
Weather Clim. Dynam., 5, 763–777, 2024
https://doi.org/10.5194/wcd-5-763-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Elevation-dependent warming: observations,
models, and energetic mechanisms
Michael P. Byrne1,2, William R. Boos3,4, and Shineng Hu5

1School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
2Department of Physics, University of Oxford, Oxford, UK
3Department of Earth and Planetary Science, University of California, Berkeley, California, USA
4Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5Nicholas School of the Environment, Duke University, Durham, North Carolina, USA

Correspondence: Michael P. Byrne (mpb20@st-andrews.ac.uk)

Received: 5 January 2024 – Discussion started: 17 January 2024
Revised: 27 March 2024 – Accepted: 10 April 2024 – Published: 22 May 2024

Abstract. Observational data and numerical models sug-
gest that, under climate change, elevated land surfaces
warm faster than non-elevated ones. Proposed drivers of
this “elevation-dependent warming” (EDW) include surface
albedo and water vapour feedbacks, the temperature depen-
dence of longwave emission, and aerosols. Yet the relative
importance of each proposed mechanism both regionally and
at large scales is unclear, highlighting an incomplete physical
understanding of EDW.

Here we expand on previous regional studies and use grid-
ded observations, atmospheric reanalysis, and a range of cli-
mate model simulations to investigate EDW over the histori-
cal period across the tropics and subtropics (40° S to 40° N).
Observations, reanalysis, and fully coupled models exhibit
annual mean warming trends (1959–2014), binned by sur-
face elevation, which are larger over elevated surfaces and
broadly consistent across datasets. EDW varies by season,
with stronger observed signals in local winter and autumn.
Analysis of large ensembles of single-forcing simulations
(1959–2005) suggests historical EDW is likely a forced re-
sponse of the climate system rather than an artefact of inter-
nal variability and is primarily driven by increasing green-
house gas concentrations.

To gain quantitative insight into the mechanisms contribut-
ing to large-scale EDW, a forcing–feedback framework based
on top-of-atmosphere energy balance is applied to the fully
coupled models. This framework identifies the Planck and
surface albedo feedbacks as being robust drivers of EDW
(i.e. enhancing warming over elevated surfaces), with energy

transport by the atmospheric circulation also playing an im-
portant role. In contrast, water vapour and cloud feedbacks
along with weaker radiative forcing in elevated regions op-
pose EDW. Implications of the results for understanding fu-
ture EDW are discussed.

1 Introduction

Climate models and some observational studies show that, as
climate warms, elevated surfaces tend to warm more rapidly
than non-elevated surfaces (Pepin et al., 2015; Yan et al.,
2016; Qixiang et al., 2018). This elevation-dependent warm-
ing (EDW) suggests that the impacts of a changing climate
will be amplified for elevated surfaces, with implications for
societies and ecosystems in mountainous regions as well as
for glaciers and meltwater runoff (Bliss et al., 2014).

Amplified warming (or, more generally, differential warm-
ing) of elevated regions implies that the energetic forcing and
feedback processes which control radiatively forced temper-
ature trends (e.g. Sherwood et al., 2020) vary systematically
with surface elevation. Proposed drivers of EDW based on
this energetic perspective include the surface albedo feed-
back (Giorgi et al., 1997), the temperature dependence of
longwave emission (i.e. the Planck feedback; Pepin et al.,
2015), and cloud feedbacks (Rangwala and Miller, 2012).
Radiative effects associated with increasing water vapour,
in particular variations in this feedback with surface eleva-
tion, have also been cited as a possible contributor to EDW
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(Rangwala et al., 2009; Palazzi et al., 2017), as has the height
dependence of free-tropospheric warming (Kotlarski et al.,
2012). Some of these proposed EDW drivers are well un-
derstood. For example, the surface albedo feedback – a pos-
itive feedback on forced temperature changes (Hall, 2004)
– is expected to be more important for high-elevation re-
gions where surface snow and ice are plentiful and near
the freezing point. Using high-resolution simulations, Min-
der et al. (2018) identified this albedo feedback as the pri-
mary driver of EDW in the Rocky Mountains. The negative
Planck feedback is also temperature dependent (Henry and
Merlis, 2019; Cronin and Dutta, 2023) and expected to be
weaker in colder elevated regions, thereby favouring EDW
(Pepin et al., 2015). Other factors, including radiative forcing
due to aerosols, are important for regional EDW according to
some studies (Ramanathan and Carmichael, 2008; Lau et al.,
2010), yet their influence on large scales and importance rel-
ative to other EDW drivers are less clear. As-yet undiscov-
ered mechanisms could also influence the relative warming
of elevated versus non-elevated surfaces: for example, CO2
radiative forcing is weaker in elevated regions including the
Tibetan Plateau (Huang et al., 2016) but has received little at-
tention in the EDW literature. In summary, despite intensive
research over recent decades, a comprehensive and quanti-
tative understanding of the physical processes driving EDW
remains elusive.

In this study, we examine EDW over the historical pe-
riod using gridded observations, atmospheric reanalysis, and
climate models. Our focus is on understanding the large-
scale EDW signal in the tropics and subtropics (averaged
from 40° S to 40° N), the consistency across observational
and model datasets, and the processes influencing EDW. We
focus on the tropics and subtropics where the EDW signal is
strong (Palazzi et al., 2019) and where meridional gradients
in surface temperature trends – which have the potential to
complicate interpretation of the EDW signal – are relatively
weak (e.g. compared to northern middle and high latitudes
where polar amplified warming manifests; Rantanen et al.,
2022). We begin by introducing the data and analysis tech-
niques (Sect. 2) before quantifying EDW using surface air
temperatures and assessing trends across observations, mod-
els, and seasons (Sect. 3). Using large ensembles of climate
simulations, in Sect. 4 we assess the following: (i) the influ-
ence of radiative forcing versus internal variability on EDW
and (ii) the roles of specific forcing agents in driving EDW, in
particular greenhouse gases and aerosols. In Sect. 5 we quan-
tify and interpret the physical processes influencing EDW
using a forcing–feedback framework before finishing with a
summary and conclusions (Sect. 6).

