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Abstract. The occurrence of climate extremes could have
dramatic impacts on various sectors such as agriculture, wa-
ter supply, and energy production. This study aims to under-
stand part of the variability in the extreme rainfall indices
over Guinea coast that can be related to the Atlantic equa-
torial mode (AEM), whose positive phases are associated
with an increase in the intensity and frequency of rainfall
events. We use six extreme indices computed from six ob-
served rainfall databases and historical and SSP5-8.5 simu-
lations from 24 general circulation models (GCMs) that par-
ticipate in the sixth phase of the Coupled Model Intercom-
parison Project (CMIP6) to study changes in extreme rain-
fall events over Guinea coast during July–September. Under
present-day conditions, we found that current GCMs clearly
overestimate the frequency of wet events and the maximum
number of consecutive wet days. The magnitude of the other
extreme indices simulated is within the range of the obser-
vations which, moreover, present a large spread. Our results
confirm the existing studies. However, less attention has been
paid to the evaluation of the modelled rainfall extremes as-
sociated with the AEM under different climate conditions,
while the variability of the AEM is expected to decrease in
the future, with a potentially significant impact on the ex-
treme events. Here, we use six (one) observed rainfall (sea
surface temperature) data and 24 GCM outputs to investi-
gate the present-day, near-term, mid-term, and long-term fu-
ture links between the AEM and the extreme rainfall events
over the Guinea coast. The biases in the extreme rainfall re-
sponses to the AEM are subject to a large spread across the
different models and observations. For the long-term future
(2080–2099), less frequent and more intense rainfall events

are projected. As an illustration, the multimodel ensemble
median (EnsMedian) maximum rainfall during 5 consecu-
tive wet days (RX5day) would be 21 % higher than under
present-day conditions. Moreover, the variability of the ma-
jority of the extreme indices over the Guinea coast is pro-
jected to increase (48 % for RX5day in the long-term fu-
ture). By contrast, the decreased variability of the AEM in
a warmer climate leads to a reduced magnitude of the rain-
fall extreme responses associated with AEM over the Guinea
coast. While under present-day conditions the AEM explains
18 % of the RX5day variance in the EnsMedian, this value is
reduced to 8 % at the end of 21st century. As a consequence,
in absolute, there is a projected increase in the total variabil-
ity of most of the extreme rainfall indices, but the contri-
bution of the AEM to this variability weakens in a warmer
future climate.

1 Introduction

Severe flash flood events were reported over West and Cen-
tral Africa during the last few decades, affecting millions of
people, destroying houses, destroying buildings, and leading
to dozens of deaths (United Nations Office for the Coordi-
nation of Humanitarian Affairs, 2012, 2021). Some of these
climatic hazards were caused by severely abnormal rainfall,
which often contributes to increasing the river levels, causing
flooding of the surrounding areas (Elagib et al., 2021; Fofana
et al., 2022). A combination of different factors could also
lead to high-impact weather events, such as the very heavy
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rainfall that occurred in Ouagadougou on the 1st of Septem-
ber 2009 (Engel et al., 2017; Lafore et al., 2017; Beucher
et al., 2019), where more than one-third of the annual rainfall
was recorded within 24 h, and it reached 263 mm. In addition,
the large-scale sea surface temperature (SST) conditions dur-
ing this event showed an anomalous warming of the Mediter-
ranean Sea, a negative North-Atlantic-Oscillation-like pat-
tern, and a pronounced Atlantic cold tongue. This enhanced
cold tongue corresponds to a negative phase of the Atlantic
equatorial mode (AEM), whose impact on the occurrence of
extreme rainfall events over the Guinea coast is the focus of
the current study (Zebiak, 1993; Losada et al., 2010a, b).

During the last few decades, the Guinea coast has expe-
rienced changes in its rainfall characteristics, with conclu-
sions that depend on the season considered, the period of
study, the source of observations, and the extreme rainfall
index used (Bichet and Diedhiou, 2018; New et al., 2006;
Odoulami and Akinsanola, 2017; Kpanou et al., 2020; Dike
et al., 2020). It is important to highlight that these changes
are not homogeneous over the whole region. Through the pe-
riod 1961–2000, the observations indicate a decrease in the
annual rainfall in southern Nigeria, with an increase in the
intensity of the daily rainfall and the annual maximum 1 d
rainfall (New et al., 2006). Odoulami and Akinsanola (2017)
showed, however, a significant negative trend in the June–
September mean daily rainfall over the Guinea coast during
the 1998–2013 period. Nevertheless, they found a decrease
in the frequency of rainfall events higher than the 95th per-
centile. This result is opposite to Kpanou et al. (2020), who,
on an annual basis, found an increasing trend in the num-
ber of days, with rainfall exceeding the 95th percentile over
coastal areas in the southwestern Côte d’Ivoire, Togo, and
Bénin. Odoulami and Akinsanola (2017) also observed an
overall upward and insignificant trend in the number of dry
days over that area and a significant decreasing trend in the
number of wet days. The Sixth Assessment Report (AR6)
of the Intergovernmental Panel on Climate Change (IPCC)
stated that there is a low confidence in the observed heavy
precipitation trend over West Africa for the last few decades,
as well as in the contribution of human influence to that trend
(Seneviratne et al., 2021).

Several studies have shown that climate general circu-
lation models (GCMs) participating in the sixth phase of
the Coupled Models Intercomparison Project (CMIP6) sim-
ulate reasonably well the spatial distribution of the rain-
fall extreme indices in West Africa, with, however, differ-
ent levels of magnitude (Faye and Akinsanola, 2022; Klutse
et al., 2021). Moreover, regional climate models (RCMs)
forced with CMIP5 GCM outputs (CORDEX project) show
an added value in simulating the spatial distribution of the
present-day extreme indices over West Africa (Akinsanola
et al., 2020). In addition, these models project an enhance-
ment of extreme rainfall events over the Guinea coast in
the future under the Representative Concentration Pathway
(RCP) 4.5 and 8.5 forcing scenarios (Akinsanola and Zhou,

2019). Furthermore, Akinsanola et al. (2020) demonstrated
from RCP4.5 and RCP8.5 projections with RCMs an in-
crease in the West African rainfall variability, which is asso-
ciated with enhanced mean rainfall and rainfall extremes on
the Guinea coast. This increase in variability was explained
by the change in the water vapour in a warmer world fol-
lowing the Clausius–Clapeyron equation (Akinsanola et al.,
2020).

The first mode of covariability between the sea surface
temperature in the tropical Atlantic and the rainfall over West
Africa during the boreal summer indicates a strong connec-
tion between the eastern equatorial Atlantic SST and the
Guinea coast rainfall and explains 31 % of the total covari-
ability (Polo et al., 2008). These local SST changes are re-
lated to the Atlantic equatorial mode, also named the At-
lantic zonal mode (Zebiak, 1993), whose variability occurs
on interannual timescales. Positive phases of the AEM are
characterized by above normal SST conditions in the east-
ern equatorial Atlantic. The enhanced low-level wind conver-
gence over the warm oceanic area is accompanied by an as-
cent of moist air, which is then advected by the low-level cir-
culation toward the Guinea coast. This provides favourable
conditions for the rainfall occurrence over this region (Polo
et al., 2008; Rodríguez-Fonseca et al., 2015; Schubert et al.,
2016; Lübbecke et al., 2018; Worou et al., 2020). Worou
et al. (2022) have demonstrated that the covariability be-
tween the Guinea coast rainfall and the AEM is maximum
in JAS, in the simulations performed within CMIP6 mod-
els (June–September in the observations), under present-day
conditions. Over the 1901–2016 period, in the observations,
the positive correlation of the eastern equatorial Atlantic with
the rainfall over the Guinea coast was clear during the boreal
summer (Losada et al., 2012; Diatta and Fink, 2014; Worou
et al., 2020). Nevertheless, the variability of the AEM is pro-
jected to decrease under future global warming (Worou et al.,
2022; Crespo et al., 2022; Yang et al., 2022). This would po-
tentially reduce the role of the AEM in the Guinea coast rain-
fall variability. Moreover, Diatta et al. (2020) showed that
the Guinea coast rainfall extremes are strongly correlated
with the AEM index. Atiah et al. (2020) also showed an in-
crease (a decrease) in the total annual wet day rainfall, heavy
rainfall, and very heavy rainfall over Ghana during warmer
(colder) sea surface conditions in the eastern equatorial At-
lantic. Therefore, it is important to understand and quantify
the projected potential changes in the extreme rainfall events
on the Guinea coast that are associated with the AEM.

