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Abstract. Cyclones are essential components of weather pat-
terns in the densely populated Mediterranean region, pro-
viding necessary rainfall for both the environment and hu-
man activities. The most intense of them also lead to natural
disasters because of their strong winds and heavy precipi-
tation. Identifying sources of errors in the predictability of
Mediterranean cyclones is therefore essential to better antic-
ipate and prevent their impact. The aim of this work is to
characterise the medium-range cyclone predictability in the
Mediterranean. Here, it is investigated in a systematic frame-
work using the European Centre for Medium-Range Weather
Forecasts fifth-generation reanalysis (ERA5) and ensemble
reforecasts in a homogeneous configuration over the 2001–
2021 period. First, a reference dataset of 1960 cyclones is
obtained for the period by applying a tracking algorithm to
the ERA5 reanalysis. Then the predictability is systemati-
cally evaluated in the ensemble reforecasts. It is quantified
using a new probabilistic score based on the error distribu-
tion of cyclone location and intensity (mean sea level pres-
sure). The score is firstly computed for the complete dataset
and then for different categories of cyclones based on their
intensity, deepening rate, motion speed, and geographic area
and season in which they occur. When crossing the location
and intensity errors with the different categories, the condi-
tions leading to poorer or better predictability are discrimi-
nated. The motion speed of cyclones appears to be crucial for
the predictability of the location: the slower the cyclone, the
better the forecast location. In particular, the location of sta-
tionary lows located in the Gulf of Genoa is remarkably well
predicted. The intensity of deep and rapid-intensification cy-
clones, occurring mostly during winter, is for its part partic-

ularly poorly predicted. This study provides the first system-
atic evaluation of cyclone predictability in the Mediterranean
and opens up possibilities to identify the key processes lead-
ing to forecast errors in the region.

1 Introduction

Extratropical cyclones are fundamental components of
weather patterns in the mid-latitudes. The frontal systems
associated with them provide the majority of the necessary
rainfall (Hawcroft et al., 2012), but they can also evolve into
damaging storms (e.g. Roberts et al., 2014). A good represen-
tation of extratropical cyclones in numerical weather predic-
tion systems is therefore essential to prevent their negative
impacts, and identifying sources of forecast error is an im-
portant step in understanding the processes leading to poor
predictability and improving forecasts.

In the Mediterranean, extratropical cyclones are generally
smaller and have a shorter lifetime than in other larger basins
(Campins et al., 2011). However, they are at the origin of
most of the high-impact weather events in the area, includ-
ing intense rainfall (e.g. Flaounas et al., 2018), windstorms
(e.g. Lfarh et al., 2023), and compound events (e.g. Raveh-
Rubin and Wernli, 2016). The location of the Mediterranean
between the tropics and the mid-latitudes, as well as the high
mountain chains enclosing the basin, makes it the site of
complex interactions. The influence of Alpine lee cycloge-
nesis (Trigo et al., 2002) and Rossby wave breaking com-
ing from the Atlantic (Raveh-Rubin and Flaounas, 2017) is
clearly established in the formation of cyclones in the west-
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ern part of the basin. Mediterranean cyclogenesis can also be
influenced by other mountain ranges, the presence of both
polar and subtropical jets, the entrance of Atlantic cyclones
into the basin, or heat lows over land (see Flaounas et al.,
2022, for a review).

Using a piecewise inversion of the potential vorticity equa-
tion, Flaounas et al. (2021) showed that intense Mediter-
ranean cyclones are influenced by two kinds of processes. On
the one hand, the intrusion of a potential vorticity streamer
into the upper troposphere, related to deviation of the polar
jet and to Rossby wave breaking, is identified as a principal
dynamical contribution to cyclogenesis. On the other hand,
diabatic processes, in particular latent heat release, are im-
portant in the lower troposphere, where they act as a source
of potential vorticity, reinforcing the cyclonic circulation.
The relatively warm Mediterranean Sea can also lead to the
formation of tropical-like cyclones, called medicanes, which
has received the interest of the scientific community in re-
cent years (e.g. Miglietta et al., 2021). These phenomena can
produce severe winds and rainfall, as in the cases of Ianos
in September 2020 (Lagouvardos et al., 2022) and Daniel in
September 2023. However, medicanes are very rare, with one
to two events every year (Cavicchia et al., 2014). Thus, their
statistical impact can be considered negligible in our study,
which primarily focuses on the predictability of extratropical
cyclones in the Mediterranean.

Limitations in the representation of cyclogenesis processes
in numerical weather prediction systems can lead to fore-
cast errors propagating through lead times. Additionally and
beyond errors associated with the quality of the numerical
model, the chaotic nature of the atmosphere leads to an in-
trinsic limit of predictability (Lorenz, 1969). More precisely,
slight differences in the initial conditions can lead to radi-
cally different states of the atmosphere as the lead time in-
creases. The forecast error is therefore due to a combina-
tion of limitations in the quality of the available observa-
tions and to the representation of physical processes in the
numerical model, on the one hand, and to the chaotic nature
of the atmosphere, on the other hand (practical and intrinsic
predictability, respectively; see Melhauser and Zhang, 2012).
In the following study, the “practical predictability” will be
denoted by “predictability” for simplicity. Earlier work by
Zhang et al. (2007) in an idealised baroclinic wave simula-
tion and by Baumgart et al. (2019) in hemisphere-wide simu-
lations of potential vorticity structures identified three phases
in forecast error growth. In the first phase, errors in the rep-
resentation of diabatic processes dominate in the first 12 h
of lead time. In the second phase, they are projected to the
upper troposphere for between 12 h and 2 d by tropospheric
divergence. In the third phase, after a 2 d lead time, the error
growth is dominated by the upper-troposphere dynamics.

Ensemble prediction systems have been developed to pro-
vide an estimation of the forecast error growth. They offer
a measure of forecast uncertainty and different possible sce-
narios from perturbed initial conditions and model param-

eterisations (Leutbecher and Palmer, 2008). This is crucial
for extreme weather events, which are hardly sampled, espe-
cially at longer lead times. By providing a spectrum of the
possible outcomes and a measure of the uncertainty, ensem-
ble predictions provide more robust results than a single de-
terministic forecast. For these reasons, ensemble prediction
systems have long proved useful for the early detection of
extratropical cyclones and their associated hazards (Buizza
and Hollingsworth, 2002) or for assessing the sensitivity of
tropical cyclone genesis to the initial conditions (Torn and
Cook, 2013). In the Mediterranean, studies based on ensem-
ble forecasts revealed large uncertainty during the formation
of medicane case studies. This uncertainty has been traced
back to error growth processes occurring along the Rossby
wave guide over the North Atlantic a few days ahead (Pantil-
lon et al., 2013; Portmann et al., 2020).

To the best of the authors’ knowledge, there is currently
no systematic identification of the error sources in the pre-
dictability of Mediterranean cyclones. Earlier work high-
lighted the crucial representation of upper-level dynamical
precursors in the western Mediterranean (Argence et al.,
2008; Vich et al., 2011) or cloud processes and air–sea in-
teractions for medicanes (Miglietta et al., 2015; Tous et al.,
2013), but these results relied on case studies. Using ensem-
ble forecasts, Di Muzio et al. (2019) suggested the existence
of a predictability barrier in the formation of several medi-
canes, but these rare events may not be representative of the
broad spectrum of Mediterranean cyclones. Noteworthy, Pi-
cornell et al. (2011) assessed the deterministic forecast qual-
ity of more than 1000 extratropical cyclones during a whole
year and found that the mean error in location increased from
50 km at a 12 h lead time to 118 km at a 48 h lead time.
However, the results were limited to relatively short forecast
ranges and were not linked with the cyclone characteristics.

