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S.1 Supplementary Figures

(a) (b)
IMF11IMF12 IMF11IMF12

Figure S1. Power spectra of (a) IMF11 and (b) IMF12, their eastern Pacific SST (Niño3) index. Black dotted lines represent raw power

spectra of IMFs, black solid line is 10-point smoothing of the raw power spectra, and red dashed lines represent average frequencies of

IMF11 and IMF12 (as labelled) — for values see the main text or Table S1 (second column).
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Figure S2. As Fig. 2 in the main text but for IMFs of PC1 of the combined field (via MEMD; blue dots) instead of eastern Pacific SST

(Niño3) index.
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Figure S3. As Fig. 5 in the main text but for IMF11.
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Figure S4. As Fig. 6 in the main text but for IMF11.
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Figure S5. As Fig. 7 in the main text but for IMF11.
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Figure S6. Timeseries of eastern Pacific SST (Niño3) from input data (top left panel) and IMFs as inferred via MEMD analysis for the same

variable (see other panels as labelled). For clarity only values between 1965 and 2010 are shown. Note that amplitudes of different modes

vary, i.e., y-axis is not the same in all panels. For characteristic periods of IMFs see Table S1 (second column).
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Figure S7. As Fig. S6 but for central Pacific τx (Niño4). For characteristic periods of IMFs see Table S1 (third column).
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Figure S8. As Fig. S6 but for western Pacific τx (Niño5). For characteristic periods of IMFs see Table S1 (fourth column).
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Figure S9. As Fig. S6 but for western Pacific off-equatorial thermocline depth (Niño6). For characteristic periods of IMFs see Table S1 (fifth

column).
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Figure S10. As Fig. S6 but for Pacific mean thermocline depth. For characteristic periods of IMFs see Table S1 (right column).

10



S.2 Supplementary Tables

Niño3 SST Niño4 τx Niño5 τx Niño6 thermocline depth Pacific mean thermocline depth

IMF1 2.9 2.9 2.9 2.9 2.9

IMF2 3.1 3.2 3.0 3.2 3.1

IMF3 3.2 3.2 3.3 3.3 3.3

IMF4 3.8 3.7 3.8 3.7 3.8

IMF5 4.3 4.2 4.3 4.3 4.3

IMF6 5.2 5.2 5.2 5.2 5.1

IMF7 6.3 6.3 6.4 6.4 6.3

IMF8 7.5 7.5 7.5 7.5 7.6

IMF9 9.8 10 9.8 10 9.4

IMF10 15 15 14 14 14

IMF11 23 23 24 24 23

IMF12 39 39 37 37 40

IMF13 58 56 54 54 56

IMF14 89 85 90 90 97

IMF15 141 152 152 152 162

IMF16 206 274 239 239 225

IMF17 370 358 336 336 391

IMF18 590 624 582 582 622

IMF19 713 1120 879 879 1070

IMF20 1965 1988 1844 1845 1013

IMF21 2013 2013 1764 1764 2013

Table S1. Characteristic timescales of all IMFs for eastern Pacific SST (Niño3), central Pacific τx (Niño4), western Pacific τx (Niño5),

western Pacific off-equatorial thermocline depth (Niño6), Pacific mean thermocline depth. All values are given as approximate average

periods in months. For corresponding timeseries of each variable’s IMFs see Figs. S6-S10. Note that IMF21 is a trend by definition and

similarly IMF18-IMF20 have long timescale, thus periods of these IMFs are harder to establish using Hilbert transform (text below Eq. B4).
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S.3 Simple Example for MEMD

As an example, we describe how MEMD works on a few simple periodic timeseries. We define four timeseries that have

a shared angular frequency of π/2 with other harmonics or phase shifts added on top. We input these timeseries into the

MEMD and expect the MEMD to isolate the shared mode with angular frequency of π/2 in all four timeseries, i.e., find the

synchronised signal within the timeseries. We also expect MEMD to find other harmonics in the timeseries.

