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Abstract. Much of the forecast skill in the mid-latitudes on
seasonal timescales originates from deep convection in the
tropical belt. For boreal summer, such tropical–extratropical
teleconnections are less well understood compared to win-
ter. Here we validate the representation of boreal summer
tropical–extratropical teleconnections in a general circula-
tion model in comparison with observational data. To char-
acterise variability between tropical convective activity and
mid-latitude circulation, we identify the South Asian mon-
soon (SAM)–circumglobal teleconnection (CGT) pattern and
the western North Pacific summer monsoon (WNPSM)–
North Pacific high (NPH) pairs as the leading modes of
tropical–extratropical coupled variability in both reanalysis
(ERA5) and seasonal forecast (SEAS5) data. We calculate
causal maps based on the Peter and Clark momentary con-
ditional independence (PCMCI) causal discovery algorithm,
which identifies causal links in a 2D field, to show the causal
effect of each of these patterns on circulation and convection
in the Northern Hemisphere. The spatial patterns and signs
of the causal links in SEAS5 closely resemble those seen in

ERA5, independent of the initialisation date of SEAS5. By
performing a subsampling experiment (over time), we anal-
yse the strengths of causal links in SEAS5 and show that they
are qualitatively weaker than those in ERA5. We identify
those regions for which SEAS5 data well reproduce ERA5
values, e.g. the southeastern USA, and highlight those where
the bias is more prominent, e.g. North Africa and in gen-
eral tropical regions. We demonstrate that different El Niño–
Southern Oscillation phases have only a marginal effect on
the strength of these links. Finally, we discuss the potential
role of model mean-state biases in explaining differences be-
tween SEAS5 and ERA5 causal links.

1 Introduction

Seasonal forecasts provide a useful tool to study atmospheric
dynamics and predict seasonal variations in wind, rainfall
and temperature patterns across tropical and extratropical re-
gions (Bauer et al., 2015; Palmer and Anderson, 1994). To
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a certain extent, seasonal forecasts can be used by stake-
holders and governments to anticipate and mitigate extreme
weather events, failures in crop yields or water scarcity haz-
ards for infrastructure such as electricity grids (Lazo et al.,
2009; Challinor et al., 2003; Hagger et al., 2018; Meza et
al., 2008). Tropical–extratropical interactions are linked to
mid-latitude boreal surface weather conditions and repre-
sent a source of predictability at seasonal and subseasonal
timescales (Shukla, 1998). Hence, improving the representa-
tion of these teleconnections in seasonal forecasts can help to
improve our knowledge of atmospheric dynamics as well as
to better forecast relevant weather patterns to support early
warning systems.

Obtaining reliable seasonal forecasts is a challenging
problem due to the intrinsic nonlinearity of processes gov-
erning atmospheric motions (Holton, 1973). While providing
weather forecasts beyond a 2-week threshold is a complex
problem due to the chaotic nature of atmospheric processes
(Tsonis and Elsner, 1989; Palmer and Anderson, 1994),
slowly varying climatic fields such as sea surface temper-
atures (SSTs) and soil moisture can provide forecast skill
beyond the weekly timescale (Charney and Shukla, 1981).
The representation of the interaction of the atmosphere with
other components of the climate system, e.g. via SST vari-
ability, is an important requirement to achieve forecast skill
(Roberts et al., 2021; Tietsche et al., 2020). Historically, both
statistical (Gadgil et al., 2005; Kumar, 2012) and dynami-
cal approaches (Jain et al., 2018; Scaife et al., 2019) have
been used to provide seasonal forecasts, often with compara-
ble skill (Seo et al., 2009; Barnston et al., 1999). However,
when the focus is on the representation of physical processes
rather than the forecast skill, dynamical forecasts, generated
by general circulation models (GCMs), provide a more com-
plete representation of the atmospheric physics that governs
weather and climate behaviour (Shukla et al., 2000). Dy-
namical seasonal forecasts explicitly solve dynamic and ther-
modynamic equations and are better suited for representing
the dynamic and thermodynamic processes and emerging dy-
namical teleconnections within the climate system.

To produce accurate seasonal forecasts, GCMs need to
represent the physical processes operating at those timescales
truthfully in the current climate. Great progress in this field
has been made in recent decades, leading to an improved rep-
resentation of dynamic and thermodynamic processes and
a steady increase in model resolution (Bauer et al., 2015;
Palmer, 2017; Haarsma et al., 2016). Nevertheless, proba-
bilistic reliability of dynamical seasonal forecasts remains
limited (Weisheimer and Palmer, 2014). In this context,
analysing seasonal forecasts such as the SEAS5 (Johnson
et al., 2019) dataset provided by the European Centre for
Medium-range Weather Forecasts (ECMWF), can help to
identify, understand and improve biases between observa-
tions and model simulations.

Tropical–extratropical interactions in the Northern Hemi-
sphere during boreal summer have been analysed in sev-

eral recent studies (O’Reilly et al., 2018; Di Capua et al.,
2020a; Ding et al., 2011). Heat generated by tropical con-
vective activity provides a source of wave activity that can
affect weather in the mid-latitudes (O’Reilly et al., 2018;
Rodwell and Hoskins, 1996; Ding and Wang, 2005), while in
turn mid-latitude wave activity can modulate rainfall events
in the tropical belt (Ding and Wang, 2007; Di Capua et al.,
2020b). Here, we focus on the two main modes of covari-
ability between tropical convection and mid-latitude circu-
lation as identified in Di Capua et al. (2020a) and Ding et
al. (2011). The first mode of covariability is represented by
the circumglobal teleconnection (CGT) paired with the South
Asian monsoon (SAM) convection (Ding et al., 2011; Di
Capua et al., 2020a). Circumglobal wave trains such as the
CGT are connected to temperature and precipitation anoma-
lies at intraseasonal and interannual timescales in the north-
ern mid-latitudes (Ding and Wang, 2005; Di Capua et al.,
2020b). Recent work based on statistically evaluating causal
relationships in reanalysis data has shown that the CGT pat-
tern and the SAM circulation system are connected by a two-
way causal interaction (Di Capua et al., 2020b). Moreover,
the causal effect of each of these patterns on atmospheric
circulation and surface conditions can be effectively repre-
sented on a 2D map (Di Capua et al., 2020a). The CGT has
been studied in seasonal forecasts provided by ECMWF, and
the corresponding results show that generally the model can
reproduce this pattern (Beverley et al., 2019). However, the
CGT pattern in seasonal forecasts is too weak, likely due to a
misrepresentation of the SAM convective activity in the trop-
ical belt.

The second mode of covariability between tropical con-
vection and boreal summer circulation is represented by a
pair of patterns associated with the western North Pacific
summer monsoon (WNPSM) and the North Pacific high
(NPH) (Di Capua et al., 2020a). The NPH is the result of
the northward displacement of the North Pacific subtropical
high due to the onset of the WNPSM activity at the begin-
ning of July (Di Capua et al., 2020a). In reanalyses, the in-
fluence of these two patterns on other atmospheric fields is
weak compared to the SAM–CGT pair and mostly confined
to the Pacific Ocean. Nevertheless, the WNPSM and NPH
systems can affect typhoon cyclogenesis in the tropical Pa-
cific (Briegel and Frank, 1997) and temperature and circula-
tion patterns in eastern Asia and North America, respectively,
potentially acting as a source of wave activity downstream
(Di Capua et al., 2020a; Ding et al., 2011). Therefore, even
though the direct area of influence of the WNPSM–NPH pair
is found over the ocean, effects of changes in their intrasea-
sonal variability are relevant to remote and highly populated
areas (e.g. the US west coast or Japan).

Causal discovery algorithms, such as the Peter and Clark
momentary conditional independence (PCMCI) method,
help overcome issues with commonly used statistical tech-
niques, like correlation measures. When carefully applied,
they allow one to identify and separate true causal from spu-
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rious links (Runge, 2018; Runge et al., 2014, 2019). PCMCI
has been used to study stratospheric polar vortex variability
(Kretschmer et al., 2017, 2016, 2018), the Silk Road pattern
interdecadal variability (Stephan et al., 2019), Atlantic hurri-
cane activity (Pfleiderer et al., 2020), and causal interactions
between the Indian summer monsoon and mid-latitude wave
trains (Di Capua et al., 2020a, b). Moreover, PCMCI has also
proven useful in providing early forecasts of Moroccan crop
yields (Lehmann et al., 2020), subseasonal statistical fore-
casts of US surface temperatures (Vijverberg and Coumou,
2022; Vijverberg et al., 2020) and statistical seasonal predic-
tions of Indian summer monsoon rainfall (Di Capua et al.,
2019).

Process-based validation can help us to understand and
correct biases in seasonal forecasts (Eyring et al., 2019; Ho-
rak et al., 2021). Here, we propose to use causal discovery to
perform a process-based validation (Nowack et al., 2020) of
tropical–extratropical interactions in SEAS5 seasonal fore-
casts. We compare observed (i.e. reanalysis) causal interac-
tions between tropical convective activity and mid-latitude
wave trains in the Northern Hemisphere during boreal sum-
mer with those present in seasonal forecasts. The scope of
this comparison is three-fold: (i) we validate causal links in
a coupled GCM in forecasting mode against those derived
from observations, and (ii) we gather information on miss-
ing or misrepresented links in the GCM in forecast mode.
Finally, (iii) we analyse whether these differences can be at-
tributed to model biases and what impact different phases
of the El Niño–Southern Oscillation (ENSO), present in the
initial conditions of the forecasts, have on the strength and
representation of causal links. Thus, this work represents an
initial step to improving forecast skill and the representation
of tropical–extratropical teleconnections in GCMs.

The remainder of this paper is organised as follows: Sect.
2 presents the data and methods used. Section 3 describes
the results obtained by applying causal maps first to ERA5
reanalysis and then SEAS5 data. Section 4 provides a dis-
cussion of the obtained results in the context of the existing
literature and the final conclusions.