Previous studies suggested a link between the AEM and
the Guinea coast extreme rainfall variability in the observa-
tions. However, this link in the current GCMs and the impact
of the projected reduction in the AEM variability on the ex-
treme rainfall events over Guinea coast have not yet been
assessed. This study aims to further explore the relationship
suggested in previous studies between the AEM and the ex-
treme rainfall events over the Guinea coast under present-day
and future climate conditions by using outputs from CMIP6
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models and to determine how those changes in AEM con-
tribute to the simulated changes in rainfall extremes. Sec-
tion 2 is dedicated to the data used in this work and the meth-
ods adopted. Section 3 describes the present-day statistics of
the rainfall extremes over the Guinea coast and the near-term,
mid-term, and long-term future changes in the mean and vari-
ability of these extremes. In Sect. 4, the impact of the AEM
on the Guinea coast rainfall extremes under present-day con-
ditions is evaluated, as well as the future changes in the ex-
treme indices responses related to the AEM. We conclude
with Sect. 5, where our findings are summarized.

2 Datasets and methods

The present study focuses on the impact of the Atlantic equa-
torial mode on the rainfall extreme events over the Guinea
coast under different climate conditions. Four 20-year peri-
ods are considered: the present-day (1995–2014), the near-
term future (2021–2040), the mid-term future (2041–2060),
and the long-term future (2080–2099) periods. The choice
of these periods is based on the definition provided by IPCC
(2021) (see their Table SPM.1).

2.1 CMIP6 data

Daily rainfall and monthly SST data from 24 climate mod-
els participating in CMIP6 were retrieved from one of the
Earth System Grid Federation (ESGF) portals (e.g. https://
esgf-node.llnl.gov/search/cmip6/, last access: 15 June 2022)
and analysed. The analysis of the present-day period is based
on the historical simulations, which covered the 1850–2014
period and were forced with observed natural and anthro-
pogenic forcings (Eyring et al., 2016). The analyses for the
future periods rely on the shared socioeconomic pathway
with a high greenhouse gas emission (SSP5–8.5, O’Neill
et al., 2016). These simulations are started from the year
2015. We choose the SSP5–8.5 scenario to get the clearest
signal of climate change.

The majority of the studies analysing the internal modes
of variability in the tropical Atlantic only used one member
for each available model (e.g. Kucharski and Joshi, 2017;
Richter and Tokinaga, 2020; Worou et al., 2022; Crespo
et al., 2022; Yang et al., 2022). We rely here on the same ap-
proach and use one realization for each model in our study,
assuming that all realizations are equivalent for the analyses
we performed. It could be interesting to test the limitations
of this hypothesis using the models that provide a relatively
large ensemble for both historical and future simulations.
However, this is out of the scope of this present study, and
we expect that the differences between ensemble members
of a specific model are smaller than the differences between
models for the diagnostics analysed here. Table 1 provides a
list of the different models used, their corresponding ensem-
ble member, and their resolution.

Table 1. List of the analysed 24 CMIP6 models in this study, their
ensemble member considered in the historical and SSP5–8.5 sim-
ulations, and their resolutions. In the variant label for each model
member, “r”, “i”, “p”, and “f” represent the realization index, the
initialization method, the physics, and the forcing, respectively.
Note that in the SSP5–8.5 outputs, the parent variant label does not
necessarily correspond to the variant label. We then thoroughly read
the metadata in future simulation outputs and associate them with
their corresponding parents, from which they were branched. For
example, the daily precipitation file from the SSP5–8.5 simulation
r2i1p1f1 performed with CESM2 was branched on the historical
r11i1p1f1 output.

CMIP6 model Historical SSP5–8.5 Resolution
member member (◦ lat× ◦ long)

ACCESS-CM2 r1i1p1f1 r1i1p1f1 1.25× 1.88
ACCESS-ESM1-5 r1i1p1f1 r1i1p1f1 1.25× 1.88
CESM2 r11i1p1f1 r2i1p1f1 0.94× 1.25
CESM2-WACCM r1i1p1f1 r1i1p1f1 0.94× 1.25
CNRM-CM6-1 r1i1p1f2 r1i1p1f2 1.40× 1.41
CNRM-CM6-1-HR r1i1p1f2 r1i1p1f2 0.50× 0.50
CNRM-ESM2-1 r1i1p1f2 r1i1p1f2 1.40× 1.41
CanESM5 r1i1p1f1 r1i1p1f1 2.79× 2.81
EC-Earth3 r1i1p1f1 r1i1p1f1 0.70× 0.70
EC-Earth3-Veg r1i1p1f1 r1i1p1f1 0.70× 0.70
GFDL-ESM4 r1i1p1f1 r1i1p1f1 1.00× 1.25
HadGEM3-GC31-LL r1i1p1f3 r1i1p1f3 1.25× 1.88
INM-CM4-8 r1i1p1f1 r1i1p1f1 1.50× 2.00
INM-CM5-0 r1i1p1f1 r1i1p1f1 1.50× 2.00
IPSL-CM6A-LR r1i1p1f1 r1i1p1f1 1.27× 2.50
KACE-1-0-G r1i1p1f1 r2i1p1f1 1.25× 1.88
MIROC-ES2L r1i1p1f2 r1i1p1f2 2.79× 2.81
MIROC6 r1i1p1f1 r1i1p1f1 1.40× 1.41
MPI-ESM1-2-HR r1i1p1f1 r1i1p1f1 0.94× 0.94
MPI-ESM1-2-LR r1i1p1f1 r1i1p1f1 1.87× 1.88
MRI-ESM2-0 r1i1p1f1 r1i1p1f1 1.12× 1.13
NorESM2-LM r1i1p1f1 r1i1p1f1 1.89× 2.50
NorESM2-MM r1i1p1f1 r1i1p1f1 0.94× 1.25
UKESM1-0-LL r1i1p1f2 r1i1p1f2 1.25× 1.88

2.2 Observations

To evaluate the performance of the models in simulating dif-
ferent aspects of the extreme indices, and to take into account
uncertainties in observations, we use daily rainfall data from
six different sources: CHIRPS, ARCv2, PERSIANN-CCS-
CDR, REGEN LongTermStns, TAMSAT v3, and GPCC-
FDD-v2022. These data are described in Table 2. We show
in Fig. S1 in the Supplement three additional observed rain-
fall data: GSMAP, IMERG, and GPCP (Kubota et al., 2007;
Huffman et al., 2020; Becker et al., 2013). These data are
not considered in our current work, as they do not cover the
present-day period (1995–2014). They show, however, a con-
sistent annual cycle of the extreme rainfall indices with the
other observational rainfall data (Fig. 1). A comparison be-
tween some of those datasets is also given in Sanogo et al.
(2022) and Ageet et al. (2022).
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Figure 1. Annual cycle of the six extreme rainfall indices over the Guinea coast during the 1995–2014 period. The black (orange) curves
indicate the median values of the six (24) observations (models). The gray (orange) shading indicates the 10th–90th percentile range for
six (24) observations (GCMs). These percentiles are marked with the dashed curves (in black for observations and in orange for models).
The two vertical lines indicate the JAS season.

Table 2. List of the six observed rainfall data considered in this study.

Data Title Availability Resolution Reference
(◦ lat× ◦ long)

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data 1981–2023 0.25× 0.25 Funk et al. (2014)

ARCv2 African Rainfall Climatology Version 2 1983–2023 0.1× 0.1 Novella and Thiaw (2013)

PERSIANN-CCS-CDR Precipitation Estimation from Remotely Sensed Information 1983–2023 0.04× 0.04 Sadeghi et al. (2021)
using Artificial Neural Networks-Cloud Classification System-
Climate Data Record

REGEN LongTermStns Rainfall Estimates on a Gridded Network based on long-term 1950–2016 1× 1 Contractor et al. (2020)
station data v1-2019

TAMSAT v3 Tropical Applications of Meteorology using SATellite data and 1983–2023 0.0375× 0.0375 Maidment et al. (2017)
ground-based observations, version 3.0

GPCC-FDD-v2022 Global Precipitation Climatology Centre, Full Data Daily 1982–2020 1× 1 Markus et al. (2022)
Version 2022

Observed monthly SST data are derived from the Hadley
Centre Global Sea Ice and Sea Surface Temperature
(HadISST). This dataset is available at a spatial resolution
of 1◦ (Rayner et al., 2003) and covers the 1870–2022 period.
We do not include additional observed SST data, as we con-
sider that this is not a critical point for our analyses.