On a broader scale, Froude et al. (2007a, b) were among
the first to investigate the predictability of extratropical cy-
clones in a systematic framework. By tracking cyclones in
global forecast data across two winter and two summer pe-
riods, they quantified errors in both location and intensity,
based on comparisons of maximum relative vorticity fore-
casts with analysis data. For the location, they found out that
the error increases almost linearly at a rate of 1.25 geodesic
degrees per day. In terms of intensity, they highlighted dif-
ferences between summer and winter cyclones. In particu-
lar, intense storms occurring during the winter period were
less accurately predicted, which was attributed to an incorrect
representation of their vertical structure. More recent studies
followed a similar approach and showed a systematic slow
bias in the forecast location of North Atlantic cyclones and
a weak underestimation of the intensity for the deepest ones
(Pirret et al., 2017; Pantillon et al., 2017). They also explored
links between the predictability and the dynamics of cyclo-
genesis but faced a robustness issue due to limited samples.

In this paper, ensemble reforecasts are used to systemati-
cally identify errors in the location and intensity of Mediter-
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ranean cyclones. The forecast model covers a 20-year pe-
riod with the same configuration, which allows for extracting
statistically robust signals. The aim of the paper is to char-
acterise cyclone predictability in the Mediterranean region.
Their representation in an ensemble prediction system is dis-
cussed, and the cyclone characteristics leading to poorer or
better predictability are identified. In particular, errors in the
prediction of the cyclone location and intensity are evaluated
for several categories of cyclones, based on their geograph-
ical location and seasonality, intensity, deepening rate, and
motion speed.

The article is structured as follows. Section 2 describes the
data, cyclone tracking methods, and tools used to evaluate the
predictability. The catalogue of Mediterranean cyclones and
the associated climatology is presented in Sect. 3. The pre-
dictability is evaluated firstly for the whole dataset in Sect. 4
and secondly for specific categories of cyclones in Sect. 5.
Finally, Sect. 6 summarises the main results and concludes
the study.

2 Data and methods

2.1 Data for the reference tracks: the ERA5 reanalysis

Reanalyses assimilate historical observation data spanning
decades with both a fixed assimilation scheme and the same
forecast model. ERA5 (Hersbach et al., 2020) is the fifth-
generation reanalysis produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF). It is based
on the Integrated Forecast System (IFS; cycle 41r2) and
includes models for the atmosphere, the land surface, and
ocean waves. The horizontal resolution of the atmospheric
model is about 31 km in the mid-latitudes, and it has 137 ver-
tical levels from the surface to 0.01 hPa. The reanalysis prod-
ucts are available globally with hourly resolution, from 1940
to present. In this study, ERA5 is used from 2001 to 2021
with a 0.25°× 0.25° horizontal grid to produce a reference
set of cyclone tracks on a domain covering the Mediterranean
(25–50° N, 15° W–45° E; see Fig. 1).

2.2 Tracking method for the reference tracks: the
AYRAULT algorithm

Before investigating the predictability of Mediterranean cy-
clones, the first step is to produce a reference catalogue of
cyclone tracks. The tracking method is based on the Ayrault
(1998) algorithm (later AYRAULT), which has been imple-
mented in the open-source Traject software (Plu and Joly,
2023). Originally designed for Atlantic cyclones in coarse
model data (125 km horizontal resolution), AYRAULT had to
be adapted for this study. As stated before, Mediterranean cy-
clones are generally smaller and have shorter lifetimes than
those in the Atlantic (Campins et al., 2011), and ERA5 has a
higher spatio-temporal resolution than any previous reanaly-
sis used with the algorithm. Therefore, the parameters have

been retuned specifically for both ERA5 and the Mediter-
ranean region, starting from the values used in Sanchez-
Gomez and Somot (2018).

The main idea of AYRAULT is to track cyclones firstly in
the relative vorticity field at 850 hPa. The horizontal wind is
then used at both 700 and 850 hPa to choose the best follow-
ing tracking point in the direction of cyclone propagation.
Finally, the track points are paired with the mean sea level
pressure (MSLP) field. In the following, a time step is de-
noted by t ; the relative vorticity field at 850 hPa is denoted
by ζ ; and the zonal and meridional wind fields are denoted
by u and v, respectively. AYRAULT can be separated into
five steps.

1. Data preparation. A moving average with Gaussian
weights is applied to ζ at 850 hPa and to u and v at
850 and 700 hPa to remove noisy features into these
fields. The characteristic length in the weight decay
is 225 km for ζ (to keep a sufficient number of rele-
vant vorticity cores) and 280 km for the wind fields (to
keep the environmental wind and avoid the vortex wind
anomaly).

2. Detection of ζ maxima. Local maxima are detected in
the ζ -smoothed field. A single maximum (the strongest
one) is retained within a radius of 300 km.

3. Loop over successive time steps. For every ζ maximum
at time t , a corresponding maximum at time t + 1 is
searched for using a three-step method. First, the ζ max-
imum at time t is advected by the wind at both 850 and
700 hPa, giving two guess positions for time t + 1. In a
second step, a new ζ maximum at time t+1 is searched
for in the neighbourhood of the two guessed points,
within a radius of 300 km. Third and last, two qual-
ity criteria, based on the distance between the guessed
point and the new ζ location and on the ζ -value varia-
tion, must be fulfilled in order to keep a vortex core at
t+1. A cyclone track is finally defined by the successive
positions of ζ maxima at every time step.

4. Pairing with MSLP. For every point belonging to the
track, the local minimum of MSLP located within a 3°
square centred on the ζ maximum becomes the new
track point.

5. Validation criteria. The tracking process is stopped if
the value of the ζ maximum is less than 10−4 s−1 or if
the MSLP minimum is greater than 1015 hPa. Among
all tracks, only those which last for longer than 24 h and
reach at least 1005 hPa during their lifetime are retained.
This last criterion avoids most of the artefact cyclones.
Indeed, some of the cases with the deepest MSLP over
1005 hPa appear to be local secondary lows caused by
stronger storms crossing northern Europe. Finally, an
additional criterion is applied to only retain tracks en-
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Figure 1. (a) Elevation map over the Mediterranean domain with the toponyms mentioned in the text. (b) Relative frequency of Mediterranean
cyclones based on ERA5 over the 2001–2021 period, defined as the percentage of cyclones having a track point within a radius of 100 km.
Regions of interest are framed by black boxes. Note that the shading scale is not linear.

tering into either the Mediterranean Sea or the Black
Sea.

The Mediterranean-adapted version of AYRAULT previ-
ously described has been successfully tested with a slightly
different configuration in an intercomparison of 10 tracking
methods applied to ERA5 (Flaounas et al., 2023). The pro-
duced dataset remained close to the consensus between all
algorithms in the spatial and seasonal distributions of cy-
clones. In the present study, our dataset is used as a refer-
ence instead of the consensus produced by Flaounas et al.
(2023) for two principal reasons. First, the latter contains
only 206 tracks in the highest confidence level (i.e. consen-
sus of the 10 algorithms), which is not enough for a system-
atic study. At the mean confidence level (i.e. consensus of
5 of 10 algorithms), for the 2001–2021 period and with the
same thresholds used here for the pressure and location of
cyclones, 1231 tracks are detected in Flaounas et al. (2023),
compared to 2853 with AYRAULT. Second, AYRAULT is
conceptually similar to the tracking algorithm applied to the
reforecasts (see Sect. 2.4), which reduces the influence of the
tracking method on the results to focus on the predictability.