To do this, we construct the four timeseries as follows

xinp = sin

(
πt

2

)
(S.1)

yinp = sin

(
πt

2

)
+sin

(
2πt

2

)
+sin

(
4πt

2

)
(S.2)

zinp = sin

(
πt

2

)
+sin

(
3πt

2

)
(S.3)

winp = sin

(
πt

2
+

π

2

)
(S.4)

where t is time and xinp, yinp, zinp, winp are timeseries with a common periodic signal sin(πt/2) and a few additional timescales

or phase shifts. Thus, winp is the same as xinp but 90-degrees phase shifted, whereas yinp and zinp have additional timesecales that

are double, tripple or quadruple of xinp’s timescale. These four timeseries (Fig. S11, top left) are input into MEMD algorithm.

The algorithm then returns 5 IMFs. IMF3 (Fig. S11, middle right) can be considered as the goal of this data, i.e., identification of

common timescales across the 4 different timeseries/datasets, i.e., angular frequency π/2 (as mentioned above). The algorithm

identifies the same mode in all four timeseries despite phase shifting or presence of other timescales in these simple timeseries.

Such a mode is robustly identified across different parameter sweeps of MEMD (not shown). Thus, IMF3 can be considered

here as equivalent of the ENSO’s LF/QQ mode that has been shown in the past to exist across the tropical Pacific and a similar

mode is identified again in the main text via MEMD as well.

IMF1 (Fig. S11, top right) represents the fastest ‘waves’ (shortest period/timescale) that we can find in yinp and zinp, i.e.,

related to angular frequencies 3π/2 and 4π/2. The latter two frequencies are identified by the MEMD as similar thus they

appear in the same IMF, although one could change the parameters of the MEMD algorithm to split the two modes into

separate IMFs. However, that can then lead to splitting up other modes as well (especially IMF2), leading to unrealistic results

(i.e., mode mixing; not shown). IMF2 (Fig. S11, middle left) shows intermediate angular frequency present in yinp, i.e., 2π/2,

but this IMF’s output is not perfect, resulting in varying amplitudes of the wave throughout the analysis period, and thus IMF4

and IMF5 (bottom panels in Fig. S11) then compensate for the loss of amplitude in IMF2 in this case. Note that a longer

timeseries somewhat helps mitigating this issue as any timeseries analysis tool has issues at the edges of the data and thus

only data sufficiently far from the edges should be considered in analysis (there amplitude can be somewhat stable in IMF2).

This means that longer datasets are preferred for MEMD analysis to ensure stability. Also, IMF4 and IMF5 should technically

be zero (given the chosen input timeseries), but due to edge effects and other issues with (M)EMD method (see main text for

details) they are still present though their amplitudes are small. This suggests that IMFs of the longest periods can sometimes
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be rather artificial constructs of the data and should be treated with caution especially when the trend of the data is essentially

zero (as here or in the main text where trend has been removed prior to MEMD analysis).

This example only shows that signals that are well synchronized across timeseries will show up clearly in MEMD analysis,

however other signals that exist in, e.g., only one mode (e.g., yinp’s 2π/2 wave) can be problematic as the method may

struggle with keeping zeros in other timeseries (see IMF2). Then, leaking can occur both within, e.g., IMF2 and into other

modes, causing mode-mixing again (like here IMF2 leaks into IMF4,5, especially at the edges). Similar issues can exist with

trends as shown here. Thus, caution and verification with other methods is advised when using MEMD.

Figure S11. MEMD analysis of simple timeseries (Eqs. S.1-S.4). Top left panel shows input timeseries and the rest of the panels show the

five IMFs that MEMD produces. IMF5 typically represents the trend of the data. See text for more details. Note that amplitudes of IMF4,5

are smaller than for IMF1,2,3 (i.e., y-axes are not the same across panels).
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