
Weather Clim. Dynam., 4, 823–831, 2023
https://doi.org/10.5194/wcd-4-823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Exploiting the signal-to-noise ratio in multi-system predictions of
boreal summer precipitation and temperature
Juan Camilo Acosta Navarro and Andrea Toreti
Joint Research Centre, European Commission, Ispra, Italy

Correspondence: Juan Camilo Acosta Navarro (juan.acosta-navarro@ec.europa.eu)

Received: 7 February 2023 – Discussion started: 14 February 2023
Revised: 20 July 2023 – Accepted: 21 July 2023 – Published: 20 September 2023

Abstract. Droughts and heatwaves are among the most
impactful climate extremes. Their co-occurrence can have
adverse consequences on natural and human systems.
Early information on their possible occurrence on seasonal
timescales is beneficial for many stakeholders. Seasonal cli-
mate forecasts have become openly available to the commu-
nity, but a wider use is currently hindered by limited skill
in certain regions and seasons. Here we show that a simple
forecast metric from a multi-system ensemble, the signal-to-
noise ratio, can help overcome some limitations. Forecasts
of mean daily near-surface air temperature and precipitation
in boreal summers with a high signal-to-noise ratio tend to
coincide with observed larger deviations from the mean than
summers with a low signal-to-noise ratio. The signal-to-noise
ratio of the ensemble predictions may serve as a complemen-
tary measure of forecast reliability that could benefit users of
climate predictions.

1 Introduction

Droughts are typically slow-onset climate extreme events
(Mishra and Singh, 2010), yet they can be disruptive and
affect millions of people every year (Below et al., 2007;
Enenkel et al., 2020). Heatwaves can intensify and trigger a
faster drought evolution (Bevacqua et al., 2022). Compound
droughts and heatwaves can strongly impact socio-economic
and ecological systems and may even compromise our ability
to reach the United Nations (UN) sustainable development
goal on climate action while strongly reducing the Earth sys-
tem’s current natural capacity to absorb and store carbon (Yin
et al., 2023). The use of seasonal climate forecasts can pro-
vide actionable information to reduce the risks and the im-

pacts of these events on key sectors like agriculture, energy,
transport, and water supply (Buontempo et al., 2018; Ceglar
and Toreti, 2021).

In the last couple of decades, climate predictions have
shown important progress in anticipating the evolution
of various components of the climate system across the
subseasonal-to-decadal time range (Merryfield et al., 2020;
Meehl et al., 2021). A combination of multiple forecast sys-
tems has shown overall benefits as compared with single sys-
tems and can improve forecast quality up to a certain ex-
tent (Hagedorn et al., 2005; Mishra et al., 2019). In spite of
the recent progress, climate predictions still exhibit low to
moderate skill in many regions and seasons (e.g., European
summer; Mishra et al., 2019), something that limits their use
and represents a barrier for stakeholders. Furthermore, mul-
tiple studies have shown that large ensembles are required
to achieve skillful predictions, something that seems to be
related to the forecast systems being more skillful at predict-
ing the real climate than at predicting their own realizations
(i.e., ensemble members). This odd phenomenon has been
called the signal-to-noise paradox (Eade et al., 2014; Scaife
and Smith, 2018; Smith et al., 2020). It is particularly evident
in the Euro-Atlantic region during winter both on seasonal
and decadal timescales. However, boreal summer predictions
have been generally overlooked. A recent study based on
a single forecasting system has shown that sampling years
with a high signal-to-noise ratio (SNR) results in more skill-
ful predictions of monthly temperatures in Japan throughout
the year (Doi et al., 2022).

In this study we exploit multi-system ensembles to test
whether specific boreal summers with higher-than-normal
predictability can be detected through the local relation be-
tween skill and the SNR. We explore this for near-surface air

Published by Copernicus Publications on behalf of the European Geosciences Union.



824 J. C. Acosta Navarro and A. Toreti: Exploiting the signal-to-noise ratio

Figure 1. June–August skill (ACC), time-averaged SNR, and scatterplots of the local relation between the ACC and SNR for (a–c) T2m and
(d–f) precipitation. Each gray dot in (c) and (f) represents the values of the ACC and SNR at each grid box. Only statistically significant
values with a 90 % confidence based on a t test are displayed in (a) and (d). The re-forecasts are initialized every May.

temperature and precipitation, both locally and on large ag-
gregated mid-latitude regions of the Northern Hemisphere.