2.3 Choice of the season

This study is focused on the July–September season (JAS),
following Worou et al. (2022). This season contributes to

46 % of the total annual rainfall over the Guinea coast. It
is also dominated by the monsoon system of West Africa,
which is characterized by an abrupt shift of the rainfall
band from the coastal areas at the end of June to the Sa-
hel region. Sanogo et al. (2022) found a strong coupling be-
tween the West African monsoon rainfall and the occurrence
of extreme precipitation events, mainly during the boreal
summer. Note that although mesoscale convective systems
have an important contribution to the Guinea coast rainfall
during April–May–June and September–October–November
(Maranan et al., 2018), the annual cycle of the very wet day
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Table 3. List and definition of the six rainfall extreme indices selected for this study. These indices are based on the definition provided by
the ETCCDI.

Index label Index name Index definition Index unit

SDII Simple daily intensity index For each year, compute the average of wet days daily rainfall in a month/season. mm d−1

A wet day is defined as a day when the rainfall is greater or equal to 1 mm.

R20mm Very heavy precipitation days For each year, count the number of days in the month/season when the daily days
rainfall is greater or equal to 20 mm.

R95p Very wet days Let PR95 be the 95th percentile of the wet-day daily rainfall time series in the mm
month/season over the 1995–2014 period. For each year, sum of rainfall over
days in the month/season, when the rainfall amount is greater or equal to PR95.

RX5day Maximum 5 d precipitation For each year, compute the maximum of the rainfall sum over 5 consecutive mm
days in the month/season.

CWD Consecutive wet days For each year, compute the largest number of consecutive wet days in the days
month/season. A wet day is defined as a day when the rainfall is greater or
equal to 1 mm.

FRQW Frequency of wet days For each year, compute the number of wet days (when the rainfall is greater or %
equal to 1 mm) in the month/season. The result is divided by the total number
of days in the month/season and multiplied by 100.

index (Table 3) across different observations indicates the
highest values during July, August, September, and October
(Fig. S1b). The total wet day precipitation (PRCPTOT) and
the contribution of the monthly rainfall to the annual rainfall
(ANNPCT) also show their highest values over these months
(Fig. S1a and c). As we do not focus our analysis on specific
contributions of mesoscale convective systems to the rainfall
over the Guinea coast, we will keep the JAS season as the
focus of our study.

2.4 Methods

2.4.1 Definition of the AEM index

Before computing the AEM index, all the monthly observa-
tions and model SST data are remapped on the HadISST grid,
at 1◦ of resolution, by using a bilinear interpolation method
with the climate data operator routine (CDO, https://code.
mpimet.mpg.de/projects/cdo, last access: 16 June 2022). The
index of the AEM is defined over the Atlantic Niño 3 region
(ATL3; Zebiak, 1993) which extends between 20◦W–0◦ E
and 3◦ S–3◦ N. There are models with a low resolution that
only have a few grid points within the ATL3 region. If the
AEM index was computed on each model grid, this would
imply the use of different regions for different models. This
motivates the choice of a common grid of 1◦ of resolution,
which requires interpolating the data. A similar procedure
has been applied in Kucharski and Joshi (2017) and Worou
et al. (2022), for instance.

Over every 20-year study period, the monthly SST data are
linearly detrended at each grid point to remove any drift due
to climate change. The resulting monthly SST anomalies are
then averaged over the ATL3 region. Next, we compute the

seasonal (JAS) mean of the obtained area-averaged monthly
SST anomalies. This gives one value per year for the AEM
index. The AEM index time series are then standardized by
dividing them by their standard deviation over the entire pe-
riod considered.

2.4.2 Computation of the extreme rainfall indices

First, all the daily observational and model rainfall data are
remapped on the grid of the model which has the lowest
resolution. In our study, this corresponds to the grid of the
MIROC-ES2L model, with a resolution of 2.8◦. We use a
first-order conservative remapping method with the CDO
routine to perform the remapping of the rainfall data. We de-
fine the Guinea coast region as the area extending between
18◦W–15◦ E and 4◦ S–10◦ N. There are 32 grid points inside
this area on the MIROC-ES2L grid (Fig. S2).

In this work, we analyse a set of six extreme rainfall in-
dices defined by the Expert Team on Climate Change Detec-
tion and Indices (ETCCDI) (http://etccdi.pacificclimate.org/
indices_def.shtml, last access: 16 June 2022):

– the SDII (simple daily intensity index), which describes
the intensity of wet rainfall events;

– the R95p (very wet day), which describes the intensity
of rainfall events exceeding the 95th percentile;

– the CWD (consecutive wet days), which describes the
maximum duration of a wet event;

– the RX5day (maximum 5 d precipitation), which is the
intensity of an event over a duration of 5 d;
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– the FRQW (frequency of wet days), which describes the
frequency of wet events;

– R20mm (very heavy precipitation days), which is a
measure of the frequency of rainfall events exceeding
20 mm, and which could have a high socioeconomic im-
pact.

The details of these indices are provided in Table 3. The in-
dices recommended by the ETCCDI are widely used to mon-
itor and detect changes in drought and wet conditions over
different regions. Some applications can be found in several
studies such as New et al. (2006), Sillmann et al. (2013a, b),
Mouhamed et al. (2013), Diedhiou et al. (2018), Faye and
Akinsanola (2022), and Delhaye et al. (2022), among others.
We computed these indices in two ways. Firstly, we com-
puted monthly indices over the whole period of study and
performed the monthly averages to get the mean annual cy-
cle. Secondly, we considered daily rainfall values over the
JAS season (92 values at each grid point) for each year in
the period of study. We obtained one value per year for each
extreme index. The corresponding series provide the infor-
mation needed to study the seasonal climatology and inter-
annual variability of the extreme rainfall indices.

2.4.3 Links between the AEM and the extreme rainfall
indices

The analysis of the JAS rainfall extreme patterns associated
with the JAS AEM is completed through linear regressions of
the extreme anomalies at each grid point onto the standard-
ized JAS AEM SST index. The patterns are computed for
each GCM. The regression patterns in the observations are
computed by regressing the rainfall indices from the six dif-
ferent observational data onto the standardized AEM index
from HadISST. In both cases, we will consider the ensemble
median (EnsMedian) of the models and the EnsMedian of the
observations to show the common characteristics. To iden-
tify the most robust changes among the members of those
observations and models’ EnsMedians we will only consider
a two-thirds sign agreement approach among the set of data
to show the robust signals related to AEM: at a grid point,
a regression coefficient value is robust if more than 66 % of
the models agree on the sign of the multimodel EnsMedian
(Rehfeld et al., 2020). Similarly, the robustness of the mod-
els’ EnsMedian changes in the regression patterns between
two periods will be based on the two-thirds sign agreement
approach: at a grid point, the change in the regression slope
between two periods is robust if at least two-thirds of the
models agree on the sign of the EnsMedian.

2.4.4 Robustness of the mean state changes

We use the methodology suggested in the Cross-Chapter Box
Atlas 1 of the IPCC AR6 (Gutiérrez et al., 2021; Dosio et al.,
2021) to disentangle the forced changes signal from the in-

ternal variability. We will mainly indicate regions where the
forced response (the EnsMedian change in the climatology)
is robust, conflicting, or non-robust. A change in the mean
state is considered as robust if two-thirds of the models show
changes greater than the interannual variability (IAV), and
80 % of the models agree on the sign of the change. The IAV
is computed for each model using the following equation:

IAV=

√
2

20
× 1.645× σ, (1)

where σ is the standard deviation of the linearly detrended
variable for the present-day period (1995–2014). The factor
√

2/20 takes into account the variability of the difference
between two 20-year periods. The factor 1.645 considers a
confidence interval of 90 % for the change signal to exceed
the IAV. A change is considered non-robust if less than two-
thirds of the models present a change greater than the IAV.
Finally, a change signal is conflicting if more than two-thirds
of the models project a change greater than the IAV, and less
than 80 % agree on the sign of the change.

Additionally, we test another approach used in Monerie
et al. (2017) (but we keep the IPCC approach), to determine
the similarities in the robustness of the mean state changes.
In this approach, a signal-to-noise ratio (SNR) is defined as

SNR=
1X

σ1X
, (2)

where:

– 1X is the change in a variable X in one model;

– 1X is the multimodel ensemble mean (EnsMean) of the
change in a variable X, which is termed the forced sig-
nal;

– σ1X is the spread of the changes (the standard devia-
tion) among the different models, which is due to the
internal variability and the different responses of the
GCMs.

