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Abstract. We apply causal effect networks to evaluate the
influence of spring North Atlantic extratropical sea surface
temperatures (NA-SSTs) on the summer East Atlantic (EA)
pattern seasonal predictability during the period of 1908–
2008. In the ECMWF Reanalysis of the 20th Century (ERA-
20C), we find that the causal link from the meridional NA-
SST gradient in spring (expressed by a meridional “SST in-
dex”) to the summer EA is robust during the period from
1958 to 2008, with an estimated causal effect expressed by a
β coefficient of about 0.2 (a 1 standard deviation change in
the spring SST index causes a 0.2 standard deviation change
in the EA 4 months later). However, this causal link is not
evident when analysing the entire period from 1908 to 2008.
When performing the analysis on 45-year-long time series
randomly sampled from this late period, we find the strength
of the causal link to be affected by interannual variabil-
ity, suggesting a potential modulation by an external phys-
ical mechanism. In addition to the summer EA, we find
that the spring SST index has an estimated causal effect of
about −0.2 on summer 2 m air temperatures over northwest-
ern Europe. We then use different datasets from the Max
Planck Institute Earth System Model in its mixed-resolution
set-up (MPI-ESM-MR) to analyse the 1908–2008 period,
focusing on a historical simulation and a 30-member ini-

tialised seasonal prediction ensemble. We specifically test
the model’s ability to reproduce the causal links detected
in ERA-20C and evaluate their impact on the model’s pre-
dictive skill for the European summer climate. We find that
MPI-ESM-MR generally fails to reproduce the causal link
between the spring SST index and the summer EA across the
datasets. The 30-member initialised ensemble occasionally
reproduces the causal link, though it typically underestimates
its strength. We perform a predictive skill assessment condi-
tioned on the spring SST index causal links for July–August
sea level pressure, 500 hPa geopotential height, and 2 m air
temperatures for predictions initialised in May. Our results
suggest that while the overall impact may be limited, lever-
aging these causal links locally could help to constrain and
improve the seasonal prediction skill of European summer
climate.

1 Introduction

The summer East Atlantic (EA) pattern is an important at-
mospheric teleconnection influencing weather and climate in
the Euro-Atlantic region (e.g. Comas-Bru and McDermott,
2014; Bastos et al., 2016). Along with the summer North
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Atlantic Oscillation (NAO), these teleconnections are often
used to describe the combined changes in latitude and speed
of the North Atlantic jet stream (Woollings et al., 2010) – one
of the major modulators of mid-latitude weather extremes
(e.g. Rousi et al., 2022). Understanding the predictability as-
sociated with these teleconnections is therefore of paramount
importance. Although several recent studies have focused on
predictability of the NAO (Domeisen et al., 2018; O’Reilly
et al., 2019; Athanasiadis et al., 2020; Klavans et al., 2021),
the EA has received less attention. Here, we apply the Peter
and Clark momentary conditional independence (PCMCI)
causal discovery algorithm to evaluate the influence of North
Atlantic extratropical surface temperatures (NA-SSTs) on the
predictability of the EA pattern at seasonal timescales.

The most common description of the EA pattern features a
well-defined sea level pressure (SLP) centre of action south
of Iceland and west of the British Isles, usually defined as
the second leading empirical orthogonal function (EOF) of
SLP in the Euro-Atlantic region (e.g. Moore et al., 2013).
Wallace and Gutzler (1981) define a positive phase of the
EA pattern as characterised by the centre of action exhibit-
ing anticyclonic conditions, featuring the northward exten-
sion of the Azores High. A positive EA pattern has been
associated with below-average surface temperatures (Cassou
et al., 2005; Comas-Bru and Hernández, 2018) and dry spells
in parts of Europe (Rousi et al., 2021). Conversely, anoma-
lous cyclonic conditions offshore of Ireland have been sug-
gested to influence heatwaves in Europe for a negative EA
phase (e.g. Duchez et al., 2016). Using a clustering approach
(e.g. Cassou et al., 2004; Carvalho-Oliveira et al., 2022),
a positive EA phase is reminiscent of an Atlantic Ridge,
whereas a negative EA phase resembles the Atlantic Low.
A common feature amongst the different EA pattern def-
initions is that its centre of action is positioned along the
NAO nodal line, thus ultimately modulating the location and
strength of the NAO dipole and the North Atlantic storm
track (Woollings et al., 2010), which is to say that summer
climate predictability in the Euro-Atlantic region is closely
linked to EA variability.

While there is no consensus on the physical processes driv-
ing the EA pattern, spring NA-SSTs have been proposed to
influence EA variability and predictability. Gastineau and
Frankignoul (2015) suggested that summer 500 hPa geopo-
tential height anomalies in the Euro-Atlantic significantly co-
vary with a spring NA-SST tripole pattern in observations
over the 20th century. Moreover, Carvalho-Oliveira et al.
(2022) suggested that spring North Atlantic SSTs can influ-
ence the predictive skill of summers dominated by the EA
pattern in initialised simulations. Based on linear regression
analyses of the period 1979–2017, Ossó et al. (2018, 2020)
proposed a physical mechanism whereby anomalous extrat-
ropical North Atlantic SSTs in spring may persist into sum-
mer and influence shifts in the eddy-driven jet stream, im-
printing at the surface an SLP pattern that resembles the EA
pattern. These studies suggest that this mechanism is forced

by changes in baroclinicity of the lower troposphere asso-
ciated with a strong meridional NA-SST gradient in spring
located between subpolar and subtropical gyres. The authors
hypothesised that the delayed atmospheric response in sum-
mer, and not in spring, could be explained by the seasonal
evolution of both NA-SST gradient and jet stream position,
modulated by a positive coupled ocean–atmosphere feedback
that operates primarily in summer.

Nevertheless, while the linear regression-based analysis
provided in Ossó et al. (2018) suggests a contribution of
spring NA-SST to summer SLP variability, this approach
does not imply causation. Disentangling the complex causal
effect pathways underlying the mechanism proposed in Ossó
et al. (2020) over a long observational record is a crucial step
in evaluating EA predictability in dynamical climate models.
Although dynamical seasonal forecasts of European summer
climate typically show limited skill (e.g. Mishra et al., 2019),
recent studies suggest that improving the representation of
teleconnections can increase forecast skill (Oliveira et al.,
2020; Carvalho-Oliveira et al., 2022; Schuhen et al., 2022).
The physical mechanism connecting NA-SST variability and
jet stream dynamics proposed in Ossó et al. (2020) provides
a framework for assessing the broader influence of NA-SST
on seasonal predictability of the EA pattern, which is the aim
of the present study.