2 Methods

This analysis is based on seasonal re-forecasts (also known
as hindcasts) of mean boreal summer precipitation and 2 m
mean daily temperature (T2m) for the period 1993–2016
from ECMWF SEAS5 (S5; Johnson et al., 2019), UKMO
(UK Meteorological Office) GloSea6 (S600; MacLach-
lan et al., 2015), Météo-France (S8; Batté et al., 2021),
CMCC (Centro Euro-Mediterraneo sui Cambiamenti Cli-
matici) (S35; Gualdi et al., 2020), and DWD (Deutscher Wet-
terdienst) (S21; Baehr et al., 2015), available from the Coper-
nicus C3S Climate Data Store. The observationally based
datasets to evaluate the re-forecasts are ERA5 (Hersbach al.,
2020) for T2m and GPCC (Global Precipitation Climatol-
ogy Centre) (Schnider et al., 2011) for precipitation. The
use of summer mean T2m is not intended to characterize
single heatwaves but rather to estimate average daily devi-
ations from the mean on a seasonal scale. In a climatological
sense, more intense, more frequent, or longer-than-normal
heatwaves generally define hot summers, and hence average
T2m may be seen as a seasonal integrator of heatwave activ-
ity. Forecast skill is evaluated with the anomaly correlation

coefficient (ACC) between the ensemble mean and the ob-
servational reference. To complement the skill estimates of
the ACC, two additional deterministic skill metrics are com-
puted: the mean squared skill score (MSSS; Murphy, 1988)
and the Gilbert skill score (GSS; WMO, 2014). The mean
squared skill score compares the mean squared error of the
forecasts with the mean squared error of the climatologi-
cal value. It ranges from negative infinity to 1, and values
above 0 indicate skill in the predictions. The GSS measures
the fraction of correctly predicted events over the total num-
ber of predicted events plus misses and takes into consider-
ation the randomly predicted events. The thresholds to de-
fine event/non-event are the top and bottom 25 % summers
for T2m (hot) and precipitation (dry), respectively. Standard-
ization of the anomalies of each ensemble member and the
observational reference data is performed prior to the anal-
ysis. This step guarantees that each member from each sys-
tem has a year-to-year variability comparable to the observed
one. Additionally, the standardized T2m anomalies are lin-
early detrended at the grid level and for each member of the
re-forecasts and in ERA5 to isolate the impact of the long-
term warming as much as possible.

Following Doi et al. (2022), the SNR is calculated as
SNR = µe

σe
, where µe is the multi-system ensemble mean

and σe is the multi-system standard deviation after standard-
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ization, computed across ensemble members for every sum-
mer (June–August) and for each grid box; 25 members per
system are used to have an equal contribution from each sys-
tem.

3 Signal-to-noise ratio and forecast skill

Figure 1 displays spatial maps of the mean (boreal) summer
T2m ACC and time-averaged SNR and a scatterplot which
shows the local relation between the ACC and SNR. On av-
erage, skill values over land increase with higher SNR values.
Negative values of the ACC are nearly non-existent when the
threshold of the SNR exceeds the value of about 0.5 in the
same grid box. Statistically significant skill in T2m is mostly
confined to the tropics and subtropics. However, significant
skill is also found in western North America, the eastern
Mediterranean, central Asia, and southern South America.
Notable exceptions in the tropics are Congo and parts of the
Amazon rainforests. The patterns of the SNR largely mirror
those of the ACC. Generally, there is a good agreement be-
tween areas of high skill (ACC) and areas with a high SNR,
something that is further confirmed by the local relation be-
tween the ACC and SNR (Fig. 1c).

Precipitation follows a similar behavior in terms of the
ACC and SNR, although statistically significant skill is less
widespread (Fig. 1d–f). Areas under the influence of El
Niño–Southern Oscillation (ENSO; Lenssen et al., 2020) ap-
pear as regions with a significant ACC and high SNR. Skill-
ful values are mostly located in the Americas, the Maritime
Continent, and Australia. Precipitation skill and the SNR in
Africa and Asia are much lower, making these the regions
with the largest qualitative differences between the two vari-
ables.