2 Data and methods

2.1 Data

We analyse intraseasonal (weekly) tropical convective ac-
tivity and mid-latitude circulation characteristics during the
extended boreal summer period (May to September, MJ-
JAS) using gridded data (0.25◦× 0.25◦ upscaled to 2◦× 2◦)
from the ERA5 reanalysis dataset (Hersbach et al., 2020)
and the SEAS5 seasonal retrospective forecast dataset (John-
son et al., 2019), both provided by the European Centre
for Medium-range Weather Forecasts (ECMWF). From the
ERA5 dataset, we use daily (temporally averaged to ob-
tain weekly samples) geopotential height fields at 200 hPa

(Z200), outgoing long-wave radiation (OLR), sea surface
temperature (SST) and zonal (U200) wind fields for the
period 1979–2020 (ERA-L) and for the subset 1993–2016
(ERA-S) (to be consistent with the available SEAS5 dates).
While Z200 is useful for representing the mid-latitude cir-
culation, OLR can be used as a proxy of tropical convec-
tive activity. Despite SEAS5 providing values for precipita-
tion globally, we prefer using OLR instead of precipitation
itself as precipitation is not assimilated in the reanalysis (and
thus is less reliable than assimilated fields such as SST), ob-
servational precipitation data coverage for tropical regions is
sparse and to keep this analysis consistent with Di Capua et
al. (2020a). For the general circulation model comparison,
we analyse OLR, Z200, SST and U200 fields for the period
1993–2016 of SEAS5. As for ERA5, SEAS5 data are also
regridded from the original 1◦× 1◦ onto a 2◦× 2◦ grid, and
daily data are temporally averaged to obtain weekly samples.
The interannual variability, seasonal cycle and any long-term
trend are removed. To do so, first the interannual variability,
i.e. the average value of each May-to-September period, is
subtracted from the corresponding year (thus ensuring that
the weekly signal does not include the interannual variabil-
ity). Then, for each of the 21 time steps considered in each
MJJAS season, the trend over the 24 years is removed and
anomalies around zero are calculated, thus removing both the
trend and seasonal cycle.

While reanalysis data from ERA5 provide one realisa-
tion per year, SEAS5 provides 25 ensemble members each
year, thus a total of 25× 24 (600) model years. A schematic
of the SEAS5 ensemble is shown in Fig. 1. Considering
only the summer season (June to September) plus May,
as required by the causal discovery framework to ensure a
proper handling of time lags (see Sect. 2.3), we have a to-
tal of 21 weeks per extended summer (MJJAS) for each year
(Fig. 1a). Thus, for the common period 1993–2016, we have
a total of 21× 24= 504 weekly time samples for ERA5 and
21× 24× 25= 12600 time samples for SEAS5 (Fig. 1b).
Note that, for both ERA5 and SEAS5 datasets, the first week
of the MJJAS period starts on 7 May (the first full week com-
mon to both datasets when for ERA5 the first week of the
year starts on 1 January).

Treating the 25 ensemble members per year for 24 years as
one unique time series of 600 years composed of distinct sub-
sequences is possible under the assumption that each mem-
ber of each ensemble year is independent of the remaining
members. While the ensemble is generated by varying the
initial conditions, this assumption of uniqueness is not true
in general, since each ensemble member for a given year has
common lower boundary conditions for the atmosphere, in-
herited from slowly evolving features in the ocean, e.g. SST
anomalies in the tropics and extratropics. However, for the
purpose of this analysis we are interested in the relative effect
of a certain (set of) variable(s) on the remaining atmospheric
fields inside the intraseasonal variability, with a maximum
lag of a few weeks (thus on a much shorter timescale than
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Figure 1. Schematic representation of the SEAS5 forecasting set-up. Panel (a) shows the time line for SEAS5 initialisation and target period.
Panel (b) shows a schematic of the SEAS5 ensemble members.

interannual). It must be noted that we do not intend to use
SEAS5 data to assess or exploit its forecast skill but instead
to assess the ability of a general circulation model in fore-
casting mode at reproducing observed tropical–extratropical
teleconnections. In other words, whether there is shared in-
formation between two ensemble members for a certain year
(e.g. whether a certain phenomenon in the analysed climate
system is stronger or weaker) or whether a specific year
shows better forecast skill than another does not affect the
relative effect of that phenomenon on some selected atmo-
spheric fields. However, we cannot exclude that different ini-
tialisation dates (SEAS5 seasonal forecasts are initialised on
the first day of each month and run for 7 months), and the
vicinity of the target season to the beginning of the simula-
tion may influence the outcome and the resulting causal links.
Thus, we choose to analyse SEAS5 forecasts initialised on
both 1 March and 1 May of each year, with a target season
of June–September (see Fig. 1a). This way, the model has
up to 3 (and at least 1) months of spin-up to reduce the in-
fluence of the initial conditions. However, for the forecasts
initialised on 1 May, although the month of May is outside
the target season, May time steps enter the set of precursors
(see below) for June time steps. Thus, we provide a sensitiv-
ity analysis to show which results depend on (or are indepen-
dent of) the chosen initialisation date. In the final step of this
work, we will assess whether the effect of ENSO on wind
fields and convective activity in the Northern Hemisphere (i)
is sufficiently well reproduced in SEAS5 when compared to

ERA5 and (ii) influences the identified tropical–extratropical
causal links.

2.2 Modes of co-variability

To identify the dominant modes of intraseasonal co-
variability between tropical convective activity and mid-
latitude circulation in the Northern Hemisphere, we apply
maximum covariance analysis (MCA) as described in Di Ca-
pua et al. (2020a). The first two MCA modes are calculated
by applying MCA to OLR fields in the tropical belt (15◦ S–
30◦ N, 0–360◦ E) paired with Z200 fields in the northern
mid-latitudes (25–75◦ N, 0–360◦ E), thus using the same ge-
ographical borders as in Di Capua et al. (2020a).

By construction, the first MCA mode explains a maximum
of squared covariance between the selected two fields (Ding
et al., 2011; Wiedermann et al., 2017), and MCA modes are
ranked according to their explained squared covariance frac-
tion (SCF) (Wilks, 2011). With this method, it is possible to
identify pairs of patterns that can explain shared covariance
and (to some extent) evolve simultaneously. However, shared
covariance, as in general correlation-based techniques, does
not imply causality. To check whether these patterns may be
causally related (e.g. via dynamical mechanisms), we apply
the PCMCI causal discovery algorithm (see Sect. 2.3).

Each MCA mode provides two coupled (2D) spatial pat-
terns (one for tropical OLR and one for mid-latitude Z200)
and two associated time series. Note that separate time series
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are created for the OLR and Z200 MCA patterns and for each
MCA mode and a total of four time series when MCA modes
1 and 2 are analysed. These time series are obtained by pro-
jecting each (2D) MCA spatial pattern on the correspond-
ing time-varying atmospheric field and represent the time-
dependent MCA scores or pattern amplitudes for both fields.
Each time series describes the magnitude (prominence) and
phase (sign) of those patterns for each time step of the field’s
time series. The abbreviations associated with the MCA pat-
terns are shown in Table 1.

Here, we apply MCA both to the full 1979–2020 (ERA-
L) and reduced 1993–2016 (ERA-S) periods and to SEAS5
for the period 1993–2016. On the one hand, we attempt to be
consistent with the available SEAS5 data (ERA-S). On the
other hand, we want to provide a direct comparison with Di
Capua et al. (2020a), who studied the previous ERA-Interim
reanalysis product, by exploiting the full length of the time
series (ERA-L). However, the first two MCA modes calcu-
lated with SEAS5 data do not provide a close enough repre-
sentation of the patterns shown in ERA5 (see spatial corre-
lation coefficients shown in Table 2 and Sect. 3.1). Thus, to
provide a meaningful comparison between the two datasets,
we define MCA patterns in SEAS5 by projecting the first
two ERA5 MCA patterns onto SEAS5 data and referring to
these modes as MCA SEAS5-R. This is done in the same
way in which the ERA5 MCA scores/time series are calcu-
lated, i.e. by calculating the dot product of each ERA5 MCA
mode with the corresponding OLR or Z200 field time series
for each time step.

2.3 PCMCI and causal maps

The PCMCI algorithm is a causal discovery method using
conditional statistical association strengths to iteratively test
for causality between two (or more) time series (actors)
given a certain set of conditioning variables (Runge, 2018;
Runge et al., 2014, 2019; Spirtes et al., 2000). The term
causal builds upon a series of hypotheses, such as causal
sufficiency (i.e. all relevant actors are included in the anal-
ysis) and stationarity of the detected causal chain (i.e. the
causal links are stationary over time and actors show no
trend). Hence, the detected causal links are valid in the set of
analysed actors and also depend on the linear or non-linear
framework applied (here, we employ linear partial correla-
tions since they can be estimated in a more robust way from
time series of limited length than their nonlinear counterparts
and allow defining the direction of an effect relative to the
cause) as well as a set of parameters, such as the significance
threshold α. The causal links identified by PCMCI are rep-
resented in a so-called causal effect network (CEN), a graph
where each actor is represented by a node and causal links are
shown as arrows connecting different nodes (Fig. 2a). The
sign and strength of a certain causal link are given by the β
coefficient, represented in the CEN by the colour of an arrow.
For example, given the causal link actor2τ=−1→ actor1τ=0,

a β coefficient of 0.25 represents a positive change of 0.25
standard deviation (SD) of actor1 at lag 0 due to a positive
change of 1 SD in actor2 at lag −1.

