consists of
a discussion of the results and some final conclusions.

2 Data and methods

2.1 The EC-Earth3 model and description of stochastic
schemes

The model used for the coupled climate simulations in this
study is a version of EC-Earth3. Specifically, we use the
EC-Earth3P configuration developed for the HighResMIP
protocol, as described in Haarsma et al. (2020). It is very
closely related to the version that was used for the introduc-
tion of the probabilistic Earth system model in Strommen
et al. (2019). In their study, the focus was on stochasticity
in the atmospheric and land surface component of uncoupled
atmosphere-only simulations, while in this study the stochas-
ticity is placed in the ocean and sea ice model component as
discussed below.

The atmospheric model component of EC-Earth3 con-
sists of a modified version of the Integrated Forecast Sys-
tem (IFS) developed and used at the European Centre for
Medium Range Weather Forecasts (ECMWF). It includes
the land surface model Hydrology Tiled ECMWF Scheme
for Surface Exchanges over Land (H-TESSEL) (Balsamo
et al., 2009). The ocean model component is represented by
the NEMO model version 3.6 (Madec and the NEMO team,
2008) which includes the LIM3 sea ice model (Vancop-
penolle et al., 2012). The atmospheric model is run at a spec-
tral resolution of T255, which corresponds to an approximate
grid spacing of 80 km at the Equator, with 91 vertical layers.
This model produces a reasonable looking quasi-biennial os-
cillation (Strommen and Palmer, 2019), suggesting that the
stratosphere is well resolved. NEMO is run at a resolution
of around 1◦ with 75 vertical layers. Note that, as discussed
in Haarsma et al. (2020), the original NEMO configuration
for EC-Earth3P produced an Atlantic Meridional Overturn-
ing Circulation (AMOC) with unrealistically low values: the
configuration used in these experiments corresponds to the
p2 configuration discussed in Haarsma et al. (2020) and
therefore does have a realistic AMOC. We also note that the

EC-Earth3P model was tuned to represent a realistic top of
the atmosphere energy budget compared to observational es-
timates for the time period 1990–2010.

The two types of coupled simulations carried out in this
study differ only by the use of stochastic parametrizations
in the ocean and sea ice model component. The control
simulation CTRL runs without any stochastic parametriza-
tions turned on. The stochastic simulation OCE on the other
hand has three stochastic ocean schemes (Juricke et al.,
2017, 2018) and one stochastic sea ice scheme (Juricke et al.,
2013; Juricke and Jung, 2014; Juricke et al., 2014) switched
on.

The stochastic ocean schemes are based on perturbations
to

1. the classical Gent–McWilliams parametrization for
eddy-induced advection (Gent and Mcwilliams, 1990)
used in coarse-resolution, non-eddy-resolving ocean
simulations (henceforth StoGM: strong horizontal gra-
dients);

2. the enhanced vertical diffusion parametrization which is
used for unstable stratification (henceforth StoDV);

3. the turbulent kinetic energy (TKE) parametrization
through which the amplitude of vertical diffusivity
and viscosity are obtained (henceforth StoTKE: strong
atmosphere–ocean interactions).

For the deterministic control simulation, all above-mentioned
parametrization schemes are used in their default, non-
stochastic form.

The stochastic ocean schemes have been explained in de-
tail and tested in long ocean-only simulations by Juricke et al.
(2017) and have also been tested in coupled seasonal fore-
casts by Juricke et al. (2018). These studies showed that the
StoGM and StoTKE schemes in particular can have a consid-
erable impact on near-surface variability in regions of StoGM
or StoTKE. The StoGM scheme showed the strongest im-
pact on variability in western boundary currents such as the
Kuroshio and the Southern Ocean as it varies the effective
amplitude of eddy-induced temperature and salinity advec-
tion. The StoTKE scheme on the other hand had a pro-
nounced impact on variability and mean state in the trop-
ics and also in mid-latitudes, as it can affect the response of
the mixed layer to atmospheric forcing. The StoDV scheme
showed only a very limited response in these previous studies
as its variations only matter in areas of deep convection in the
high latitudes and even there only at times of strong and deep
convective activity. However, the effect of these schemes has
so far not been tested in long (multidecadal) coupled simula-
tions.

For the sea ice, the stochastic scheme implemented is the
stochastic sea ice strength parametrization (henceforth Sto-
SIS) by Juricke et al. (2013), which has so far been tested
in ocean-only simulations with the Alfred Wegener Institute
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(AWI) sea ice–ocean model FESOM (Juricke et al., 2013);
with NEMO (Brankart et al., 2015); in annual coupled sea-
sonal ensemble simulations (Juricke et al., 2014); and finally
in coupled climate simulations (Juricke and Jung, 2014) with
the AWI-CM climate model. The scheme perturbs the resis-
tance of sea ice to convergent motion, which can lead to plas-
tic deformation in the sea ice model. This corresponds to the
ridging of sea ice. Ridging can create sea ice of thicknesses
beyond the thermodynamic equilibrium thickness of around
1–3 m (depending on local conditions and hemispheric dif-
ferences between the Arctic and Antarctic) which can al-
ready be achieved by purely thermodynamic freezing of sea-
water. Especially for older multiyear ice in the Arctic, dy-
namic processes driven by convergent/divergent motion due
to atmospheric or oceanic currents are dominating contribu-
tors when it comes to sea ice thickness distributions (Juricke
et al., 2013). The StoSIS scheme simulates the variations and
uncertainties in the local ice strength and can lead to either
faster or slower ice convergence, in which the non-linearity
in the process leads to a stronger response for weak ice com-
pared to strong ice (Juricke et al., 2013). Consequentially,
ice tends to move faster under stochastic ice strength pertur-
bations until the effect is balanced by thicker sea ice that also
acts to strengthen the resistance towards plastic deformation.
Furthermore, ridging tends to be stronger with StoSIS, espe-
cially along coastlines if the ice is moved towards the coast
(Juricke et al., 2013). However, due to the strongly coupled
system consisting of sea ice, atmosphere, and ocean in the
high latitudes, the climatological response with respect to
both mean changes in the sea ice and surface flux variability
varies between uncoupled (large increase in sea ice volume)
and coupled (balancing increase in thick ice vs. decrease in
thinner ice) simulations (Juricke and Jung, 2014). The sensi-
tive response of StoSIS and, consequently, sea ice dynamics
to the atmospheric coupling is one of the main foci of this
study.

In summary, we will be considering two configurations
of EC-Earth3, one being a default control configuration, re-
ferred to as CTRL, and one which differs only from the de-
fault by including the stochastic schemes described, referred
to as OCE.

2.2 Model simulations and observational data

For each of the two configurations CTRL and OCE, de-
scribed in the previous section, six ensemble members were
generated according to the hist-1950 experimental protocol
(Haarsma et al., 2020). Each member is therefore initial-
ized on 1 January 1950 and run with observed anthropogenic
forcing until 1 January 2015: these simulations thereby span
65 years. Different ensemble members are created by slightly
perturbing the upper air temperatures at five randomly cho-
sen grid points: the atmospheric variability in the members
are found to be effectively uncorrelated after just a few
months. Hereafter, we will use the terms CTRL and OCE to

refer interchangeably to both the configuration of EC-Earth3
and the associated ensemble of model simulations.

To estimate the impact of mean state biases, we will also
consider simulations with prescribed SSTs and sea ice. A set
of three deterministic ensemble members were generated by
initial condition perturbations, as above: each member then
simulates the period 1950–2015. This ensemble, and its ex-
perimental configuration, will be referred to as AMIP. Note
that in accordance with the HighResMIP protocol (Haarsma
et al., 2016), the prescribed forcing uses daily HadISST2
data, as opposed to the more common monthly forcing. This
in principle allows the simulations to simulate more sub-
seasonal variability.

To place the correlations in context, we also estimate
teleconnections in the historical coupled simulations for 31
single-member CMIP6 models (Eyring et al., 2016), detailed
in Table B1, and for an additional 39 simulations from High-
ResMIP (Haarsma et al., 2016) obtained from six models run
at different resolutions with multiple ensemble members, as
detailed in Table B2. Only data covering 1980–2015 are used
for these simulations.