In this paper, we use a causal effect network based on
PCMCI (hereafter CEN; Kretschmer et al., 2016) to test the
hypothesis that spring NA-SST causally drives a response in
summer SLP and temperature fields in the Euro-Atlantic sec-
tor during the 20th century. CEN overcomes spurious corre-
lations caused by autocorrelation, indirect effects, or com-
mon drivers (Runge et al., 2014, 2019). It has been suc-
cessfully applied to hypothesis testing for other tropical and
mid-latitude teleconnections in the Atlantic–Pacific region
(e.g. Karmouche et al., 2023), the Indian Ocean (e.g. Di Ca-
pua et al., 2020a), and the Arctic region (e.g. Siew et al.,
2020; Kretschmer et al., 2020).

Specifically, we use CEN to investigate the circum-
stances under which spring extratropical North Atlantic SSTs
causally influence summer EA conditions and their asso-
ciated impact on surface climate. We also analyse pre-
industrial, historical, and initialised simulations with the Max
Planck Institute Earth System Model in its mixed-resolution
set-up (MPI-ESM-MR; Dobrynin et al., 2018) to evaluate
model performance in reproducing the observed NA-SST–
EA link, aiming to identify how this performance may con-
strain the seasonal prediction skill of European summer cli-
mate.
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2 Methodology

2.1 Reanalysis and model data

We investigate the NA-SST–EA link first using the ECMWF
Reanalysis of the 20th Century (ERA-20C) (Poli et al., 2016)
and then using model simulations with MPI-ESM-MR (Do-
brynin et al., 2018). The physical variables analysed are NA-
SST, SLP, and air temperature at 2 m height (T2m). We use
monthly means for each variable as we are testing mecha-
nisms which are expected to act on monthly timescales.

In MPI-ESM-MR, the atmospheric component ECHAM6
(Stevens et al., 2013) has a resolution of T63L95, with a
nominal horizontal resolution of 200 km (1.875°) and 95 ver-
tical layers up to 0.01 hPa. The oceanic component, MPI-OM
(Jungclaus et al., 2013), is coupled to ECHAM6 and has a
resolution of TP04L40, with an approximate horizontal reso-
lution of 40 km (0.4°) and 40 vertical layers. External forcing
is taken from CMIP5 (Giorgetta et al., 2013).

We investigate how MPI-ESM-MR performs in reproduc-
ing the NA-SST–EA link among three independent sets of
MPI-ESM-MR simulations. The datasets comprise a pre-
industrial control run (piControl), a historical run, and a
30-member initialised seasonal hindcast ensemble (MR-30).
Comparing the performance of each set against reanalysis en-
ables us to distinguish the role of forcing (from piControl to
historical) and of assimilation (historical to initialised ensem-
ble) in the model skill.

The pre-industrial coupled atmosphere–ocean control run
piControl has a total length of 1000 years (period 1850–
2849) (Giorgetta et al., 2012), with forcing constant in time:
orbital parameters and greenhouse gas concentrations are
fixed at 1850 values, spectral solar irradiance remains con-
stant as the solar cycle average over 1844–1856, and monthly
ozone concentrations are fixed at the 11-year average over
1850–1860 (Mauritsen et al., 2012). The historical simu-
lations run from 1850 to 2005 under natural and anthro-
pogenic forcing following the CMIP5 protocol (Dobrynin
et al., 2018).

Lastly, the hindcast ensemble MR-30 is initialised on
1 May every year from 1902–2008, with initial conditions
taken from an assimilation experiment (Oliveira et al., 2020).
In the assimilation experiment, Newtonian relaxation (nudg-
ing) is used in full-field mode towards all atmospheric and
ocean levels except in the boundary layer. The atmosphere
conditions of vorticity, divergence, three-dimensional tem-
perature, and two-dimensional pressure are assimilated with
ERA-20C data. In the ocean, three-dimensional daily mean
salinity and temperature anomalies are nudged at a relax-
ation time of approximately 10 d. To help reduce initialisa-
tion shock, the ocean state is derived from an ocean-only
simulation performed with MPI-OM forced with the atmo-
spheric variables from ERA-20C, thus maintaining consis-
tency in model physics. The three-dimensional atmospheric
and ocean fields of the assimilation experiment form the ini-

tial conditions, from which 30 ensemble members are gen-
erated by perturbing the atmospheric state with slightly dis-
turbed diffusion coefficients in the uppermost layer.

We focus our analysis on the 101-year period spanning
1908–2008 using data from the historical simulation, the
MR-30 hindcast ensemble, and ERA-20C. In addition, the
piControl simulation, with its fixed external forcings, offers
a unique opportunity to study long-term internal climate vari-
ability free from anthropogenic influences. To capture the full
range of natural variability, we leverage the entire 1000-year
period of the piControl in our analysis. This approach allows
for benchmarking internal variability across observed, histor-
ical, and hindcast datasets.

2.2 Data processing and climate indices

We compute anomalies at every grid point by removing
mean seasonal cycle and linear trend, satisfying data in-
put requirements for the CEN algorithm (Kretschmer et al.,
2016). We analyse bimonthly means in March–April (MA)
and April–May (AM) for spring NA-SST and July–August
(JA) SLP and T2m. We choose to investigate both MA and
AM spring windows to allow comparison with previous stud-
ies (e.g. Ossó et al., 2018). In MR-30, we use the assimilation
experiment to obtain spring NA-SST fields and the hindcast
ensemble at lead times of 3–4 months to obtain summer SLP,
T2m, and 500 hPa geopotential height (Z500). We apply area
weighting by multiplying each value with the cosine of its
latitudinal location to take into account the dependence of
the grid point density on latitude.

We calculate the EA index to analyse the summer EA tele-
connection. As a first step, we define a reference EA index
as the second principal component (PC) of the EOF of JA
anomalies of SLP over the Euro-Atlantic sector 25–80° N,
70° W–40° E calculated from the ERA-20C reanalysis data
(e.g. Comas-Bru and McDermott, 2014). Next, EA index val-
ues in the model simulations from MPI-ESM-MR are calcu-
lated by projecting each ensemble member onto the EA ref-
erence EOF pattern. We consider a positive phase of the EA
index when it is characterised by a centre of positive SLP
anomalies that lies south of Iceland and west of the British
Isles (e.g. Wallace and Gutzler, 1981; Comas-Bru and Mc-
Dermott, 2014; Fig. 1a).