Here we apply the concept of causal maps, an extension of
PCMCI to spatial fields of variables, to analyse the influence
of a set of spatial patterns representing tropical–extratropical
summer interactions (identified by applying MCA) on a 2D
field (Di Capua et al., 2020a). Causal maps make use of the
concept of CEN and the PCMCI algorithm. However, instead
of showing the typical network-like shape with actors con-
nected by arrows representing the direction, sign and strength
of the causal links as shown in Fig. 2a, causal maps provide
information in a similar conceptual manner to a classical cor-
relation map (Fig. 2b). In a causal map, however, each grid
point represents the sign and strength (given by the β coeffi-
cient) of a certain causal link, e.g. between actor1 and actor3,
while the direction of the link and the set of actors involved
is kept constant throughout each map (more maps are nec-
essary to show different configurations of actors as shown in
Fig. 2b).

To provide a meaningful comparison with previous work,
in this analysis we apply the same framework as used in Di
Capua et al. (2020a); i.e. each causal map is obtained by run-
ning at grid point level a CEN analysis with three actors. Of
these three actors, two represent the pair of time series ob-
tained for each MCA mode and are kept constant through-
out the map (actor1 and actor2 in our example in Fig. 2a).
The third time series is the time series for any individual grid
point of the considered time-varying field (OLR or Z200) and
thereby depends on longitude and latitude (actor3(lat, lon)
in Fig. 2a). Thus, for each MCA mode we will have eight
causal maps, as we have two target fields (OLR and Z200),
two MCA modes and two MCA time series for each MCA
mode (one for tropical OLR and one for mid-latitudes Z200).
This can be summarised in Eq. (1):

MCAki → fieldj |MCAki 6=l, (1)

where i, l ∈ {trop. OLR, midlat. Z200}, j ∈ {Z200,OLR}
and k ∈ {1,2} are the two MCA modes. Note that when con-
ditioning on MCAki 6=l , i needs to be different from l since
when testing the influence of actor1 on actor3(lat, lon) we
want to remove the influence of actor2. Thus, if MCAki =
MCA1

trop.OLR, then MCAkl =MCA1
midlat.Z200.

Here, we use PCMCI version 4.1 from the Python pack-
age tigramite (https://github.com/jakobrunge/tigramite, last
access: 2 August 2023). We estimate causal maps with the
parameters lagmin =−1, lagmax =−2 (units of the sampling
period, i.e. weeks) and pc_alpha= 0.2 (unless otherwise in-
dicated we use the default parameters of PCMCI). Note that
only results for lag −1 are shown as almost no significant
links are found for lag −2 in ERA5 causal maps. Note that
pc_alpha is not the final significance threshold adopted to de-
termine the significance of the identified causal links; instead
it is a parameter used in the PC step of the PCMCI algorithm,
which if taken too strictly (e.g. the usual α = 0.05) would
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Table 1. List of the main abbreviations used in the article.

Abbreviation Definition Method and field

SAM South Asian monsoon MCA mode 1, OLR
WNPSM Western North Pacific summer monsoon MCA mode 2, OLR
CGT Circumglobal teleconnection MCA mode 1, Z200
NPH North Pacific high MCA mode 2, Z200
ERA-S ERA5 short (1993–2016)
ERA-L ERA5 long (1979–2020)
SEAS5-R SEAS5 (1993–2016), MCA as projection of ERA5-S MCA on SEAS5 data
SEAS5 SEAS5 (1993–2016), MCA calculated directly on SEAS5

Table 2. Spatial pattern correlation between MCA modes obtained from ERA5 data over the periods 1979–2020 and 1993–2016, between
ERA5 and SEAS5 data over the common period 1993–2016 and for the same period but as the projection of ERA5 MCA (see main text for
more details). All numbers are significant at α = 0.05.

ERA-S–ERA-L ERA-S–SEAS5 ERA-S–SEAS5-R
MCAi – MCAi MCAi – MCAi MCAi – MCAj MCAi – MCAi

(i = j ) (i = j ) (i 6= j ) (i = j )

MCA 1 Z200 (CGT) 0.89 0.61 −0.40 0.93
MCA 2 Z200 (NPH) 0.84 0.60 0.57 0.93
MCA 1 OLR (SAM) 0.85 0.58 −0.47 0.86
MCA 2 Z200 (WNPSM) 0.77 0.40 0.44 0.83

prevent the algorithm from retaining some potentially mean-
ingful links (for further details see https://jakobrunge.github.
io/tigramite/, last access: 2 August 2023).

The significance threshold adopted for plotting the results
is α = 0.05 (for a time series length of 600 years) and 0.1
(for a time series length of 24 years), and we use corrected
p values by applying a false-discovery rate (FDR) correction
(Benjamini and Hochberg, 1995) to control for multiple test-
ing among the multiple grid locations in causal maps. The
false-discovery rate is “the expected proportion of erroneous
rejections among all rejections” (Benjamini and Yekutieli,
2001).

2.4 Subsampling experiments

We perform two subsampling experiments: Experiment A
aims to better understand differences in the strength of causal
links between ERA-S and SEAS5-R, while Experiment B
evaluates the spread inside the SEAS5 ensemble. For each
subsampling experiment, we select 1000 samples of 24 years
each (for each year, one ensemble member is randomly
selected out of the 25 available members), and for each
sample we provide the corresponding causal map. In this
way, the number of years used in each subsampling exper-
iment (24 years) is the same as those available from ERA-S
(24 years). Reducing the length of the time series in this way
increases the variability and hence lowers the significance
of the obtained β values. However, this should not by itself
lower the strength of the β values themselves. Thus, a priori,
we might expect fewer regions to show a significant β value

in a smaller dataset than in a larger one but not a difference
in the strength of the β values. Hence, this 1000-ensemble
member subsampling experiment allows us to evaluate the
distribution of β values around their mean value and to com-
pare it to the ERA-S values of reference. For each causal
map, the p values are corrected by applying the Benjamini–
Hochberg false-discovery rate correction, and only β values
with a corrected p value< 0.1 are retained.

In Experiment A, we impose the set of causal par-
ents which have been detected as significant for ERA5 in
the SEAS5 ensemble and then calculate the corresponding
causal effect in SEAS5. In this way, we provide a fairer com-
parison between the strengths of βERA5 and βSEAS5. In other
words, SEAS5-R causal maps obtained from Experiment A
will show significant causal links for the same grid points as
in ERA5 causal maps, but the sign and the strength of the
β coefficient will vary following the physical representation
of these teleconnections in the SEAS5 dataset. However, we
cannot a priori assume that all the causal links detected in
ERA5 will be reproduced by the SEAS5 forecast with the
same sign, direction and strength (which would be the equiv-
alent of assuming that the effect of sampling variability in
ERA5 on the selection of causal links is zero and that the
model does a perfect job in reproducing all observed tele-
connections, while instead well-known biases between the
model and the reanalysis products are observed; e.g. Johnson
et al., 2019). Therefore, in Experiment B we let the PCMCI
algorithm identify the causal parents in SEAS5 and then es-
timate the causal effect. Thus, new causal links that were not
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Figure 2. Schematic representation of CEN and causal map. Panel (a) shows an example of a CEN built with three actors and lagmax −2.
Panel (b) shows an example of a causal map: the β value for the causal effect of actor1 and actor2 on actor3 (a time-varying field) varies
with the latitude and longitude in the map.

detected in ERA5 may appear, while others that were signif-
icant in the reanalysis dataset may disappear. Analysing the
results for these two subsampling experiments will enable
us to compare the strength, sign and location of tropical–
extratropical teleconnections between SEAS5 and ERA5.

3 Results

This section is organised as follows: first we define and de-
scribe MCA patterns both in ERA5 and SEAS5 datasets
(Sect. 3.1). Then we calculate the respective causal maps
and compare those obtained in ERA5 with those obtained
with SEAS5 (Sect. 3.2). In Sect. 3.3 we produce a 1000-
member subsampling experiment by imposing the causal par-
ents found in ERA5-S to determine whether ERA5 β values
fall in the range of realisations of SEAS5 (Experiment A). In
Sect. 3.4 we use the same subsamples but allow the PCMCI
algorithm to freely detect causal links in SEAS5 (Experiment
B). Following those studies, in Sect. 3.5, we check whether
ENSO may influence these tropical–extratropical telecon-
nections and what role model biases may play in explaining
ERA5–SEAS5 differences.

3.1 MCA patterns in SEAS5 and ERA5

We first derive the two leading maximum covariance anal-
ysis (MCA) coupled modes of tropical–extratropical co-
variability between mid-latitude (25–75◦ N) geopotential
height at 200 hPa and tropical (15◦ S–30◦ N) outgoing long-
wave radiation in ERA5 reanalysis data for the period 1993–
2016 (ERA-S; Fig. 3). MCA modes found for the extended
period 1979–2020 (ERA-L) are shown in Fig. S1 in the Sup-
plement. The two pairs of patterns identified in this way
are the South Asian monsoon (SAM; Fig. 3d) paired with
the circumglobal teleconnection (CGT; Fig. 3a) pattern for

MCA mode 1 and the western North Pacific summer mon-
soon (WNPSM; Fig. 3j) paired with the North Pacific high
(NPH; Fig. 3g) for MCA mode 2.

The SAM is characterised by a large rainfall band stretch-
ing from the Arabian Sea towards the western edge of the
South China Sea, with a peak of negative OLR (relatively
high rainfall) centred over the Indian peninsula (Fig. 3d). The
CGT pattern shows five centres of positive Z200 anomalies
over the Iberian Peninsula, central Asia on the eastern side
of the Caspian Sea, eastern China, the North Pacific and the
southeastern USA (Fig. 3a). The WNPSM pattern features a
region of enhanced convective activity over the tropical west-
ern Pacific between 25 and 30◦ N accompanied by an area
of suppressed convective activity on its western side centred
over the South China Sea (Fig. 3j). The main feature of the
NPH is a ridge in Z200 located at the western side of the
North Pacific; however this pattern also shows a zonally ori-
ented wave train like the CGT pattern but with centres of
action shifted in longitude (Fig. 3g). These four patterns can
explain up to 25 % of the variance in the Z200 and OLR fields
depending on the region (not shown).