2 Data and analysis

A range of monthly resolved observational and model
datasets are analysed to gain insight into the historical

EDW signal and its physical drivers. On the observational
side, gridded surface air temperature anomalies from the
HadCRUT5 dataset (at 5°× 5° resolution; Morice et al.,
2021) are analysed along with surface air temperature es-
timates from the ERA5 reanalysis1 (0.25°× 0.25°; Hers-
bach et al., 2020). Note that HadCRUT5 does not provide
complete spatial and temporal coverage due to limited sta-
tion data in specific regions and at specific times. On the
model side, 20 ensemble members are analysed from each of
the “all-forcing”, “all-but-greenhouse-gases”, and “all-but-
anthropogenic-aerosols” sets of simulations performed at a
nominal 1°× 1° resolution as part of the CESM1 Large En-
semble Project (CESM1-LE; Kay et al., 2015). The latter two
sets of simulations have greenhouse gases and anthropogenic
aerosols, respectively, prescribed to pre-industrial levels and
are subtracted from the all-forcing runs to isolate the con-
tributions of these individual forcing agents to the histori-
cal temperature trends. Historical simulations from 21 fully
coupled models2 participating in the Coupled Model Inter-
comparison Project Phase 6 (CMIP6; Eyring et al., 2016) are
also analysed. The years used in each analysis are specified
in subsequent sections, but most of our analyses use 1959–
2014.

To analyse EDW, for each dataset the land-surface air tem-
peratures (or land-surface air temperature anomalies in the
case of HadCRUT5) are first binned by surface elevation. All
grid boxes comprising more than 90 % land are included. For
ERA5 and CESM1-LE, surface elevations are derived from
the surface geopotential data. Surface elevations for Had-
CRUT5 are obtained by regridding the ERA5 geopotential
data to the HadCRUT5 grid. For CMIP6, surface elevations
are taken from the GFDL-CM4 model’s orography file and
are regridded before being used with the other models. A
total of 11 elevation bins are defined, with equally spaced
lower bounds of 0 m surface elevation for the lowest bin
and 5000 m for the highest bin; the highest bin has no up-
per bound and includes all grid boxes higher than 5000 m.
Temperatures are averaged over each calendar year (or each
3-month local season) and in each elevation bin, with area
weighting, prior to the multi-decadal trends being computed
using ordinary least-squares regression. Binned data are plot-
ted as a function of the mean surface elevation in each bin
(e.g. Fig. 1a). Using the standard error of the slope and the t
statistic, confidence intervals are estimated for the trends un-
der typical assumptions for ordinary least squares (e.g. nor-

1Note that the ERA5 temperature data analysed here were ac-
cessed from the Copernicus Climate Data Store on 21 Decem-
ber 2023.

2CMIP6 historical simulations performed by the following mod-
els are analysed: ACCESS-CM2, AWI-ESM-1-1-LR, BCC-ESM1,
CESM2-FV2, CESM2-WACCM-FV2, CanESM5, FGOALS-g3,
GFDL-CM4, GFDL-ESM4, INM-CM4-8, INM-CM5-0, IPSL-
CM5A2-INCA, IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, KACE-
1-0-G, KIOST-ESM, MIROC6, MPI-ESM-1-2-HAM, MPI-ESM1-
2-LR, MRI-ESM2-0, and NorESM2-LM.
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mality of residuals). We repeated many of our analyses us-
ing a robust linear regression designed to be less sensitive
to outliers, as implemented in the statsmodels robust linear
models module (v0.14.0; Skipper and Perktold, 2010) that
uses a Huber T norm with a generalised maximum likeli-
hood method (M estimation) to estimate the regression co-
efficients. Our conclusions are insensitive to this choice of
regression model, but we state below any instances where
slopes changed notably with the choice of statistical model.

3 Historical EDW on large scales

Over our tropical–subtropical region, reanalysis and gridded
station data show quantitatively similar pronounced warm-
ing over elevated surfaces. Specifically, when land-surface
air temperatures are binned by surface elevation and then av-
eraged spatially and over each calendar year, as described
above, linear trends over the 1959–2014 period generally in-
crease with height (Fig. 1a). Although central estimates of
the linear trends differ between the station data (HadCRUT5)
and reanalysis (ERA5) in many elevation bins, the 95 % con-
fidence intervals of these trends always overlap. Spatial sam-
pling differed substantially between the reanalysis and grid-
ded station data due to their different resolutions (0.25 and
5°, respectively) and some spatio-temporal gaps in the sta-
tion data; one effect of this can be seen in the different mean
surface elevations within each elevation bin (this is especially
prominent between 3 and 4.5 km surface elevation in Fig. 1a).

The magnitude of the EDW signal, and any differences in
its value between datasets, can be quantified by an “EDW
index”. Specifically, we define the EDW index as the slope
obtained by regressing the warming trend in each elevation
bin onto the mean surface elevation within each bin (this
metric is similar to the “elevational gradient” analysed by
Palazzi et al., 2017). This yields, for example, EDW indices
of 0.0089±0.0080 K per decade per kilometre for ERA5 and
0.0189± 0.0169 K per decade per kilometre for HadCRUT5
(Fig. 1b; the uncertainties listed here correspond to 95 % con-
fidence intervals). These values are not statistically distinct
from each other, and both have confidence intervals that do
not include 0 (the p values are 0.043 and 0.042, respectively).
Using a robust linear model instead of ordinary least squares
yields slightly smaller central estimates of the EDW indices,
0.0087 K per decade per kilometre for ERA5 and 0.0180 for
HadCRUT5, with respective p values of 0.058 and 0.035.