We further test the influence of spring extratropical North
Atlantic SSTs on the summer EA using the SST index pro-
posed in Ossó et al. (2018). As a second step, we calculate
the SST index by subtracting the average NA-SST anoma-
lies over the eastern box (35–42° N, 35–20° W) from the av-
erage NA-SST anomalies over the western box (42–52° N,
52–40° W), represented by green boxes in Fig. 1b.

To comprehensively investigate the influence of spring
NA-SST on summer SLP variability, we incorporate the SLP
index introduced by Ossó et al. (2018) alongside the EA in-
dex. This approach aims to address the broader significance
of pressure dynamics in the region, particularly in relation to
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the physical mechanism proposed by Ossó et al. (2020). The
SLP index is calculated as JA SLP anomalies averaged over
the region 45–55° N, 25–5° W, indicated by a blue box in
Fig. 1b. Next, we analyse the impact of NA-SST on summer
T2m using two additional indices, i.e. T2mCE and T2mRidge
(Sect. 3.2, 3.4). The T2mCE index is calculated as JA T2m
anomalies averaged over the region 46–55° N, 11–34° E (in-
dicated by a red box in Fig. 2i), and the T2mRidge index is
calculated over the region 40–55° N, 15–34° W (indicated by
a black box in Fig. 7b).

All climate indices are standardised to have mean of zero
and standard deviation (SD) of 1 to allow for comparison.
Using the aforementioned climate indices, we perform linear
regressions and correlations to analyse the linear relationship
between the predictor spring NA-SST and the target variables
summer EA pattern, SLP index, and T2mCE. We use a two-
tailed Student’s t test to calculate the statistical significance
of pointwise correlation maps. We provide a description of
the indices used in the analysis in Table 1.

2.3 Causal effect networks

We employ the causal effect network (CEN) method (Runge
et al., 2015; Kretschmer et al., 2016) to analyse the causal
influence of the spring SST index on summer EA and tem-
perature variability in the Euro-Atlantic sector. CEN allow
the output of the Peter and Clark momentary conditional
independence (PCMCI) causal discovery algorithm to be
represented (Runge et al., 2019; Spirtes et al., 2000). We
specifically use PCMCI version 4.2 from the Python pack-
age Tigramite (https://github.com/jakobrunge/tigramite, last
access: 27 April 2022). This algorithm is based on iterative
conditional independence testing amongst a set of time series
(actors) to assess whether a link between a potential precur-
sor and a target variable at a certain time lag is (i) considered
spurious, i.e. can be explained by the linear combination of
other time series at different lags (conditional independence),
or (ii) considered causal, i.e. cannot be explained by the com-
bined influence of other investigated variables (conditional
dependence). In the algorithm, this testing is performed for a
minimum and maximum time lag, denoted τmin and τmax.

We emphasise that the term “causal” should be interpreted
cautiously within the context of this study. When we refer to
causality, we mean causality relative to the set of investigated
variables and under the specific assumptions considered in
the PCMCI algorithm (such as the stationarity of time series
data). As a consequence, the possibility of remaining spu-
rious correlations cannot be entirely ruled out. The choice
of variables included in the analysis is another crucial as-
pect for determining the causality of the identified links. Yet,
this poses a challenge as including more variables enhances
the credibility of causal discoveries but introduces complex-
ities. For instance, accommodating numerous variables and
significant time lags to address physical delays, like identi-
fying atmospheric teleconnections, leads to high dimension-

ality. This, in turn, can significantly affect the reliability of
statistical outcomes. Hence, a successful application of CEN
requires (such as for any data-driven method) expert knowl-
edge of the underlying physical processes, including relevant
variables, timescales, and temporal resolution. For a more de-
tailed understanding of the CEN analysis and the PCMCI al-
gorithm, we refer the reader to Runge (2018), which provides
a comprehensive description of these techniques.

We visualise the output of PCMCI in a CEN, i.e. a causal
graph where nodes represent the investigated variables; ar-
rows indicate the direction of the causal links, and colours de-
note the strength of these links. The strength is expressed by
the standardised linear regression coefficient, denoted β co-
efficient, and defined as the expected change in Yt in units
of its SD induced by raising Xt−τ by 1 SD while keeping all
other potential precursors constant. Moreover, CEN analysis
outputs the autocorrelation path coefficient, which represents
the causal influence of a variable on itself, as opposed to the
Pearson autocorrelation.

We apply causal maps (Di Capua et al., 2020b) to inves-
tigate the causal effects of a specific variable on a given at-
mospheric field along latitude, longitude, and time dimen-
sions. This tool builds upon the PCMCI algorithm and CEN
approach, and it provides a powerful visualisation of spatial
patterns. Causal maps display β coefficients calculated with
the time series of a potential precursor and each grid point of
a target atmospheric field. We refer the reader to Di Capua
et al. (2020b) for a detailed explanation of this method.

Lastly, the PCMCI parameters are chosen as follows: pc
alpha equals 0.2, alpha level to print results equals 0.1, in-
dependence test is ParCorr, significance is “analytic”, and
masking type is “y”. ParCorr was chosen for its effective-
ness in detecting linear relationships, computational effi-
ciency, and established use in related studies (e.g. Siew et al.,
2020), offering clear insights into conditional relationships.
Our CEN analysis focuses on τmin= 3 months and τmax= 4
months, which for simplicity we refer to as 3- and 4-month
lags.

2.4 Cross-validation and ensemble subsampling

We perform cross-validation and ensemble subsampling
(e.g. Dobrynin et al., 2018) to investigate the sensitivity of
the causal links to data sampling and to better understand
the differences in the strength of causal links between ERA-
20C and MR-30. When analysing the period 1958–2008 us-
ing observations in Sect. 3.3, we conduct a leave-k-out cross-
validation, where we randomly exclude 6 years (approxi-
mately 12 % of the period) at each iteration. This approach
yields 500 different samples of 45-year-long time series, each
analysed using CEN with the same hyperparameters (see
Sect. 2.3). This method allows us to test the robustness of the
causal graph structure by assessing how consistent the identi-
fied links are across various subsets of the observational data.
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Table 1. Summary of the indices used in our analysis.