Therefore, regions where the SNR is greater than 1 are
supposed to experience a robust change. Qualitatively, both
approaches give a similar result for the robust long-term
changes in the extreme indices, except for R95p (Fig. S4).
In the IPCC approach, the projected long-term changes in
R95p are non-robust, whereas the second approach shows
robust changes over a large area of West Africa. Moreover,
the IPCC approach gives more information on grid points
where the change is not robust or conflicting, whereas the
second approach only provides information on the robust
forced changes. Hereafter, we consider the IPCC approach.

2.4.5 Performance metrics for the models

The evaluation of the models’ performance in representing
the spatial distribution of the different extreme indices rel-
ative to observations is based on four metrics, which have
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been applied in different studies (e.g. Akinsanola and Zhou,
2019; Faye and Akinsanola, 2022; Akinsanola et al., 2021;
Li et al., 2021):

– the percentage of bias (%BIAS)

%BIAS= 100×

n∑
i=1
(Mi −Oi)

n∑
i=1
Oi

, (3)

– the normalized root mean square error (NRMSE)

NRMSE=

√
1
n

n∑
i=1
(Mi −Oi)

2

1
n

n∑
i=1
Oi

, (4)

– the pattern correlation coefficient (PCC)

PCC(M,O)=
Cov(M,O)

√
Var(M)Var(O)

, (5)

– a variant of the Taylor skill score (TSS) (Taylor, 2001)

TSS=
4(1+PCC)2(

σcmip6
σobservation

+
σobservation
σcmip6

)2
(1+PCC0)

2
, (6)

where M and O are model and observation values, respec-
tively; i is the index of a grid point; n is the number of grid
points over which the data are compared; Cov and Var are
the covariance and variance, respectively; PCC0 is the max-
imum correlation reachable, set to 1 in our case; and σcmip6
and σobservation are the standard deviations of the model and
observation patterns (mean state pattern or teleconnection
pattern) over the Guinea coast, respectively. TSS and PCC
(%BIAS and NRMSE) values are close to 1 (0) for a very
good representation of the observations by the model. The
TSS is close to 0 for no match between the model and ob-
servation. Moreover, one can choose to penalize models with
low spatial correlation or low spatial variability by modify-
ing the power of the different terms in the TSS (e.g. Eqs, 4
and 5 in Taylor, 2001). In our case, both the variability and
correlation terms are to the same power. We do not choose to
reward models that represent the spatial pattern correlation
better than the spatial variability, and also the inverse.

3 Present and future rainfall extremes over the Guinea
coast

3.1 Annual cycle of extreme rainfall indices over
Guinea coast

The mean annual cycle of the Guinea coast extreme rainfall
indices is shown in Fig. 1. In the GCMs, the magnitudes of

those indices increase in general from January, reach a max-
imum during the boreal summer, and decrease afterwards.
In the observations, a similar behaviour is present in the in-
dices SDII, R20mm, R95p, and RX5day (Fig. 1a–d). It is
not the case for the observed CWD and FRQW. The CWD
increases during the first months of the year and reaches a
plateau in May (between 10 and 11 d for the EnsMedian)
until July. Then it increases again and reaches a maximum
in September (14 d for the EnsMedian). Interestingly, in the
observations, the FRQW presents a bimodal structure in the
observations, with its highest values in May and September
(76 % and 79 % for the EnsMedian, respectively).

In the observations, the uncertainties in the SDII, R20mm,
R95p, and RX5day are larger for the boreal spring, summer,
and fall, compared to their values during the boreal winter.
The GCMs spread for SDII is comparable to the observa-
tions’ spreads in JAS, despite the lower model’s EnsMedian
value compared to observation’s EnsMedian. For example,
in July, the SDII 10th–90th percentile values ranges between
7.5 and 13 mm d−1. For R20mm, R95p, and RX5day, the
models’ spreads are larger than the spreads in the observa-
tions.

In JAS, there is a difference of 1 d between the R20mm ob-
servations and the models’ EnsMedians. The 10th–90th per-
centile values range between 1.7 and 5 d for the models. In-
terestingly, in July and August, both the models’ and ob-
servations’ EnsMedians have the same value of 42 mm. The
maximum difference among them in the annual cycle is in the
order of 8.5 mm. In August, the 10th (90th) percentile value
of R95p is 35 (79) mm for the models, against 33 (57) mm in
the observations.

For the RX5day, the maximum difference between the
models’ and observations’ EnsMedians is 20 mm (found in
June). The maximum EnsMedian value in the observations
(models) is reached in August, 82 (74) mm.

Finally, the models simulate too many consecutive wet
events compared to observations, mainly during the boreal
summer. There is no overlapping of the spread of the models
and observations in JAS for CWD and FRQW. The model’s
EnsMedian CWD reaches 20 d in July, which is 2 times the
value of the observations EnsMedian (Fig. 1e). Remarkably,
the spread of the FRQW is reduced in JAS, compared to
the other seasons, in both the models and observations. The
model’s EnsMedian FRQW value in July is 91 %, against
69 % for the observation’s EnsMedian (Fig. 1f). It is note-
worthy that we found no clear linkages between the JAS
CWD and FRQW biases and the JAS long-term projected
mean changes in the extreme rainfall indices (not shown).

In summary, there is a large variability among the different
observed datasets in the annual cycle for most of the extreme
indices. The uncertainties in the observed SDII are compara-
ble to the uncertainties in the models, although the model’s
EnsMedian indicate weaker intensities compared to the ob-
servation’s EnsMedian. For the other indices, the spread of
the models is higher than the spread of the observations.
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Figure 2. EnsMedian distribution of the mean JAS extreme rainfall indices over the 1995–2014 period from 24 CMIP6 models. The blue
rectangles indicate the Guinea coast region. Contours in gray show the observed EnsMedian values.

Figure 3. JAS mean biases of the six rainfall-based extreme indices over the 1995–2014 period. The biases (model minus observation)
for each model are computed relative to each of the six observations. In total, there are six observations times 24 models, which equals
144 different biases. The stippling indicates regions where two-thirds of the biases agree on the sign of the EnsMedian of the 144 biases. The
black rectangles indicate the Guinea coast region.

3.2 Mean JAS rainfall extremes in Guinea coast under
present-day conditions

First, we present the observed and simulated JAS spatial dis-
tribution of extreme rainfall indices over West Africa in the
present-day period (Fig. 2). The EnsMedian JAS spatial dis-
tribution of the indices in the six observational data is shown
by the contours in Fig. 2 (and by the colours in Fig. S5).
Most of the indices show maximum values over the Guinean
Highlands (on the western Guinea coast) and the Cameroon
mountains (east of 5◦ E) and moderate values in the centre
Guinea coast (between 7.5◦W and 5◦ E). From 10◦ N, there
is a gradual decrease in the wet indices. Focusing on Guinea
coast, the simple daily intensity index (SDII) ranges between
6 (6) and 10 (8) mm d−1 over the centre of the region in the

model’s (observation’s) EnsMedian (Fig. 2a). Figure 3a indi-
cates a robust EnsMedian wet bias of 1 to 2 mm d−1 in the
SDII over the centre of Guinea coast and non-robust dry bi-
ases elsewhere. Over the Sahel, there is a homogenous dry
bias stretching from the west to the east, with robust values
exceeding 2 mm d−1 in some locations.

The R20mm index presents a non-robust EnsMedian over-
estimation of 1 to 2 d over the centre Guinea coast (Fig. 3b).
The R20mm bias is, however, negative and robust over the
eastern Cameroon and the western Sahel. For the R95p and
RX5day variables, the EnsMedian biases are positive and ro-
bust among the different observations, mainly over the cen-
tral Guinea coast. The bias values can reach 50 and 30 mm
for R95p and RX5day, respectively (Fig. 3c and d). For each
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Figure 4. Performance of the 24 GCMs relative to the six rainfall
observations, in representing the spatial distribution of the rainfall
extreme indices over the Guinea coast. Each boxplot indicates the
distribution of 24× 6= 144 different values. The median (mean)
values of the statistics are represented by the horizontal bar (white
circle). Outliers are plotted individually with the black markers.

of these two variables, the Sahel model’s EnsMedian exhibits
weaker values compared to the observations, and this bias is
robust north of 15◦ N in general.

The CWD and FRQW summer values in the Northern
Hemisphere are uniformly overestimated by the GCMs En-
sMedian over the Guinea coast, and this bias is coherent
among the different observations (Fig. 3e and f). The spatial
distribution of CWD biases indicates values between 10 and
30 d in the centre Guinea coast, and these values exceed 30 d
east of 7.5◦W. The CWD biases are weaker over Sahel (be-
tween 0 and−5 d). The FRQW positive biases range between
10 % and 40 % over the Guinea coast and exceed 40 % along
the coast (between 7.5◦W and 0◦ E). Over the Sahel, FRQW
is uniformly underestimated.