All of the above results were for annual mean tempera-
tures, and the EDW indices vary by season (Fig. 1b). Local
autumn and winter values are larger than local spring and
summer values in both datasets; in HadCRUT5 only the au-
tumn and winter seasons are statistically distinct from 0 at the
95 % level. The larger EDW signal in cool seasons is consis-
tent with the larger contribution to EDW of mechanisms that
are stronger at colder temperatures (i.e. the Planck feedback)
and when surface snow and ice are prevalent (i.e. the sur-

Figure 1. (a) Land-surface air temperature trends binned by surface
elevation for the ERA5 reanalysis, HadCRUT5 dataset, and CMIP6
historical simulations (1959–2014, data averaged from 40° S to
40° N). Here and in subsequent figures, the trends are plotted as
a function of the mean surface elevation in each bin. For ERA5 and
HadCRUT5, error bars are the 95% confidence intervals. For the
CMIP6 simulations, the line with squares shows the median tem-
perature trend among the models in each elevation bin, and shading
shows the interquartile range. Note that quantitatively similar results
for ERA5 are obtained when the data are coarsened by horizon-
tal averaging to a resolution of 1°× 1° (not shown). (b) Elevation-
dependent warming (EDW) index (i.e. the inverse of the slope of
the curves in a, as described in the text) for ERA5, HadCRUT5, and
CMIP6 computed for the annual mean and for each local season.
Error bars for ERA5 and HadCRUT5 indicate the 95 % confidence
intervals; for CMIP6, the open bar shows the median EDW index
among the models, and dots show the EDW index in each model.
The vertical axis in (b) has a “symmetrical logarithmic scale” that
is linear between ±0.04 K per decade per km and logarithmic be-
yond that range in positive and negative directions. This scale is
used because a few model outliers have EDW indices much larger
than observed; the dashed horizontal lines indicate the boundaries
between the linear and logarithmic regions of the scale.
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face albedo feedback); these effects are discussed in Sect. 5
below.

Upon examining the historical CMIP6 simulations, we
find that the ensemble median EDW indices and warming
trends in each elevation bin are roughly similar to those
of our two observational datasets (Fig. 1a). This simulated
EDW signal, averaged across the tropics and subtropics, is
consistent with regional modelling studies focused on trop-
ical EDW (Vuille et al., 2003; Chimborazo et al., 2022).
For the warming trends, error bars for the two observational
datasets fall within the interquartile range of the CMIP6
models in every elevation bin. The CMIP6 median EDW
index falls within the error bars of the two observational
datasets for annual mean data (Fig. 1b), although the model
ensemble spans a large range with four models exhibiting
reduced warming over elevated surfaces (negative EDW in-
dex) and a few models having EDW indices that are roughly
an order of magnitude larger than observed. Models exhibit
the largest EDW in winter, like observations, and the median
values for summer and autumn are also broadly consistent
with the observational estimates. There is less agreement in
spring, with the CMIP6 median EDW index falling outside
the HadCRUT5 error bars.

Do these measures of differential warming have geo-
graphic correspondence between the models and our two
observational datasets? Annual mean warming trends (over
the same 1959–2014 period used above) are the largest
over many of the same orographic regions in all three
datasets: the Tibetan and Iranian plateaus, the North Ameri-
can Cordillera, and the Brazilian Highlands in eastern South
America (Fig. 2). Warming is also strong over the Arabian
Peninsula and Sahara in all datasets; although parts of these
regions contain high orography, there does not seem to be
a strong relation between the warming rate and surface el-
evation over Africa and the Arabian Peninsula. Since fac-
tors other than surface elevation are expected to influence the
warming rate, such as surface aridity (Byrne and O’Gorman,
2013), we do not expect the map of warming rate to have
the same pattern as the map of surface elevation. Given
the prominence of enhanced warming over off-equatorial re-
gions, particularly in the Northern Hemisphere (Fig. 2), it
seems worthwhile to assess whether the EDW signal seen
in Fig. 1 might be an artefact of the polar amplification of
warming that is seen primarily in the Northern Hemisphere
(e.g. Pithan and Mauritsen, 2014). We assess this possibility
in the Appendix, showing that the association of latitude with
warming is insufficiently large to explain the majority of the
observed EDW signal.

4 Drivers of EDW: internal variability versus radiative
forcing

Is the historical EDW described in Sect. 3 a forced response
of the climate system (e.g. to increasing greenhouse gases)?

Or is it potentially an artefact of internal variability? To ad-
dress these questions, we analyse data from the CESM1-
LE simulations (1959–2005) to isolate the relative contribu-
tions of external radiative forcing and natural internal vari-
ability to historical EDW. Across the all-forcing ensemble,
17 out of 20 members show a positive EDW index (i.e. en-
hanced warming at elevation; Fig. 3), implying that histor-
ical EDW is very likely, at least in part, to be radiatively
forced. The EDW index varies substantially across members
in the all-forcing ensemble, from +0.0288 to −0.0082 K per
decade per kilometre (Fig. 3b). This suggests an important
role for internal variability in affecting the magnitude of the
historical EDW signal, consistent with Palazzi et al. (2019).
The EDW indices from the HadCRUT5 and ERA5 datasets
are 0.0140± 0.0189 and 0.0099± 0.0096 K per decade per
kilometre, respectively (Fig. 3b), which are similar to the
ensemble-mean all-forcing EDW index (0.0135 K per decade
per kilometre) and fall within the ensemble spread (these
HadCRUT5 and ERA5 values differ from those given in the
previous section because here we use an analysis period end-
ing in 2005). These results suggest that both radiative forc-
ing and internal variability have played an important role in
shaping historical EDW.

Greenhouse gases and anthropogenic aerosols, two im-
portant radiative forcing agents (Smith et al., 2020), can
both drive regional patterns of surface temperature change
(Mitchell et al., 1995). To advance understanding of EDW,
it is important to assess which forcing agent is responsible
for the large-scale EDW signal over the historical period. To
this end, we analyse the CESM1-LE single-forcing simula-
tions, wherein greenhouse gases or aerosols are prescribed
to pre-industrial levels so as to isolate the contributions of
these forcing agents to historical trends (see Sect. 2). We find
that greenhouse gases are the dominant driver of historical
EDW (cf. grey and red markers in Fig. 3b). Aerosol forcing
has only a weak influence on large-scale EDW (blue mark-
ers in Fig. 3b) but could potentially be important on regional
scales (e.g. Pepin et al., 2015). Inter-member correlations be-
tween tropical mean temperature trends and the EDW index
are weak, for both the all-forcing and single-forcing experi-
ments (Fig. 3b), suggesting that the internal variability influ-
encing tropical mean warming is different in character from
the variability controlling EDW, and that the magnitude of
EDW is not simply determined by the rate of overall tropical
warming.