In order to further assess the statistical significance of the
teleconnection, we also made use of additional determin-
istic coupled simulations using the slightly earlier version
EC-Earth3.1, as generated for the Climate SPHINX project
(Davini et al., 2017). These data consist of three ensemble
members spanning the period 1900–2015 using historical
forcings. We found that the teleconnection behaviour of these
ensemble members was consistent with that of the CTRL en-
semble: to keep the presentation streamlined, these are not
included in the analysis shown.

Finally, for observational data, we make use of the ERA5
data set (Hersbach et al., 2020). The OSI450 sea ice data set
(Lavergne et al., 2019) is also used in Sect. 4 to compare the
teleconnection region identified in ERA5.

2.3 Methods

The NAO is defined as the leading principal component (PC)
of daily, detrended geopotential height anomalies at 500 hPa
(zg500). The sign of the principal component is imposed to
make the corresponding empirical orthogonal function match
the standard NAO pattern. This is first carried out using DJF
data only and then extended to November by projecting the
November zg500 anomalies onto the NAO pattern obtained
from DJF. A daily climatology is then directly fitted to the
NAO time series and removed from it: virtually identical re-
sults are obtained if a seasonal cycle is instead removed from
each grid point in the domain prior to carrying out the com-
putation of the PC. This procedure is carried out separately
for ERA5 and each of the two ensembles CTRL and OCE; in
the case of the model ensembles, all ensemble members are
used to define the NAO pattern itself, while climatologies
are computed separately for each member to allow for dif-
ferences in the mean. This deliberate choice of methodology
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means the NAO patterns will differ slightly between ERA5,
CTRL, and OCE. Teleconnections typically project onto the
dominant modes of variability (Shepherd, 2014), and since
these will almost always differ somewhat in models vs. ob-
servations, allowing for such differences (rather than enforc-
ing identical patterns) is a way to not overly penalize model
performance. However, in our case, the NAO patterns are ex-
tremely similar in all data sets (pattern correlations of around
0.97), so the results are unlikely to be sensitive to this choice.
All available data are used in these computations so that for
ERA5 the period 1980–2015 is used, while for CTRL and
OCE the period 1950–2015 is used. We obtained virtually
identical results if using only 1980–2015 for each data set.

Time series of daily sea ice concentration (siconc) anoma-
lies in a given region are computed by averaging over grid
points, detrending and removing a directly fitted daily cli-
matology. There is little material difference to the resulting
time series if the detrending, or removal of the seasonal cy-
cle, is done at each grid point before averaging instead. As
with the NAO, this is done using all available data, before re-
stricting to specific time periods. The region considered here
is Barents–Kara (BKS), defined by the box 67–80◦ N, 10–
75◦ E.

Correlations are computed as Pearson correlation coeffi-
cients. In plots showing correlations at multiple grid points,
statistical significance at the 95 % confidence interval is com-
puted using the standard error. In plots showing changes to
the mean state at grid points, significance is estimated with
a two-tailed t test, with no assumption of equal variance.
In plots showing changes in the standard deviation at grid
points, significance is estimated using the Bartlett test for
SSTs. For sea ice, the distributions show larger deviations
from normality, so we use the Levene test here. When com-
puting correlations between November sea ice and DJF NAO
time series (as in Table 1), a null hypothesis of each time se-
ries as independent AR1 processes is assumed, for which the
lag is 1 year. By fitting such a process to each time series
and simulating 10 000 random draws, we obtain confidence
intervals for the correlations expected by chance due to in-
terannual autocorrelation. For ERA5 and the individual en-
semble members of CTRL and OCE, which have a sample
size of 35 (covering the 35 complete DJF seasons between
January 1980 and December 2015), a 95 % confidence inter-
val is approximately given by ±0.35. For the concatenated
time series of CTRL and OCE, which have a larger sample
size of 35 ·6= 210, the standard deviation is≈ 0.066, with a
95 % confidence interval of approximately±0.13 and a 99 %
interval of ±0.16.

When evaluating differences in time series between the
CTRL and OCE ensembles (of the NAO, sea ice, or some
grid point), the time series of each ensemble member are typ-
ically concatenated back to back prior to comparison. Note
that in a standard forecasting context, in which one is com-
paring an ensemble of forecasts xi for i = 1, . . .,N against a
fixed observational time series y, the correlation between the

ensemble mean and y equals the correlation between the time
series of the concatenated members xi and the time series ob-
tained by concatenating y with itself N times. Therefore, the
concatenated time series can be thought of as a natural exten-
sion of the ensemble mean, which makes sense even when
the “observed” time series y is no longer fixed (as is the case
when comparing CTRL and OCE).

Finally, in this paper we will generally limit our focus to
the 35 winters between 1980 and 2015, when observational
estimates are particularly trustworthy. Earlier time periods
will be considered briefly to assess decadal variability and
the role of trends.

3 Impact on the climate mean state

We first show the impact of the stochastic schemes on the
long-term mean and variability of the model, noting that the
impact of the stochastic ocean schemes in longer coupled
simulations with EC-Earth has not previously been docu-
mented in the literature.

Figure 1 shows the differences in the mean and standard
deviation of sea ice concentration (siconc) for CTRL vs.
ERA5, as well as the impact on these differences in OCE.
Note that this latter impact is visualized as the difference
of OCE minus CTRL to more clearly highlight the changes.
The differences are computed across 35 November months
from the period 1 January 1980 to 31 December 2015: note
that data are only drawn from the 35 winters spanning a full
November–February season. A significant bias around the
Greenland and Barents seas can be seen in the CTRL ex-
periments, with the model producing too much sea ice with
excessive interannual variability. The spatial pattern of the
bias in the standard deviation, Fig. 1c, implies that this ex-
cess variability is due to a tendency for the ice edge to extend
out much further in EC-Earth3 compared to ERA5. The main
impact of OCE is to reduce the sea ice concentration along
the ice edge and mitigate the excessive ice edge protrusion
in the Barents Sea. This is consistent with the impact of the
StoSIS in the coupled AWI-CM model (Juricke and Jung,
2014), suggesting that the changes here are mainly due to the
sea ice perturbations promoting stronger ice motion towards
the coast of Greenland and the Canadian Arctic Archipelago.
This result is therefore consistent with their physical explana-
tion of accelerated ice transport caused by an effective (non-
linear) weakening of the sea ice by the random ice strength
perturbations. Comparing Fig. 1b and d with a and c sug-
gests that this is reducing the CTRL bias by around 10 % in
the Labrador, Barents, and Kara seas but increasing the bias
in the Bering sea. All these impacts were found to be quali-
tatively similar when considering the DJF period instead.

In summary, the OCE simulations appear to exhibit
stochastically induced changes to ice transport which change
the position, extension, and seasonal variability of the ice
edge relative to CTRL. Such systematic changes to the vari-
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Figure 1. Sea ice concentration (mean and standard deviations) in November. Mean quantities in (a) CTRL−ERA5 and (b) OCE−CTRL.
Standard deviations in (c) CTRL−ERA5 and (d) OCE−CTRL. Stippling in (b) and (d) highlights grid points where the change is statis-
tically significant (p < 0.05); in (a) and (c) almost every grid point outside the zero contour is significant, so stippling is not included for
visual ease. The period considered is 1980–2015.

ability are further supported by changes to the leading em-
pirical orthogonal functions (EOFs) of sea ice concentration
in OCE (not shown).