Figure 4 presents a summary of the models’ performances
in simulating the extreme characteristics over Guinea coast.
It shows that the relative bias (in %) is higher in the CWD
than in the other variables. Compared to the observations, all
the CWD values in the models are higher in magnitude, with
a %BIAS median value of 108 % (Fig. 4a). This means, in
other words, that the CWD values in the GCMs are twice
as high as in the observations. This can also be seen in
Fig. 4b, where the EnsMedian value of the NRMSE is 1.3,
which is the highest NRMSE value compared to the other
extreme rainfall indices. This overestimation of the CWD
by the GCMs over the coastal regions has already been re-
ported by Faye and Akinsanola (2022). Despite the substan-
tial differences in magnitude compared to the observations,
the CWD spatial correlation between models and observa-
tions gives a median value of 0.5. The corresponding TSS
amounts to 0.4.

Compared to the other extreme indices, the models present
a consistent positive bias in the JAS FRQW (Fig. 4a). The
EnsMedian %BIAS amounts to 23 %, which also confirms

results in Fig. 1f. Likewise, the spread of the NRMSE is
small, and its median value is 0.3 (Fig. 4b). However, there
is a large spread in the spatial correlations between the mean
JAS values in the models and the values in observations
(Fig. 4c). The PCC and TSS values of the FRQW present
similar characteristics, with median values of 0.4 and 0.3, re-
spectively.

R95p and RX5day are indices of intensity and dura-
tion of extreme rainfall events. The performance statistics
of these indices indicate no clear representation compared
to the different observations in term of %BIAS (Fig. 4a).
The median values of the latter are 2.7 % and −2.4 % for
R95p and RX5day, respectively. Although the sign of the
bias is not coherent among the different observations, more
than 75 % of the NRMSE are below 0.63 (0.52) for R95p
(RX5day) (Fig. 4b). The EnsMedian values of PCC and TSS
are 0.6 (0.6) and 0.4(0.5), respectively, for R95p (RX5day)
(Fig. 4c and d).

Finally, more than half of the model’s biases in SDII and
R20mm (over Guinea coast) are negative, relative to the ob-
servations (Fig. 4a). The EnsMedian value of these two vari-
ables amounts to −11 % and −20 %, respectively. As in the
case of R95p and RX5day, there are more than 25 % of cases
where the SDII and R20mm are overestimated. Moreover,
75 % of the models present an NRMSE lower than 0.5 (1) for
the SDII (R20mm) index. The EnsMedian values of the PCC
and TSS are 0.6 and 0.5 for SDII, respectively. For R20mm,
the EnsMedian values of PCC and TSS correspond to 0.7
and 0.6, respectively, and they are the highest values com-
pared to the other extreme indices. It is important to note that
the area defining the Guinea coast is large, and the sign of
the biases is not uniform over the region for all the variables.
Thus, the area average over the region is subject to compen-
sating effects.

In summary, over the Guinea coast, it rains too frequently
and during too many consecutive days in the GCMs, com-
pared to the observations. However, the intensity of daily wet
events is weaker, and the number of very heavy precipitation
days (with an intensity above 20 mm) is lower than observed.
In contrast, the very wet day intensity (with rainfall exceed-
ing 95th percentile) is higher than observed. The R20mm,
according to the TSS metric, has the highest EnsMedian val-
ues, and can be considered to be the index which is better
represented in the GCMs. Moreover, the biases in the indices
can be as large as the spread of the observations, mainly for
R95p, CWD, and FRQW (Fig. S3). The performance met-
rics for the individual models across the six different obser-
vations are shown in Figs. S6–S9. Next, we will describe the
changes of the rainfall extremes over the Guinea coast under
global warming, as projected by the climate models. All the
indices will be studied, regardless of their good or poor rep-
resentation by the GCMs, but the biases identified here will
be accounted for in our discussion.
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Figure 5. Projected multi-model ensemble long-term median change in the JAS rainfall extreme indices over West Africa, relative to the
present-day period (2080–2099 minus 1995–2014). The stippling indicates regions where the change robustly emerges from internal vari-
ability (at least 66 % of the models show a change greater than the IAV, and at least 80 % of the models agree on the sign of change); hatching
(\) indicates regions where the change is non-robust (fewer than 66 % of the models show change greater than the IAV); and the crossed
lines (X) indicate conflicting signals where at least 66 % of the models show change greater than the IAV, with less than 80 % agreement on
the sign of the change. Blank areas without stippling/hatching and crossed lines are due to a non-interpolation between the three robustness
categories.

3.3 Changes in the mean and variability of the JAS
extreme rainfall indices over the Guinea coast

Figure 5 displays the projected EnsMedian long-term
changes (2080–2099 minus 1995–2014) in the rainfall ex-
treme indices over West Africa. The spatial patterns of the
changes (relative to the present-day period) in the extreme
rainfall indices over West Africa are similar for the near-
term, mid-term, and long-term periods, with, in general, a
gradual increase in magnitude over the three future periods.
However, the near-term and mid-term changes (Figs. S10
and S11) are often less robust than the long-term changes.

In particular, over the majority of West Africa, the forced
change in the different extreme indices does not emerge from
the IAV in the near-term future period, as also shown by
Monerie et al. (2017). These authors found that the interan-
nual forced changes in the central (western) Sahel in August–
October (June–August) becomes stronger than the IAV only
from the 2060s (2080s). In agreement with Monerie et al.
(2017), we found an increase in the SDII over the central to
eastern regions of Guinea coast and Sahel, which becomes
stronger than the IAV from the 2040s (Figs. S11a and 5a).
Our results also show over the western areas of the Sahel,
a long-term decrease in the SDII, which is stronger than the
IAV but with less agreement on the sign of the change among
the models.

Analysing the various indices specifically, we found that
the changes in the R95p are not robust over the Guinea coast,
even at the end of the 21st century. This suggests a strong
influence of IAV on the intensity of rainfall events exceeding

the 95th percentile. We note that the long-term projection of
these events is robust over the easternmost Sahelian region
(Fig. 5c). The R20mm is projected to increase over several
areas of West Africa in the long-term future – the eastern-
most Sahel and Guinea coasts and the central Guinea coast
(Fig. 5b) – which is consistent with Akinsanola and Zhou
(2019).

The FRQW index exhibits a robust decrease of 5 % over
the Guinea coast and over the western Sahel (Fig. 5f). Addi-
tionally, a robust decrease in the CWD is projected in the
westernmost and easternmost region of the Guinea coast.
Over the Sahel, only the decrease in the western areas is ro-
bust for the CWD index (Fig. 5e). These changes in CWD
are consistent with the findings of Klutse et al. (2018) under
global warming of 1.5 and 2 ◦C. Consistently, Wainwright
et al. (2021) found an increase (a decrease) in the mean
length of dry (wet) spells over the Guinea coast during the
wet season in a future warmer climate.

There is also a robust increase in RX5day over the Guinea
coast and the central to eastern Sahel (Fig. 5d). These results
show a tendency to less frequent and more intense rainfall
over the Guinea coast in a warmer climate, which happens
over a shorter duration. Our results are in accordance with
Dosio et al. (2021), who found an increase in the mean SDII
and a decrease in the number of wet days in the June–August
long-term projections for the Guinea coast.

Figure 6 displays the average of the change in mean and
standard deviation of the JAS extreme rainfall indices over
the Guinea coast for the 2021–2040, 2041–2060, and 2080–
2099 periods, relative to 1995–2014. There is a tendency to-
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Figure 6. Boxplots of the average of the near-term, mid-term,
and long-term changes (relative to the present-day period) in the
mean and standard deviation of the rainfall extreme indices over
the Guinea coast. The averages were computed from 24 different
GCMs. Outliers are indicated by the black marks (diamonds). The
median (mean) value of each distribution is indicated with a black
horizontal bar (a white circle).

ward an increase in magnitude of SDII, R20mm, R95p, and
RX5day averages over the Guinea coast, which is gradual
from the near-term to the long-term future periods (Fig. 6a–
d). The variability in these variables also exhibits a grad-
ual increase with time in the future periods. Specifically, the
changes in the mean and standard deviation of the R95p are
of the same order of magnitude.

Consistent with the previous discussion, there is projected
decrease in the CWD and FRQW indices over Guinea coast
(Fig. 6e and f). The variability of the CWD will also decrease
over the three future periods, with higher magnitudes in the
long-term period compared to the others. For the FRQW,
however, no change in the variability is projected in the near-
term period, while there is a slight increase from the mid-
term to the long-term future periods.