5 Processes influencing EDW in historical simulations

5.1 Forcing–feedback framework

In this section, we investigate the physical drivers of EDW
in the CMIP6 historical simulations. To decompose the pro-
cesses influencing annual mean surface air warming at differ-
ent elevations, we start by considering atmospheric energy
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Figure 2. Spatial distribution of linear temporal trends in annual mean surface air temperature between 1959–2014 in (a) ERA5, (b) Had-
CRUT5, and (c) CMIP6, all in kelvin per decade, with the CMIP6 plot showing the median trend across the 21-model ensemble. Stippling
marks regions where the 95th-percentile confidence interval includes 0 in (a) and (b) and where the interquartile range across the model
ensemble includes 0 in (c). White regions in (b) lack data, and the dashed grey contours mark 1 and 2 km surface elevations. Trends over the
ocean are shown for ERA5 and CMIP6 for reference but are not included in any of our EDW analyses.

balance in a forcing–feedback framework. At steady state,
the local atmospheric energy budget can be written as

0= Rt−Rs−∇ ·Fa, (1)

where Rt is the net radiative flux at the top of the atmo-
sphere (TOA), and Rs is the net energy flux between the at-
mosphere and surface (radiative plus turbulent fluxes). Both
Rt and Rs are defined as positive downwards. ∇ ·Fa is
the divergence of the horizontal moist static energy (MSE)
flux, Fa, integrated over the depth of the atmosphere. The
heat capacity of the land surface is relatively small, so on an-
nual and longer timescales the fluxes into and out of the land
surface are expected to be approximately balanced (e.g. see
Fig. 9 in Liu et al., 2017). We therefore neglect the surface
flux term in Eq. (1) to give

0≈ Rt−∇ ·Fa. (2)

Equation (2) implies a tight coupling between TOA radiative
fluxes and atmospheric energy transport over land. Trends in
radiative fluxes and atmospheric energy transport, for exam-
ple in response to global warming, are also tightly coupled:

0≈ δRt−∇ · δFa, (3)

where δ denotes a linear trend.
As is standard in physical climate science (e.g. Hansen

et al., 1984), we next express trends in the net TOA radia-
tive flux as a linear sum of a radiative forcing, F , and a
temperature-mediated feedback term:

δRt = F − λδTs, (4)

where λ is the climate feedback parameter (Gregory et al.,
2004), and Ts is the surface air temperature. The λ parameter
is composed of a variety of individual feedback processes
that are assumed to be independent of one another:

https://doi.org/10.5194/wcd-5-763-2024 Weather Clim. Dynam., 5, 763–777, 2024
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Figure 3. (a) Surface air temperature trends binned by surface el-
evation for 20 ensemble members (grey lines) and the ensemble
mean (black line with dots) from the CESM1-LE all-forcing sim-
ulations (1959–2005). (b) Scatterplot of the EDW index versus sur-
face air temperature trend averaged over tropical land (40° S to
40° N) for each ensemble member in the all-forcing simulations
(ALL; grey dots) and in the cases where only greenhouse gas forc-
ing (GHG; red dots) and only anthropogenic aerosol forcing (AER;
blue dots) change over the historical period. The large dots indicate
the ensemble means for the ALL, GHG, and AER cases. Corre-
sponding values for the ERA5 reanalysis (black square) and Had-
CRUT5 observations (black triangle) are also shown, with error bars
indicating the 95 % confidence intervals.

λ= λPL+ λLR+ λWV+ λCL+ λAL+ λST, (5)

where the subscripts PL, LR, WV, CL, AL, and ST denote the
Planck, lapse rate, water vapour, cloud, surface albedo, and
stratospheric feedbacks, respectively. Substituting Eq. (5)
into Eq. (4), then Eq. (4) into Eq. (3) and rearranging, we
obtain

0= F − (λPL+ λLR+ λWV+ λCL+ λAL+ λST)δTs−∇ · δFa, (6)

where the approximation symbol associated with Eq. (3) has
been dropped.

Equation (6) is the basis for the framework we employ to
decompose and quantify the processes contributing to EDW.
In particular, following Goosse et al. (2018), we split the to-
tal surface air temperature trend into components associated
with different processes. To do this we first define λPL to be
the global mean Planck feedback, with λ′PL denoting a local
departure from this global mean. Inserting λPL = λPL+ λ

′
PL

into Eq. (6) and rearranging we find

δTs =
(
F −

[
λ′PL+6iλi

]
δTs−∇ · δFa

)
×

(
1/λPL

)
, (7)

where i = [LR,WV,CL,AL,ST]. Each term on the right-
hand side of Eq. (7) represents a contribution from a particu-
lar process to the local surface air temperature trend. Through
analysing how these contributions vary with surface eleva-
tion, we aim to quantify and gain physical insight into the
processes shaping EDW.

5.2 Methodology

The processes driving EDW are quantified in fully coupled
CMIP6 simulations (see Sect. 2 for the list of models). In
particular, we analyse trends in surface air temperature in
the historical simulations (1959–2014) and assess how these
trends vary with surface elevation.

To quantify the energetic contributions to the temperature
trends, we need to estimate the radiative forcing, radiative
feedbacks, and atmospheric MSE transport (see Eq. 7). The
TOA radiative flux trends associated with the Planck, lapse
rate, water vapour, and surface albedo feedbacks are com-
puted by convolving radiative kernels with trends in tropo-
spheric climate variables (i.e. temperature, specific humidity,
and surface albedo) (Soden and Held, 2006). The flux trends
are normalised by the local surface air temperature trends to
convert into local feedbacks (with units of W m−2 K−1). To
estimate the various feedbacks, we use the monthly resolved
Geophysical Fluid Dynamics Laboratory radiative kernels
(Soden et al., 2008). Cloud feedbacks are computed by ad-
justing trends in the TOA cloud radiative effect to account for
cloud masking effects (Soden et al., 2008). In these calcula-
tions and similar to Soden and Held (2006), the tropopause
is specified to be at 100 hPa at the Equator and varies linearly
with increasing absolute latitude to 300 hPa at the poles. The
stratospheric feedback is computed by convolving trends in
temperature and specific humidity above the tropopause with
the temperature and humidity radiative kernels. Note that the
stratospheric contribution to TOA flux trends is often con-
sidered an “adjustment” to radiative forcing rather than a
temperature-mediated feedback (Sherwood et al., 2015).