Figure 2 shows analogous differences in the mean and
standard deviation of SSTs for CTRL vs. ERA5 and OCE.
The only places where OCE appears to notably alter the mean
state are the North Atlantic and Barents–Kara region. EC-
Earth3 exhibits the common model bias of a cold North At-
lantic (Wang et al., 2014), known to be associated with biases
in the variability in and positioning of the Gulf Stream. The
inclusion of stochasticity improves (i.e. increases) variability
in the Gulf Stream, and this is a likely source of the differ-
ences in the North Atlantic mean state between CTRL and
OCE, though it is clear that these changes do not generally
constitute a reduction in the mean SST bias. Because there is
a link between North Atlantic SSTs and the North Atlantic
jet (Brayshaw et al., 2011; Keeley et al., 2012), we also show
the impact on 850 hPa zonal winds in Fig. B1 of Appendix B.
Interestingly, the changes to the jet more clearly constitute a
bias reduction, which may suggest that these changes are not
purely SST driven but rather related to the altered telecon-
nection discussed in the next section.

An examination of other variables supports an overall con-
clusion that the stochastic sea ice and ocean schemes are
having only a modest impact on the climate mean state and

do not, for example, alter the net surface global energy (not
shown). We also found no evidence of significant changes
to direct ocean–atmosphere coupling, as measured using the
methods of Frankignoul et al. (1998) and von Storch (2000)
(not shown); as will be seen later, changes to surface cou-
pling do manifest in OCE but only in the presence of sea ice.
It is likely that this limited impact on the climate mean state
is due to the fact that the 1◦ ocean does not permit eddies and
is strongly damped by viscosity. Consequently, the stochas-
tic ocean schemes, which are primarily attempting to perturb
the variability in turbulent processes, cannot achieve much
without making the perturbations extreme in magnitude (Ju-
ricke et al., 2017). This viewpoint is supported by the fact
that in separate experiments using a 0.25◦ ocean, the impact
of the same schemes on SST variability was much greater
(not shown). The main exception to this is in the Arctic and
regions such as the North Atlantic, where, firstly, the sea ice
perturbations play an active role, and, secondly, where the
interplay between Gulf stream variability, atmosphere–ocean
coupling, and vertical mixing in the ocean is large enough for
the ocean perturbations to have a bigger impact.
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Figure 2. Sea surface temperature (mean and standard deviations) in DJF. Mean quantities in (a) CTRL−ERA5 and (b) OCE−CTRL.
Standard deviations in (c) CTRL−ERA5 and (d) OCE−CTRL. In each plot, every grid point outside the zero contour is significant (p <
0.05). The period considered is 1980–2015.

4 Impact on the Arctic–NAO teleconnection

4.1 Changes to correlations and assessment of
significance

Table 1 summarizes the magnitude of the teleconnection
for each data set by showing the correlations between the
November BKS ice concentration and the winter NAO over
the period 1980–2015. Correlations significant to the 95 %
threshold are shown in bold. It can be seen that ERA5 ex-
hibits a significant positive correlation of ≈ 0.39, consis-
tent with that reported by many other studies using a vari-
ety of techniques and observational data sets. None of the
six individual CTRL members, nor the concatenated data set,
show significant correlations, exhibiting both small positive
and negative values. By contrast, every ensemble member of
OCE shows a positive correlation. While only two of these
attain statistical significance, after concatenation, OCE has
a correlation of 0.26, which sits comfortably outside the 4σ
range of the AR1 null hypothesis. The exact likelihood of
this occurring under the null hypothesis was estimated to be
less than 1 in 10 000.

To visualize these changes, and place them in context, we
show, in Fig. 3, box-and-whisker plots of these correlations
along with those from the CMIP6 and HighResMIP simula-
tions (referred to hereafter as just CMIP6 for simplicity). It
is evident that the CMIP6 ensemble, consisting here of 70
model simulations covering the period 1980–2015, shows no
consistent signal, with the distribution consistent with a null

Table 1. Correlations between anomalies in the November Barents–
Kara sea ice concentration and the DJF NAO mean, over the period
1980–2015, for each data set. Subscript labels CTRLn and OCEn
(N = 35) denote ensemble members 1–6, while the entry for CTRL
and OCE (N = 210) uses the concatenated time series. Entries that
are significant (p < 0.05) are marked in bold. Significance is mea-
sured against a null hypothesis of uncorrelated, random AR1 pro-
cesses.

BKS−NAO correlation

ERA5 0.39

CTRL −0.04
CTRL1 −0.14
CTRL2 0.02
CTRL3 −0.20
CTRL4 −0.01
CTRL5 −0.13
CTRL6 0.10

OCE 0.26
OCE1 0.13
OCE2 0.17
OCE3 0.36
OCE4 0.08
OCE5 0.54
OCE6 0.26
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Figure 3. Boxplots of correlations between sea ice anomalies in
the November Barents–Kara sea ice and the DJF NAO mean, over
the period 1980–2015, for CMIP6 (black), CTRL (red), and OCE
(blue). In each case, the box extends from the first to the third quar-
tile of the data, with a line at the median. The whiskers extend from
the box by 1.5 times the inter-quartile range. The stippled black line
marks the correlation attained in ERA5.

Figure 4. Correlations between the detrended November siconc
anomalies at each grid point and the DJF NAO time series, over
the period 1980–2015, in (a) ERA5, (b) OSI450, (c) CTRL, and
(d) OCE. The ensemble members of the CTRL and OCE experi-
ments have all been concatenated together. For the CTRL and OCE
plots (c) and (d), every grid point outside the zero contour is sta-
tistically significant (p < 0.05). For ERA5 and OSI450, only grid
points in the Barents and Kara seas are significant. In (a) and (b)
the Barents–Kara region has been marked by a purple box.

hypothesis that the correlations are just random draws from
a mean zero normal distribution with a standard deviation of
0.17. The same conclusion holds if the HighResMIP simula-
tions are excluded. The exact mean of 0.018 is slightly pos-
itive, consistent with earlier studies suggesting that models
on the whole have a weak positive correlation, but the con-
sensus is clearly weak, with around half the models showing
negative correlations. We note that discrepancies with other
studies showing a slightly stronger multi-model consensus
may be due to the fact that we consider here a wider range
of models than many studies, as well as the fact that differ-
ent studies use differing experimental protocols that are not
necessarily directly comparable (e.g. simulations using fixed
anthropogenic forcing vs. simulations using actual historical
forcings). The choice of which months to consider also dif-
fers between many studies. Nevertheless, it is visually clear
that the deterministic CTRL correlations are consistent with
random draws from the CMIP6 distribution and do not ap-
pear as unusually weak in the context we are interested in.

On the other hand, the OCE correlations are all positive
with a mean value in the upper tercile of the CMIP6 distribu-
tion. The correlation of 0.54, obtained by one OCE ensemble
member, is not obtained by any of the CMIP6 simulations we
analysed. Under a null hypothesis that the correlations being
considered are independent random draws around a Gaussian
fit to the CMIP6 distribution, the chance of drawing six pos-
itive correlations is 0.56

≈ 0.016, i.e. 1.6 %. The chance of
drawing six independent correlations that are not just posi-
tive but comparably large was estimated as being an order
of magnitude less likely. In reality, the assumption that the
six OCE ensemble members are strictly independent is likely
false since, for example, we cannot rule out the possibility
that being initialized in the same ocean state has predisposed
the ensemble towards a particular pattern of decadal variabil-
ity. However, since the CTRL members also start from the
same state, the influence of the initialization on our results
appears to be weak.

Figure 4 shows the spatial pattern of the correlations in
each data set by plotting correlations of the DJF NAO time
series against November sea ice concentration at every grid
point in the Arctic. As expected, CTRL shows only a few
spurious-looking correlations, with no significant correla-
tions in the BKS region. For OCE, the largest correlations
are found in the Barents Sea, but significant correlations are
also found in the Kara Sea. The fact that the correlations in
the Kara Sea in OCE are weaker than those in ERA5 may be
related to the sea ice biases shown in Fig. 1.

In summary, we conclude that the correlations obtained in
the OCE ensemble are significantly larger than both those
in CMIP6 and CTRL. In particular, the circulation in OCE
appears to exhibit a robust ice–NAO teleconnection.
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4.2 Decadal variability, trends, and climate change

While the focus of this paper is on the period 1980–2015, we
make some remarks on decadal variability in the teleconnec-
tion and the possible influence of trends, which may be of
interest for future work. The reader is warned that, in the ab-
sence of more detailed analysis, this discussion is necessarily
somewhat speculative.