The key features described above for the ERA-S MCA
modes 1 and 2 (Fig. 3a, d, g, j) are qualitatively very close to
those found for the 1979–2020 period (ERA-L; Fig. S1a, d,
g, j) or ERA-Interim (Figs. 3 and 4 in Di Capua et al. 2020a).
The spatial correlation between ERA-L and ERA-S MCA
modes ranges between 0.8 and 0.9 (Table 2), showing that
these patterns are robust across different versions of ERA re-
analysis and quite insensitive to the chosen period. However,
when MCA modes are calculated on SEAS5 seasonal fore-
casts initialised on the 1 May and compared to ERA-S, a few
key differences arise (Fig. S2). Overall each ERA-S MCA
mode (Fig. 3a, d, g, j) shares common features with its cor-
responding SEAS5 MCA mode (Fig. S2a, d, g, j). This simi-
larity can be quantified by calculating the spatial correlation
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Figure 3. Causal maps for ERA5. Left column: MCA patterns for Z200 and OLR fields for ERA-S. MCA mode-1 Z200 (a) shows the CGT
pattern. MCA mode-1 OLR shows the SAM (d). MCA mode-2 Z200 shows the NPH (g). MCA mode-2 OLR shows the WNPSM (j). Central
column (b, e, h, k) shows causal maps for the effect of each MCA pattern on Z200 fields. Right column (c, f, i, l) shows causal maps for
the effect of each MCA pattern on OLR fields. The black boxes highlight Southeast Asia (b), the Mediterranean (c), the Sahel region (e) and
India (f) for MCA mode 1 and central western USA (h), eastern Europe (i), Japan (k) and the Maritime Continent (l) for MCA mode 2. Refer
to the text in Sect. 3.2 for an interpretation of the results. Only grid points with corrected p values significant at α = 0.1 are shown.

of each ERA-S MCA mode shown in Fig. 3a, d, g and j with
the corresponding SEAS5 MCA mode in Fig. S2a, d, g, and
j, for both the tropical belt (15◦ S–30◦ N, 0–360◦ E) and the
mid-latitude region (25–75◦ N, 0–360◦ E). Results are shown
in Table 2 (second column) and yield values ranging between
0.4 and 0.6.

However, some features that in ERA-S characterise MCA
1 are also found in SEAS5 MCA 2 and vice versa for ERA-
S MCA 2. Thus, features that in ERA-S are separated and
characterise each of the first two MCA modes appear mixed
in SEAS5 (or vice versa). For example, in ERA-S the CGT-
related high to the east of the Caspian Sea is only visible in
MCA 1 (Fig. 3a), while in SEAS5, the same positive sig-
nal is found in both MCA 1 and MCA 2 (although stronger
in MCA 1). Similarly, the convective activity over the In-
dian peninsula, which in ERA-S represents one of the char-
acteristic features of MCA 1 (Fig. 3d) and is very weak in
MCA 2 (Fig. 3j), is found in both MCA 1 and MCA 2 of
SEAS5 almost with similar magnitudes, though the negative
anomalies are stronger in MCA 1 (Fig. S2d, j). In contrast,

the wave pattern over Eurasia characterising ERA-S MCA
2 showing a high-pressure region over eastern Europe and
a low over central Asia (Fig. 3g) is very weak in SEAS5
MCA modes 2 (Fig. S2g) and not present in MCA mode 1
(Fig. S2a). This can be seen in spatial correlation values cal-
culated between ERA-S MCA 1 (MCA 2) and SEAS5 MCA
2 (MCA 1) which also range between 0.4 and 0.6, although
sometimes with reversed sign (opposite phase of the pattern)
(Table 2, third column). Therefore, we conclude that despite
the general resemblance of the first two SEAS5 MCA modes
to those calculated in ERA-S, working with a mixed signal
would hinder the interpretability of parts of the results, since
it would make it difficult to effectively separate the causal
effect of the SAM–CGT patterns from that of the WNPSM–
NPH pair.

To account for this problem, SEAS5 MCA modes have
been re-calculated by projecting ERA-S MCA patterns onto
SEAS5 Z200 and OLR 3D fields, as explained in Sect. 2.2.
Then, to visualise the equivalent SEAS5-R MCA modes
(where SEAS5-R depicts the MCA modes calculated by pro-

Weather Clim. Dynam., 4, 701–723, 2023 https://doi.org/10.5194/wcd-4-701-2023



G. Di Capua et al.: Validation of boreal summer tropical–extratropical causal links in seasonal forecasts 709

Figure 4. Causal maps for SEAS5-R. SEAS5-R MCA (calculated as the projection of ERA-S on SEAS5 Z200 and OLR fields) and related
causal maps. Left column: MCA patterns for Z200 and OLR fields for SEAS5-R calculated as composites of time steps with the MCA time
series values higher than 1 standard deviation (SD). MCA mode-1 Z200 (a) shows the CGT pattern. MCA mode-1 OLR shows the SAM (d).
MCA mode-2 Z200 shows the NPH (g). MCA mode-2 OLR shows the WNPSM (j). Central column (b, e, h, k) shows causal maps for the
effect of each MCA pattern on Z200 fields. Right column (c, f, i, l) shows causal maps for the effect of each MCA pattern on OLR fields.
The black boxes highlight Southeast Asia (b), the Mediterranean (c), the Sahel region (e) and India (f) for MCA mode 1 and central western
USA (h), eastern Europe (i), Japan (k) and the Maritime Continent (l) for MCA mode 2. Refer to the text in Sect. 3.2 for an interpretation of
the results. Only grid points with corrected p values significant at α = 0.05 are shown (see “Data and methods” for further details).

jecting ERA-S MCA patterns onto SEAS5 fields), compos-
ites of time steps with the MCA time series values higher
than 1 standard deviation (SD) are calculated (Fig. 4a, d, g,
j). As a result, a much closer resemblance between SEAS5-R
and ERA-S MCA patterns is obtained and the spatial corre-
lation coefficients between SEAS5-R and ERA-S MCA pat-
terns reach values of ∼ 0.8–0.9 (Table 2, fourth column).
Note that the difference in the magnitude of the anomalies
shown in Figs. 3a, d, g, and j and Figs. 4a, d, g and j is greatly
diminished if ERA5 MCA patterns are plotted with the same
methods, i.e. plotting composites of time steps with the MCA
time series values higher than 1 SD (see Figs. S3 and S4 in
the Supplement). In the remainder of this paper, we will anal-
yse the causal effect of the SEAS5-R MCA modes shown in
Fig. 4.

3.2 Causal maps in SEAS5 and ERA5

Having defined ERA-S and SEAS5-R MCA modes, we ap-
ply the concept of causal maps to detect the causal effect of
each of these four patterns (two for each mode) on Z200 and
OLR fields, in the range 15◦ S–75◦ N.

Causal maps calculated for the effect of ERA-S CGT
and SAM at lag −1 on Z200 and OLR fields are shown in
Fig. 3b–c and Fig. 3e–f respectively. Note that both the CGT–
SAM time series pair and the NPH–WNPSM pair share a
significant correlation of r ∼ 0.5–0.6 at lag 0 (Table S1 in
the Supplement). In contrast, the SAM–WNPSM and CGT–
NPH pairs show a non-significant correlation close to r ∼ 0.
Thus, we analyse the two MCA pairs separately. The main
features are the effect of SAM on Sahel Z200, the tropical
Pacific Ocean, a high–low pattern in the North Pacific and
the negative effect on Z200 in central Europe (Fig. 3e). A
positive causal effect (positive β value) of SAM on Sahel
Z200 means that enhanced rainfall over the Indian monsoon
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region tends to be followed 1 week later by higher Z200
anomalies over the Sahel region and the tropical Pacific. In
contrast, increased SAM activity leads to negative β values
over central Europe Z200, positive β values southwest of
Alaska and negative β values in the eastern North Pacific
Z200 (Fig. 3e). A positive causal effect (positive β values) of
the CGT pattern on Z200 is mostly concentrated in the sub-
tropical North Atlantic; southern Europe; central, northern
and eastern Asia; the North Pacific; and southeastern USA
(Fig. 3b). Thus, these regions will experience positive Z200
anomalies 1 week after an enhanced CGT pattern. In con-
trast, the North Atlantic (around Iceland), southern Asia and
the Arabian Sea, the eastern North Pacific, the Philippine
Sea, and Canada will experience negative Z200 anomalies
(negative β values; Fig. 3b). In general, β values for OLR
causal maps (Fig. 3c and f) mirror those for the Z200 field
in the mid-latitudes, while in the tropics they add the in-
formation on tropical convective activity, which is not de-
tected by Z200 anomalies. In Fig. 3c negative β values over
southern India indicate that an enhanced CGT pattern leads
to lower OLR values and thus increased convective activity
over the region. In Fig. 3f the tilted band of convective activ-
ity stretches from the Arabian Sea and central India towards
the Maritime Continent. This convective activity is related
to the boreal summer intraseasonal oscillation (BSISO), as
shown in Di Capua et al. (2020a).

Causal maps calculated for the effect of NPH and WNPSM
on Z200 and OLR fields are shown in Fig. 3h and i and
Fig. 3k and l, respectively. Causal maps for the effect of NPH
on Z200 and OLR fields display a zonally oriented pattern
that encircles the northern mid-latitudes (Fig. 3h, i). Positive
β values in Fig. 3h indicate that an enhanced NPH pattern
(Fig. 3g) leads to positive Z200 anomalies over the North At-
lantic (around Iceland), southeastern China, the NPH region
and the northwestern USA. Negative β values over central
and eastern Asia and over the eastern North Atlantic indi-
cate that an enhanced NPH pattern is followed 1 week later
by negative Z200 anomalies over these regions. The effect
of WNPSM is more confined to eastern Asia and the North
Pacific, where an arch-shaped pattern stretches from the trop-
ical western Pacific, reaching Alaska and the US west coast
(Figs. 3k, l and S1k, l). Suppressed convective activity over
the South China Sea and the Philippine Sea and increased
convective activity over the WNPSM are followed 1 week
later by negative Z200 anomalies over Southeast Asia and
central Asia and positive Z200 anomalies over northeastern
Asia and the US west coast (Fig. 3k, l).