Radiative forcing is estimated as a residual from the TOA
energy budget (Eq. 4), by subtracting from the total radia-
tive flux trend contributions due to the various feedback pro-
cesses (this is an estimate of the “instantaneous radiative
forcing”; IRF). Following Kramer et al. (2021), we use a
cloud masking constant of 1.24 to convert from a clear-sky
IRF to an all-sky IRF. The trend in atmospheric MSE diver-
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gence over land, ∇ · δFa, is approximated from Eq. (3) as the
trend in net TOA radiative flux, thereby neglecting trends in
surface and atmospheric energy storage.

Below, we apply this methodology to investigate temper-
ature trends as a function of surface elevation. This com-
plements previous work using similar frameworks to under-
stand the drivers of polar warming (Pithan and Mauritsen,
2014; Hahn et al., 2020) and the land–ocean warming con-
trast (Toda et al., 2021) and aims to directly quantify how a
range of physical processes contribute to EDW.

5.3 Contributions to EDW

The CMIP6 historical simulations show an amplified warm-
ing over elevated surfaces (Fig. 4) that is broadly consis-
tent with HadCRUT5 and ERA5 data (Fig. 1). The multi-
model median surface air temperature trend averaged over
the two highest elevation bins is 42 % larger than the av-
erage trend for the two lowest bins (0.2659 K per decade
vs. 0.1877 K per decade), and the multi-model median EDW
index is 0.0137 K per decade per kilometre (Fig. 4b). Below
we quantify and discuss the energetic processes influencing
this historical EDW signal.

5.3.1 Local Planck feedback

The Planck feedback quantifies the sensitivity of blackbody
emission to a change in temperature and is a negative feed-
back, suppressing the temperature response to external forc-
ing (Knutti and Rugenstein, 2015). Following the Stefan–
Boltzmann law, the Planck feedback is temperature depen-
dent with a magnitude approximately proportional to T 3

s (e.g.
Hartmann, 2016). The cooling effect of the Planck feedback
is therefore expected to be weaker for colder, high-elevation
surfaces compared to warmer, low-elevation surfaces. This
implies that the local Planck feedback contribution to the
temperature trends favours amplified warming over elevated
surfaces (Fig. 4a).

Previous studies have discussed the Planck feedback as
a potential driver of EDW (e.g. Pepin et al., 2015). Here,
we quantify how this mechanism influences EDW and in-
terpret its sign and magnitude using simple physical argu-
ments. The strength of the cooling associated with the local
Planck feedback scales with the ratio of the local anomaly
to the global feedback, i.e. −(λ′PL/λPL)× δTs; see Eq. 7.
The local feedback anomaly, defined as λ′PL = λPL− λPL, is
proportional to the difference between the cubes of the cli-
matological local and global mean temperatures, i.e. λ′PL ∝

T 3
s − Ts

3
, where Ts is the global mean temperature. Conse-

quently, the effect of the local Planck feedback on EDW is a
simple function of climatological temperature and scales as
−(λ′PL/λPL)= 1−(Ts/Ts)

3. For cold regions, where Ts < Ts
and 1− (Ts/Ts)

3 > 0, the simple scaling suggests that the
local Planck feedback has a warming influence on temper-
ature trends. But for warm regions, where Ts > Ts, the lo-

Figure 4. (a) Multi-model median surface air warming trends
binned by surface elevation for the CMIP6 historical simulations
(black line). Trends are computed over 1959–2014, and only land
grid boxes between 40° S and 40° N are included. Components of
the warming trends associated with different energetic processes,
following Eq. (7), are also shown (coloured lines). Note that the
warming trends relative to the trend for the lowest bin are plotted
so as to highlight variations with surface elevation. (b) Simulated
EDW index (black) computed for the CMIP6 simulations along
with the contributions from individual processes (colours). Note
that a positive EDW index indicates an increasing temperature trend
with surface elevation. Dots show the multi-model median values,
and lines show the interquartile ranges.

cal Planck feedback has a cooling influence. This temper-
ature dependence explains why the local Planck feedback
enhances warming of cold, high-elevation surfaces relative
to warm, low-elevation surfaces (Fig. 4a). Our simple esti-
mate of the influence of the local Planck feedback on EDW
is consistent with simulations (Fig. 5), suggesting that basic
physics – namely the temperature dependence of blackbody
emission – has a robust strengthening influence on EDW
across models (Fig. 4b). The climatological temperature gra-
dient between low-elevation and high-elevation surfaces is
larger in boreal winter compared to the annual mean (not
shown), suggesting that the influence of the Planck feed-
back on EDW is stronger when temperatures are cold, which
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Figure 5. Multi-model median Planck feedback contribution to the
surface air temperature trends binned by surface elevation for the
CMIP6 historical simulations (solid red line). The dashed red line
shows a simple estimate of the Planck component based on the
variation in climatological temperature with surface elevation (see
Sect. 5.3.1 for details).

likely contributes to the large observed EDW signal in winter
(Fig. 1b).

5.3.2 Lapse rate feedback

Like the local Planck feedback, the lapse rate feedback
also contributes to amplified warming of elevated surfaces
(Fig. 4). Changes in the vertical temperature gradient (i.e.
the lapse rate) affect the efficiency by which the atmosphere
cools radiatively to space (Colman and Soden, 2021), result-
ing in a temperature-mediated feedback. This feedback is
negative in the tropics and subtropics (Linke et al., 2023),
where amplified warming in the middle troposphere due to
increasing water vapour and latent heat release enhances the
atmosphere’s radiative cooling efficiency. But this negative
feedback is weaker over elevated surfaces where lapse rate
changes are weaker, consistent with the atmosphere being
colder and drier (Randel et al., 1996; Joshi et al., 2008).