We find that all the simulations appear to be initialized into
a period of weak, but broadly positive, BKS–NAO correla-
tions, with no clear difference between CTRL and OCE (not
shown). The two ensembles diverge from each other around
1975 so that by 1980 the correlations of OCE are robustly
separated from those of CTRL, as discussed in the preced-
ing section. It is likely that some of this variability is a re-
sult of random internal variability, but consideration of the
spatial pattern of the correlations suggests a somewhat more
nuanced picture. This can be seen by plotting the equivalent
of Fig. 4 for earlier periods: see Fig. B2 for an example of
this for the period 1950–1985. This shows that in this earlier
period, the weak, positive BKS–NAO correlations in CTRL
and OCE are driven by a weak signal from the Barents Sea.
More striking however is the presence of a much larger sig-
nal emanating from the Greenland and Labrador seas in both
ensembles. Further analysis (not shown) suggests that the re-
gion of significant grid point correlations shrinks over time:
in CTRL, the region basically shrinks to nothing by 1975,
while in OCE it shrinks to Barents and Kara (Fig. 4).

It seems likely that this behaviour is at least in part due to
the sea ice loss that occurs in this time period. Both models
lose a considerable amount of sea ice in the Greenland, Bar-
ents, and Kara seas, with the OCE model losing somewhat
less in Barents and Greenland and somewhat more in Kara.
The loss of sea ice in the Greenland Sea in particular is asso-
ciated with a permanent retreat of the sea ice edge, resulting
in a collapse of interannual sea ice variability, and hence cor-
relations, in this region.

Several studies have made the point that the strongest
heat flux anomalies are associated with the variability in
the ice edge. The strong temperature gradients between the
relatively warm ocean and the cold atmosphere aloft mean
that variations in the extent of the ice edge are associated
with heat flux anomalies reaching as high as 500 W m−2:
see, for example, Koenigk et al. (2009) for a comprehen-
sive overview. The fact that it is these heat flux anomalies
that are hypothesized to influence the circulation, as opposed
to the sea ice per se, suggests a plausible physical justifi-
cation for the teleconnection being associated with the re-
gion of maximum November ice edge variability. For obser-
vational data in the modern period, this corresponds to the
Barents and Kara seas, particularly the Barents Sea (Deser
et al., 2000; Vinje, 2001; Koenigk et al., 2009). However,
given the significant changes to the ice edge over the 20th
century, it is interesting to consider whether other regions,
such as the Greenland Sea, played an important role in the

past. Figure B3 shows that, indeed, in the OCE ensemble,
the November sea ice variability in the Labrador and Green-
land seas is much higher in the period 1950–1980 and also
that there is almost no variability in the Kara Sea in this pe-
riod. The same is true for the CTRL ensemble (not shown).
We note that in Kelleher and Screen (2018), it was shown
that there is a significant influence of winter Greenland sea
ice area on the winter polar cap geopotential height anoma-
lies in pre-industrial CMIP5 simulations, corroborating the
potential importance of the Greenland Sea in the past.

To summarize, we find that the trend of a shrinking ice
edge appears to influence the location of significant grid
point correlations and that much of the decadal variability in
the BKS–NAO correlation prior to 1980 can be accounted for
by the fact that other regions, particularly the Greenland Sea,
appear to be more important in earlier periods. It is notewor-
thy that even in these earlier periods, the OCE ensemble has
significantly higher correlations than CTRL in the relevant
regions (see Fig. B2), suggesting that the stochastic pertur-
bations are consistently enhancing ice–NAO teleconnections
across the full period 1950–2015.

A final point of interest is that both CTRL and OCE show
entirely comparable negative trends of the NAO over 1950–
2015 (not shown). It is therefore possible that the stochastic
schemes are having a negligible impact on the long-term cli-
mate change response to sea ice loss in EC-Earth3 since dif-
fering responses might be expected to manifest as differing
NAO trends. It would be interesting to run future projections
of the CTRL and OCE configurations to assess this further.
As far as future changes to interannual variability are con-
cerned, the discussion on decadal variability above is consis-
tent with the trivial observation that the teleconnection would
be expected to slowly vanish as the ice edge retreats.

4.3 Tropospheric vs. stratospheric pathways

Figure 5 shows the vertical structure of the teleconnection,
measured by regressing November BKS ice against zonally
averaged DJF zonal winds, at different latitudes and pressure
levels. Two things are apparent from this. Firstly, the telecon-
nection in OCE, viewed here as a northward shift of the jet
in response to a positive BKS anomaly, extends all the way
up to the stratosphere. This means that both tropospheric and
stratospheric pathways may be present in the teleconnection
seen in OCE. We do not attempt to disentangle the two at
present but remind the reader that the stochastic perturba-
tions in OCE are strictly limited to the ocean and ice at the
surface, so it is unlikely that changes to the teleconnection
are a result of direct changes to the stratospheric dynamics.
Secondly, the teleconnection in OCE is still weaker than that
of ERA5: while the correlations are comparable in magni-
tude, the actual regression coefficients are larger in ERA5
and are statistically significant across the entire vertical struc-
ture. The same picture holds if regressing against zonally av-
eraged geopotential height anomalies instead (not shown).
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Figure 5. Regression coefficients of November BKS sea ice against zonally averaged DJF zonal winds at various latitudes (degrees north)
and pressure levels (hPa) in (a) ERA5, (b) CTRL, and (c) OCE. The period considered is 1980–2015. Stippling highlights grid points where
the associated correlation coefficient is statistically significant (p < 0.05).

5 A quantitative explanation via
ice–ocean–atmosphere coupling

5.1 Mean state changes alone do not suffice

In Sect. 3 it was shown that the stochastic schemes have no-
tably changed the mean state of North Atlantic SSTs and
Arctic sea ice. An obvious first hypothesis is therefore that
the improved teleconnection is the result of these changes.
To test this, we examined an equivalent set of three determin-
istic ensemble members using prescribed observational SST
and ice boundary forcing from the HadISST data set, which
we refer to as the AMIP ensemble. The equivalent version
of Fig. 4 for AMIP (Fig. B4), obtained by correlating the
model’s NAO with the prescribed sea ice at each grid point,
shows no indication of any ice–NAO link at any grid point.
The correlations of the November BKS sea ice anomalies and
the DJF NAO, for each of the three ensemble members, are
0.18, 0.01, and−0.05: the correlation using the concatenated
time series is 0.06. None of these values are significantly dif-
ferent from 0, and considering other 35-year periods between
1950 and 2015 does not change this. We therefore conclude
that the AMIP ensemble does not exhibit an ice–NAO tele-
connection.

Note that the tendency for AMIP-style models to have
weaker Arctic–mid-latitude teleconnections than their cou-
pled counterparts has been noted in both a multi-model con-
text (Blackport and Screen, 2021) and for EC-Earth3 in par-

ticular (Caian et al., 2018). Consequently, having a perfect
ice and/or ocean mean state does not necessarily produce a
realistic teleconnection.

5.2 Coupled ice–NAO dynamics and the LIM model

In the previous section we saw that prescribing observed
ocean and sea ice forcing does not result in the determin-
istic model exhibiting a significant teleconnection. If internal
atmospheric variability is playing a key role in generating
the teleconnection, then prescribing the sea ice may act to
obfuscate this (Blackport and Screen, 2021). However, an-
other possibility is that an important role is being played by
the dynamic coupling of the atmosphere, ocean and ice. The
potential importance of coupling to simulate the circulation
or surface response associated with Arctic sea ice anomalies
was already emphasized in Strong et al. (2009) and Strong
and Magnusdottir (2011), as well as more recently in Deser
et al. (2016), Mori et al. (2019a), and Mori et al. (2019b).