In general, a two-way causal link between tropical con-
vection and mid-latitude circulation is shown for both MCA
modes: the causal effect of SAM and WNPSM reaches the
northern mid-latitudes, while the effect of the mid-latitude
CGT pattern and NPH extends to subtropical latitudes. Con-
sistent results are obtained for ERA-L (see Fig. S1) with
more significant causal links (likely due to the increased
length of the 1979–2020 time series), improving the clarity

of the spatial patterns. These patterns also show great resem-
blance to those produced using the ERA-Interim reanalysis
in Di Capua et al. (2020a) (see their Figs. 3 and 4).

Causal maps produced with SEAS5-R MCA modes and
SEAS5 OLR and Z200 fields using all the available 600 years
(Fig. 4) show similar spatial patterns to those obtained with
ERA-S (Fig. 3). In general, the sign and the geographical
position of the causal links detected in SEAS5 are consis-
tent with those found in ERA5, meaning that the effect of
each MCA mode on the analysed fields is consistent in sign
and spatial location between the two datasets. For exam-
ple, the link SAMτ=−1→Z200τ=0 |CGTτ=−1 shows a pos-
itive causal effect on the Sahel region both in ERA5 and
SEAS5 (Figs. 3e and 4e). Thus, the first key result obtained
in this section is that the main tropical–extratropical intrasea-
sonal causal relationships in boreal summer in the Northern
Hemisphere are at least qualitatively well represented in the
SEAS5 system. These causal maps also show that the two-
way causal pathway between tropical convective activity and
extratropical circulation is captured by the seasonal forecasts.
Thus, on the one hand we gain confidence in the interpre-
tation of the earlier ERA-Interim and ERA-S/L causal map
analysis, which is reproduced by SEAS5, and on the other
hand we show that, to a first approximation, seasonal fore-
casts can reproduce such causal links.

When SEAS5 MCA modes, which capture the strongest
co-variability signal in SEAS5 seasonal forecasts, are used
to produce causal maps (see Supplement, Fig. S2), similar
spatial structures and signs of the causal links are detected.
To compare the strength of the β coefficients in ERA5 and
SEAS5, we proceed by using the subsampling technique as
described in Sect. 2.4. Note that comparing β coefficients
obtained using a time series of 600 years (SEAS5-R) with
those calculated using 24 years (ERA5-S) would not repre-
sent a good way to assess differences in the strength of the
causal signal.

3.3 Causal effect strength in SEAS5 and ERA5

To assess the difference in strength between SEAS5-R and
ERA-S β values, we use the causal maps obtained from
subsampling Experiment A, as described in Sect. 2.4. To
make sure that we properly assess changes in the strength
of the causal effect between the two datasets, we (a) use
the same number of years as in ERA5-S (24 years) and
(b) fix the direction and significance of the causal links for
each grid point to be the same as those detected for the
ERA5 dataset (Fig. 3). As an example, if we analyse the
effect of SAM and CGT on the Z200 field in the ERA5
dataset for the grid point at 20◦ N, 16◦ E, we find a signif-
icant positive β coefficient for the link SAM→Z200|CGT
and a significant negative β for the link CGT→Z200|SAM
(plus a certain self-influence of the Z200 time series on it-
self). Then, we calculate the corresponding β coefficients for
each of the 1000 SEAS5 subsamples by imposing the same
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causal parents as those found in ERA5. This way, we ob-
tain a set of 1000 β coefficients, for each analysed causal
link and for each grid point, which would be visualised in
1000 causal maps (see Fig. S6a). The causal maps obtained
by averaging these 1000 causal maps are shown in Fig. 5a,
d, g and j for links CGT→Z200|SAM, SAM→Z200|CGT,
CGT→OLR|SAM and SAM→OLR|CGT, respectively. In
general, the strengths of the β values obtained in Fig. 4 tend
to be of the same magnitude as the mean β values obtained
in the 1000 subsamples.

Next, we compare the βERA5 absolute values to the ab-
solute values of the 1000 βSEAS5 obtained in subsampling
Experiment A. Here we use absolute values as we intend to
compare the strength of the β coefficients and not the sign.
Notably, the average percentage of β values in the subsam-
pling experiment for which the sign does not agree with that
of βERA5 is ∼ 20 %. Note that fixing the set of causal parents
implies that the β coefficients are calculated by regressing on
the same set of parents used for ERA-S; however in SEAS5
the sign and strength of the β coefficient can still vary. For
each grid point, we calculate the probability density func-
tion describing the distribution of the 1000 βSEAS5 and es-
timate the 0th, 20th, 40th, 60th, 80th and 100th percentiles
(Fig. S6b). Then, we categorise the βERA5 as falling into
one of the selected quantile ranges or above/below the max-
imum/minimum of the distribution. For example, in Fig. S6
the β coefficients for the grid point at 20◦ N, 16◦ E are anal-
ysed, and the βERA5 value is shown to fall beyond the 100th
percentile, meaning that for that grid point, all of the 1000
βSEAS5 coefficients are smaller in strength than the observed
βERA5 value. The overall results for the analysed region are
shown in Fig. 5b, e, h and k, where yellow shaded grid
points indicate that βERA5 coefficients fall in the middle of
the βSEAS5 distribution, while blue/red shaded grid points in-
dicate βERA5 coefficients falling in the lowest/uppermost tails
of the βSEAS5 distribution.

In general, for MCA 1 orange/red colours dominate all
four causal maps, among which tropical and high-latitude
regions show the most underestimated βSEAS5 values com-
pared to the βERA5 reference point (Fig. 5b, e, h, k). His-
tograms describing the percentage of grid points falling in
each category for each causal map are shown in Fig. 5c, f, i
and l. Results show that βERA5 values for the vast majority
(∼ 70 %) of the grid points fall above the 80th βSEAS5 per-
centile, and about 5 %–20 % fall above the 100th percentile,
meaning that the SEAS5 subsamples are never able to repro-
duce the observed βERA5 values for those specific grid points.
In contrast, the few regions where the strength of βSEAS5 is
overestimated include the Middle East and the Arabian Sea.
Similar results are shown for MCA 2 (Fig. 6), with βERA5
values exceeding the 80th percentile of the SEAS5 subsam-
ple distribution for 60 %–70 % of the grid points. The per-
centage of grid points exceeding the 100th percentile is how-
ever reduced compared to MCA 1, with only 1 %–10 % of

the grid points showing βERA5 values exceeding the maxi-
mum βSEAS5 of the distribution.

The dependence of causal maps on the time of initialisa-
tion of SEAS5 has also been analysed. The same plots as
Figs. 4–6 produced with SEAS5 seasonal forecasts initialised
on 1 March (rather than 1 May) are shown in the Supplement
(see Figs. S5, S7–S8). Figures 4–6 are very consistent with
Figs. S5, S7 and S8; thus the initialisation date of SEAS5
does not have a qualitative influence on the causal maps cal-
culated over the entire 1993–2016 period. The apparent in-
dependence of the initialisation date is most likely explained
by the independence of the β coefficients of the absolute val-
ues of a certain variable in a specific year. As explained in
Sect. 2, the β coefficients represent the relative change in SD
of one actor given a certain change in the values of its parents
(expressed in SD).

Finally, in Fig. 7 we check that the observed tendency to-
wards underestimation of causal effect strengths does not de-
pend on the chosen p-value threshold (also see the Supple-
ment, Sect. S1 and Fig. S9). We demonstrate that even us-
ing non-causal β values, i.e. those β values calculated for
grid points where the p value> 0.1 and therefore not rep-
resenting causal links in Figs. 3, 5 and 6, the underestima-
tion by SEAS5, though less strong, still dominates all causal
maps (Fig. 7). We would like to highlight that, using a p
value= 1.0 (i.e. no threshold), up to 80 % of the obtained β
values do not represent causal links. Nevertheless, a peak be-
tween the 80th and 100th percentiles is still clearly also vis-
ible for very high p values, and the number of β values that
fall above the 80th percentile (which should be 20 % in case
an underestimation effect of the βERA5 is not present) is still
found between 30 % and 49 % even in the most extreme case
(p value= 1.0). Thus, we can confidently state that, quali-
tatively, the underestimation of βERA5 by SEAS5 does not
depend on the chosen p value. However, the exact magni-
tude of the underestimation effect, i.e. the obtained β values
for each p-value threshold, can vary.

3.4 Causal effect spread in the SEAS5 ensemble

To assess whether the location, sign and strength of the causal
links change between SEAS5 and ERA5 when the PCMCI
algorithm is run in the 1000 subsamples of SEAS5 with-
out imposing ERA5 causal parents, the results from subsam-
pling Experiment B are analysed (see Sect. 2.4). The result-
ing 1000 causal maps are averaged and shown in the left col-
umn in Figs. 8 and 9. For each grid point, the mean β value is
calculated only if at least 100 β value results are significant
at an α = 0.10 level; however, non-significant values are not
allowed to enter the mean. Applying this double threshold
(which is not done in Fig. 3) notably shrinks the area of spa-
tial patterns compared to those in Figs. 3 and 4; however here
we concentrate only on the β values contained in the regions
highlighted by black boxes in Figs. 8 and 9.

https://doi.org/10.5194/wcd-4-701-2023 Weather Clim. Dynam., 4, 701–723, 2023



712 G. Di Capua et al.: Validation of boreal summer tropical–extratropical causal links in seasonal forecasts

Figure 5. Strength of the β coefficients in subsampling Experiment A for MCA 1. (a) Causal effect for CGT→Z200|SAM averaged over
the 1000 subsamples obtained in the SEAS5 dataset (initialised on 1 May). Direction and significance of the causal links are imposed to
be the same as calculated in Fig. 3. (b) βERA5 compared to βSEAS5 quantiles for the CGT→Z200|SAM link. (c) Histogram showing the
percentage of grid points for which the βERA5 falls in a certain quantile range as obtained for βSEAS5 coefficients. Panels (d), (e) and (f) are
the same as for panels (a), (b) and (c) but for the SAM→Z200|CGT link. Panels (g), (h) and (i) are the same as for panels (a), (b) and (c)
but for the CGT→OLR|SAM link. Panels (j), (k) and (l) are the same as for panels (a), (b) and (c) but for the SAM→OLR|CGT link.