5.3.3 Water vapour feedback

Closely connected to the lapse rate feedback is the water
vapour feedback (Lambert and Taylor, 2014), which robustly
opposes EDW across models (Fig. 4). The water vapour feed-
back is the strongest positive feedback in the climate sys-
tem (Soden and Held, 2006), amplifying the temperature re-
sponse by increasing atmospheric absorption of longwave
and shortwave radiation (Manabe and Wetherald, 1967). But
the water vapour feedback is less positive for elevated sur-
faces and, therefore, acts to oppose EDW (Fig. 4).

The atmosphere is thinner and drier in high-elevation re-
gions (e.g. the Tibetan Plateau; Randel et al., 1996). There-
fore, absent large changes in relative humidity in a warm-
ing climate, trends in column-integrated water vapour – and
the water vapour feedback (Held and Soden, 2000) – are ex-
pected to be weaker for high-elevation versus low-elevation
regions. Our finding, based on radiative kernel calculations,
that the water vapour feedback opposes EDW contrasts with
previous studies which argue, for example based on statisti-
cal relationships between humidity and surface downwelling
radiation (Rangwala et al., 2010), that increases in water
vapour favour EDW.

The strong and well-understood coupling between
changes in water vapour and lapse rates results in the two
feedbacks often being considered together (Colman, 2003).
Following this precedent, we assess the combined influence
of the water vapour and lapse rate feedbacks on EDW and
find it to be weak (Fig. 4a) and not robust in terms of sign
across models (Fig. 4b).

5.3.4 Surface albedo feedback

The surface albedo feedback is positive and strengthens with
elevation, thereby strongly contributing to EDW (Fig. 4a).
The link between surface albedo feedback and EDW is in-
tuitive: at elevation, particularly in tropical and subtropical
regions, there is typically more snow and ice to melt, mak-
ing the surface albedo more sensitive to warming. Although
the role of this feedback in driving EDW is well established
(Giorgi et al., 1997; Minder et al., 2018; Chimborazo et al.,
2022), here we quantify its effect at large scales and place
its influence on EDW in the context of other mechanisms.
The spread across models in the surface albedo component of
EDW is substantial (Fig. 4b), suggesting that improved ob-
servations and modelling of surface snow and ice processes
are important for constraining EDW. The strong influence of
the surface albedo feedback on EDW suggests that the large
observed signal in boreal winter (Fig. 1b) is potentially re-
lated to trends in surface albedo, which might be expected to
be stronger in seasons where snow and ice are more preva-
lent.

5.3.5 Cloud feedbacks

Radiative feedbacks associated with clouds strongly oppose
EDW, particularly in high-elevation regions (Fig. 4a). This
relative cooling influence on elevated surfaces is robust in
sign across models (Fig. 4b) and is driven primarily by long-
wave cloud effects for surface elevations below approxi-
mately 3.5 km and by shortwave effects higher up (Fig. 6).
This result, demonstrating that clouds exert a relative cool-
ing effect on elevated regions in a warming climate, con-
trasts with previous work suggesting that regional cloud ra-
diative effects contribute to EDW (Liu et al., 2009; Chimbo-
razo et al., 2022).
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Figure 6. Multi-model median cloud feedback contribution to sur-
face air temperature trends binned by elevation for the CMIP6 his-
torical simulations (black line). The individual contributions from
shortwave (SW) and longwave (LW) cloud feedbacks are also
shown (red and blue lines, respectively).

The longwave cloud feedback over tropical land is typi-
cally negative in climate models (Kamae et al., 2016), with
the feedback generally more negative for elevated surfaces
(Fig. 6). Cloud feedbacks over land have received relatively
little attention in the literature, perhaps due to their small
magnitude (Sherwood et al., 2020), but have been linked
to decreases in cloud amount associated with decreases in
land relative humidity (Kamae et al., 2016; Sherwood et al.,
2020). The more negative longwave cloud feedback over el-
evated surfaces could be due to stronger decreases in cloud
amount (as shown by Liu et al., 2009) or potentially due to
changes in cloud altitude. The tropical mean land shortwave
cloud feedback is positive in models, largely due to decreases
in high cloud amount (Kamae et al., 2016). But this short-
wave feedback is negative above surface elevations of ap-
proximately 4 km, leading to an important cooling influence
on high-elevation temperature trends (Figs. 4a and 6). De-
tailed study of how clouds in elevated regions are modulated
by the terrain and respond to warming is a priority for fu-
ture work, given the strong yet uncertain influence of cloud
feedbacks on EDW (Fig. 4b).

5.3.6 Stratospheric feedback

The influence on EDW of stratospheric feedbacks associated
with temperature and humidity trends is negligible (Fig. 4)
and is not discussed further.

5.3.7 Radiative forcing

Radiative forcing varies from region to region, even in re-
sponse to spatially uniform changes in forcing agents (Huang
et al., 2016). For example, atmospheric CO2 dominates ra-
diative forcing over the historical period (IPCC, 2023), but
this forcing – both for all-sky and clear-sky conditions – is
smaller in polar regions and over elevated surfaces (e.g. the
Tibetan Plateau; Huang et al., 2017). Weaker radiative forc-
ing at higher surface elevations opposes EDW (Fig. 4a) and
is consistent with a recent theory suggesting that clear-sky
CO2 forcing depends on the temperature difference between
the surface and stratosphere (Jeevanjee et al., 2021). Colder
surface temperatures therefore contribute to CO2 forcing be-
ing weaker in elevated regions, explaining why the spatial
pattern of radiative forcing opposes EDW (Fig. 4b). Forcing
due to aerosols is more spatially inhomogeneous compared to
CO2 forcing (Shindell et al., 2013) and is potentially impor-
tant for driving regional EDW signals. But in our CESM1-LE
analysis, aerosol forcing made, at best, a weak contribution
to large-scale EDW (Fig. 3b).