Index Variable name Region used for calculation

SSTind Sea surface temperature index Eastern box (35–42° N, 35–20° W);
Western box (42–52° N, 52–40° W)

SLPind Sea level pressure index 45–55° N, 25–5° W

EA East Atlantic pattern 25–80° N, 70° W–40° E

T2mCE Air temperature at 2 m height for central Europe 46–55° N, 11–34° E

T2mRidge Air temperature at 2 m height for Atlantic Ridge region 44–55° N, 15–34° W

We apply a similar cross-validation approach to MR-
30, incorporating an additional ensemble subsampling step.
Specifically, we first randomly exclude 6 years from the anal-
ysed period. Then, for each remaining year, we perform boot-
strapping without replacement to randomly select one en-
semble member from the 30-member set. This results in a to-
tal of 1000 samples of 45-year-long time series. In the CEN
analysis, we impose the set of causal parents identified as
significant in ERA-20C onto MR-30 and calculate the corre-
sponding causal effects. This allows for a fairer comparison
of the strength of the β coefficients between the model and
observations.

It is important to note that while reducing the length of
the time series increases variability and lowers the statisti-
cal significance of the β coefficients, it does not necessar-
ily diminish the strength of the causal effects themselves. By
employing cross-validation and ensemble subsampling, we
ensure that our findings are robust to data sampling and sen-
sitive to both the observational record and model ensemble
variability.

2.5 Predictive skill assessment

In Sect. 3.4, we perform a predictive skill assessment for
SLP, T2m, and Z500 at lead times of 3–4 months in MR-30
against ERA-20C. For this assessment we use the pointwise
detrended anomaly correlation coefficient (ACC; Collins,
2002). We are interested in assessing the predictive skill
conditioned to the strength of significant β coefficients
(p value< 0.1). Our hypothesis is that the predictive skill in
summer is likely to increase in cases where MR-30 is able to
capture the causal link between spring SST index and sum-
mer EA pattern, as opposed to cases where the model fails to
capture the observed causal link. We refer to these time se-
ries as “MR-30 bootstrap ensemble”. For example, we shall
assume that we are interested in calculating the conditioned
predictive skill of JA Z500. To accomplish this task, we first
identify the specific years and ensemble members that cor-
respond to significant β coefficients for the spring SST and
summer EA pattern. With this information, we can then sam-
ple JA Z500 to create a time series of similar length. In case
more than one ensemble member is randomly selected in a

given year, we calculate an ensemble mean. We then deter-
mine the ACC between the MR-30 bootstrap and ERA-20C.

3 Results

3.1 Characteristics of the observed link: temporal and
spatial variability

The spatial pattern of the summer EA pattern in its posi-
tive phase is characterised by large-scale cyclonic conditions
across the Euro-Atlantic region except at the anticyclonic
centre of action located south of Iceland and west of the
British Isles (Fig. 1a). A typical surface climate imprint of the
summer EA pattern in positive phase correlates with below-
average temperatures in continental Europe (Fig. 1c) and
below-average precipitation in the British Isles and north-
western Europe (Fig. 1d). As explained in Sect. 2.2, we eval-
uate spring extratropical North Atlantic SSTs via the SST
index, following Ossó et al. (2018). A Pearson correlation
analysis reveals a time-dependent relationship between the
AM SST index and the EA pattern in summer (Fig. 1e). Over
a span of 101 years (1908–2008), this relationship appears
weak (r = 0.22, p < 0.05). However, examining the most re-
cent 51 years (1958–2008) shows a doubling of correlation
values (r = 0.43, p < 0.05). Furthermore, focusing on the
latest 30 years (the period analysed in Ossó et al., 2018)
results in correlation values increasing even further to 0.60
(p < 0.05). The temporal variability in this relationship is
well illustrated for correlations calculated using a 20-year
running window, which shows a reversal in the sign of cor-
relations starting from 1945 and highlights an increase in the
strength beyond 1958 (Fig. 1f). This analysis suggests that
the spring SST index and summer EA pattern relationship
is non-stationary. Hence, we distinguish the following three
periods to scope the remaining analysis: (i) early period –
1908–1957; (ii) late period – 1958–2008; and (iii) full pe-
riod: 1908–2008.

We assess the spatial features of the SST index influence
on the summer atmospheric circulation in the different peri-
ods to further explore the variability in the spring NA-SST
and summer EA pattern relationship. Correlation maps in
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Figure 1. Variability and linear relationships of the EA pattern in ERA-20C. (a) Positive phase of the EA teleconnection, defined as the
second EOF of July–August (JA) SLP. (b) Regions used to calculate the NA-SST and SLP indices proposed in Ossó et al. (2018). (c)
Pointwise correlation of the EA index with concurrent JA anomalies of 2 m air temperatures in the full period (1908–2008). Panel (d) same
as (c) but for JA anomalies of total precipitation. (e) Time series of April–May (AM) SST (blue) and JA EA (grey) indices in ERA-20C
for 1908–2008, smoothed by a 3-year running mean. (f) Running correlation between AM SST and JA EA indices for a 20-year window.
Coloured markers indicate significant correlations at the 95 % confidence interval, illustrated by dashed lines.

Fig. 2a–f show distinct patterns in early and late periods. We
find significant correlations between the precursor SST index
and summer SLP over a region in the North Atlantic which
reasonably coincides with the location of the EA teleconnec-
tion centre of action during the late period (Figs. 2b, 1a). The
location of this region seems to oscillate around 45° N, re-
maining south of this latitude in the early period (Fig. 2a)
while being located northwards in the late one (Fig. 2b). Sur-

rounding this high-correlation region, the sign of correlations
is opposite between early (Fig. 2a) and late (Fig. 2b) periods.
We find similar results using March–April (MA) NA-SST
means, only in weaker strength (e.g. Appendix A, Fig. A1).