Due to the complexity of the spatial patterns shown in the
causal maps in Fig. 3, and to the smaller number of signif-
icant grid points available in ERA-S compared to SEAS5-R
(as visualised in Figs. 3 and 4), calculating spatial correla-
tions is not the most appropriate way to compare the two sets
of causal maps. A high (or low) spatial correlation may re-
sult from strong or weak agreement in different regions, but
it would not be possible to discern from which specific area
the signal is originating. Moreover, the position of the sig-
nificant links is not the same between ERA-S and SEAS5
subsampling Experiment B.

To provide a meaningful comparison, we choose four key
regions for each MCA mode, and for those regions we anal-
yse the characteristics of the causal effect in detail. We iden-
tify these regions based on (i) the prominence of the signal in
Figs. 3 and 4 and/or (ii) the misrepresentation of the strength
of the β values in Figs. 5 and 6. By applying these crite-
ria, the chosen geographical regions (shown in Figs. 8 and
9) include (a) the Sahel region, (b) Southeast Asia, (c) In-
dia and (d) the Mediterranean for MCA mode 1 (Fig. 8) and
(a) Japan, (b) central western USA, (c) the Maritime Conti-
nent and (d) central eastern Europe for MCA mode 2 (Fig. 9).

The spatial domains used to define these regions are shown
in Table 3. For each region and for each sample in the 1000-
ensemble member subsampling Experiment B, the causal ef-
fect is spatially averaged (accounting only for significant val-
ues; i.e. zero values are discarded as they are not significant),
and the absolute value is taken after averaging. In this way,
we obtain a distribution of 1000 β values for each region of
interest. Note that we choose to consider spatially averaged
absolute β values as indicators for corresponding telecon-
nection strength to focus on the strength of the causal effect
rather than the number of significant grid points or the sign
of the connection. Probability density functions (PDFs) for
the subsampling results of each β value (one for each of the
eight regions in Table 3) are estimated, and the reference β
values calculated in ERA-S are shown as magenta vertical
lines in each PDF in Figs. 8 and 9. We do not show the refer-
ence β values for ERA-L as those are calculated with a larger
number of years and would not represent a fair benchmark to
compare them with β values obtained from a different set of
years.

For MCA mode 1, which is characterised by the SAM–
CGT pair, we show that the link from the SAM to Sahel
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Figure 6. Strength of the β coefficients in subsampling Experiment A for MCA 2. (a) Causal effect for NPH→Z200|WNPSM averaged
over the 1000 subsamples obtained in the SEAS5 dataset (initialised on 1 May). Direction and significance of the causal links are imposed to
be the same as calculated in Fig. 3. (b) βERA5 compared to βSEAS5 quantiles for the NPH→Z200|WNPSM link. (c) Histogram showing the
percentage of grid points for which the βERA5 falls in a certain quantile range as obtained for βSEAS5 coefficients. Panels (d), (e) and (f) are
the same as for panels (a), (b) and (c) but for the WNPSM→Z200|NPH link. Panels (g), (h) and (i) are the same as for panels (a), (b) and
(c) but for the NPH→OLR|WNPSM link. Panels (j), (k) and (l) are the same as for panels (a), (b) and (c) but for the WNPSM→OLR|NPH
link.

Table 3. Spatial domains of selected regions.

Region Spatial domain Causal link

MCA mode 1 Sahel 13–45◦ N, 0–45◦ E SAM→Z200|CGT
Southeast Asia 20–40◦ N, 70–120◦ E CGT→Z200|SAM
India 15–30◦ N, 55–90◦ E SAM→OLR|CGT
Mediterranean 23–43◦ N, 0–40◦ E CGT→OLR|SAM

MCA mode 2 Japan 25–45◦ N, 120–150◦ E WNPSM→Z200|NPH
Central western USA 35–60◦ N, 230–265◦ E NPH→Z200|WNPSM
Maritime Continent 5◦ S–10◦ N, 110–150◦ E WNPSM→OLR|NPH
Central eastern Europe 40–70◦ N, 0–50◦ E NPH→OLR|WNPSM

Z200 (SAM→Sahel Z200|CGT) is the one with the largest
bias between SEAS5-R and ERA-S, with no subsample in
our 1000-member subsampling Experiment B being capable
of reproducing the ERA-S causal link strength (Fig. 8b), con-
sistent with that shown in Fig. 6e. By contrast, the causal ef-
fect of SAM on OLR over India (SAM→ India OLR|CGT)
falls in the respective range of values of the 1000 subsam-
ples, with the ERA-S β values falling between the 10th and

the 90th percentile (Fig. 8f). This result is again in agreement
with that shown in Fig. 5j, which depicts parts of the Arabian
Sea as a region where βSEAS5 is overestimated. Similarly,
also β coefficients for the causal effect of CGT on OLR over
the Mediterranean (CGT→Medit. OLR|SAM) show a good
agreement between ERA5-S and SEAS5-R (Fig. 8h). Thus,
in these regions the β values are compatible with those for the
reanalysis data when the spread of SEAS5 β values is con-
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Figure 7. Experiment A, sensitivity test. (a) Histogram showing the percentage of grid points for which βERA5 falls in a certain quan-
tile range as obtained for βSEAS5 coefficients for the link CGT→Z200|SAM. Panel (b) is the same as for panel (a) but for the link
SAM→Z200|CGT. Panel (c) is the same as for panel (a) but for the link CGT→OLR|SAM. Panel (d) is the same as for panel (a) but
for the link SAM→OLR|CGT. Panel (e) is the same as for panel (a) but for the link NPH→Z200|WNPSM. Panel (f) is the same as for
panel (a) but for the link WNPSM→Z200|NPH. Panel (g) is the same as for panel (a) but for the link NPH→OLR|WNPSM. Panel (h) is
the same as for panel (a) but for the link WNPSM→OLR|NPH. In each panel, the percentage of non-causal grid points analysed and the
percentage of grid points for which the β values exceeds the 80th percentile is highlighted for p values in the range {0.1, 0.5, 1.0}.

sidered. The causal effect of the CGT towards Southeast Asia
Z200 (CGT→SE-Asia Z200 |SAM) also shows a βERA5
falling in the middle of the βSEAS5 distribution (Fig. 8d).
However, it is worth noticing that the position of the nega-
tive causal links in Fig. 8c is displaced eastward compared to
that shown in ERA5 (Fig. 3b).

Results for MCA mode 2, analysing the North Pacific high
(NPH) paired together with the western North Pacific sum-
mer monsoon (WNPSM), are shown in Fig. 9. The links from
the NPH towards the northwestern US Z200 (NPH→NW-
US Z200|WNPSM) (Fig. 9d) and from the WNPSM to-
wards the Maritime Continent OLR (WNPSM→M.Cont.
OLR|NPH) (Fig. 9f) are those with the largest difference be-
tween SEAS5-R and ERA-S β values, with ERA-S β val-

ues falling at the upper edge of the PDF (above the 90th
percentile), in agreement with what is shown in Fig. 6b
and k. In contrast, the links from the WNPSM towards
Japan Z200 (WNPSM→ Japan Z200|NPH) (Fig. 9b) and
from the NPH towards central Europe OLR (NPH→CE-EU
OLR|WNPSM) (Fig. 9h) fall towards the centre of the distri-
bution. That is, for those cases in which ERA5 values fall in
the middle of the distribution, the particular modelled field
is more likely to have a low bias. We again test our results
for the dependence on the initialisation date of the SEAS5
dataset. Figures S10 and S11 in the Supplement show the
same as Figs. 8 and 9 produced using SEAS5 initialised on
1 March. The results obtained are qualitatively and quanti-
tatively very similar, with β values for (the same) five out
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Figure 8. Ensemble spread for subsampling Experiment B for MCA mode 1. The mean causal effect is averaged over four key regions.
Mean causal effect averaged over the 1000 subsamples for SAM→Z200|CGT (a), CGT→Z200|SAM (c), SAM→OLR|CGT (e) and
CGT→OLR|SAM (g). Only grid point with β coefficients significant at α = 0.10 (after applying the Benjamini–Hochberg false-discovery
rate correction) are shown. PDFs for the absolute values of the 1000 β coefficients are shown with highlighted 10th and 90th percentiles for
the Sahel region (b), Southeast Asia (d), India (f) and the Mediterranean (h). β coefficients for ERA-S are shown in the PDFs for comparison
by a vertical solid magenta line. The black boxes highlight the Sahel region (a), Southeast Asia (c), India (e) and the Mediterranean (g). The
significance of the β coefficients shown in the causal maps in panels (a), (c), (e) and (g) is described in Sect. 3.4.

of the eight analysed regions falling between the 10th and
the 90th percentile consistently for both SEAS5 initialisation
dates. Hence, the initialisation date does not affect the spread
of the causal effect strengths in subsampling Experiment B
markedly.