Note that the radiative forcing used in the temperature
trend decomposition (Eq. 7) is estimated as a residual from
the TOA energy budget (see discussion in Sect. 5.2). Com-
puting an “effective radiative forcing” (ERF) for a single
model (GFDL-CM4) using a fixed-SST simulation from the
Radiative Forcing Model Intercomparison Project (RFMIP;
Pincus et al., 2016), we find that the influence of radiative
forcing on EDW is similar to that obtained using the residual
method (Fig. S1 in the Supplement).

5.3.8 Transport term

MSE transport by the atmospheric circulation contributes
strongly to the multi-model median EDW signal by pref-
erentially warming elevated regions (Fig. 4a), though there
is considerable spread across models (Fig. 4b). In the cli-
matological mean, relative to low-elevation regions, there
is anomalous convergence of MSE by the atmosphere over
high-elevation regions (Fig. 7a), prior to the imposition of a
radiative forcing. The strength of this anomalous MSE con-
vergence increases as climate warms (Fig. 7b), contributing
to amplified warming of elevated surfaces.

To interpret why anomalous MSE convergence over ele-
vated regions strengthens in a warming climate, we begin by
assuming that the atmosphere diffuses the MSE downgradi-
ent (Flannery, 1984; Rose et al., 2014):

Fa ≈−D∇h, (8)

where D is the diffusivity, and h is the surface air MSE.
Applying the convergence operator to Eq. (8) and neglect-
ing spatial structure in the diffusivity, we obtain −∇ ·Fa ≈

D∇2h. Assuming constant diffusivity, trends in MSE con-
vergence can be approximated as −∇ · δFa ≈D∇2δh. Com-
bining these diffusive relationships and rearranging, we find
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Figure 7. Multi-model median (a) climatological mean atmospheric
convergence of moist static energy (−∇ ·Fa) and (b) trends in con-
vergence (solid black line) for the CMIP6 historical simulations.
Both quantities are plotted relative to their values in the lowest el-
evation bin. The dashed black line in panel (b) shows a diffusive
scaling for the convergence trend (see Eq. 9).

−∇ · δFa ≈−∇ ·Fa

(
∇

2δh

∇2h

)
. (9)

Equation (9) suggests that trends in atmospheric MSE con-
vergence are proportional to (i) the climatological conver-
gence (−∇ ·Fa) and (ii) the ratio of the Laplacian of MSE
trends to the Laplacian of climatological MSE. To dampen
local-scale noise associated with the Laplacian operator, the
ratio of Laplacian terms is averaged over all land (from 40° S
to 40° N) when evaluating Eq. (9) (area averaging is denoted
by an overbar).

This diffusive scaling provides a reasonable estimate of
the variation with elevation of convergence trends (Fig. 7b).
Given the Laplacian term is averaged over all land and there-
fore has no explicit dependence on surface elevation, Fig. 7b

suggests that the multi-model median trend in anomalous
convergence over elevated regions – and hence the contri-
bution of atmospheric MSE transport to EDW – is broadly
explained by the climatological convergence.3 This diffu-
sive argument suggests that trends in convergence over el-
evated regions are, approximately, driven by the climatolog-
ical structure of MSE transport: because there is anomalous
atmospheric convergence over elevated regions in the clima-
tological mean (Fig. 7a), this convergence strengthens in a
changing climate and thereby contributes to amplified warm-
ing over elevated regions. Whether the climatological con-
vergence pattern is strengthened or weakened in a warming
climate depends on the sign of the Laplacian ratio (see Eq. 9),
which is positive for the multi-model median, suggesting that
the spatial structure in surface air MSE becomes more pro-
nounced over tropical land as climate warms. Understanding
this ratio in more detail, including the contributions of tem-
perature and specific humidity to patterns of MSE change, is
a topic for future work.

6 Summary and conclusions

EDW has been studied for over 2 decades, yet debate per-
sists on the physical processes driving this phenomenon and
its robustness across datasets. In this study, we examine his-
torical EDW using gridded observations, reanalysis data, and
climate models. Averaged over the tropics and subtropics,
positive annual mean EDW indices (i.e. larger surface air
warming trends for high-elevation regions) are identified in
HadCRUT5 observations, ERA5 reanalysis, and across the
CESM1-LE and CMIP6 ensembles. The EDW index varies
substantially across seasons, with local winter showing the
strongest relative warming of high-elevation surfaces. The
warming trends binned by surface elevation are reasonably
consistent across the datasets, suggesting that EDW is a ro-
bust response of the climate system to historical warming that
is broadly captured by climate models. A simple calculation
is used to argue that the majority of the EDW signal can-
not be explained by elevated regions being situated further
poleward where the warming trend is larger. Rather, EDW
appears to be a phenomenon that is at least partially distinct
from polar amplified warming.

3An alternative diffusive scaling, which utilises similar as-
sumptions to those used to derive Eq. (9), is −∇ · δFa ≈ (−∇ ·

Fa/∇
2h)×∇2δh≈D×∇2δh. This alternative scaling was tested

in the CMIP6 simulations by first diagnosing the diffusivity using
D ≈−∇ ·Fa/∇

2h and then combining with the Laplacian of the
MSE trends averaged over all land from 40° S to 40° N (i.e. ∇2δh).
This alternative scaling does not capture the variation with eleva-
tion of simulated trends in MSE convergence (not shown), suggest-
ing that the elevation dependence of diffusivity is not the primary
driver of the elevation dependence of atmospheric MSE conver-
gence trends (Fig. 7b).
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Two approaches are taken to understand the mechanisms
controlling annual mean EDW. First, analysis of 20 en-
semble members from the CESM1-LE indicates – consis-
tent with previous work – that historical EDW is likely to
be a radiatively forced response of the climate system and
not an artefact of internal variability. Furthermore, internal
multi-decadal variability produces uncorrelated changes in
the magnitude of EDW and the tropics-wide temperature
trend; in other words, the magnitude of EDW is not simply
set by the rate of overall tropical warming. Single-forcing
CESM1-LE simulations also demonstrate that EDW, at least
on large scales, is primarily driven by radiative forcing asso-
ciated with increasing greenhouse gas concentrations rather
than anthropogenic aerosols.