To gain additional insight into this, we first examine the
temporal evolution of the teleconnection. This is done in
Fig. 6, which shows the regression coefficients of November
BKS sea ice anomalies against monthly zg500 anomalies in
November, December, and DJF for ERA5, CTRL, and OCE.

The instantaneous November regression coefficients,
Fig. 6a, b, and c, are all fairly similar in all three data sets,
with a tripole pattern formed by a low over the Kara Sea,
a high near Greenland, and a low near the eastern coast of
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Figure 6. Regression coefficients of November BKS sea ice anomalies against monthly zg500 grid point anomalies in ERA5 for (a) Novem-
ber, (d) December, and (g) DJF. The same for CTRL and OCE in (b), (e), and (h) and (c), (f), and (i), respectively. The period considered is
1980–2015. Stippling highlights grid points where the associated correlation coefficient is statistically significant (p < 0.05).

North America. The pattern projects weakly onto the nega-
tive NAO in the Euro-Atlantic sector but deviates from the
canonical NAO pattern over Greenland and the Arctic region
by comparison with Fig. 6g, which shows the full DJF NAO
response in ERA5. This November tripole pattern will be
capturing the combined effects of the atmospheric forcing on
the ice, as well as the forcing of the ice on the atmosphere,
but appears to be most consistent with atmospheric forcing
in the form a northerly flow into the Barents Sea2, promot-
ing enhanced sea ice (Koenigk et al., 2009). In the following
months, both ERA5 and OCE see this tripole evolve into a
larger low centred on Greenland, with a broad high across
the North Atlantic and Europe; in DJF this pattern clearly
corresponds to a positive NAO for both. In CTRL, on the
other hand, the same evolution never takes place, and the
seasonal evolution simply consists of a slow dissipation of
the initial anomaly. Similar plots showing the evolution of

2We thank two anonymous reviewers for pointing this out.

heat flux and temperature anomalies (Figs. B5 and B6) cor-
roborate this story, with a similar initial anomaly that evolves
relatively realistically over time in OCE but simply persists
or peters out in CTRL.

The ability of OCE to evolve the same initial response bet-
ter than CTRL might be plausibly attributed to changes in
persistence, either of the NAO or the sea ice. However, since
the atmospheric component is identical in OCE and CTRL,
there is no obvious mechanism for how the persistence of the
NAO might change, and the lack of a teleconnection when
prescribing the sea ice rules out the persistence timescales
of the sea ice alone from explaining the change. Figure 7
confirms that the daily autocorrelation of the NAO has not
changed notably between OCE and CTRL. Both ensembles
have much higher sea ice persistence than ERA5, but again,
the difference between OCE and CTRL is small by compar-
ison. By contrast, Fig. 8 shows a marked difference between
OCE and CTRL in the lag correlation. Most notably, the OCE
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Figure 7. Autocorrelation of (a) the daily NAO and (b) the daily
BKS sea ice for ERA5 (black dots), CTRL (red crosses), and OCE
(blue triangles). Data are restricted to days in November through
February, 1980–2015. Shading indicates the ensemble spread of
OCE: the CTRL spread (not shown) is similar in extent.

Figure 8. Lagged correlations of the daily NAO against the daily
BKS sea ice for ERA5 (black dots), CTRL (red crosses), and OCE
(blue triangles). Negative lags correspond to sea ice forcing the
NAO, and vice versa for positive lags. Correlations are computed
using all days in November through February, 1980–2015. Shad-
ing indicates the ensemble spread of OCE: the CTRL spread (not
shown) is similar in extent. Note that only every fifth point has been
marked by a symbol for visual clarity.

model appears to be considerably more realistic when the sea
ice leads the NAO, with CTRL showing virtually no impact
of sea ice on the NAO for lags of up to 50 d ahead. When the
NAO leads the ice, CTRL appears more realistic for small
lags, but the difference has largely vanished by lags of a
month or more.

Note that the opposite sign of the lag correlation based on
whether the ice or the NAO is leading has been reported pre-
viously in both model data (Magnusdottir et al., 2004) and
observational data (Strong et al., 2009), and it suggests a
natural physical interpretation of the coupling (Strong et al.,
2009). A positive sea ice anomaly in the BKS region (i.e.
an extension of the sea ice edge) leads to a reduced local
heat flux into the atmosphere. This reduced heat flux then
forces the positive phase of the NAO, via some combination
of Rossby wave forcing, changes to the meridional tempera-
ture gradient, and stratospheric pathways. This corresponds
to a northward shift of the eddy-driven jet (Woollings et al.,
2010), which would lead to anomalous wind stress along the
ice edge and a consequent reduction in the initial positive sea
ice anomaly. The more northerly jet may also lead to shifts in
the distribution of sea ice more broadly which are potentially
important for supporting a realistic evolution of the initial at-
mospheric response.

In light of our results so far, it is natural to ask if the
changes to short timescale coupling between the ice and the
NAO can account for the changes in the seasonal timescale
teleconnection. To test this, we model the ice–NAO sys-
tem using the following pair of coupled ordinary differential
equations:

d
dt

NAO= a ·NAO + b · ICE + ξNAO, (1)

d
dt

ICE= c ·NAO + d · ICE + ξICE. (2)

Here NAO is just the daily NAO index, and ICE is the daily
sea ice anomaly in the BKS region. The coefficients a and
d are capturing the presence of autocorrelation, while the
coefficients b and c capture the presence of coupling; the
ξ terms in both equations represent the residual forcing on
both quantities and are assumed to be random Gaussian pro-
cesses with no temporal autocorrelation and a mean of 0.
This model, hereafter referred to as the LIM, has been used
extensively in the literature to capture coupling between vari-
ables in climate data, such as atmosphere–ocean coupling,
and the coefficients and noise terms can be estimated us-
ing linear inverse modelling (see, for example, Penland and
Sardeshmukh, 1995; Penland and Magorian, 1993; Alexan-
der et al., 2008; Hawkins and Sutton, 2009; Newman et al.,
2009, for some examples). A brief summary of how to do
this is included in Appendix A: the reader may consult Pen-
land and Sardeshmukh (1995) for more details. We are not
aware of earlier examples in the literature applying the LIM
framework to ice–atmosphere coupling, though the approach
of Strong et al. (2009) and Strong and Magnusdottir (2011)
is closely related.

5.3 Validation of the LIM hypothesis

Figure 9 shows the estimated LIM coefficients for ERA5
(black), CTRL (red), and OCE (blue), where daily data span-
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Figure 9. Estimated coefficients of the LIM model, as described by
Eqs. (1) and (2). In (a), the coefficient a, describing the forcing of
the NAO on itself 1 d later, (b) the coefficient b, describing the forc-
ing of sea ice on the NAO 1 d later, (c) the coefficient c, describing
the forcing of the NAO on sea ice 1 d later, and (d) the coefficient d,
describing the forcing of sea ice on itself 1 d later. CTRL and OCE
data are marked in red and blue, respectively. ERA5 is shown with a
black cross. Daily data covering November–February, 1980–2015,
are used.

ning November through February (NDJF) of 1980–2015
have been used. Fitting the LIM requires a choice of a lag,
and we used the simplest possible choice of 1 d, which essen-
tially amounts to fitting the full seasonal ice–NAO dynamics
to the 1 d dynamics. Studies such as Deser et al. (2007) sug-
gest that it may take up to a few weeks for sea ice anomalies
to project onto the NAO, so it may in principle be better to use
a longer lag. However, within the range of lags for which the
LIM hypothesis is a good fit, the model parameters are inde-
pendent of the specific choice of lag (Penland and Magorian,
1993). Nevertheless, due to the high autocorrelation of both
the ice and the NAO, it is possible that correlations on daily
timescales are reflecting dynamical processes taking place on
longer (e.g. weekly) timescales. When carrying out the fitting
to CTRL and OCE, all ensemble members were used under
the assumption that the extent of coupling should in theory be
identical across different ensemble members. Because the es-
timated coefficients are inevitably influenced by the chaotic
internal variability, using all ensemble members (rather than
fitting to each member separately) also gives more robust es-
timates.