It should be noted again that the β values obtained in Ex-
periment B do not refer to the same set of causal links as
shown in Figs. 3, 5 and 6. Thus, we provide the same kind of
information as shown in Figs. 8 and 9 also using the causal
maps obtained in Experiment A (Figs. S12 and S13). In gen-
eral, β values obtained from Experiment A for the analysed
regions show a good agreement for MCA mode 1, where,
like in Fig. 8, the link SAM→Sahel Z200|CGT shows the
strongest bias with βERA5 falling outside the βSEAS5 dis-
tribution (above the 100th percentile), while β values for
Southeast Asia Z200, India OLR and Mediterranean OLR
fall below the 90th percentile (Fig. S12). For MCA mode 2,
all βERA5 values fall between the 90th and the 100th per-

centiles. Thus, the underestimation effect, which in Experi-
ment B is limited to the NPH→NW-US Z200|WNPSM and
the WNPSM→M.Cont. OLR|NPH causal maps (Figs. 8d,f),
also affects causal links WNPSM→ Japan Z200|NPH and
NPH→CE-EU OLR|WNPSM in Experiment A (Fig. S13).
These results further support that, while the spatial pattern
and signs of the causal links are both fairly well reproduced
in SEAS5, the underestimation of the strength of the β values
is found in both Experiments A and B.

3.5 The effect of the ERA5–SEAS5 mean state bias and
ENSO on tropical–extratropical causal links

We investigate how the bias in convective activity between
ERA5 and SEAS5 may affect the misrepresentation of the
monsoon–desert mechanism and find inconclusive results.
SEAS5 shows enhanced convective activity with respect
to ERA5 around the Equator (negative OLR anomalies in
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Figure 9. Ensemble spread for subsampling Experiment B for MCA mode 2. Same as for Fig. 8 but for MCA mode 2. Mean causal
effect averaged over the 1000 subsamples for WNPSM→Z200|NPH (a), NPH→Z200|WNPSM (c), WNPSM→OLR|NPH (e) and
NPH→OLR|WNPSM (g). PDFs for the absolute values of the 1000 β coefficients are shown for Japan (b), northwestern USA (d), Maritime
Continent (f) and central eastern Europe (h).

Fig. S14m,o) and a drier tendency over central India and
the Arabian Sea (positive OLR anomalies in Fig. S14m, o).
Rodwell and Hoskins (1996) have shown that the heat source
provided by the convective activity in the Indian Ocean–Bay
of Bengal region generates Rossby waves that reach the Sa-
hara. However, the latitudinal position of the heat source is
critical: a heat source located in the south (10◦ N) does not
act as a source of Rossby waves capable of reaching the Sa-
hara, while a heat source located around 25◦ N does. Thus,
we investigate whether the dry bias over central India may
explain low causal effect β values over the Sahel and North
African region and calculate causal maps for years with en-
hanced convective activity over central India and for those
with enhanced convective activity over the tropical Indian
Ocean. Despite a certain tendency towards higher β values
over North Africa being detected during years with enhanced
convection over central India in SEAS5 initialised on 1 May
(40 % higher compared to years with enhanced convection
over the Indian Ocean; Fig. S15j), this result is not found in
SEAS5 initialised on 1 March and thus remains inconclusive
(Fig. S15e).

Finally, we investigate the effect of ENSO states on the
sign and strength of the tropical–extratropical causal inter-
actions shown in Fig. 4 and find that the effect of ENSO
positive and negative phases on the SEAS5 dataset is mostly
marginal with a few exceptions. We define Niño 3.4 positive
and negative years based on seasonal (JJAS) SST anoma-
lies averaged over the Niño 3.4 region (5◦ S–5◦ N, 190–
240◦ E) and calculate causal maps for the effect of SEAS5-
R MCA mode 1 and 2 on the Z200 field separately for 90
Niño 3.4 positive and 90 Niño 3.4 negative years. Note that
this set corresponds to those years that fall above/below the
85th/15th quantiles of SST anomalies in the Niño 3.4 re-
gion. These thresholds correspond to [+0.73 K,−0.62 K] for
SEAS5 initialised on 1 March and to [+0.63 K, −0.69 K]
for SEAS5 initialised on 1 May. Both pairs of thresholds are
more stringent than the [+0.5 K,−0.5 K] threshold generally
used in observational data. This definition allows us to have
the same number of El Niño and La Niña years and thus avoid
differences in the magnitude of the β values due to different
sizes of each sample. Moreover, this definition is also consis-
tent with the inherent skewness of ENSO time series, which
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have larger positive peaks though for the majority of the time
the index is negative.

The results for SEAS5-R MCA mode 1 are shown in
Fig. 10 for both Niño 3.4 positive (left column) and Niño
3.4 negative years (right column), as well as for different
initialisation dates (1 March and 1 of May). Comparing the
causal maps in Fig. 10 left and right column with those in
Fig. 4 shows that, in general, the spatial patterns and the sign
of the causal links are not affected markedly by the sign of
the ENSO anomalies. A comparison of the βniño and βniña
values with the βSEAS5 distribution obtained from 1000 sub-
samples of 90 years each (consistent with the length of the
El Niño and La Niña samples) is presented in Fig. S16 (see
Supplement) and shows that βniño and βniña values tend to
fall in the middle of the βSEAS5 distribution. One noteworthy
exception is presented by the βniño and βniña values for the
SAM→Z200|CGT link in the tropical central Pacific (red
cross in Fig. 10a–d). While for El Niño years, the causal ef-
fect of SAM on the tropical central Pacific is positive and
markedly strong (βniño ∼ 0.2–0.3; Figs. 10a, c), during La
Niña years the causal effect is almost absent or weaker in
strength (βniña ∼ 0.1; Fig. 10b, d). In contrast, βniño and βniña
values for the SAM→Z200|CGT link over the Maritime
Continent regions (blue cross in Fig. 10a–d) show the op-
posite result: a strong negative causal link is found during La
Niña years (βniña ∼−0.2; Fig. 10b, d), while during El Niño
years this causal link is completely absent (Fig. 10a, c).

Causal maps for MCA mode 2 and for the ENSO years
versus neutral years (i.e. analysing El Niño and La Niña
years together and separating them from neutral years) are
displayed in Figs. S17–S20 and show similar results. Thus,
we conclude that in general ENSO does not alter the sign
and spatial patterns of tropical–extratropical teleconnection
qualitatively, the only exception being the ENSO region it-
self, where El Niño years see a more prominent causal effect
over the tropical central Pacific and La Niña years over the
Maritime Continent.

4 Discussion

In this work, we have provided a process-guided statisti-
cal analysis, built on causal discovery, of the representa-
tion of boreal summer tropical–extratropical intraseasonal
teleconnections in the Northern Hemisphere in SEAS5 sea-
sonal forecasts by ECMWF. We have analysed the two first
modes of covariability identified using maximum covariance
analysis (MCA) between weekly geopotential height (Z200)
and convective activity (OLR) fields in reanalysis data from
the ERA5 dataset for the period 1993–2016. The first MCA
mode shows the South Asian monsoon (SAM) paired with
the circumglobal teleconnection pattern (CGT), while the
second MCA mode shows the western North Pacific sum-
mer monsoon (WNPSM) paired with the North Pacific high
(NPH). Causal maps showing the causal effect of these four

patterns on Northern Hemisphere Z200 and OLR fields at
1-week lead time for 1979–2020 (Fig. S1; see Supplement)
and 1993–2016 (Fig. 3) are largely consistent with results ob-
tained with ERA-Interim data for the period 1979–2018 (Di
Capua et al., 2020a).

Here, we have focused on assessing the ability of SEAS5
seasonal forecasts in reproducing those results. To achieve
this goal and provide a meaningful comparison, we have pro-
jected the first two MCA modes calculated in ERA5 onto
SEAS5 data and calculated the corresponding causal maps
(Fig. 4). In general, causal maps obtained with SEAS5 cor-
rectly reproduce the sign and the spatial patterns of ERA5
causal maps, though with weaker magnitudes (Fig. 4). Thus,
spatial patterns shown in SEAS5 seasonal forecast causal
maps are validated by those extracted from ERA5: since the
SEAS5 forecasting system can qualitatively reproduce the
patterns seen in ERA5 reanalysis, we gain confidence that
observed causal maps represent the effect of actual physical
mechanisms.

The observed commonly negative bias in causal effect
strength found in SEAS5, i.e. a general underestimation of
the causal effect, may arise for different reasons: (i) ERA5
causal maps are subject to multidecadal variability and/or af-
fected by the limited time span considered or (ii) the SEAS5
forecasting system is missing and/or misrepresenting a key
mechanism for a correct representation of the strength of the
analysed causal links. To test the first hypothesis, we have
performed a subsampling experiment, providing a thousand
causal maps obtained using 24 years of randomly selecting
one member for each forecast year (out of the 25 mem-
bers available for each year). We have imposed the same
set of causal links as observed in ERA-S (Fig. 3) and calcu-
lated the causal effect in the 1000 times subsampled SEAS5
data (Experiment A), showing that in general ∼ 70 % of the
grid points show a βERA5 value above the 80th percentile
of the βSEAS5 distribution. Then, we ran the 1000-member
subsampling experiment a second time but leaving it to the
PCMCI algorithm to identify the causal links characteris-
tic of SEAS5 without further constraint (Experiment B) and
identified eight key regions for which we compared the ob-
served ERA5 causal link strength with the range of SEAS5
values obtained from the subsampling ensemble (Figs. 8 and
9). Although the causal effect strengths in ERA5 are gen-
erally higher than the corresponding mean of the SEAS5
distribution, approximately half of the β coefficients for the
eight analysed regions fall below the 90th percentile of the
SEAS5 distribution (three out of four for MCA 1 and two
out of four for MCA 2). Thus, SEAS5 has difficulty gen-
erating high values of the teleconnection strength especially
over North Africa, North America and the Maritime Conti-
nent (where the ERA5 reference values exceed the SEAS5
90th percentile). In the other analysed regions, for a correct
estimation of the strength of the causal links, using time se-
ries of the same length is crucial to avoid underestimation
effects due to the length of the time series.
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Figure 10. ENSO effect on tropical–extratropical links: MCA mode 1. Panels (a) and (b) show the causal maps for SEAS5 data initialised
on 1 March for the SAM→Z200|CGT link respectively during Niño 3.4 positive and negative years. Panels (c) and (d) are the same as
for panels (a) and (b) but for SEAS5 data initialised on 1 May. Panels (e) and (f) are the same as for panels (a) and (b) but for the link
CGT→Z200|SAM. Panels (g) and (h) are the same as for panels (e) and (f) but for SEAS5 data initialised on 1 May. Only grid points with
corrected p values significant at α = 0.05 are shown.