Second, a forcing–feedback framework based on TOA en-
ergy balance is used to directly quantify the physical pro-
cesses contributing to, and opposing, EDW in the histor-
ical CMIP6 simulations. Consistent with previous studies,
the surface albedo and Planck feedbacks favour amplified
warming of elevated surfaces. The analysis also demonstrates
that the (positive) water vapour feedback is weaker for high-
elevation regions and therefore opposes EDW. This result
contrasts with other studies, which argue (e.g. based on sta-
tistical relationships between water vapour and downwelling
longwave fluxes in models; Rangwala et al., 2010) that the
radiative effects of water vapour favour EDW. Here we use
radiative kernels to isolate the influence of water vapour on
EDW; this difference in methodology compared to previous
studies may explain the differing results. The effect of the
water vapour feedback on EDW is largely cancelled by the
lapse rate feedback, as expected from physical reasoning.
Cloud feedbacks are shown to strongly oppose EDW, a re-
sult which also contrasts with previous work. The forcing–
feedback framework reveals two additional contributors to
EDW that have received little attention to date. The first is
radiative forcing, which is shown to oppose EDW because
it is weaker (i.e. less positive) over cold, elevated surfaces.
The second is energy transport by the atmospheric circula-
tion, which favours EDW in the majority of CMIP6 models
– a result which can be interpreted using diffusive arguments
– but exhibits considerable inter-model uncertainty.

The analyses presented here provide new, quantitative in-
sights into the processes driving EDW. However the large-
scale approach taken in this study, using global datasets at
relatively coarse spatial resolutions, has limitations. For ex-
ample, in regions of complex terrain, the EDW signal is
likely not well sampled by observational networks underpin-
ning the HadCRUT5 and ERA5 datasets. Complex terrain is
also an issue for global climate models (e.g. Elvidge et al.,
2019), potentially leading to biases in the simulation of pro-
cesses known to be important for EDW, including mountain
snow accumulation and orographic clouds. Future research
could investigate the influence of such finer-scale effects on
EDW using high-resolution models; work along these lines is
already underway (Minder et al., 2018; Palazzi et al., 2019).

More generally, this study could be expanded by examin-
ing EDW signals across different large ensemble projects,
reanalysis products, and observational datasets. How EDW
connects to warming of the tropical troposphere, which also
increases with height, consistent with moist adiabatic adjust-
ment, is another important and open question. The forcing–
feedback framework presented here could be extended to ex-
amine the processes controlling EDW in specific seasons,
specific regions, beyond 40° N and 40° S, and in simulations
of both past and future climate states. The results in this study
suggest that uncertainty in future EDW may be driven pri-
marily by uncertainties in how atmospheric energy transport
over land responds to climate change, along with uncertain-
ties in surface albedo and cloud feedbacks. Improved under-
standing of how these processes vary with surface elevation
is essential for building reliable EDW projections, with ben-
efits for communities living in mountainous regions.

Appendix A: Association of latitude-dependent
warming with elevation-dependent warming

Here we assess whether any association of warming with
latitude might be able to explain the observed EDW signal
because surface elevation also has a statistical association
with latitude. When we average the absolute value of lati-
tude in each bin of surface elevation, we find that distance
from the Equator generally increases with surface elevation
in our 40° S–40° N domain (Fig. A1a). Using a linear fit to
the mean of the absolute latitude within each surface eleva-
tion bin, a surface at 5 km elevation lies on average about 14°
latitude further poleward than a surface at sea level.

We now decompose the sensitivity of the surface air warm-
ing trend (δTs) to surface elevation, d(δTs)/dzs, into a sensi-
tivity of warming to latitude, d(δTs)/dφ, and an association
of surface elevation with latitude, dφ/dzs:

d(δTs)

dzs
=

d(δTs)

dφ
·

dφ
dzs

. (A1)

This expression neglects the association of warming with
other variables that cannot be expressed in terms of latitude,
consistent with our goal of determining whether it alone can
explain the observed EDW signal. We estimate the first term
within the right-hand-side product from the rate of warming
during 1959–2014 zonal mean land-surface air temperature
between the Equator and 40° N (Fig. A1b). A linear fit to this
rate of warming yields d(δTs)/dφ ≈ 1.3×10−3 K per decade
per degree latitude for ERA5, with a similar value for Had-
CRUT5. Combining this sensitivity of warming to latitude
with the value of dφ/dzs obtained from Fig. A1a, we ob-
tain d(δTs)/dzs ' 0.0035 K per decade per kilometre, a value
that is about 40 % of the ERA5 EDW index of 0.0089 K per
decade per kilometre (cf. Fig. 1b).

This relatively small magnitude of d(δTs)/dzs obtained
from Eq. (A1) confirms that the majority of the observed
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Figure A1. (a) Absolute value of latitude (in degrees) binned by
surface elevation for the ERA5 reanalysis and HadCRUT5 dataset,
plotted as a function of the mean surface elevation in each bin. Er-
ror bars represent the 95 % confidence interval of the mean in each
bin, and linear fits are shown as dashed lines. (b) Linear temporal
trend (during 1959–2014, in kelvin per decade) in zonal mean, an-
nual mean land-surface air temperature for ERA5 and HadCRUT5
(solid lines), and the linear fits to these between 0 and 40° N (dashed
lines). Slopes of all linear fits are provided in the legend.

EDW signal does not result from the meridional location of
orography combined with a general dependence of warming
on latitude. Because of the location of orography at higher
latitudes within our 40° S–40° N domain, any positive EDW
will contribute to a positive value of d(δTs)/dφ; we thus view
the value of d(δTs)/dzs computed from Eq. (A1) as an upper
bound on the estimate of the contribution of polar amplified
warming to EDW.

Code and data availability. ERA5 data are available from the
Copernicus Climate Data Store (https://cds.climate.copernicus.
eu/#!/home, CDS, 2023), and HadCRUT5 data are available
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CMIP6 data through the Earth System Grid Federation (https:
//wcrp-cmip.org/cmip-data-access/#access-routes, ESGF, 2023).
Radiative kernels and a Python-based analysis toolkit developed by
Ryan Kramer are used to compute the radiative feedbacks discussed
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