2.3 Data for the predicted tracks: the IFS ensemble
reforecasts

Reforecasts are forecasts made retrospectively starting from
historical initial conditions with a fixed model version. They
are a key tool for investigating the predictability of the
Mediterranean cyclones previously tracked in ERA5. The
ECMWF ensemble reforecasts used here are constituted of
10 perturbed+ 1 control members based on the IFS model
(cycle 47r3) and initialised from ERA5 (Vitart et al., 2019).
Initial perturbations of the reanalysis are constructed from
the ERA5 ensemble data assimilation and singular vectors.
Additionally, the model uncertainties are represented using
a stochastically perturbed parameterisation tendency scheme
(Buizza et al., 1999). The reforecasts used here cover a
historical period of 20 years from October 2001 to Octo-
ber 2021, during which they are initialised every Monday and
Thursday at 00:00 UTC, leading to a total of about 2000 base
times. The output spatial resolution of 0.25° is identical to
the one in the ERA5 reanalysis. For each base time, a fore-
cast output is available every 6 h (temporal resolution coarser
than ERA5). Despite the maximum lead time of 14 d avail-
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able with a constant resolution in the reforecasts, the max-
imum lead time is restricted in this study to 144 h (6 d) be-
cause of the short lifetime of Mediterranean cyclones, con-
sidering that only less than 1 % of the cyclones from our
reference dataset last longer than 6 d. The small number of
ensemble members able to produce cyclone tracks at longer
lead times (see Sect. 4.1) points to the need for a limitation of
the maximum lead time. Note that the same cyclone can be
tracked in two successive forecast initialisations. When this
happens, the two forecasts are treated independently.

2.4 Tracking method for the predicted tracks: the
VDG algorithm

In the reforecasts, the tracking of the cyclones is made with
another algorithm (van der Grijn, 2002; hereafter VDG), de-
veloped at the ECMWF and originally designed for the op-
erational tracking of tropical cyclones. The VDG algorithm,
also implemented in the open-source Traject software (Plu
and Joly, 2023), is similar to the one previously applied
(AYRAULT), as it also uses MSLP, the ζ -smoothed field at
850 hPa, and the horizontal wind at 850 and 700 hPa. The
main difference between the two algorithms is that VDG
starts the tracking from a given geographical point or from an
existing track. This characteristic is particularly useful when
it comes to detecting cyclones in the reforecasts from the lo-
cation of the reference tracks. Cyclones detected in ERA5 are
indeed directly linked with the reforecast by the construction
of VDG, as the position of the cyclone in the reforecast at
the initial time r(0) is directly dependent on the presence
of a reference track at the same time. Applying AYRAULT
to the reforecasts would have required an additional step for
matching the forecast and observed cyclones, bringing more
complexity.

At initialisation time, a ζ maximum is searched for in the
reforecast field, in the neighbourhood of the reference track
(previously calculated in ERA5). The tracking in VDG is
then independent of the reference track and is based on a
combination of the past-movement and steering-flow vector
V av, defined as the layer average of the local wind fields at
850 and 700 hPa. In the following, r and r fg are, respectively,
the positions of the cyclone and of the first guess. Apart from
the initial step, the VDG algorithm can be divided as follows.

1. First guess. The steering-flow V av and the past-
movement r(t)−r(t−1) vectors are combined to obtain
the first-guess position of the next tracking point r fg us-
ing the equation r fg(t+1)= r(t)+w[r(t)−r(t−1)]+
(1−w)V avδt . w is a weight parameter ranging from 0
to 1 depending on the temporal resolution of the fore-
cast δt and here set to 0.4. NB at the first time step, only
the steering-flow vector is used (there is no past move-
ment).

2. Detection of the ζ maximum. A maximum is searched
for in the ζ field within a square of 5° centred around
the first guess.

3. Pairing with MSLP. Another search is performed for the
MSLP minimum within a same square of 5°, centred
this time on the ζ maximum. The position of this MSLP
point finally becomes the next track point r(t + 1).

4. Stopping criteria. The tracking of the cyclone is stopped
when the value of the vorticity maximum ζ is less than
the corresponding threshold of 10−4 s−1 or when the
value of the MSLP minimum is greater than 1015 hPa,
as in AYRAULT. This last criterion also implies that the
tracking begins only if a MSLP minimum is found be-
low the pressure threshold. The validation criteria as-
suring that cyclones last longer than 24 h and reach
at least 1005 hPa during their lifetime (applied with
AYRAULT) are not applied here in the reforecasts.

2.5 Comparison of tracking algorithms and final
reference dataset

As demonstrated by Flaounas et al. (2023), using different
cyclone tracking methods often leads to different results in
the Mediterranean. In this study, 2853 cyclones are detected
with AYRAULT in ERA5 for the 2001–2021 period, while
cyclones are detected in the reforecasts using VDG start-
ing from the reference tracks previously built. Using dif-
ferent tracking methods for the reference and the reforecast
tracks can introduce biases into the analysis. To assess the
robustness of the results, VDG is also applied to the ERA5
data, using the tracks detected by AYRAULT as a reference.
Note that VDG is applied to 6 h ERA5 data for consistency
with the temporal resolution of the reforecasts for which it
is tuned. For each track detected by both algorithms, the dif-
ference in terms of location and intensity is calculated for all
simultaneous track points. For 85 % of the tracks, no differ-
ence is found between the two algorithms. However, for 10 %
of the dataset, the distance between AYRAULT and VDG
tracks reaches almost 200 km at the time of minimum MSLP.
To avoid this discrepancy, tracks are removed from the refer-
ence dataset if they are detected in ERA5 by AYRAULT but
not by VDG (206 tracks) or if the maximal distance between
them reaches more than 40 km (687 tracks). With these two
criteria, the two algorithms provide identical tracks in 99 %
of the dataset for both location and intensity. The following
results are based on the remaining 1960 cyclones tracks that
satisfy these two criteria.

2.6 Predictability metrics

The predictability is investigated using the error and spread
in both location and intensity. The relationship between the
mean error and spread is used to verify the ensemble reli-
ability before proceeding with further quantification of the
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predictability. For a reliable ensemble, one should expect the
mean error and spread to be comparable in magnitude.

In the following, errors are calculated by comparing the
location and the intensity of each ensemble member with the
corresponding reference track in ERA5, at each time t of the
cyclone lifetime. The spread is for its part calculated from the
pairwise difference between the members of the ensemble.

To assess the predictability of the cyclone location, we use
the total track error (TTE) as defined in Froude et al. (2007b)
and Leonardo and Colle (2017). TTE is also decomposed into
along-track error (ATE) and cross-track error (CTE). A posi-
tive (negative) ATE stands for a forecast track ahead (behind)
the reference track, while a positive (negative) CTE stands
for a forecast track on the left-hand side (on the right-hand
side) of the reference track. Track errors (TTE, ATE, and
CTE) are calculated for each member individually and are
presented in Sect. 4. Additionally, TTE is here defined for
each forecast cyclone as the mean of the TTEs of the mem-
bers at each time t of the cyclone lifetime. The spread in
location (hereafter σloc) is determined by averaging the dis-
tance between each pair of members as follows:

σloc(t)=
1

N(N − 1)/2

∑
1≤i<j≤N

d
(
r i(t),rj (t)

)
, (1)

where N is the number of members in which the cyclone is
detected by the tracking algorithm at time t , r i (rj ) is the po-
sition of the cyclone in the ith member (in the j th member),
and d is the geodesic distance between the two positions.