In summary, under future global warming, rainfall events
over the Guinea coast are projected to intensify (increase
in the daily rainfall intensity over wet days), to be less fre-

quent, to happen over shorter duration, and to be more ex-
treme (increase in the amount of rainfall during very wet
days). This would increase the exposure of the West African
population to flooding events in a warmer future. Accord-
ing to the climate scenarios, for which future global warm-
ing is limited to 1.5, 2.4, and 3.5 ◦C by 2100, people born
in 2021 in Sub-Saharan Africa will experience, during their
lifetime, 4.6, 8, and 8.6 times more river flooding events than
without climate change, respectively (Thiery et al., 2021,
https://myclimatefuture.info/, last access: 11 August 2022).
This increase is 2- to 4-fold higher than the flooding events
experienced by people in the same area but born in 1960, and
highlights the climate urgency in reducing our greenhouse
gas emissions for future generations. Besides, we found that
the overall signs of the extreme indices long-term changes
over Guinea coast are in accordance with Akinsanola and
Zhou (2019). However, the results of these authors are ob-
tained from RCM-CMIP5 projections and show more ro-
bust changes over West Africa, without taking into account
the IAV influence. Moreover, there is a projected increase in
the variability of most of the rainfall-based extreme indices,
which is consistent with Akinsanola et al. (2020). The multi-
model median long-term percentage of changes in the mean
(variability) averaged Guinea coast for SDII, R20mm, R95p,
RX5day, CWD, and FRQW correspond to 11 % (29 %), 35
% (22 %), 20 % (29 %), 21 % (48 %), −23 % (−12 %), and
−5 % (37) %, respectively (Figs. S12 and S13).

Wet and dry extreme events over the Guinea coast could
also happen under positive or negative phases of the Atlantic
equatorial mode, respectively. As forced changes induced by
future global warming can be exacerbated or damped by in-
ternal climate variability, the study of the impacts of known
internal climate modes of variability becomes crucial. It is
the objective of this study to understand the future changes
in the rainfall extreme indices over the Guinea coast that are
connected to the AEM on interannual timescales. The impact
of the AEM on the extreme rainfall variability during the bo-
real summer is assessed here by regressing the JAS extreme
indices onto the standardized JAS AEM index.

4 Impact of the AEM on the rainfall extreme events
over the Guinea coast

4.1 AEM impact on the rainfall extreme events under
present-day climate conditions

Over the majority of the Guinea coast region, positive
anomalies of the extreme rainfall indices are associated with
positive phases of the AEM (Figs. 7 and S14). In GCMs, the
extreme responses to this oceanic mode of variability are ro-
bust, according to the two-thirds sign agreement metric, ex-
cept for the CWD index. In all cases, there is an anomalous
increase (decrease) in the wet indices, in association with
warm (cold) phases of the AEM over the Atlantic oceanic re-
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Figure 7. Maps of the JAS rainfall extreme indices regressed onto the standardized JAS AEM SST index over the 1995–2014 period. The
stippling represents grid points where two-thirds of the models agree on the sign of the EnsMedian regression coefficient across 24 GCMs.
Contours indicate the multi-observation median values of the regression coefficients from six different rainfall data. The black rectangles
indicate the Guinea coast region.

gion (between the Equator and the southern limit of Guinea
coast). A noteworthy feature of the anomalous patterns is the
lack of robust signals over the majority of the Sahelian re-
gion. Particularly, the westernmost area of the Sahel exhibits
an opposite phase relationship with the AEM, for CWD and
FRQW indices (Fig. 7e and f), compared to the Guinea coast.

The GCM EnsMedian regression patterns associated with
1 standard deviation of the AEM index show an increased in-
tensity of rainfall over wet days (SDII, 0.2 to 0.6 mm d−1)
over the Guinea coast (Fig. 7a). There is about a 1 d in-
crease in the number of days with very heavy precipitation
(R20mm) during positive AEM events (Fig. 7b). Warmer
than average sea surface conditions in the eastern equatorial
Atlantic favour an increased amount of rainfall during wet
days (R95p) (Fig. 7c). Over the Guinea coast, the anoma-
lies related to 1 standard deviation of the AEM index range
between 10 and 30 mm for R95p. The maximum precipita-
tion over 5 consecutive days (RX5day) is also intensified
over Guinea coast (Fig. 7d), with positive anomalies rang-
ing between 2 to 6 mm. The anomalous EnsMedian patterns
of the maximum consecutive wet days (CWD) related to a
warm phase of the AEM shows a non-robust increase of 1 to
3 d in wet spell duration (Fig. 7e). Similarly, the frequency
of wet days over the Guinea coast is higher up to 4 % under
warm sea surface conditions in the eastern equatorial Atlantic
(Fig. 7f).

Figure 8 displays the biases in the regression patterns asso-
ciated with the AEM for the different extreme indices. Over
Guinea coast, SDII and R20mm show no systematic biases
relative to the different observations (Fig. 8a and b). In the
eastern Guinea coast, there is an overestimation (underesti-
mation) of the R95p and RX5day (CWD) anomalies by the
GCMs (Fig. 8c–e). Regarding the FRQW, there is a robust

underestimation of its anomalies related to 1 standard devia-
tion of the AEM index over West Africa (Fig. 8f).

Figure 9 displays the performance metrics for the GCM
extreme rainfall indices related to the AEM. The EnsMedian
values of the %BIAS correspond to −17 %, −30 %, 34.5 %,
6 %, −31 %, and −75 % for SDII, R20mm, R95p, RX5day,
CWD, and FRQW, respectively (Fig. 9a). The biases for
FRQW are the largest. Moreover, the NRMSE of R95p has
the highest values compared to the other variables (Fig. 9b),
with an EnsMedian value reaching 4. In more than 75 % of
the cases, the pattern correlation coefficient (PCC) between
the individual models and the different observations is lower
than 0.5 (Fig. 9c). Particularly, the CWD anomalies are neg-
atively correlated with the observation patterns in much of
the models (the correlations are weak, however). According
to the TSS, the response of the SDII index to AEM is better
represented by the models, and this is indicated by a me-
dian TSS value of 0.4 among the set of 24 GCMs× 6 ob-
servations= 144 values (Fig. 9d). This can also be seen from
Fig. S18, where much of the good performances of the differ-
ent models relate to SDII. The individual %BIAS, NRMSE,
and PCC statistics for the individual models are available in
Figs. S15–S17.

In summary, the anomalous warming of the eastern equa-
torial Atlantic during positive phases of the AEM leads
to positive anomalies in the wet extreme indices over the
Guinea coast. This result is consistent with Atiah et al.
(2020); Diatta et al. (2020). However, according to the Tay-
lor skill score, the performance of the models in representing
the anomalous responses in the different extreme indices is
poor to modest, although some indices exhibit a good pat-
tern correlation coefficient. Over the Guinea coast, the biases
in the indices (except FRQW) are relatively small compared
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Figure 8. Spatial distribution of the EnsMedian bias (model minus observation) relative to six observations for the JAS regression pattern
of the extreme rainfall indices related to 1 standard deviation of the Atlantic equatorial mode SST index. In total, there are six observations
times 24 models, which equals 144 different biases. The stippling indicates regions where two-thirds of the biases agree on the sign of the
EnsMedian of the 144 biases. The black rectangles indicate the Guinea coast region.

Figure 9. Performance of the 24 GCMs relative to the six rain-
fall observations, in representing the spatial distribution of extreme
rainfall responses to AEM over the Guinea coast. Each boxplot in-
dicates the distribution of 24×6= 144 different values. The median
(mean) values of the statistics are represented by the horizontal bar
(white circle). Outliers are plotted individually with the black mark-
ers. Note that all the outliers for SDII are not plotted to improve the
readability of the figure.

with the spread in the regression patterns of the observations
(Fig. S19). Furthermore, Worou et al. (2022) showed that
the current GCMs can replicate the SST variability associ-
ated with the AEM over the tropical Atlantic Ocean, but they
struggle to replicate the spatial distribution of the observed
rainfall response to its phases over the tropical Atlantic and
the Guinea coast. In the next section, the future changes in
the Guinea coast extreme rainfall indices related to the AEM
will be assessed.