Once these coefficients and the November initial condi-
tions for each data set are obtained, it is straightforward to
generate random reconstructions of the daily NDJF data us-
ing the LIM by feeding in the ice and NAO anomalies on
the 1 November for each year as initial conditions and inte-
grating the system (see Appendix A for details). Examples
of LIM-reconstructed DJF NAO time series can be seen in
Fig. B7, which also illustrates that, by construction, the re-

constructed time series have on average the same variance
as the true time series. These reconstructions can then be
used to validate the LIM hypothesis for ERA5, CTRL, and
OCE by testing if the ice–NAO correlations of each data set
are indistinguishable from the ice–NAO correlations of ran-
domly drawn LIM reconstructions. To test this, we gener-
ated, for each data set, 1000 random reconstructions of the
corresponding LIM and for each of these correlated the LIM
November ice with the LIM DJF NAO. For ERA5, this pro-
duced a mean correlation of 0.27 with a 95 % confidence in-
terval of −0.05 to 0.56; for OCE, a mean correlation of 0.36
and a confidence interval of 0.06 to 0.62; and for CTRL, a
mean correlation of 0.26 and a confidence interval of −0.08
to 0.55. Three things can be inferred from these distributions.
Firstly, by comparison with Table 1, the teleconnection cor-
relations in ERA5 and those from the OCE ensemble are
consistent with the distribution obtained from their respec-
tive LIM, suggesting that the behaviour of ERA5 and OCE
is consistent with the LIM hypothesis. Secondly, the correla-
tions in the actual CTRL ensemble are not consistent with the
LIM distribution, being clustered down at the lower end of
the distribution with three of the six members falling outside
the 95 % confidence interval (see Table 1). In other words,
the behaviour of CTRL is not consistent with the LIM hy-
pothesis. Thirdly, the variation across the LIM coefficients
(Fig. 9) is largely immaterial for generating significant pos-
itive correlations. In particular, the reason the CTRL model
fails to have a significant ice–NAO teleconnection cannot be
accounted for by, for example, the smaller b coefficient com-
pared to ERA5 and OCE. Rather, it is that the LIM hypothe-
sis as a whole fails in the case of CTRL (see further discus-
sion in Sect. 5.4).

By more systematically varying the LIM coefficients (not
shown), we found that significant positive correlations are
generated in the LIM primarily from the non-zero forc-
ing of the ice on the NAO and the long persistence of sea
ice anomalies: this persistence means that the small daily
timescale forcing accumulates into a larger forcing on sea-
sonal timescales. The forcing of the NAO on the ice has a
mostly negligible effect on the magnitude of the correlation.
The exact values of the parameters, including the forcing
from the NAO, are on the other hand crucial for obtaining
reconstructions with the correct variance. If the NAO forcing
term is suppressed, then the LIM DJF NAO is considerably
larger in magnitude than the true DJF NAO of the given data
set. In other words, the sea ice forcing being continuously
damped by the NAO is what allows the LIM reconstructions
to have a variance closely matching that observed, but be-
cause correlations are insensitive to magnitudes, this does not
impact the ice–NAO correlations generated by the LIM.

Finally, we note that no meaningful difference was found
between the noise terms of the LIM for CTRL and OCE.
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5.4 Why has the coupling improved in the stochastic
ensemble?

The conclusion of the previous section was that the LIM hy-
pothesis is reasonable for both ERA5 and OCE but fails in
the case of CTRL. This suggests that the relevant ice–ocean–
atmosphere coupling is not simulated correctly in CTRL and
is improved by the inclusion of stochasticity. Why is this
the case? The LIM hypothesis is, in essence, that the win-
ter ice–NAO link can be inferred from the initial conditions
on 1 November and how the ice and NAO are linked on daily
timescales. There are three obvious ways this might fail for
CTRL: (1) the initial conditions are unrealistic in CTRL, (2)
the daily timescale link itself is unrealistic in CTRL, and (3)
the dynamical response to the initial conditions, as it evolves
over the winter season according to the daily timescale link,
is being systematically disrupted somehow in CTRL.

Concerning the first possibility, we find no meaningful dif-
ference between the initial ice and NAO conditions of CTRL
vs. OCE: see Fig. B8. While Fig. 1 shows that there are some
localized differences in the variability across the BKS region,
the total variance of the 1 November ice across the region as
a whole is almost identical for both ensembles. There is no
significant difference between the NAO variances of the two
ensembles either. It does not therefore seem likely that differ-
ences in the initial conditions are playing an important role.

Concerning the second possibility, since the ice–NAO link
is mediated via heat fluxes, it is natural to consider if the
heat flux response in CTRL is somehow deficient compared
to ERA5 and OCE. As a first test, we find no evidence that
the BKS-averaged heat flux response to a sea ice anomaly
on 1 November is significantly different in the CTRL or
OCE ensemble means, including the vertical extent of the
response. This is already apparent from Figs. 6, B5, and B6,
which show that the mean November signal looks roughly
similar in CTRL and OCE. However, more subtle differ-
ences between the two ensembles are apparent in Fig. 10,
which shows lagged correlations between daily heat fluxes
and daily BKS sea ice. While the ensemble mean correlations
are similar for CTRL and OCE at all lags, the CTRL ensem-
ble shows a much wider ensemble spread than OCE. This is
especially notable for positive lags, i.e. when heat fluxes lead
the ice. For lags of 5 d or less, ERA5 shows a clear positive
correlation: an increase in upwards heat flux3 removes heat
from the surface, leading to an increase in sea ice. In OCE,
all ensemble members show positive correlations for these
lags, but for CTRL the response is almost equally likely to
have the wrong sign. This suggests that, counter-intuitively,
the inclusion of stochastic perturbations causes the sea ice re-
sponse to be more tightly constrained. In fact, this increased
stability of the ice and heat flux relationship is apparent at
all lags in Fig. 10 and is also found when restricting the data

3We remind the reader of the sign convention for fluxes: positive
values denote an upwards flux.

Figure 10. Lagged correlations of the daily BKS heat fluxes against
daily BKS sea ice for ERA5 (black dots), CTRL (red crosses), and
OCE (blue triangles). Negative lags correspond to the ice forcing
heat fluxes, and vice versa for positive lags. Note that positive heat
flux values correspond to an upwards flux. Correlations are com-
puted using all days in November through February, 1980–2015.
Blue shading indicates the ensemble spread of OCE; the CTRL
spread is indicated by stippled red lines. Note that only every fifth
point has been marked by a symbol for visual clarity.

to other regions than BKS (not shown), pointing towards a
more consistently realistic surface coupling in OCE. This
may plausibly contribute to a more consistent interannual
ice–NAO link and hence larger correlations.

Finally, concerning the third possibility, we suggest two
ways in which the evolution of the initial pressure anomaly
might be systematically disrupted in CTRL. Firstly, a north-
ward shift of the jet (i.e. a positive NAO) will act to adjust
the entire sea ice edge, not just that of Barents and Kara
(Koenigk et al., 2009). The SSTs, crucial for generating heat
flux anomalies and likely reinforcing the anomaly through
ocean–atmosphere coupling (Deser et al., 2016), will also
be adjusted by wind stress across the North Atlantic as a
whole. These non-local responses may be crucial for the cor-
rect evolution of the initial pressure anomaly: such adjust-
ments would not be captured by the AMIP simulations, po-
tentially also explaining why these fail to exhibit a telecon-
nection. As discussed in the preceding paragraph, Fig. 10
suggests that such remote ice and/or SST adjustments, nec-
essarily mediated via heat fluxes, might be better simulated
in OCE. Figure B5 shows a difference in the heat flux re-
sponse around the Labrador and Greenland seas in December
between ERA5 and OCE and CTRL, and we speculate that
adjustments in these regions may be important. Secondly, it
may be that some other unrealistic atmospheric forcing oc-
curring later in the winter is destructively interfering with
the ice–NAO link in CTRL. There is some indication that the
CTRL ensemble exhibits an unrealistically strong telecon-
nection between El Niño–Southern Oscillation (ENSO) and
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the NAO (see Fig. B9) which is alleviated in OCE: because
the sign of this ENSO link is the opposite of the ice–NAO
link, this may be a source of such destructive interference.
The fact that deterministic models can have overly dominant
ENSO teleconnections that are alleviated with the inclusion
of stochasticity was also noted in Strommen et al. (2017).