Regarding the cyclone intensity, the MSLP error (hereafter
MSLPE) is defined for each member as the difference be-
tween the MSLP of the member and the MSLP of the ref-
erence track at the same time. Unlike errors in the location,
MSLPEs can also be negative. Consequently, 〈MSLPE〉 is
defined as the root mean square of the MSLPEs over the
members, for a specific track and at a specific time t of the
cyclone lifetime. The spread in MSLP (hereafter σint) is for
its part determined from the root mean square of the differ-
ences between each pair of members as follows:

σint(t)=

√
1

N(N − 1)/2

∑
1≤i<j≤N

(
pi(t)−pj (t)

)2
, (2)

where pi (pj ) is the MSLPE of the ith member (j th mem-
ber).

An additional metric is defined to compare distributions of
TTE or MSLPE between different categories of cyclones (see
Sect. 5). In a preliminary step, for each category of cyclone,
a cumulative density function (CDF) of errors is constructed
by taking into account every member of every cyclone track
found at each lead time τ . CDFs of errors are then compared
in a framework close to the continuous ranked probability
score (CRPS) described in Candille et al. (2007). The met-
ric denoted here by cumulative density function error (later
CDFE) measures the distance between a CDF of errors and a
virtual null-error distribution (100 % of the errors equal to 0):

CDFE(Fτ )=
∫ [

Fτ (x)− 1x≥0
]2dx, (3)

here Fτ (x) is the CDF of the errors (either TTEs or MSLPEs)
at a specific lead time τ and 1x≥0 stands for the Heaviside
step function. Note that the CDFE metric has the same di-
mension as the variable on which it is applied. A higher
(smaller) CDFE indicates poorer (better) predictability. At
each lead time, the statistical significance is evaluated using
the Kolmogorov–Smirnov test, which in our case determines
if two CDFs of errors are similar or not at a confidence level
of 95 %. This will ensure the robustness of the difference in
the predictability of several categories of cyclones presented
with the CDFE metric.

3 Climatology of the reference dataset

This section provides the climatology of our reference
dataset, based on the Mediterranean cyclones tracked with
AYRAULT in ERA5 data and satisfying the two criteria of
Sect. 2.5. In particular, the spatial distribution, the seasonal
cycle, the intensity, and the motion speed of cyclones are
presented. Figure 1a shows the ground elevation over the
Mediterranean and toponyms that will be used in this paper.

3.1 Spatial distribution

For the whole 2001–2021 period, a total of 1960 cyclones
are detected in the Mediterranean region, i.e. about 100 cy-
clones every year on average. The colour shading in Fig. 1b
accounts for the number of tracks having at least one track
point within a radius of 100 km, divided by the total num-
ber of tracks. The figure can thus be seen as the relative fre-
quency of cyclone occurrence in our reference dataset, re-
gardless of their stage of development. The spatial distribu-
tion is not homogeneous, as the majority of cyclones are con-
centrated in preferred regions. In particular, six regions of in-
terests, designed to cover equal areas, are identified here by
visual examination of the spatial distribution.

The six preferred regions account for 63 % of the cyclones
in the dataset. The most active of them is the West Mediter-
ranean (22 %). It includes the Gulf of Genoa, in the lee of
the Alps, which is recognised as the most cyclogenetic area
(Trigo et al., 2002). Following it are the regions of the Adri-
atic (11 %), the East Mediterranean (10 %), the Black Sea
(7 %), the Sahara (7 %), and finally the Middle East (6 %).
The importance of the Alps in the formation of the West
Mediterranean cyclones is clearly established (Trigo et al.,
2002). Horvath et al. (2008) show that lee cyclogenesis is
also the dominant formation process for Adriatic cyclones,
whether they form in the Gulf of Genoa or in the Adriatic
itself. The same orographic processes are known to play a
role in the formation of Saharan cyclones in the lee of Atlas
Mountains (Winstanley, 1972; Alpert and Ziv, 1989), while
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Figure 2. Monthly number of cyclones in the six regions defined in
Fig. 1b. Cyclones are counted at their minimum MSLP point and
averaged over the 20-year period.

Thorncroft and Flocas (1997) and Prezerakos et al. (2006)
mostly highlighted the importance of interactions between
the polar and the subtropical jets in Saharan cyclogenesis.
For the Black Sea and generally in the eastern parts of the
Mediterranean, Trigo et al. (2002) argued that cyclones are
formed by different processes. In particular, they stated that
surface cyclones in the Black Sea seem to be associated with
an upper trough in the west of the region, advecting vortic-
ity toward a relatively warm sea. Similar processes are found
in the Aegean. The same authors argued that cyclones in the
Middle East are the manifestation of extensions of the Asian
trough in late spring.

The overall spatial distribution of our dataset is in agree-
ment with previous studies (Alpert et al., 1990; Trigo et al.,
1999; Maheras et al., 2001; Campins et al., 2011; Lionello
et al., 2016; Aragão and Porcù, 2022; Flaounas et al., 2023).
However, two minor differences remain. First, the hotspot
in the western Atlas Mountains and the high density of cy-
clones over the Iberian Peninsula described in the literature
do not appear here. This is mainly due to the criteria used to
construct our dataset by removing weak thermal lows with
a pressure threshold of 1005 hPa, on the one hand, and by
removing cyclones that do not enter into either the Mediter-
ranean Sea or the Black Sea, on the other hand. Second, the
high density of cyclones found here in the Adriatic is not
highlighted in the majority of previous studies.

3.2 Seasonal cycle

Figure 2 shows the number of cyclones striking any of the six
regions of interest during each month of the year, averaged
over the 20 years of our dataset. One can see that the num-
ber of cyclones in the Mediterranean is highly dependent on
the season. The peak activity spans from November to May,
while the period from June to October experiences fewer oc-
currences. However, this general trend is also dependent on
the region considered.

In the West Mediterranean and in the Adriatic, the cold
season generally experiences more cyclones. Horvath et al.
(2008) came to the same conclusion for the majority of Adri-
atic cyclones while highlighting the importance of a subcat-
egory of summer cyclones for their association with high-
impact weather. In the East Mediterranean, more cyclones
are also found during the cold part of the year. Saharan
cyclones clearly exhibit a peak of occurrence in April and
May, in agreement with previous studies (Winstanley, 1972;
Alpert et al., 1990; Trigo et al., 2002). The Black Sea has a
unique seasonal cycle, with a few occurrences from August
to November and a higher level of activity during a long pe-
riod spanning from December to July. The presence of those
cyclones during a large part of the year was already observed
in Trigo et al. (1999). For the case of Middle East cyclones,
a higher level of occurrences is found here from March to
May, while Trigo et al. (2002) found the peak of activity in
August.