We have calculated the biases between ERA5 and SEAS5
for SST and U200 JJAS climatologies and showed that time-
mean biases are present both in tropical and extratropical
SST and in the mid-latitude jet over Eurasia (Fig. S14). The
U200 mean-state biases in the mid-latitudes suggest a sys-
tematic northward shift of the subtropical westerly jet across
Eurasia, possibly affecting the waveguide for the CGT and
Silk Road patterns. Future work may employ nudging exper-
iments to test the sensitivity to this northward shift, although
previous work had shown little effect of this phenomenon on
the CGT pattern (Beverley et al., 2019). Changes in the ini-
tialisation dates of the SEAS5 simulations (here 1 March and
1 May) also impact the magnitude of both SST and U200 bi-
ases, with reduced SST biases in SEAS5 data initialised on
1 May and seemingly increased biases for the Eurasian jet
when compared to SEAS5 data initialised on 1 March (see
Fig. S14).

In boreal summer, the CGT pattern arises even without
the heat source provided by SAM (Ding et al., 2011), as it
represents a preferred mode of variability of boreal summer
circulation that can be ignited by different forcings (Korn-
huber et al., 2020; Teng and Branstator, 2019). Recent work
has shown that there is a positive causal link from the SAM
to the CGT (Di Capua et al., 2020b, a). In general, climate
models struggle to reproduce the climatology of SAM rain-
fall patterns, both in magnitude and spatial pattern (Menon et
al., 2013), and SEAS5 seasonal forecasts underestimate the
strength of the SAM convective activity and rainfall over the
Indian peninsula and the Bay of Bengal (see Fig. S14 or Che-
vuturi et al. 2021). The CGT pattern has been shown to be too
weak in System 4 (ECMWF’s previous operational seasonal
forecasting system), likely due to a dry bias in precipitation:
weaker convective activity over the Indian subcontinent does
not provide the heat source that reinforces the CGT pattern
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(Beverley et al., 2019; Ding and Wang, 2005; Di Capua et
al., 2020b). If the forcing (SAM) is too weak, the response
(CGT) will be too weak as well, but this does not necessar-
ily affect the strength of the causal link. Here, our analysis
shows a negative bias in β coefficients over North Africa in
the first MCA mode; thus there is not only a negative bias
in the precipitation over the Indian peninsula, but also the
causal link strength is too weak. In general, our results also
show good agreement with what was shown in Beverley et
al. (2021), in which the interaction between the CGT and the
SAM has been explored by applying a heating source over
the Indian subcontinent in ECMWF System 4. Their results
show that the heating source induced by SAM convective
activity is effective at driving a CGT-like wave train in the
northern mid-latitudes; however the response in the model is
weak compared to the observed patterns.

Despite consistent underestimation of causal link strength
in certain regions (Figs. 5 and 6), these results imply the
ability of the SEAS5 forecast system to reproduce the sign
and the spatial distribution of the observed causal patterns
for boreal summer intraseasonal variability in the Northern
Hemisphere (Figs. 4–9). Although this analysis neither relies
on nor implies a skilful forecast, the causal effect of tropical
and mid-latitude patterns on circulation and convection in the
Northern Hemisphere in SEAS5 seasonal forecasts is qualita-
tively well comparable with that shown in ERA5 reanalysis.
Here we have shown for which regions the agreement be-
tween SEAS5 and ERA5 is good (or for which ERA5 values
at least fall in the range of values shown in the 1000-member
subsampling experiments) and those for which no subsam-
ple of SEAS5 can reproduce values comparable to ERA5.
The region with the strongest bias, which cannot be repro-
duced in SEAS5, is the Sahel region. This may be explained
by the southward shift of OLR and rainfall activity towards
the equatorial Indian Ocean in SEAS5, disrupting the Rossby
wave-forced teleconnection pattern (Rodwell and Hoskins,
1996). However, our analysis to determine the importance of
the latitudinal position of convective activity in the Indian
Ocean basin is inconclusive (Fig. S15).

We further analysed the effect of the El Niño–Southern
Oscillation (ENSO) on these boreal summer tropical–
extratropical links in SEAS5, and we found that, in general,
different ENSO phases do not affect the spatial patterns and
sign of the causal links substantially (see Figs. 10 and S16–
S20). However, depending on the specific region, some ef-
fect on the strength of the causal links is detected. The most
prominent effect is shown in the tropical Pacific–Maritime
Continent area, with causal links over these two regions that
appear or disappear depending on the chosen ENSO phase
(Fig. 10a–d). These findings are generally in agreement with
Di Capua et al. (2020a), who showed that the spatial pat-
terns and the sign of the causal links were mainly unaffected
by ENSO; however, they noticed a regional dependence of
the strength of the causal links on ENSO (see their Fig. 6).
Although the effect of ENSO on the strength of the causal

links seems to be marginal, we highlight those regions where
a change in the strength is identified consistently both for
1 March and 1 May initialisation dates. These regions are
mainly located in the tropical belt, in particular the western
and central tropical Pacific (Fig. S16a–d). Similar results are
found for the effect of neutral versus ENSO active years (see
Figs. S19 and S20). In general, the spatial pattern and sign of
the causal links do not change; however the effect of the iden-
tified MCA patterns seems to increase in the tropical Pacific
during neutral years, likely due to the absence of a strong
ENSO signal. These results align with the findings of God-
dard and Dilley (2005), who showed that the active phase of
ENSO does not affect the numbers of extremes but their over-
all predictability. Nevertheless, as discussed above, a change
in the forcing (e.g. stronger convective activity induced by
ENSO) would still result in a stronger effect even if the (rel-
ative) causal effect does not change.

This information becomes even more relevant in the con-
text of climate change. If EC-Earth (Döscher et al., 2022)
(the Earth system model built by the ECMWF which uses
the same atmosphere model as SEAS5) behaves similarly to
ERA5, we can gain some confidence that at least the sign
and spatial patterns of these tropical–extratropical telecon-
nections are well represented, though the strength of the links
shows a large spread (Figs. 8 and 9). Future work will analyse
how these teleconnections change in future projections under
global warming scenarios. The analysed regions (from the
South Asian monsoon to the North American and Eurasian
continents) are prone to suffering effects of ongoing anthro-
pogenic climate change (Pfleiderer et al., 2019; Mann et al.,
2018; Coumou et al., 2018, 2017; Huntingford et al., 2019;
Turner and Annamalai, 2012). Therefore, it is critical to eval-
uate a model’s ability at reproducing key seasonal modes of
variability and in doing so, identify key targets for model de-
velopment and motivate the improvement of parameterisa-
tion schemes. Ultimately, this could lead to increased relia-
bility of seasonal and subseasonal forecasts: helping in im-
proving warning systems and taking sensible early action
to protect economy and society in the most vulnerable re-
gions, especially for boreal summer, when the effect of cli-
mate change is felt the most (Christidis et al., 2014; Teng
and Branstator, 2019; Kornhuber et al., 2020; Coumou et al.,
2015, 2017).

Finally, this process-based validation analysis represents
a step towards the implementation of hybrid forecasts that
combine statistical with dynamical models to increase the
skill of seasonal and subseasonal weather forecasts (Schepen
et al., 2012). By identifying the regions where a certain pat-
tern exerts a significant influence and/or deriving information
on which regions have a bias in the model, we provide use-
ful information on the regions where the model representa-
tion of these mechanisms should be improved and work to-
wards targeted forecasts. Moreover, general circulation mod-
els show higher skill at forecasting tropical atmospheric dy-
namics than in the mid-latitudes or high latitudes (Shukla,
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1998; Chen et al., 2015); thus, knowing which regions in the
Northern Hemisphere are more affected by tropical precipi-
tation (as shown in Fig. 4) provides valuable information to
improve seasonal forecast skill.

5 Conclusions

In summary, this analysis has shown that ECMWF’s sea-
sonal forecasts have good ability at reproducing the sign
and the spatial patterns of the causal effect of the two main
modes of covariability between tropical convection and mid-
latitude circulation in boreal summer in the Northern Hemi-
sphere. Despite a general underestimation of the causal link
strength, a subsampling experiment has shown that, in most
of the analysed regions, this negative bias is actually con-
tained in the spread of the SEAS5 seasonal forecasts. Thus,
our confidence in the ability of the SEAS5 forecasting system
to qualitatively correctly represent those causal links identi-
fied in ERA5 reanalysis is increased. The effect of differ-
ent ENSO phases (or active ENSO versus neutral years) on
tropical–extratropical links seems to be marginal, although
biases in the SEAS5 model (e.g. too weak convective activ-
ity in the SAM region) may explain this discrepancy with
observations. Further work is needed to confirm these results
and their implications. Finally, the causal links represented in
these causal maps represent a starting point to produce a new
family of hybrid statistical model-based forecasts. In conclu-
sion, this analysis has shown the usefulness of causal discov-
ery algorithms as a tool for providing process-guided statis-
tical validation of general circulation models and has led to
increased knowledge on the effects of tropical–extratropical
teleconnections in boreal summer in the Northern Hemi-
sphere.
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