Other more complex ice–ocean–atmosphere interactions,
such as those discussed in Caian et al. (2018), might also
be done poorly in CTRL, and it would be interesting to ap-
ply their methods here. In addition, it cannot be ruled out
that the mean position of the storm track needs to be well
aligned with the ice edge in order to foster the growth of the
initial anomaly (Deser et al., 2007), implying that the mean
state changes between CTRL, OCE, and AMIP may be im-
portant as well. Note that the AMIP simulations, while hav-
ing perfect SSTs and ice, still have biases in their simulated
storm track which could prevent a robust teleconnection from
emerging.

It is clear that more work is required to understand the
mechanisms at play, which we hope to address in the future.
Nevertheless, our analysis suggests that the improved tele-
connection in OCE may be a combination of improved ice–
ocean–atmosphere coupling and mean state changes.

6 Discussion and conclusions

We briefly summarize the results of our analysis.

– The inclusion of stochasticity to the ocean and sea ice
components of EC-Earth3, as evaluated with the OCE
ensemble experiments, leads to the emergence of a sta-
tistically significant teleconnection between November
Barents–Kara sea ice and the DJF NAO, comparable to,
but somewhat weaker than, that observed in ERA5. No
such teleconnection is present in the deterministic EC-
Earth3 (the CTRL ensemble; Table 1 and Fig. 3). The
teleconnection signal in OCE extends all the way up to
the stratosphere (Fig. 5).

– Comparison with the CMIP6 and CTRL ensemble sug-
gests that the odds of generating six random OCE en-
semble members which, by chance, all show a consis-
tent ice–NAO teleconnection is extremely low (Fig. 3).
This implies that the teleconnection is likely a real fea-
ture of the circulation in OCE.

– An AMIP-style ensemble of deterministic simulations
with prescribed sea ice and SSTs is still not able to
manifest an ice–NAO teleconnection, suggesting that
the relevant model biases are related to coupling at the
surface (Fig. B4).

– Analysis using lag correlations and a simple LIM model
suggests that the teleconnections in ERA5 and OCE
can be accounted for by the hypothesis that the direct,
local coupling between the sea ice and the NAO on

daily timescales completely captures the seasonal dy-
namics but that this hypothesis fails in the case of CTRL
(Fig. 8 and Sect. 5.3). This suggests that the ice–ocean–
atmosphere coupling of EC-Earth3 has been improved
by the inclusion of the stochastic schemes.

– Two broad hypotheses are put forward for the improved
ice–NAO coupling in OCE: (1) a more realistic rela-
tionship between heat fluxes and sea ice (Fig. 10) and
(2) a systematic disruption of the BKS-induced pres-
sure anomaly in CTRL by some other unrealistic atmo-
spheric variability, such as an overly dominant ENSO
(Fig. B9). Improvements to the mean ice state (Fig. 1)
and zonal winds (Fig. B1) may also be playing a role.

These results have important implications for the study
of Arctic–mid-latitude teleconnections. The potential impor-
tance of realistic sea ice–ocean–atmosphere coupling in gen-
erating an ice–NAO teleconnection has previously been high-
lighted by Strong et al. (2009). The possible role of inad-
equate surface coupling in models has more recently been
highlighted by Mori et al. (2019a) in the context of surface
level teleconnections; Mori et al. (2019b) also emphasized
the role of poorly simulated sea ice variability in models.
Our work adds further evidence to these views by explic-
itly demonstrating how model development aimed at improv-
ing ice and ocean variability, here in the form of stochas-
tic process representation, resulted in the emergence of a ro-
bust teleconnection in a model which did not previously ex-
hibit one. Our analysis supports the hypothesis that improve-
ments to ice–ocean–atmosphere coupling are playing an im-
portant role in this result, and it furthermore makes it clear
that one cannot expect, a priori, that a given climate model
does have realistic coupling. Thus, inadequate coupling may
be behind coupled runs exhibiting a wide spread in ice–NAO
correlations spanning both positive and negative correlations
(Koenigk and Brodeau, 2017; Siew et al., 2021), as well as
the weak correlations found when averaging over multiple
ensemble members or longer simulation periods (Blackport
and Screen, 2021; Siew et al., 2021). It is also possible that
the signal-to-noise paradox in seasonal forecasting is par-
tially due to such biases.

While the most direct interpretation of our analysis seems
to be that stochasticity has altered the surface coupling, it
is plausible that mean state changes are also playing a role.
This is due to the potential sensitivity of the sea ice signal to
a favourable storm track, which implies that getting the right
signal may depend on the combined sea ice, ocean, and at-
mospheric mean state. As such, the lack of a teleconnection
in the AMIP experiments does not conclusively rule out that
the mean state changes in OCE (Sect. 3) are important. The
analysis of lagged correlations and the LIM model lend sup-
port to the role of coupling, but it might be that the ice edge
of OCE is more optimally aligned with the storm track com-
pared to in CTRL and that the changes seen in Figs. 8 and
9 are simply reflecting this. Untangling this would require
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more careful analysis of targeted experiments which fall out-
side the scope of this paper.

If the stochastic schemes are, in fact, improving the cou-
pling between sea ice, ocean, and the atmosphere, what is
the precise mechanism which makes the perturbations have
this impact? Here too, more careful analysis would be re-
quired which goes beyond the scope of this paper. How-
ever, a simple conceptual hypothesis might be the following.
The evolution of the deterministic sea ice, including how it
responds to atmospheric forcing, may be biased in various
ways. Years when the sea ice forces the NAO may depend
sensitively not just on the initial sea ice anomaly but also
on wider adjustments to Arctic sea ice and North Atlantic
SSTs following the initial atmospheric response. The deter-
ministic model may simply be doing these adjustments in-
correctly a lot of the time (as hinted at by Fig. 10), with the
role of stochasticity being to force the model to not always
do the same thing. We note that this idea of stochasticity
acting as “damage mitigation” against biased deterministic
models is ubiquitous in weather forecasting (Palmer et al.,
2009; Berner et al., 2017). That the stochastic sea ice scheme
can lead to very different mean responses for Arctic sea ice
due to the coupling response with the atmosphere has been
shown by Juricke and Jung (2014) with dedicated full and
one-way coupling experiments. We consider it likely that the
stochastic sea ice scheme is the dominant factor for changes
to the sea ice–NAO teleconnection seen here, but note that
the study of Juricke et al. (2018) has shown that the stochas-
tic ocean schemes can also lead to improved skill over North
America in seasonal forecasts, a teleconnection effect they
relate to improved ocean–atmosphere coupling. It may also
be that interactions between the ice and ocean schemes are
essential. Further ensemble experiments would be required
in order to test the impact of each scheme separately.

Our analysis has some important limitations. For exam-
ple, we cannot exclude the possibility that the experiments
we considered are biased in some way, e.g. due to the ini-
tial ocean state predisposing OCE towards certain patterns
of decadal variability associated with higher ice–NAO cor-
relations. Another clear limitation is that the impact of these
stochastic schemes on Arctic teleconnections has only been
tested using a single climate model and may not produce sim-
ilar effects in other models. Indeed, it is well known that the
same stochastic scheme can have different impacts on dif-
ferent models (Strommen et al., 2019). There may also be
important non-linear effects such as those discussed in Caian
et al. (2018). Finally, we made no attempt to separate the tro-
pospheric and stratospheric pathways. On the other hand, we
note that the stochastic schemes were introduced precisely
to improve variability and coupling (Juricke et al., 2013; Ju-
ricke and Jung, 2014; Juricke et al., 2014, 2017), so there is
good reason a priori to expect such changes to manifest in
experimental data.