In Fig. 2 we show the effect of the ensemble coherence
on skill. Ensemble coherence is defined as the inverse of the
ensemble standard deviation (σe) minus 1. The spatial distri-
bution of time-averaged ensemble coherence displays many
similarities to the SNR for both T2m and precipitation, al-
though the signal is clearly dominated by the tropics and sub-
tropics with virtually no contribution from the extratropics,
except for a minor one from T2m in western North Amer-
ica and from precipitation in the Middle East (Fig. 2a, c). In
terms of the local relation between ensemble coherence and
skill, T2m displays a clear increase in skill with higher values
of coherence (Fig. 2b). Skill is virtually always positive when
coherence values exceed 0.3, implying that ensemble spread
may also be a good indicator of skill for T2m, similar to the
SNR. For precipitation there is a weaker relation between
skill and ensemble coherence than for T2m as there appear
to be as many locations of high coherence with low skill as
locations with high skill and high coherence (Fig. 2d). This
may not only be a result of a weaker relation between skill
and ensemble coherence than between skill and the SNR but

Figure 2. June–August time-averaged ensemble coherence and
scatterplots of the local relation between the ACC and ensemble co-
herence for (a–b) T2m and (c–d) precipitation. Each gray dot in (b)
and (d) represents the values of the ACC and ensemble coherence
at each grid box. The re-forecasts are initialized every May.

may also be at least partially a result of the large uncertainty
in observed precipitation in many regions.

Based on the observed link between skill and the SNR,
we use the latter one as the single criterion to exclude from
the re-forecasts years with very low and very high values
to understand their impact on skill. When 25 % of the years
(6 years in total) with the highest SNR (Fig. 3a) are excluded,
the results overall show much lower values of the ACC than
when only 25 % of the years with the lowest SNR are ex-
cluded (Fig. 3b). Furthermore, differences between the latter
and the former result (in many cases) in values that are more
highly statistically significant than the ACC computed when
selecting only years without the highest SNR (Fig. 3a, c).
This result highlights the importance that these extreme SNR
years can have on skill. In fact, only skill values that are com-
puted by excluding the bottom 25 % of SNR years (Fig. 3b)
are comparable to the ones estimated when all years are used
for the computation (Fig. 1a).

Interestingly, using the same criterion to select ERA5 T2m
values reveals that in general, excluding years with a high
ensemble SNR results in lower absolute deviations from the
mean than when the low-SNR years are excluded (Fig. 3d).
Additionally, these differences overall coincide with regions
with significant skill differences (Fig. 3c, d). This implies
that years with more extreme deviations from the mean (in
the observations/reanalysis) may be identified a priori by cal-
culating the ensemble SNR of the forecast and that forecast

https://doi.org/10.5194/wcd-4-823-2023 Weather Clim. Dynam., 4, 823–831, 2023



826 J. C. Acosta Navarro and A. Toreti: Exploiting the signal-to-noise ratio

Figure 3. (a, b) Skill (ACC) of T2m predictions excluding 25 % of the years with the (a) highest and (b) lowest local SNR. (c) Difference
between (a) and (b). (d) Difference in the time-averaged absolute deviation from the mean in ERA5 T2m, excluding years with the 25 %
lowest and highest local SNR, respectively. Only statistically significant values with a 90 % confidence based on a t test are displayed in
(a–c). The re-forecasts are initialized every May.

Figure 4. Same as Fig. 3 but for precipitation.
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Figure 5. The same as Fig. 3 but for re-forecasts initialized every June. Boxes in (a) show the areas used in Figs. 6 and 7.

systems are in general more skillful when large deviations
from the mean occur.

Similar to T2m, the exclusion of years with a high SNR
also results in lower overall precipitation skill values than
the one obtained when excluding low-SNR years (Fig. 4a,
b). Important skill differences appear in the Iberian Penin-
sula, Brazil, Australia, and Indonesia (Fig. 4c) and in most
cases imply a shift from non-significant to significant skill
(Fig. 4a and b, respectively). Contrasting with T2m, the rela-
tion between the ACC and the mean absolute deviation from
the mean in the observations is not obvious for precipitation
(Fig. 4c, d). To further investigate this behavior, we analyzed
the relationship between skill differences and the differences
in absolute deviation from the mean for T2m and precipita-
tion, as usual by using the re-forecasts that exclude the 25 %
of the years with the lowest and the highest SNR, respec-
tively. This analysis (not shown) confirms a statistically ro-
bust relationship between skill and large deviations from the
mean observed precipitation which is still weaker than for
T2m.

Figure 5 shows a clearer relation between the impact on
skill of the most extreme years in terms of the SNR and the
absolute T2m anomalies in ERA5, as compared with Fig. 3.
There is a good correspondence in all continents, including
parts of Europe (Fig. 5c, d). The only difference between the
two figures is that they show the results from re-forecasts
with different initialization dates. Both target the boreal sum-
mer months (June–August), but Fig. 3 shows the results from

the May initialization, while Fig. 5 shows the results from
the June initialization. Similar qualitative conclusions can be
made for precipitation (not shown).