Regression maps further suggest that the spring SST in-
dex is associated with summer SST anomalies, which then
influence atmospheric circulation (Fig. 2d–f). Positive val-
ues of the AM SST index in spring are associated with warm

Weather Clim. Dynam., 5, 1561–1578, 2024 https://doi.org/10.5194/wcd-5-1561-2024
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Figure 2. Distinct spatial characteristics of the spring SST influence on the summer circulation over the 20th century (for ERA-20C) for early
(1908–1957; a, d, g), late (1958–2008; b, e, h), and full periods (1908–2008; c, f, i). Top row (a–c) shows pointwise correlation coefficients
for the April–May SST index and July–August SLP. Middle row (d–f) shows linear regression maps of July–August NA-SST anomalies
(shading) and SLP (contours) against the precursor SST index (normalised by the SD). Contour interval is 0.2 hPa SD−1. Bottom row (g–i)
shows pointwise correlation coefficients for the April–May SST index and July–August air temperature at 2 m height. Stippling indicates
correlations significant at the 95 % confidence level, calculated with Student’s t test. Box in Fig. 2i illustrates the region used to calculate the
T2mCE index, as described in the text.

summer anomalies east of Newfoundland and cool anomalies
west of Iberia, leading to concomitant anticyclonic condi-
tions in the ocean located south of Greenland. In the late pe-
riod (Fig. 2e), these anticyclonic conditions coincide specif-
ically with the position of the EA centre of action, whereas
this association is absent in the early period.

Moreover, we test whether the SST index influences JA
T2m via the EA. We find significant correlations between
the AM SST index and JA T2m, showing a similar pattern of
significant positive correlations west of the British Isles, as
in Fig. 1c corresponding to JA EA–T2m. We find that cor-
relations between AM SST index and JA T2m show distinct
patterns between early and late periods (Fig. 2g, h). A pos-
itive phase of the SST index in spring precedes a positive
phase of the summer EA pattern (e.g. Fig. 2e), which in turn
can be associated with below-average temperatures, primar-
ily over central Europe. To further investigate this relation-
ship, we calculate a T2mCE index, defined as the average
summer T2m over the central European region (46–55° N,
11–34° E), represented by the red box in Fig. 2i. In summary,
this analysis reveals that spring extratropical oceanic forcing
of the summer atmospheric circulation has a marked tempo-

ral and spatial variability over the 20th century, only project-
ing onto the EA pattern over the late period. This variability
might pose a constraint on the predictive skill of European
summer climate based on spring extratropical NA-SST dur-
ing certain periods of time.

3.2 Investigating causality

To further test the robustness of the SST–EA relationship in
ERA-20C, we evaluate whether spring SST index and sum-
mer EA pattern are conditionally dependent. Specifically, we
test the hypothesis that the spring SST index is a causal driver
for the summer EA, thus excluding autocorrelation effects or
common drivers which could lead to spurious links.

First, we build one CEN for each of the three investigated
periods in ERA-20C, i.e. early, late, and full periods, as de-
fined in Sect. 3.1. Besides the EA and SST indices, we in-
clude two additional indices in the CEN. The first is the SLP
index, defined in Ossó et al. (2018) and illustrated by the blue
box in Fig. 1b. Thus, we test whether differences between
early and late periods (Sect. 3.1) are reflected in distinct tim-
ing or strength among the EA and SLP indices with SST.
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The second index concerns summer air temperatures aver-
aged over the region represented by the red box in Fig. 2i
(T2mCE), which shows significant anticorrelations with SST.
We test whether the spring SST index causally drives changes
in summer T2m over central Europe and under which cir-
cumstances this holds true.

Over the late period, we confirm that the spring SST index
is a causal driver for both the summer EA and the summer
SLP index at distinct time lags (Fig. 3a). The strength of the
causal link is expressed by the standardised regression co-
efficient, denoted β coefficient in CEN. At a 4-month lag,
we find βSSTind→EA ≈ 0.22, which means that a change of
1 standard deviation (SD) in the MA SST index leads to a
change of 0.22 SD in the JA EA index. We find a causal link
of similar strength at a 3-month lag, βSSTind→SLPind ≈ 0.21,
between the AM SST index and the JA SLP index, as well
as βSSTind→T2mCE ≈−0.2 between AM SST index and JA
T2mCE. Using the path-tracing rule (e.g. Kretschmer et al.,
2021) we find that about a third of the influence from AM
SST index on JA T2mCE is mediated via the EA. We find no
significant causal links when using the early or full periods.

Next, we test the sensitivity of the detected causal links
between spring SST index and summer SLP to slight dif-
ferences in the analysed years. We assess summer SLP us-
ing both EA and SLP indices. By removing 6 randomly
selected years (12 % of tested years in the late period) in
each new CEN over 500 iterations, we test whether the
causal links are particularly subjected to interannual variabil-
ity (Fig. 3c, d). We find significant variability in the strength
of the links, with a concentration of around 0.25 in both
cases. For βSSTind→EA, a minority of samples (about 8 %) ex-
hibit negative values, highlighting the overall sensitivity of
the link strength between SST and the EA pattern. This sensi-
tivity in the causal link strength due to sampling suggests that
the relationship between the spring SST index and summer
SLP may be influenced by an external physical mechanism.
Specifically, this could involve an additional variable not in-
cluded in this CEN, such as the mechanism linking tropical
SSTs described in Wulff et al. (2017).

3.3 Does MPI-ESM reproduce the observed link?

We now test whether the causal links detected in ERA-20C
during the late period can be reproduced by MR-30. As a first
step, we compare the model’s ability to reproduce the tempo-
ral variability in the observed summer EA. We find that MPI-
ESM generally captures the range of variability, although its
performance in replicating the summer EA varies across dif-
ferent simulation sets (Fig. 4a). Historical simulations show
low agreement with ERA-20C (r = 0.14), whereas MR-30-
initialised simulations tend to mostly encompass the ob-
served variability (Fig. 4c).

Next, we evaluate the model skill in reproducing the spring
SST index and summer EA relationship. We find that both
historical and MR-30 simulations show limited skill, partic-

ularly in the late period (Figs. 4b, 5). A comparison between
correlation maps computed for the evaluated periods shows
that while historical simulations do not show agreement in
the spatial pattern of the spring SST and summer EA rela-
tionship against observations (Fig. 2a–c), the MR-30 ensem-
ble mean shows an improvement in reproducing the mecha-
nism (Fig. 5d–f). These results motivate us to assess whether
the model is able to reproduce any of the observed causal
links or whether it shows different causal paths than those
observed.