4.2 Future changes in rainfall extreme events
associated with the AEM

The changes of the equatorial Atlantic mean state under the
highest greenhouse gas emission scenario (SSP5–8.5) lead
to a weakened variability of the AEM in the future (Worou
et al., 2022; Crespo et al., 2022; Yang et al., 2022). Worou
et al. (2022) showed a projected weakening of the trade
winds climatology over the equatorial Atlantic and a deeper
thermocline in the eastern equatorial Atlantic, which would
lead to a reduction of the coupling between the surface and
the thermocline depth. This implies a future weakening of
the Bjerknes feedback (Bjerknes, 1969) in the equatorial At-
lantic that explains the reduced variability of the AEM under
global warming and the weaker future impact of the AEM on
the rainfall over the equatorial Atlantic and the Guinea coast.
These results are confirmed by Crespo et al. (2022), who
found a future reduction of the AEM variability in a warmer
climate, mainly due to a weakening of the third component
of the Bjerknes feedback (the SST response to the variations
of the thermocline depth). Yang et al. (2022) also found a
reduced AEM variability. They underlined a greater role of
a more stable tropical Atlantic atmosphere background in a
future warmer climate (Jia et al., 2019) in reducing the AEM
variability, compared to the weakening associated with the
deepening of the eastern equatorial Atlantic mean thermo-
cline. Subsequently, the variability of the JAS rainfall over
the equatorial Atlantic and Guinea coast that is related to the
different phases of AEM is reduced (Worou et al., 2022).

The magnitude of the change in the Guinea coast SDII
AEM EnsMedian is about −0.1 mm d−1 in the three future
periods (Fig. 10a). The EnsMedian values of the percentage
of changes in the average of SDII response to AEM over
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Figure 10. Near-term, mid-term, and long-term changes in the
Guinea coast area average of the JAS extreme rainfall responses
to 1 standard deviation of JAS AEM index. Each boxplot represents
the distribution of 24 GCMs. The median (mean) value of each dis-
tribution is indicated by a black horizontal bar (a white circle).

the Guinea coast correspond to −37 %, −32 %, and −87 %
in the near-term, mid-term, and long-term periods, respec-
tively (Fig. S20a). However, less than two-thirds of the mod-
els agree on the sign of these changes, whatever the future
period considered. The spatial distribution of the long-term
change in the SDII anomalies over the Guinea coast indi-
cates values that reach −0.4 mm d−1, which is robust only
over the central Guinea coast (Fig. 11a). The maps corre-
sponding to the near-term and mid-term changes in the re-
gression patterns are available in Figs. S21 and S22. These
maps show weak changes in the regression patterns over the
Guinea coast, compared to the long-term future changes. The
regression maps corresponding to the four different periods
are also displayed in Fig. S23.

The number of days with very heavy precipitation associ-
ated with 1 standard deviation of the AEM also shows a small
decrease of less than 1 d in the long-term future period com-
pared to the present-day period (Fig. 11b). The average of the
R20mm changes relative to 1995–2014 over the Guinea coast
equals −0.1, −0.2, and −0.2 d in the 2021–2040, 2041–
2060, and 2080–2099 periods, respectively (Fig. 10b). The
multi-model median values corresponding to the percentage
of changes in the area-averaged R20mm regression coeffi-
cients over the Guinea coast lie between −29 % and −64 %
over the three future periods (Fig. S20b).

The spatial patterns of the future changes in the variabil-
ity of rainfall during the very wet days (R95p) that is related
to the warm and cold AEM events indicate a reduction in
R95p magnitudes over most of the Guinea coast areas west
of 5◦ E (Fig. 11c). Elsewhere over the Guinea coast, there is
no evidence of a robust change in the R95p pattern. The Ens-

Median change in the average of R95p over the Guinea coast
ranges from −5.3 to −7.3 mm over the three future periods
(Fig. 10c). The multi-model median values of the Guinea
coast R95p change percentage (and the agreement among the
models) corresponds to −41 % (62 %), −38 % (67 %), and
−50 % (67 %) in the near-term, mid-term, and long-term fu-
ture periods, respectively, relative to the present-day period
(Fig. S20c).

Lower maximums of 5 d precipitation related to 1 standard
deviation of the AEM index averaged over the Guinea coast
are projected in the 2021–2040, 2041–2060, and 2080–2099
periods, compared to their magnitude in the 1995–2014 pe-
riod (Fig. 10d). Over the mid-term and long-term future peri-
ods, the RX5day EnsMedian reduction is between −0.4 and
−1.6 mm. The near-term EnsMedian change is positive but
very close to 0 (0.1 mm). In the three cases, there is a low
agreement among the models in the sign of the changes aver-
aged over the Guinea coast (less than 55 %). The multimodel
EnsMedian values of the percentage of change in the RX5day
averaged over the Guinea coast range between −24 % and
−58 % over the three future periods (Fig. S20d). Further-
more, Fig. 11d shows no robust change signal in the spatial
distribution of the RX5day anomalies over the Guinea coast.

The projected decrease in the AEM variability in the future
leads to a decrease in the magnitude of the wet spells corre-
sponding to 1 standard deviation of the AEM index. How-
ever, the EnsMedian change in the anomalous responses of
these indices averaged over the Guinea coast is less than 1 d
in the three different future periods (Fig. 10e). The EnsMe-
dian value of the CWD change percentages averaged over
the Guinea coast (as well as the percentage of agreement)
approximate −56 % (54 %), 46 % (67 %) and −71 % (71 %)
for the near-term, mid-term, and long-term future periods,
respectively, relative to the present-day period (Fig. S20e).
These area-average statistics are robust for the mid-term and
long-term future changes, according to the two-thirds sign
agreement metric. Figure 11e displays the spatial distribu-
tion of the long-term changes in the CWD response to AEM.
It also shows a robust decrease in CWD magnitudes over the
Guinea coast, which is between 1 and 3 d over the central and
western Guinea coast.

Finally, a reduction in the positive anomalies of the fre-
quency of wet days over the Guinea coast that are linked with
1 standard deviation of the AEM is projected in the future,
under the SSP5–8.5 scenario. Robust long-term reductions
of up to 1 % are detected on the western Guinea coast. In
the eastern part of the region, non-robust weak, long-term
changes are projected (Fig. 11f). The averages of the change
patterns over the Guinea coast are equal to −0.2 %, −0.0 %,
and −0.1 % for the three consecutive future periods, respec-
tively, relative to the present-day period (Fig. 10f). The multi-
model median value of the percentage of the change in the
FRQW AEM index averaged over the Guinea coast ranges
between −20 % and −38 % over the three future periods
(Fig. S20f), but these values are non-robust. About half of

Weather Clim. Dynam., 4, 511–530, 2023 https://doi.org/10.5194/wcd-4-511-2023



K. Worou et al.: Future changes in the mean and variability of extreme rainfall indices over the Guinea coast 525

Figure 11. Long-term changes in the regression patterns of the JAS extreme rainfall indices associated with the standardized JAS AEM SST
index (2080–2099 minus 1995–2014). The stippling indicates grid points where two-thirds of the models agree on the sign of the change.

the 24 GCMs agree on the sign of the EnsMedian change,
which makes the result uncertain.

To quantify the contribution of AEM in the total variability
of the rainfall extremes over the Guinea coast, we correlate
each extreme index averaged over the Guinea coast with the
standardized AEM index. The square of the correlation co-
efficient gives the fraction of explained variance (FEV). Fig-
ure 12 shows the distribution of the FEV across 24 GCMs, for
each extreme index and for each period of the current study.
There is a clear decrease in the FEV by the AEM between
the present-day period and the long-term future. However,
change in the FEV is not linear with time, and this could
be due to the small set of models used in our study. Under
present-day conditions, the EnsMedian FEV ranges between
13 % and 28 % for the six indices. In the long-term future,
the FEV EnsMedian does not exceed 8 %. This indicates a
weaker role of AEM in the last few decades of 21st century
under the SSP5–8.5 scenario.