In Fig. 6 we use the same methodology to sample years
based on the T2m SNR but applied to specific Northern
Hemisphere mid-latitude regions: the Mediterranean, north-
ern and central Europe, northwestern Asia, eastern Asia,
western North America, and eastern North America. All the
three skill metrics computed show that sampling the 18 years
with the highest SNR generally results in more skillful T2m
predictions than when sampling all 24 years or the 18 years
with the lowest SNR. The only exceptions are observed in
northern and central Europe, where there is basically no skill,
as well as in eastern North America, where all the three se-
lection methods show similar skill levels. Examples of suc-
cessful prediction of extreme (high) T2m years and a high
SNR are 1999 and 2003 in the Mediterranean, 2002 in north-
ern and central Europe, 1998 in northwestern Asia, and 2006
and 1998 in western and eastern North America, respectively.
There are also some examples of extreme (high) T2m and a
low SNR, such as 2012 in the Mediterranean or 1994 and
2016 in eastern Asia. However, a higher overall GSS for the
top T2m positive anomalies indicates that, on average, sam-
pling years with a high SNR results in better prediction of
the extreme events.

A similar analysis on precipitation is shown in Fig. 7. The
results of precipitation qualitatively agree with those of T2m.
Precipitation skill is highest for years with the highest SNR
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Figure 6. Area-averaged time series of observed and predicted, detrended, and standardized mean summer T2m (right axis) and SNR (left
axis) in (a) the Mediterranean (10◦W–35◦ E, 30–45◦ N), (b) northern and central Europe (10◦W–35◦ E, 45–65◦ N), (c) northwestern Asia
(35–70◦ E, 40–65◦ N), (d) eastern Asia (90–130◦ E, 25–45◦ N), (e) western North America (123–100◦W, 30–50◦ N), and (f) eastern North
America (90–70◦W, 30–55◦ N). Skill metrics are provided separately for the 18 years with the highest SNR (excluding blue circles), the
18 years with the lowest SNR (excluding red circles), and for all 24 years. The skill metrics are linear correlation, the mean squared skill
score, and the Gilbert skill score (see “Methods”). The p values of the linear-correlation coefficients are also displayed for each region. The
results are from the re-forecasts initialized in June.

and lowest for years with the lowest SNR, the only excep-
tion being northern and central Europe, again a region with
no skill in either precipitation or T2m predictions. Years of
successful predictions of low precipitation and a high SNR
are 1994 and 2000 in the Mediterranean, 2015 in northern
and central Europe, 1997 and 2001 in eastern Asia, 2003 in
western North America, and 2011 in eastern North America.
Similar to T2m, the GSS for low-precipitation summers is
generally higher for the top 18 years (in terms of the SNR)
than for the bottom 18 years or for all 24 years. It is worth
noting that skill scores for precipitation are generally lower
than those of T2m. This is primarily due to the lower overall
predictability of precipitation compared to T2m. Note also
that the same conclusions are obtained for both T2m and
precipitation when separately sampling only the half of the
years with the highest and lowest SNRs and/or when vary-
ing the threshold to define the most extreme years used in the
GSS calculations (not shown).

4 Discussion

The SNR measures the relative weight of the ensemble mean
anomalies with respect to the ensemble coherence. Its close
resemblance in terms of spatial patterns with a skill metric
like the ACC indicates that it can provide complementary in-
formation related to seasonal climate predictability. We have
shown that in regions where the forecasts are skillful, years
with a high SNR exhibit on average larger observed devia-
tions from the mean than years with a low SNR, for both
T2m and precipitation. This means that forecast systems are
on average more reliable at predicting extremes when there
is a higher coherence. This has been further demonstrated
for several Northern Hemisphere mid-latitude regions during
boreal summer. Ensemble coherence is also a good indicator
of T2m and precipitation predictability, although it appears
to be only suitable for tropical and subtropical locations.

Despite the well-known limitations of climate forecast
systems (e.g., the signal-to-noise paradox), we have shown
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Figure 7. The same as Fig. 6 but for precipitation.

that in a multi-system ensemble, the SNR may provide valu-
able information as it represents an intrinsic measure of reli-
ability for T2m and precipitation forecast. The short span of
24 years defining the common hindcast period is a limitation
of this study. Hence, longer hindcasts would be necessary to
obtain more robust results but are currently unavailable for
most of the multiple systems analyzed.
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