The observed disparities between the model and observa-
tions, as highlighted in the spatial correlations and time series
analyses depicted in Figs. 4–5, prompt further investigation
into the causal relationships within MR-30. To address this,
we proceed to assess whether the model reproduces any of
the observed causal links or presents alternative causal path-
ways. We construct three different CEN sets to evaluate each
if piControl, historical, and initialised simulations with MR-
30. The variables analysed in the CEN sets are SST, EA, and
SLP indices and the time lag of interest is spring–summer (3-
and 4-month lag). While no causal links are found in the his-
torical simulations, we find opposite causal links than those
in ERA-20C for the piControl simulation, suggesting an at-
mospheric forcing from the EA into the extratropical North
Atlantic (e.g. βEA→SSTind ≈ 0.22) but no detected causal in-
fluence from the ocean on the atmosphere (Fig. 6c).

Moving on to the initialised simulations, we leverage the
entire 30-member ensemble of MR-30 to construct a compre-
hensive CEN spanning the full period (1908–2008), result-
ing in each constructed time series comprising 3030 years.
We find that MR-30 is able to reproduce a weakly posi-
tive SST index and EA link (i.e. βSSTind→EA|SLPind = 0.04)
at 3-month lag (Fig. 6a) but not at 4-month lag as de-
tected in ERA-20C during the late period and in much
weaker strength (i.e. 0.22). Moreover, we find a weak neg-
ative causal link from SST index to SLP index in the model
(i.e. βSSTind→SLPind|EA=−0.02), as opposed to observations
(i.e. 0.21; Fig. 3b). This finding aligns with Fig. 5d–f, which
shows that the area of positive correlations in MR-30 is dis-
placed southwestwards with respect to ERA-20C. No causal
links from SST index to EA or SLP indices are found when
analysing only the late period (1958–2008). Next, we there-
fore investigate the causal link sensitivity to the sample size
and focus on 45-year-long time series covering the late pe-
riod, allowing a direct comparison with the sensitivity analy-
sis performed in ERA-20C (Fig. 6b–d).

3.4 Sensitivity analysis and impact on predictive skill

We perform a two-step sampling method in our sensitiv-
ity analysis with MR-30 for SST, EA, and SLP indices
(Sect. 2.4). Our sensitivity results suggest that the model
predominantly fails to reproduce the observed links between
SST index and EA or SLP indices (Fig. 6b), showing only in
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Figure 3. Causal effect network analysis for the late period (1958-2008) in ERA-20C. Causal graphs between (a) SST index, EA telecon-
nection, SLP index, and T2mCE and (b) SST index, EA teleconnection, and SLP index only. The strength and direction of the causal links
are given by the β coefficient and are represented by the arrows, whereas the auto-correlation path coefficient is represented for each variable
by the respective circle colour. The numbers over each arrow represent the time lag (in months) when the strongest causal link between each
variable pair is detected. (c–d) Sensitivity of the causal links shown as the PDF of β coefficients calculated for a random sample selection of
45 years, iterated 500 times, between the variables: SST and SLP indices at lag 3 (c) and SST index and EA at lag 4 (d). Only causal links
with p value< 0.1 are shown in panels (a) and (b). Red lines show the correspondent β coefficients represented in panel (a).

about 5 % of the cases β coefficients that are in the positive
range as in ERA-20C (Fig. 3).

We hypothesise that this MR-30 limitation in reproducing
the causal links detected in ERA-20C might constrain the
skilful prediction of European summers a season ahead. As
a first test, we focus on two particular values of the β coef-
ficients, namely β1=−0.18 and β2= 0.18, corresponding to
the link SST index→ SLP at 3-month lag illustrated by or-
ange arrows in Fig. 6b. In other words, we analyse two cases
with strong causal link strength but in opposite signs, with β2
lying closest to the observed ERA-20C range.

We perform a predictive skill assessment for the MR-30
bootstrap ensemble respective to β1 and β2 against ERA-
20C, checking whether the strength of the causal link has
a fingerprint in the predictive skill of JA SLP (Sect. 2.5). We
find a better agreement between model and reanalysis for β2
than for β1, with significant ACC particularly over the region
where spring SST is significantly correlated to summer SLP
in ERA-20C (e.g. Fig. 2b). However, since positive causal
links are only rarely present in MR-30, we are unable to iden-

tify a robust fingerprint in the predictive skill related to any
of the links between SST and EA or SLP indices.

3.5 Forecasts of opportunity: could causality help?

We aim to identify a robust fingerprint of spring NA-SST
on summer predictive skill, which could potentially enhance
targeted forecasting opportunities (Mariotti et al., 2020). Our
correlation analysis, as depicted in Fig. 2, indicates the poten-
tial influence of spring NA-SST on summer T2m variability
across the Euro-Atlantic region during the late period. Thus,
we conduct an additional causal analysis in ERA-20C to pin-
point the regions within the T2m field where a causal rela-
tionship with spring NA-SST is anticipated. We also explore
whether this causal relationship might impact the predictive
skill of MR-30.

We compute a causal map (Di Capua et al., 2020b) that
represents the β coefficients calculated for the link between
AM SST index and each grid point of JA T2m and SLP fields
conditioned on the SLP index, i.e. βSSTind→T2m|SLPind and
βSSTind→SLP|SLPind (Fig. 7b, shading and contours, respec-
tively). The choice of using either the EA or SLP index has
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Figure 4. Model skill in reproducing summer EA and its link with spring SST. (a) Probability density functions (PDFs) of the summer EA,
(b) running correlation between SST and EA indices for a 20-year window, and (c) time series of the summer EA. Light grey colours represent
individual ensemble members, black represents ERA-20C, and green represents the historical simulation. In panel (a) the dashed grey line
shows the piControl, and in panel (b) the coloured markers indicate significant correlations at the 95 % confidence interval, illustrated by the
horizontal dashed lines.

Figure 5. Spatial characteristics of the SST–SLP relationship over the 20th century in MPI-ESM-MR. Correlation maps show pointwise
correlation coefficients for the April–May SST index and July–August SLP means considering early (1908–1957; a, d), late (1958–2008; b,
e), and full periods (1908–2008; c, f). Top row shows results for the MPI-ESM-MR historical simulation and bottom row for MPI-ESM-MR
30-member ensemble. The reader may refer to Fig. 2a–c for a comparison with ERA-20C.

minimal impact on the results, as shown by the similar causal
map generated with the EA index in Appendix A Fig. A2.
We find two causal regions of opposite signs. The first region
shows negative causal links and is located in northwestern
Europe, partly encompassing the area used to calculate the
T2mCE index expressed in the causal graph in Fig. 3a, here-
after the CE region. This can be interpreted as an increase of
1 SD in the spring SST index (e.g. warming over the subpo-
lar and cooling over the subtropical North Atlantic) causally

driving a decrease of about 0.3 SD in the summer T2m field
in northwestern Europe. The second region shows a positive
causal influence on both T2m and SLP fields, reaching strong
values above 0.5 for the T2m field. A black box illustrates
this causal region, denoted “ridge” (Sect. 2.2).