3.3 Intensity and deepening rate

Figure 3a shows the spatial distribution of the 10 % deepest
cyclones in the reference dataset. They are mainly concen-
trated in the West Mediterranean and in the Adriatic, while
some deep cyclones are found in the north-western parts of
the Black Sea. The West Mediterranean and the Adriatic are
also two hotspots of rapid intensification when looking at
the deepening rates (not shown). While cyclones in these
two areas are influenced by the Atlantic (Raveh-Rubin and
Flaounas, 2017), the origin of deep cyclones in the north-
western Black Sea remains unclear. Noteworthy, cyclones in
this region do not experience rapid intensification. In con-
trast, the shallowest cyclones are concentrated in the Gulf of
Genoa, highlighting the broad spectrum of intensities in the
West Mediterranean. The other shallow cyclones are found
mainly in the East Mediterranean and in the eastern parts of
the Black Sea (not shown).

Figure 3b presents the typical seasonal cycle for three
intensity-based categories of Mediterranean cyclones. Shal-
low and medium-intensity cases are more present during
spring and exhibit a flat minimum from July to November.
The 10 % deepest cyclones (green curve) show a more pro-
nounced seasonal cycle, with very few cyclones during the
warm part of the year and a peak of activity from Novem-
ber to March. The similar pattern is observed for rapid-
intensification cyclones, which are found almost exclusively
during the cold part of the year (not shown).

3.4 Motion speed

The motion speed of a cyclone is defined here by the median
speed along its whole lifetime. According to our calculations
for the reference dataset, Mediterranean cyclones move on
average eastward at a median motion speed of 25 km h−1.
However the variability is large, and the fastest 5 % move
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Figure 3. (a) Relative frequency of Mediterranean cyclones, defined
as the percentage of the 10 % deepest cyclones having a track point
within a radius of 100 km. Note that the shading scale is not linear.
(b) Monthly mean number of cyclones in the three categories of
intensity. Each category contains 10 % of the dataset, i.e. the 10 %
deepest cyclones (green curve), the 10 % of cyclones around the
median intensity (orange curve), and the 10 % shallowest cyclones
(blue curve).

at speeds greater than twice the median. Figure 4 shows the
spatial distribution of the cyclones in each of the three mo-
tion speed categories: the 10 % fastest cyclones (Fig. 4a), the
10 % of cyclones around the median speed (Fig. 4b), and the
10 % slowest cyclones (Fig. 4c). The strong changes in spa-
tial patterns between the different motion-speed-based cat-
egories highlight the close relationship between the region
in which the Mediterranean cyclone evolves and its motion
speed.

The fastest cyclones (Fig. 4a) can be found in several par-
ticular areas. First, cyclones originating from the Sahara are
clearly marked along an axis from the south of the Atlas
Mountains to the Ionian Sea. Cyclones in this region are
also the fastest, with a median speed of 30 km h−1. This re-
sult is in agreement with previous studies, which often high-
light the high velocities of Saharan cyclones compared to
other Mediterranean lows (Alpert and Ziv, 1989; Kourout-
zoglou et al., 2011). Second, fast Atlantic cyclones enter into

Figure 4. Relative frequency of occurrences (as defined in Fig. 3a)
for the three motion-speed-based categories. Each category con-
tains 10 % of the dataset, i.e. (a) the 10 % fastest cyclones, (b) the
10 % of cyclones around the median speed, and (c) the 10 % slow-
est cyclones. The black boxes are the regions of interests defined in
Fig. 1b. Note that the shading scale is not linear.

the West Mediterranean, mainly from the Bay of Biscay or
through the Strait of Gibraltar. Third, another group of fast
cyclones crosses the western Black Sea. Fourth and last, two
other favourable regions for fast cyclones are found in the
northern Adriatic and in western Greece. Medium-speed cy-
clones (Fig. 4b) are for their part mainly located over sea,
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in the West Mediterranean, in the Adriatic, and in the Ionian
Sea. Finally, the slowest cyclones (Fig. 4c) are clearly con-
centrated in the West Mediterranean, with a median motion
speed of around 17 km h−1. Some quasi-stationary lows can
also be found in the eastern parts of the Black Sea. The lo-
cation of these last quasi-stationary lows contrasts with the
fast cyclones observed over the western Black Sea (Fig. 4a),
suggesting two different types of cyclones in the Black Sea
area.

4 Evaluation of the ensemble reforecasts

This section is dedicated to the evaluation of the representa-
tion of Mediterranean cyclones in the reforecasts. Errors in
location and intensity, as defined in Sect. 2, are firstly eval-
uated by taking the tracks detected in ERA5 as a reference,
while the reliability of the ensemble reforecasts is assessed
in a second step.

4.1 Location and intensity errors

To evaluate the reforecasts, both errors in location and inten-
sity are considered. In Fig. 5, distributions of errors are com-
puted at each lead time by taking into account the individual
error of each member of the ensemble for the entire dataset.
The large number of 1960 cyclone tracks ensures that the re-
sults are robust. The mean number of members in which a
cyclone is found by VDG decreases approximately linearly
as the lead time increases (orange curve in Fig. 5). While
more than 9 members out of 11 detect a cyclone at the initial
time, less than 4 members remain on average after a 144 h
lead time.

The distribution of TTEs is presented for each lead time
up to 144 h (Fig. 5a). Both the median error and interquar-
tile range increase as the lead time increases. For instance,
after a 72 h lead time, 50 % of the TTEs span from 80 to
220 km. Interestingly, the error growth is slower than lin-
ear and seems to exhibit two phases: during the first 78 h,
the median TTE increases by about 40 km d−1, while it in-
creases at a smaller rate of about 20 km d−1 from a 84 h lead
time onward. This behaviour can be explained by two differ-
ent factors. Firstly, the construction of VDG constrains the
tracking to start near the reference track. Given that the me-
dian lifetime of the cyclones of our dataset is 42 h, as the lead
time increases, the proportion of cyclones tracked from early
lead times (where the forecast track may have diverged from
the reference track) decreases, compared to those tracked
from longer lead times (where the forecast track remains
close to the reference track). As a result, the error growth
tends to slow down as the lead time increases. Second, the
phenomenon of error saturation also plays a role. For long
enough lead times, an ensemble forecast is expected to con-
verge toward the climatological distribution. Consequently,
the mean and median errors are anticipated to increase at a

slower rate at long lead times and ultimately saturate at con-
stant values.

Overall, the growth rate of 40 km d−1 in the first 78 h lead
time is remarkably close to the 43 km d−1 found by Picor-
nell et al. (2011) in the Mediterranean. The authors used for
their part the ECMWF operational deterministic model dur-
ing the 2006–2007 period and evaluated errors only during
the first 48 h, which may explain the comparable error growth
despite the older model version used in their study. In the ex-
tratropical Northern Hemisphere and using the operational
ensemble prediction system of the ECMWF from January to
July 2005, Froude et al. (2007b) found a much higher mean
error growth rate of 1.25° (about 137 km) every day, almost
constant until a 7 d lead time. The coarser resolution of the
ensemble prediction system used in their study (about 80 km)
and the particular characteristics of Mediterranean cyclones
could explain this difference in the mean error growth rate.

As presented in Sect. 2.6, TTE can be decomposed into
ATE and CTE. ATE exhibits a weak and constant bias of
−15 km at a 72 h lead time and beyond, indicating that fore-
cast tracks propagate more slowly on average compared to
the reference (not shown). It is in agreement with Froude
et al. (2007a), who highlighted that forecast cyclones in the
IFS model are on average too slow by about 1 km h−1 com-
pared to the analysis. Pirret et al. (2017) and Pantillon et al.
(2017) also found a systematic slow bias in the prediction
of 60 and 25 severe European storms, respectively. The little
bias found here in ATE, however, is much smaller than in the
previously mentioned studies. Regarding CTE, a weak posi-
tive systematic shift is observed, growing at a constant rate of
4 km d−1, indicating a weak shift to the left of the track (not
shown). When looking into absolute values of ATE and CTE,
it appears that TTE is the result of an equivalent contribution
of both components.