Our results, which suggest that the inclusion of a stochastic
component in the sea ice and ocean can alleviate model bi-

ases, in coupling, the mean state, and variability, add to an in-
creasingly large body of work showing that stochasticity can
be beneficial in models across all timescales. It is especially
noteworthy that although changes to the mean and variability
of the model due to stochasticity in this study may, in some
regions, be rather moderate, other important physical mech-
anisms in the climate system, such as teleconnections, might
be better represented with the stochastic schemes. While the
use of stochasticity in the atmospheric component is becom-
ing more widespread, its inclusion in other components of
the model is still novel. The potential benefits of represent-
ing uncertainty in all major components of a climate model
was first raised in Palmer (2012), and our paper adds further
weight to this view.

Appendix A: Linear inverse modelling

A system of coupled ordinary differential equations, defined
by equations (1) and (2), is used to describe coupled ice–
NAO interactions on daily timescales. The parameters are fit-
ted using standard methods of linear inverse modelling. De-
tailed descriptions of how to do this in full generality can
be found in Penland and Magorian (1993) and Penland and
Sardeshmukh (1995), but to aid the reader we briefly out-

line the computational steps. Let B=
(
a b

c d

)
be the coef-

ficient matrix, and let x be the vector made up of the daily
time series of the NAO and ICE. To estimate B in terms
of daily timescale coupling, we computed the lag-0 covari-
ance matrix C0 and the lag-1 covariance matrix C1 of x.
The matrix B was then estimated as the matrix logarithm
B= log(C1C−1

0 ). The noise terms can then be estimated by
computing the eigenvectors and values of the “noise matrix”
Q=−1 · (BC0+C0BT ).

Once the parameters have been fitted in this way for a
given data set, a reconstruction of a daily DJF NAO time
series can then be created, for a given year, by initializing
the coupled system with the NAO and ICE anomalies of
1 November of that year and integrating the defining equa-
tions forward in time. A single November through February
period is therefore just a 120 day integration from the initial
conditions.

Appendix B: Additional material

We include some figures and tables left out of the main text.
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Table B1. CMIP6 models used in this paper.

Model name Ensemble member

ACCESS-CM2 r1i1p1f1
AWI-ESM-1-1-LR r1i1p1f1
BCC-CSM2 r1i1p1f1
BCC-ESM1 r1i1p1f1
CanESM5 r1i1p1f1
CESM2-FV2 r1i1p1f1
CESM2 r1i1p1f1
CESM2-WACCM-FV2 r1i1p1f1
CESM2-WACCM r1i1p1f1
CNRM-CM6-1 r1i1p1f2
CNRM-CM6-1-HR r1i1p1f2
CNRM-ESM2 r1i1p1f2
EC-Earth3 r1i1p1f1
FGOALS-f3 r1i1p1f1
FGOALS-g3 r1i1p1f1
GFDL-CM4 r1i1p1f1
GISS-E2-1-G r1i1p1f1
HadGEM3-GC31-LL r1i1p1f3
HadGEM3-GC31-MM r1i1p1f3
INM-CM4-8 r1i1p1f1
INM-CM5-0 r1i1p1f1
IPSL-CM6A-LR r1i1p1f1
MIROC6 r1i1p1f1
MPI-ESM1-2-HAM r1i1p1f1
MPI-ESM1-2-HR r1i1p1f1
MPI-ESM1-2-LR r1i1p1f1
MRI-ESM2-0 r1i1p1f1
NorESM2-LM r1i1p1f1
NorESM2-MM r1i1p1f1
TaiESM1 r1i1p1f1
UKESM1-0-LL r1i1p1f2

Table B2. HighResMIP models used in this paper.

Model name Ensemble member

AWI-CM-1-1-LR r1i1p1f002
AWI-CM-1-1-HR r1i1p1f002
CMCC-CM2-HR4 r1i1p1f1
CMCC-CM2-VHR4 r1i1p1f2
CNRM-CM6-1 r[1,2]i1p1f2
CNRM-CM6-1-HR r1i1p1f1
EC-Earth3P r[1,2,3]i1p2f1
EC-Earth3P-HR r[1,2,3]i1p2f1
ECMWF-IFS-LR r[1,2,3,4,5,6,7,8]i1p1f1
ECMWF-IFS-MR r[1,2,3]i1p1f1
ECMWF-IFS-HR r[1,2,3,4,5,6]i1p1f1
HadGEM-GC31-LL r1i[1,2,3,4,5,6,7]p1f1
HadGEM-GC31-MM r1i1p1f1
HadGEM-GC31-HM r1i[1,2,3]p1f1
HadGEM-GC31-HH r1i1p1f1
MPI-ESM1-2-HR r1i1p1f1
MPI-ESM1-2-XR r1i1p1f1

Figure B1. Mean zonal winds at 850 hPa (ua850) over the DJF sea-
son. In (a) CTRL minus ERA5, and (b) OCE minus CTRL. Stip-
pling highlights grid points where the change is statistically signif-
icant (p < 0.05); in (a) most points outside the zero contour are
significant, so stippling is not included for visual ease. The period
covered is 1980–2015.

Figure B2. Correlations between the detrended November siconc
anomalies at each grid point and the DJF NAO time series. In (a)
ERA5 (1980–2015), (b) OSI450 (1980–2015), (c) CTRL (1950–
1985), and (d) OCE (1950–1985). The ensemble members of the
CTRL and OCE experiments have all been concatenated together.
For the CTRL and OCE plots (c) and (d), every grid point outside
the zero contour is statistically significant (p < 0.05). For ERA5
and OSI450, only grid points in the Barents and Kara seas are sig-
nificant. In (a) and (b) the Barents–Kara region has been marked by
a purple box.
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Figure B3. Sea ice concentration variance in November. In (a) the OCE ensemble over the period 1950–1980, (b) the OCE ensemble over
the period 1980–2015, and (c) the difference of (b) minus (a).

Figure B4. Correlations between the detrended November siconc anomalies at each grid point and the DJF NAO time series, using the AMIP
ensemble. All three members have been concatenated. The period covered is 1980–2015.
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Figure B5. Regression coefficients of November BKS sea ice anomalies against monthly heat flux grid point anomalies in ERA5 for (a)
November, (d) December, and (g) DJF. The same for CTRL and OCE in (b), (e), and (h) and (c), (f), and (i), respectively. The period
considered is 1980–2015. Stippling highlights grid points where the associated correlation coefficient is statistically significant (p < 0.05).
The Barents–Kara region is shown with a purple box.
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Figure B6. Regression coefficients of November BKS sea ice anomalies against monthly 850 hPa temperature (ta850) anomalies at each
grid point in ERA5 for (a) November, (d) December, and (g) DJF. The same for CTRL and OCE in (b), (e), and (h) and (c), (f), and (i),
respectively. The period considered is 1980–2015. Stippling highlights grid points where the associated correlation coefficient is statistically
significant (p < 0.05). The Barents–Kara region is shown with a purple box.
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Figure B7. Randomly generated reconstructions of the DJF NAO time series using the LIM initialized each 1 November for the years 1980
to 2015. For (a) ERA5, (b) the fifth ensemble member of CTRL, and (c) the fifth member of OCE. In each plot, the LIM reconstruction is in
red and the true time series in black. The sample standard deviations of each time series have been noted in the legends. Reconstructions of
other ensemble members of CTRL and OCE are qualitatively similar.

Figure B8. Scatter plot of the ice and NAO initial conditions, i.e. the values of the BKS sea ice (x axis) and NAO anomalies (y axis) on
1 November, for every year between 1980 and 2015. In red: CTRL; in blue: OCE.
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Figure B9. Correlations between detrended November SSTs at each grid point and the DJF NAO time series for (a) ERA5, (b) CTRL, and
(c) OCE. The ensemble members of the CTRL and OCE experiments have been concatenated together. The period covered is 1980–2015.
The grey contour highlights statistically significant correlations (p < 0.05).
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