Targeting the two causal regions, CE and ridge, we test
the hypothesis that the predictive skill of summer surface cli-
mate in MR-30 is higher for time series that can reproduce
the causal link strength observed in ERA-20C compared to
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Figure 6. Causal effect networks for MPI-ESM. (a) CEN between SST index, EA teleconnection, and SLP index for the MPI-ESM-MR 30-
member ensemble (MR-30) considering the full period. (b) Sensitivity of the causal links between SST and SLP indices at 3-month lag and
SST and EA indices at 4-month lags in the late period. Boxplots show β coefficients calculated for a random selection of 45 years, sampling
one random ensemble member amongst the 30-member set per year. This process is repeated 1000 times, and only significant β coefficients
are shown (p value< 0.1). Orange “x” markers represent the β coefficient calculated from ERA-20C (dashed lines in Fig. 3). Panel (c) same
as (a) for a 1000-year-long piControl simulation with MPI-ESM-MR. (d) Comparison of the impact on SLP predictive skill in lead times
of 3–4 months in MR-30 against ERA-20C for time series showing opposite β coefficient strengths: an MR-30 bootstrap ensemble with
(left) β1=−0.18 and (right) β2= 0.18. Predictive skill is quantified with anomaly correlation coefficients for the late period. β1 and β2 are
highlighted in panel (b) by orange arrows.

those that cannot. Thus, we specifically test the four links
corresponding to the causal graphs in Fig. 7a and c in MR-
30. To this end, we first perform cross-validation and ensem-
ble subsampling to generate 1000 time series for each anal-
ysed link, and each time series consists of 45-year periods
randomly selected from the ensemble space during the late
period (Figs. 8a–c and A3 in the Appendix). While MR-30
mostly fails to encompass the observed link strengths, we fo-
cus on the extremes: time series that lie near the tails of the
distribution. Specifically, we examine the percentiles clos-
est to the observed link strength, looking at the 95th per-
centile for values near positive observations and the 5th per-
centile for negative observations. Next, we evaluate whether
the strength of the causal links is imprinted on MR-30’s skill
in predicting summer SLP, T2m, and Z500 for the two causal
regions a season ahead. We quantify the predictive skill with
ACC using ERA-20C as a reference. We calculate the ACC
for each of the in total 50 samples, averaging over the ridge
region (Fig. 8d, f) and CE region (Fig. 8e). In panel d, we ob-
serve that the ACC for SLP and Z500 is significantly higher

when time series are closest to the observed values (i.e. above
the 95th percentile), as indicated by non-overlapping box-
plot envelopes. The difference in T2m ACC is more subtle,
with a slightly higher median and higher upper quartile for
time series closer to the observed values. For panels e and f,
differences are minimal, with only a slight increase in ACC
for time series closer to the observed values. In conclusion,
while MR-30 generally struggles to capture the observed link
strengths, time series that align more closely with the ob-
served values show a significant improvement in predictive
skill for SLP and Z500. This suggests that achieving closer
alignment with observed causal link strengths can notably
enhance predictive performance for these variables, though
the effect is less pronounced for T2m than SLP or Z500 in
both analysed regions.

4 Discussion

The framework of “forecasts of opportunity” (Mariotti et al.,
2020) in seasonal prediction has been increasingly explored
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Figure 7. Spatial features of the causal influence of spring SST index on summer temperature. (a) Observed causal links between SST
index, SLP index, and T2mCE in the late period (1958–2008); (b) respective causal map for 3-month lag, showing causal links between
April–May SST index and July–August temperature in shading βSSTind→T2m|SLPind and April–May SST index and July–August SLP
βSSTind→SLP|SLPind in contours. The black box highlights the region of strongest causal influence and represents the area used to calcu-
late the T2m index denoted T2mRidge in the text. (c) Observed causal links between SST index, SLP index, and T2mRidge in the late period
(1958–2008).

to identify physical processes which lead to enhanced pre-
dictability and forecast skill. Such a strategy has been par-
ticularly useful for summer (Carvalho-Oliveira et al., 2022)
and winter (Dobrynin et al., 2018) seasonal predictions in the
European region, where predictive skill is limited. Here, we
target the summer EA to understand how its seasonal pre-
dictability is influenced by spring North Atlantic SSTs using
the causal-inference-based tool CEN based on PCMCI algo-
rithm.

Using ERA-20C, our CEN analysis confirms that the
spring SST index proposed in Ossó et al. (2018) causally in-
fluences the variability in summer SLP in the Euro-Atlantic
region with a 3–4-month delay during the late period (1958–
2008). Specifically, we find that a 1 SD change in the spring
SST index first drives a 0.2 SD change in the summer SLP
index at 3-month lag (e.g. March–April SST index→ June–
July SLP index) and then drives a 0.2 SD change a month
later in the summer EA (e.g. March–April SST index →
July–August EA; Fig. 3a). While EA and SLP indices are
highly correlated (r = 0.82), the position of the area used to
calculate the SLP index (Fig. 2c) only partly overlaps the EA
centre of action (Fig. 1a), which extends further northwest.
We speculate that the northward migration of the North At-
lantic jet stream during summer (e.g. Hallam et al., 2022)
could explain the delay of a month between the causal link
of SST index and EA or SLP indices.

Besides extratropical SSTs, El Niño–Southern Oscillation
(ENSO)-related tropical forcing has been suggested to influ-
ence the summer EA over more recent decades (1979–2016;

e.g. Wulff et al., 2017; O’Reilly et al., 2018). As opposed to
the mechanism proposed in Ossó et al. (2018), Wulff et al.
(2017) suggested that the summer EA is forced by diabatic
heating anomalies in the tropical Pacific and Caribbean, and
it is characterised by an extratropical Rossby wave train with
a centre of action west of the British Isles. The CEN analysis
proposed in this paper could therefore be extended to include
tropical SST predictors, thus testing how the causal links dis-
cussed here could be affected by the influence of additional
drivers.