Errors in intensity (MSLPE) are presented in Fig. 5b. The
bias quickly reaches −0.5 hPa in the first 12 h lead time,
and forecasts continue to deviate at a very slow rate of
−0.1 hPa d−1 until 144 h. This argues in favour of a well-
centred error distribution of the ensemble reforecasts with a
slight overestimation of the cyclone intensity, as in Froude
et al. (2007b). After 72 h of forecast, 50 % of the MSLPEs
are between −2.5 and 1.5 hPa and the interquartile range
grows linearly to 0.9 hPa until the last lead time. When look-
ing at the absolute MSLPE (not shown), a little linear bias of
0.6 hPa d−1 is observed. Froude et al. (2007b) highlighted an
even smaller bias of around 0.2 hPa d−1 for the extratropical
Northern Hemisphere. It could indicate a better prediction
of the intensity of cyclones in other basins compared to the
Mediterranean; however, the small magnitude of these biases
should be considered.

4.2 Reliability of the ensemble reforecasts

The reliability of the ensemble reforecasts is evaluated for
both the intensity and location by comparing the spread and
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Figure 5. Distributions of (a) total track errors (TTEs) and (b) MSLP errors (MSLPEs) relative to ERA5 as a function of lead time. Means
are depicted by the blue circles, medians are depicted by the red lines, the first to third quartiles are depicted by grey boxes, and the minima
and maxima are depicted by black whiskers. The orange curve is the mean number of members in which a cyclone is detected.

the mean error of the ensemble for each cyclone and at a spe-
cific lead time, as defined in Sect. 2.6. One expects the mean
error to be close to the spread for a reliable ensemble, while
a mean error greater (smaller) than the spread indicates an
under-dispersive (over-dispersive) ensemble prediction sys-
tem.

Figure 6 presents a comparison between the spread and
the mean error of the ensemble at a 72 h lead time for the
location (Fig. 6a) and for the intensity (Fig. 6b). Similar ob-
servations can be made for both aspects: firstly, the ensemble
is reasonably reliable, with an identifiable linear relationship
between the spread and mean error (correlation coefficient
equal to 0.65). Secondly, there is a slight but noticeable over-
dispersion, with about 60 % of cyclone forecasts presenting a
spread greater than the mean error. Finally, the ratio of mean
error to the spread is equal to 1.12 for the location and 1.21
for the intensity, while the median ratio is equal to 0.90 in
both cases. This indicates that while the ensemble tends to
be over-dispersive in most forecasts, some of them are to-
tally off, with a mean error much greater than the spread.
It is noticeable that the opposite case with a spread much
greater than the mean error is not really observed. Note that
these three conclusions remain valid for all lead times (not
shown).

5 Predictability of different categories of
Mediterranean cyclones

In the previous section, predictability was evaluated consid-
ering the complete dataset. In this section, cyclones are cate-
gorised following different features in order to determine the
factors leading to systematically better or poorer predictabil-
ity. In particular, differences in predictability are identified

depending on the region, the season, the seasonality, the in-
tensity, and the motion speed of the cyclones.

5.1 Differences in the mean number of members

The mean number of ensemble members in which a cyclone
is detected (later denoted by number of members) is a key
measure to investigate, as a high (low) number of members
indicates high (low) predictability. In Fig. 7, the results are
presented for different categories and are compared to the
general pattern of Mediterranean cyclones (shown by the
black circles).

In Fig. 7a, the number of members is presented as a func-
tion of the lead time for the different regional categories of
Fig. 1b. Most of the categories follow the general pattern,
except for the Sahara and the Middle East. In these two re-
gions, the number of members quickly falls in the first 12 h
lead time (particularly in the Middle East) and then decreases
at a smaller rate until 144 h. An apparent diurnal cycle is vis-
ible, with a lower number of members every 24 h, at around
12:00 UTC, corresponding to the warmest part of the day in
these regions. The season in which the cyclone occurs also
has an impact on the number of members. Particularly in
summer (green curve in Fig. 7b), the number of members
decreases quickly in the first 18 h and then at a smaller rate
until the maximum lead time. This is not the case for the
other seasons, during which the decrease in the number of
members follows the general pattern. Differences are also
visible for different categories of intensity in Fig. 7c. The
number of members detecting a cyclone is greater for deep
cyclones, is lower for shallow ones, and follows the general
pattern for medium-intensity cyclones. Finally, in Fig. 7d, the
number of members is presented for three motion speed cat-
egories. Although differences are small, the slow and fast
categories almost always lie below the general pattern of
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Figure 6. Spread–skill relationship at a 72 h lead time. The blue shading represents the number of cyclones populating each bin. (a) Mean
of the TTEs of the members, denoted by TTE, compared to the spread in location, denoted by σloc. The bin length is equal to 8 km. (b) Root
mean square of the MSLPEs of the members, denoted by 〈MSLPE〉, compared to the spread in intensity, denoted by σint. The bin length
is equal to 0.2 hPa. The red curve represents an idealised, perfectly reliable set of ensemble reforecasts with a mean error equivalent to the
spread. Percentages indicate the proportion of cyclones above and below the diagonal, respectively.

Figure 7. Difference in the mean number of ensemble members in which a cyclone is detected in the reforecasts (a) for the six regions
defined in Fig. 1b, (b) for the seasonal categories (DJF, December–January–February; MAM, March–April–May; JJA, June–July–August;
SON, September–October–November), (c) for the intensity-based categories defined in Fig. 3b, and (d) for the motion speed categories
defined in Fig. 4. The mean number of members computed from the complete dataset is depicted by the black circles.
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the complete dataset, which is more closely followed by the
medium-speed category.

Overall, the number of members decreases relatively
strongly in the first 12 h for Saharan and Middle East cy-
clones (in warm regions) and in the first 18 h lead time for
summer cyclones. The number of members in which a cy-
clone is detected is also lower for the shallowest cyclones be-
tween an 18 and 108 h lead time. Therefore, the predictability
in terms of the number of members seems to be linked with
the intensity of the cyclones, which are often shallow during
summer. Deep winter cyclones are for their part better pre-
dicted using this metric.

5.2 From CDFs of errors to CDFE scores

For each cyclone categorisation, CDFs of errors in both loca-
tion (TTE) and intensity (MSLPE) are used to compute the
CDFE metric presented in Sect. 2 at a specific lead time. It
should be noted that the CDFE has the same unit as the vari-
able considered. The greater (smaller) the CDFE, the poorer
(better) the predictability of the cyclone category.

To illustrate the approach, Fig. 8 presents CDFs of errors
for the six regional categories presented in Sect. 3. In this
representation, a category of cyclones is better predicted than
another when the shape of its CDF of errors better resem-
bles the Heaviside step function. At a 72 h lead time and for
TTE (Fig. 8a), the East Mediterranean is the region in which
cyclones are the least accurately predicted (orange curve),
while the West Mediterranean cyclones have the smallest er-
rors (blue curve). This is highlighted by the CDFE metric,
with scores ranging from 51.8 km for the West Mediterranean
to 94.2 km for the East Mediterranean. In terms of MSLPE
(Fig. 8b), Middle East cyclones are the best predicted, with a
CDFE of 0.42 hPa, while the Black Sea is the region in which
the intensity of cyclones is the least accurately predicted at
this particular lead time, with a CDFE equal to 0.61 hPa. In
the next subsections, CDFE scores are computed at each lead
time in order to compare the predictability between several
categories of cyclones along the complete forecast duration
considered.