In summary, subsequent to the decrease in the AEM vari-
ability in a future warmer climate relative to the present-day
conditions, there is a decrease in the variability of the ex-
treme rainfall indices associated with the AEM. For the ma-
jority of the indices, the average of the changes in the tele-
connection amplitude between the Guinea coast and the east-
ern equatorial Atlantic indicates an overall enhancement in
magnitude with time. Crespo et al. (2022) demonstrated that
the models with the strongest warm sea surface biases ex-
hibit the weakest change in both the AEM variability and the
third component of the Bjerknes feedback. Given the posi-
tive SST biases in most of the CMIP6 models in the eastern
Atlantic Basin (Richter and Tokinaga, 2020; Worou et al.,
2022; Crespo et al., 2022), improving these biases would
likely increase the change in the AEM variability, suggest-
ing that the projected weakened AEM variability is robust
despite these biases. Moreover, despite the increase in the to-

Figure 12. Regression of the Guinea coast rainfall extreme indices
onto the standardized AEM index: proportion of the variance ex-
plained by the AEM over four different periods (in percent). Each
boxplot represents the distribution of 24 GCMs. The median (mean)
value of each distribution is indicated by a black horizontal bar (a
white circle).

tal variability of the majority of the extreme indices under
global warming in the future (Sect. 3.3), there is a reduc-
tion in the proportion of variance explained by the AEM for
these extreme indices. This result highlights a weaker role
played by the AEM in explaining the future rainfall extreme
variability over the Guinea coast. Furthermore, there is more
confidence in the results averaged over the Guinea coast than
in the spatial distribution of the changes in the teleconnection
patterns.
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5 Summary and conclusions

The Atlantic equatorial mode of variability has mainly in-
fluenced rainfall changes over the Guinea coast during the
last century. The current study aimed to understand the links
between this oceanic mode of variability and the extreme
rainfall events over the Guinea coast under different cli-
mate conditions. The performance of 24 GCMs participating
in CMIP6 in simulating six JAS rainfall-based climate ex-
treme indices over the Guinea coast was assessed, as well as
the projected mean changes in these extremes under global
warming. We used six different observation databases to
evaluate the models. Historical and SSP5–8.5 simulations
were considered to study changes in the near-term (2021–
2040), mid-term (2041–2060), and long-term (2080–2099)
future periods, compared to the present-day climate period
(1995–2014).

Under present-day conditions, we found that the GCM En-
sMedian simulates less intense rainfall events. All the models
exhibit too-frequent rainfall and longer wet spells over the
Guinea coast, compared to the observations. These models
show a wide range of FRQW spatial correlation with the dif-
ferent observations, which makes this variable uncertain in
the models, as indicated by its poorest skill score (0.26 for
the EnsMedian), compared to the other variables. On the
other hand, the R20mm is better represented in the models,
according to the distribution of the PCC and TSS values in
the GCMs. The EnsMedian values for these metrics are 0.7
and 0.6, respectively. For the other variables, the EnsMedian
PCC (TSS) values are between 0.5 and 0.6 (0.4 and 0.5).
Those results indicate that despite the good performance of
the models for some aspects of the rainfall characteristics,
there is still a need to continue the effort toward an improve-
ment of the GCMs to better represent the mean state of the
West African hydroclimate. This would lead to a more re-
liable use of climate models for climate services over West
Africa, in order to implement better mitigation and adapta-
tion strategies for climate change.

Under the SSP5–8.5 scenario, changes in the near-term,
mid-term, and long-term (2080–2099) periods are evaluated,
relative to the present-day climate conditions. Consistent
with previous studies (Dosio et al., 2021; Wainwright et al.,
2021), results of the average of the mean changes in the ex-
treme indices over the Guinea coast indicate an intensifica-
tion of the daily rainfall, together with a decrease in the fre-
quency of wet days and the duration of wet spells. The num-
ber of days with precipitation exceeding 20 mm is increased,
as well as the rainfall amount during the very wet days and
the maximum rainfall amount over 5 consecutive days.

The area average of the extreme indices over the Guinea
coast indicates an intensification of extreme conditions in
the projections, with a gradual increase in magnitude over
the three future periods. However, it is important to note that
the spatial distribution of the changes is not uniform over
the region, and the robustness of the changes at a grid point

varies among different indices and the future period consid-
ered. In general, internal variability is large enough to mask
the forced signal during the first decades of the projection
over Guinea coast. In the mid-term changes, only a few areas
in the western Guinea coast exhibit a robust change in SDII,
R20mm, and RX5day. In the long-term projections, the R95p
projections remain uncertain over the Guinea coast, while a
robust change signal with a uniform sign can be found for
the other extreme indices. These conclusions are in overall
agreement with Monerie et al. (2017), who estimated the dif-
ferent numbers of model ensemble members needed to re-
solve the forced signal in the projections over Sahel. This
kind of study needs to be performed over the Guinea coast.
It is, however, beyond the aim of our current study, which is
rather focused on teleconnection processes.

Anomalous warming (cooling) of the eastern equatorial
Atlantic in positive (negative) phases of the AEM is associ-
ated with above (below) normal values of wet extreme rain-
fall indices over the Guinea coast in the current climate. Ac-
cordingly, our results indicate an in-phase relationship be-
tween the different extreme indices of the Guinea coast and
the AEM SST index. However, over the Guinea coast, the
multi-model EnsMedian spatial distributions of the extreme
rainfall anomalies related to 1 standard deviation of the AEM
under the present-day conditions are not significant for CWD
and are limited to a few areas very close to the coastal line
for FRQW. These two indices present the poorest TSS val-
ues in term of the performance of the 24 GCMs relative to
the six different observations and compared to the other ex-
treme indices. The index that has the closest pattern to the
observations is SDII. The distributions of the TSS values for
the R20mm, R95p, and RX5day indices are similar, with an
EnsMedian value close to 0.3. The six observations are con-
sistent with the sign of the regression patterns of the differ-
ent extreme indices over Guinea coast. However, the biases
in the GCMs’s patterns vary a lot through the 24 models and
the six observations, leading to no consensus on the sign of
the bias, except for the FRQW, for which there is a consistent
underestimation of the responses to AEM.

Additionally, there is a projected weakening of the AEM
under global warming. Subsequently, there is overall a pro-
jected decrease in magnitude of the Guinea coast rainfall ex-
treme responses to this mode of climate variability in the
three future periods, relative to the present-day situation.
However, the spatial distribution of the changes in the regres-
sion patterns is different from one future period to another
period and generally non-robust among the models. These
results are also limited by the poor skill of the models in rep-
resenting the extreme responses to AEM under present-day
conditions. Moreover, for a given future period, the sign and
the significance of the change are highly heterogeneous in
space. As an example, there is a mid-term robust increase in
the RX5day response to AEM over the centre of the Guinea
coast, whereas no significant changes are found over the en-
tire region for the near-term and long-term periods. In gen-
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eral, there are no robust changes in the majority of the in-
dices for the near-term and mid-term periods. The long-term
changes are, however, stronger in magnitude, with more ro-
bustness over the Guinea coast according to the sign agree-
ment among the models. Thus, in general, it is questionable
whether it makes sense to perform an average of non-robust
changes over the Guinea coast region for a given variable.
Moreover, differences among the models’ responses could be
highlighted by grouping them in different categories based
on different criteria. According to the poorest representation
(in general) of the extreme responses to AEM under present-
day conditions, one could choose to separate models that
project an increase in the magnitude of the responses, from
the models that project a decrease in the extreme responses
to AEM. This is not done in our current study. Another so-
lution would be to use few GCMs with 10 or more ensemble
members at a high spatial resolution, with a good representa-
tion of the AEM impact on West Africa. The increase in the
spatial resolution will allow the study of regional differences
within the Guinea coast region.

Despite the biases and uncertainties, the area average of
the changes over Guinea coast is more robust and gives an
overall tendency. However, although there is an overall in-
crease in the total variance of most of the extreme indices
over the Guinea coast, the contribution of the AEM to ex-
plaining the variance of these extreme indices is reduced.
This reduction is clear if the long-term fraction of explained
variance is compared to its values in the present-day situa-
tion. This result suggests a weaker role of the AEM in driv-
ing the extreme rainfall variability over the Guinea coast in a
future scenario of high emission of greenhouse gases. There-
fore, there is a need to identify other oceanic and atmospheric
modes of variability or other processes that explain the future
changes in the extremes’ variability over the Guinea coast.
These processes should compensate for the decreasing role
of the AEM. For instance, Akinsanola et al. (2020) argued
that the changes in the circulation (the dynamics) should con-
tribute less to the increase in the rainfall variability over West
Africa, while the local thermodynamics should be the domi-
nant factor of these changes.

Our conclusions are based on 24 CMIP6 GCMs that have
clear biases and whose resolution is too coarse to repre-
sent some important processes controlling extremes and their
changes well. It would thus be useful to re-evaluate our re-
sults with RCMs or even convection-permitted models. The
processes that drive the biases in the mean state and telecon-
nection patterns also need to be better understood and better
represented in order to gain more reliability in the projected
changes in the rainfall extremes over the Guinea coast. Addi-
tional insights on the impact of the internal variability on the
projected changes over the Guinea coast could also be gained
by using more GCMs or more ensemble members within one
GCM to assess the impact of the internal climate variability
on the projected changes over the Guinea coast.
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