Our findings suggest that the causal links detected in
ERA-20C are non-stationary during the 20th century, being
present only in the late period (1958–2008). Non-stationarity
in teleconnections has been reported by several studies
(e.g. Woollings et al., 2015; Weisheimer et al., 2019). In par-
ticular, Rieke et al. (2021) used a 700-year pre-industrial con-
trol run with MPI-ESM-LR to investigate the tropical link of
the summer EA (Wulff et al., 2017) with a statistical model
and showed that the link had a non-stationary behaviour, be-
ing present in some multidecadal epochs but not in others.
Detecting non-stationarity in the causal links discussed here
has an important consequence for the application on predic-
tive skill in seasonal forecasting, implying a limited use of
such causal links to target forecasts of opportunity.

Yet, our causal analysis with CEN offers an alternative as-
sessment of MPI-ESM-MR’s performance, enabling a direct
comparison of the causal links reproduced by the model with
those detected in reanalysis. We find that the causal links be-
tween spring SST index and summer EA and T2m are absent
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Figure 8. Influence of spring (AM) SST index on summer (JA) predictive skill in MR-30. The upper row shows the sensitivity of causal link
strength in MR-30 for (a) βSSTind→SLPind|T2mCE , (b) βSSTind→T2mCE|SLPind , and (c) βSSTind→T2mRidge|SLPind . Each distribution is generated
from 1000 bootstrap samples, with a random selection of 45 years and one ensemble member from the 30-member set per year. The lower
row compares the predictive skill of MR-30 against ERA-20C, highlighting time series that best match the observed causal link strength
(above the 95th percentile for positive values, below the 5th percentile for negative values) versus those furthest from the observed strength
(below the 5th percentile for positive links, above the 95th for negative links). Mean ACCs are shown for July–August sea level pressure
(SLP), 2 m air temperature (T2m), and 500 hPa geopotential height (Z500), averaged over the region highlighted by the grey box. Further
details are provided in Sect. 3.5.

in piControl and historical simulations but appear in some
45-year-long time series sampled in the initialised ensem-
ble MR-30, thus suggesting a role of initialisation (Fig. 6).
Nevertheless, our results suggest that MR-30’s limited per-
formance in reproducing these causal links, in particular be-
tween spring SST index and the summer EA, might explain
its low skill in predicting summer seasonal European cli-
mate (e.g. Neddermann et al., 2018; Carvalho-Oliveira et al.,
2022).

5 Conclusions

We apply the causal-inference-based tool CEN based on
PCMCI algorithm to evaluate the influence of spring North
Atlantic extratropical SSTs on the predictability of summer
EA and its associated impact on surface climate at seasonal
timescales. Our main findings are as follows:

– Analysing ERA-20C, we find that the observed relation-
ship between spring SST index and summer EA is non-
stationary during the 20th century, showing distinct spa-

tial patterns between early (1902–1957) and late (1958–
2008) periods. The estimated causal influence of spring
SST index on summer EA is of β ≈ 0.2.

– We find that this relationship in ERA-20C is only causal
over the late period. A sensitivity analysis of its strength
during the late period shows high variability, suggesting
that the presence or absence of specific years plays an
important role in the quantification of the causal link.
This may suggest that an external physical mechanism
not included in our analysis might modulate the spring
SST and summer EA causal link.

– In addition to summer EA, we find in ERA-20C that
the spring SST index causally influences summer T2m
(β ≈−0.2) over a region in northwestern Europe, with
about a third of this causal influence being mediated by
the EA.

– We find that pre-industrial and historical simulations of
the MPI-ESM-MR do not reproduce the causal links de-
tected in ERA-20C during the late period. In contrast,
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our CEN analysis with the full initialised ensemble MR-
30 reveals a weak positive causal link between spring
SST index and summer EA index (β ≈ 0.04).

– However, for 45-year-long time series randomly sam-
pled in MR-30, we find that the initialised ensemble is
mostly unable to reproduce the spring SST index and
summer EA link. Despite this, there are notable excep-
tions where individual time series that lie closer to the
observed causal link exhibit significantly improved pre-
dictive skill.

– This improvement is particularly evident for 3–4-month
lead time SLP and Z500, where higher skill is associ-
ated with time series that capture the observed causal
link strength more accurately. These results suggest
that even within a generally underperforming ensem-
ble, there are instances where a closer alignment with
observed causality leads to more skilful predictions, es-
pecially for key atmospheric variables.

In this analysis, we demonstrate that MPI-ESM-MR has
limited performance in reproducing a causal link between
spring NA-SST (SST index) and summer EA amongst unini-
tialised and initialised model datasets. Our causality analysis
therefore sheds light on the limitations of this model in pro-
viding skilful seasonal predictions of summer climate, partic-
ularly over areas which undergo a significant EA influence.
Addressing these deficiencies, such as inadequacies in rep-
resenting crucial coupled ocean–atmosphere feedbacks, will
be key in future model improvements. Finally, our results for
the initialised ensemble MR-30 show that ensemble mem-
bers able to reproduce a causal link to spring SST have a po-
tential for regional skill improvement. This highlights how
causality frameworks can target forecast opportunities and
emphasises the importance of enhancing the representation
of teleconnections in climate models.
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Appendix A

Appendix A provides supplementary figures that offer addi-
tional context and support for the main analysis presented in
the paper.

Figure A1. Linear regression maps of July–August NA-SST anomalies (shading) and SLP (contours) against the precursor March–April
SST index for ERA-20C (normalised by the SD) for (a) early (1908–1957), (b) late (1958–2008), and full periods (1908–2008). Contour
interval is 0.2 hPa SD−1.

Figure A2. Causal map for 4-month lag, showing causal links between March–April SST index and July–August temperature in shad-
ing βSSTind→T2m|EA and March–April SST index and July–August SLP βSSTind→SLP|EA in contours. Black box highlights the region of
strongest causal influence and represents the area used to calculate the T2m index denoted T2mRidge in the text.
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Figure A3. Sensitivity of causal link strength in MR-30 with respect to the causal graph in Fig. 7c. (a) βSSTind→SLPind|T2mRidge ;
(b) βSSTind→T2mRidge|SLPind . Each distribution is generated from 1000 bootstrap samples, with a random selection of 45 years and one
ensemble member from the 30-member set per year.
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