5.3 Differences between regional categories

As shown in Fig. 1b, the spatial distribution of Mediterranean
cyclones is not homogeneous, and six regions have been de-
fined according to their cyclone density. Figure 9a presents
the differences in predictability of the cyclone location, us-
ing the CDFE metric applied at each lead time to the TTEs
distributions of the six regions (colour curves). It immedi-
ately appears that the location of cyclones is the best pre-
dicted in the West Mediterranean at lead times beyond 42 h.
The statistical significance of the difference between this re-
gion and any other is verified between 42 and 120 h, except
with the Middle East at a 78–90 h lead time. The most poorly
predicted categories, namely the Adriatic and East Mediter-

ranean cyclones, are in fact following the mean behaviour
of the complete dataset (black circles) in the first 78 h. The
difference between the best and the worst category is also
noticeable and reaches more than 50 km at 144 h.

In Fig. 9b, the differences in predictability considering the
MSLPE are presented for the complete set of six regions.
Regional differences are observed, in particular between the
best and the most poorly predicted categories. The Middle
East is the region in which the intensity of cyclones is the
best predicted at each lead time, probably linked with the ab-
sence of deep cyclones in this region (see Fig. 3a). A clear
diurnal cycle is also observed, with local CDFE maxima at a
66, 90, 108, and 132 h lead time, corresponding to local times
of 15:00 to 21:00 LT. While the coarse temporal resolution
of 6 h does not allow for a precise timing of this behaviour,
it seems that cyclones in this region experience greater er-
rors during the warm part of the day. The cyclones in the
Black Sea are the most poorly predicted in the first 72 h, and
a diurnal cycle is observed with two pronounced maxima at
36 and 60 h, corresponding to the afternoon in this region.
Trigo et al. (2002) already identified diurnal cycles in sum-
mer cyclones developing over northern Africa, the Iberian
Peninsula, the Black Sea, and the Middle East. The maxi-
mum intensity was reached during the afternoon, while cy-
clolysis generally occurred in the early morning. The reason
for the diurnal cycle of errors shown here could be linked
with the representation of the convective processes, often oc-
curring during the afternoons of summer days.

5.4 Differences between seasonal categories

Another possible categorisation of Mediterranean cyclones is
based on the seasonality. As previously visualised, Fig. 10a
presents the CDFE score for TTE and Fig. 10b presents it for
MSLPE. In terms of location, winter cyclones (December–
January–February) are generally less well predicted than
summer ones (June–July–August), except at 24–42 h. The
results are statistically significant for these two extreme sea-
sons in the first 84 h (not shown), but differences remain un-
der 25 km before a 120 h lead time. As a result, the season in
which the cyclone occurs does not appear to be determinant
in the predictability of its location.

Differences are more pronounced for the intensity, and
they are statistically significant between winter and summer
cyclones from 42 h until the maximum lead time (not shown).
CDFE scores in the autumn and spring follow the general
pattern of all Mediterranean cyclones (black circles), while
errors are greater than average in winter and smaller than av-
erage in summer.

5.5 Differences between intensity categories

Differences in predictability for different intensity-based cat-
egories are shown in Fig. 11. Considering the location, the
predictability is the poorest for deep cyclones between 66 h
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Figure 8. CDFs of the errors (a) in location and (b) in intensity at a 72 h lead time for the six regions defined in Fig. 1b.

Figure 9. Differences in predictability between the regions defined in Fig. 1b, (a) for the total track error (TTE) and (b) for the MSLP error
(MSLPE). The statistical significance is tested between each pair of categories, and results appear in thick lines when the considered category
is significantly different from every other. CDFE scores computed from the complete dataset are represented by black circles.

and beyond (green curve in Fig. 11a). Meanwhile, location
errors are independent of the deepening rate (Fig. 11c).

In terms of MSLPE, deep cyclones are clearly more poorly
predicted than average after a 66 h lead time (green curve
in Fig. 11b). It is in agreement with Pantillon et al. (2017)
and Pirret et al. (2017), who both showed poor prediction
of the intensity of the severe European storms they investi-
gated. However, it should be noted that, on average, the fore-
cast intensity of deep storms in our dataset is slightly too
strong from 108 h onward (not shown), while it is slightly
too weak in these two previous studies. This difference could
be explained not only in the region considered but also in the
samples of studied cases, as Pantillon et al. (2017) and Pir-
ret et al. (2017) find a slight under-prediction in a dataset of
25 and 60 extreme North Atlantic storms, respectively, while
280 “less extreme” Mediterranean cyclones are represented
here in the deep cyclones’ category. Regarding the two other

categories, shallow cyclones are not necessarily better pre-
dicted than the medium category, and the difference is not
always significant. The same conclusions can be drawn from
the deepening rate (Fig. 11d), where rapid-intensification cy-
clones strike out with intensity errors greater than in the other
categories after a 66 h lead time.

To summarise, the predictability is significantly poorer in
terms of MSLPE for deep cyclones, at a 66 h lead time and
beyond. The same conclusions can be drawn from the deep-
ening rate, but differences are not statistically significant. As
seen in Sect. 3.3, these poorly predicted cyclones tend to
form during the cold part of the year (Fig. 3b), in agreement
with the poorest predictability of winter cyclones shown in
Sect. 5.4. They are also mainly located in the West Mediter-
ranean and in the Adriatic, with a direct influence of the At-
lantic (see Fig. 3a).
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Figure 10. Differences in predictability between the seasons (e.g. DJF stands for December–January–February), (a) for the total track error
(TTE) and (b) for the MSLP error (MSLPE). The statistical significance is tested between each pair of categories, and results appear in
thick lines when the considered category is significantly different from every other. CDFE scores computed from the complete dataset are
represented by black circles.

5.6 Differences between motion speed categories

It has been demonstrated in Fig. 4 that different motion-
speed-based categories of Mediterranean cyclones have dif-
ferent spatial distributions. It is consequently expected that
differences will also appear in the predictability, which varies
between regions (Fig. 9). Figure 12a presents the CDFE met-
ric for a motion-speed-based categorisation of cyclones.

The link between the motion speed of the cyclone and
the predictability of its location is remarkable, and differ-
ences are statistically significant from a 12–54 h lead time:
the faster the cyclone, the poorer the predictability. The slow
cyclones (blue curve) are clearly better predicted than any
others beyond a 12 h lead time. The difference with the two
other categories is statistically significant and increases as
the lead time increases, reaching almost 100 km after 120 h
of forecast. The particularly good predictability of these
slow cyclones has to be linked with the spatial distribution
highlighted in Fig. 4c. Indeed, these quasi-stationary lows
are heavily concentrated in the Gulf of Genoa in the West
Mediterranean, which is where the cyclone location is the
best predicted (see Fig. 9). This result, considering the loca-
tion, has to be compared with the predictability of the inten-
sity of the West Mediterranean cyclones, which is not partic-
ularly well predicted. It suggests the existence of at least two
different types of cyclones in this particular region. The first
is made of slow cyclones (Fig. 4c), with good predictability
in terms of location and fair predictability in terms of inten-
sity. The second is constituted of fast cyclones (Fig. 4a), with
poor predictability in terms of intensity and fair predictability
in terms of location.

Unlike for the location, the motion speed of the cyclones
does not play an important role in the predictability of the
intensity (Fig. 12b) in the first 78 h. For longer lead times,

the fastest cyclones are the worst predicted, but the differ-
ence with the other categories is not statistically significant
beyond 96 h and does not allow for building any robust con-
clusions.

6 Summary and conclusions

The predictability of extratropical cyclones can be highly
variable from one case to another. Here, an approach based
on the use of both reanalysis and ensemble reforecasts with
a fixed model configuration over 20 years makes it possible
to investigate the predictability of Mediterranean cyclones in
a systematic framework.

Cyclones are first tracked in the ERA5 reanalysis, pro-
viding a large reference dataset of 1960 cyclones over the
2001–2021 period. Their spatial distribution is in agreement
with most of the previous climatological studies, confirm-
ing the inhomogeneity in the distribution of Mediterranean
cyclones. Six preferred regions accounting for 63 % of the
dataset are identified, with the Gulf of Genoa being the main
hotspot in the region. In comparison to previous studies, a
higher density of cyclones is found in the Adriatic. A clear
seasonal cycle is highlighted, with a higher level of occur-
rence during the cold part of the year. The cold season is
also more favourable to the development of intense cyclones,
which mainly occur in the West Mediterranean, in the Adri-
atic, and in the north-western parts of the Black Sea.

Reference cyclones are then tracked in the homogeneous
set of ensemble reforecasts for the same period. The pre-
dictability is evaluated in terms of errors in both cyclone lo-
cation and intensity. Comparable magnitudes between mean
error and spread indicate reasonably good reliability of the
IFS ensemble reforecasts for Mediterranean cyclones. A
slight over-dispersion of the ensemble can however be ob-
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Figure 11. (a, b) Differences in predictability between three intensity-based categories of Mediterranean cyclones following their minimum
MSLP, namely the 10 % shallowest cyclones, the 10 % of cyclones around the median intensity, and the 10 % deepest cyclones. (c, d) Same
as (a) and (b) but based on the deepening rate, defined as the difference between the MSLP at the time of maximum intensity and 12 h before.
(a, c) Results for the total track error (TTE). (b, d) Results for the MSLP error (MSLPE). The statistical significance is tested between each
pair of categories, and results appear in thick lines when the considered category is significantly different from every other. CDFE scores
computed from the complete dataset are represented by black circles.

served at every lead time, whether in location or in inten-
sity. It should also be noted that while the ensemble spread
is slightly greater than the mean error in most forecasts,
some cyclones remain very poorly predicted with median and
mean errors that can be more than 4 times greater than the
ensemble spread.

Considering the entire set of cyclones, it is shown that the
median location error seems to grow at two different rates
with an increasing lead time. In the first about 3 d, the error
grows at a nearly constant rate of 40 km d−1, comparable to
the one found in Picornell et al. (2011) for Mediterranean cy-
clones. The growth rate is however 2 times smaller for longer
lead times. This behaviour is attributed to the progressive sat-
uration of errors with lead times and to the limitation inherent
to the verification of tracks against the reference. In terms of
intensity error, the bias quickly reaches −0.5 hPa at a 12 h
lead time, and forecasts continue to deviate at a slow rate of
−0.1 hPa d−1 until the maximum lead time. This indicates a

slight overestimation of the intensity of forecast cyclones, in
agreement with Froude et al. (2007b) for North Atlantic cy-
clones. This result should be regarded with some caution, as
reforecasts are not compared with observational data but with
reanalysis data, which may underestimate the actual cyclone
intensity.

Looking at different categories of Mediterranean cyclones
allows for determining several factors contributing to better
or poorer predictability. It is shown that the mean number of
members in which the cyclone is detected is dependent on the
cyclone intensity. In particular, deep winter cyclones are de-
tected in more members than shallower summer cyclones. In
a further step, the errors are summarised for the large number
of cyclone forecasts by introducing a newly defined CDFE
score, which is the CRPS applied to the error distributions of
location (TTEs) and intensity (MSLPEs).

In terms of cyclone location, the motion speed appears to
be a key factor. In particular, the slowest Mediterranean cy-
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Figure 12. Differences in predictability between three motion-speed-based categories, namely the 10 % slowest cyclones, the 10 % of cy-
clones around the median motion speed, and the 10 % fastest cyclones, respectively, (a) for the total track error (TTE) and (b) for the MSLP
error (MSLPE). The statistical significance is tested between each pair of categories, and results appear in thick lines when the considered
category is significantly different from every other. CDFE scores computed from the complete dataset are represented by black circles.

clones, which are mainly located in the Gulf of Genoa, are
much better predicted than any other category, at every lead
time. The impact of such quasi-stationary cyclones can be
considerable, as they can cause large amounts of accumu-
lated precipitation in the same area. The predictive skill in
their location is therefore important. For their part, the loca-
tion of the fastest cyclones is relatively poorly predicted in
the first 54 h lead time. To the authors’ best knowledge, it is
the first time that a link between the cyclone motion speed
and predictability is highlighted. The intensity of the cyclone
also plays a role, and the location of deep cyclones is less ac-
curately predicted than in shallower categories, for lead times
greater than 66 h.

Two factors leading to differences in predictability of the
cyclone intensity are clearly established. First, errors in the
intensity of deep cyclones are significantly greater than in
any other category between a 66 h and 108 h lead time. It is
in agreement with Froude et al. (2007a), who have shown a
relatively poorer predictability for intense cyclones in the ex-
tratropical Northern Hemisphere. This result is also observed
here for the deepening rate, where the prediction of rapid-
intensification cyclones is the poorest; however, this result is
not always statistically robust. A second important factor in
the prediction of the intensity is the season in which the cy-
clone occurs. Winter cyclones are indeed less accurately pre-
dicted than summer ones. The difference between these two
seasonal categories increases with the lead time and is signif-
icant from a 42 until 144 h lead time. In fact, the two factors
are strongly related, as the deepest Mediterranean cyclones
occur almost exclusively during the cold part of the year. The
forecast skill for the intensity of those strong winter cyclones
is important, as some of them account for the most destruc-
tive windstorms in the Mediterranean (e.g. Cyclone Klaus;
Liberato et al., 2011). Froude et al. (2007a, b) suggested that

errors in the intensity of deep cyclones could originate from
an incorrect representation of their vertical structure, as the
vertical tilt is known to play a major role in storm develop-
ment. This hypothesis has to be verified systematically for
the Mediterranean.

In this study, the predictability has been quantified in a sys-
tematic framework for several categories of Mediterranean
cyclones. The motion speed of the cyclone, its intensity, the
season, and the region in which it occurs all play a role. Fur-
ther investigations could focus on the physical processes re-
sponsible for the loss of predictability. In particular, the quan-
titative importance of baroclinic and diabatic processes in the
poor predictability of deep Mediterranean cyclones should be
addressed. Indeed, both the representation of latent heat re-
lease in the first forecast hours and the location of Rossby
wave breaking at high lead times (several days) may be re-
sponsible for part of the loss of predictability of Mediter-
ranean cyclones. It could also be interesting to find a physi-
cal explanation to the remarkable good predictability of the
shallow cyclones in the West Mediterranean.
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