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Abstract. The horizontal propagation of Rossby waves in the
upper troposphere has been a long-standing topic in dynami-
cal meteorology. The concept of “waveguidability’’, i.e., the
capability of the background flow to act as a zonal waveguide
for Rossby waves, may prove useful to address this problem,
but developing a systematic definition and quantification of
such a property remains challenging. With an eye to such
issues, the current paper suggests a novel and efficient algo-
rithm to solve the linearized barotropic vorticity equation on
a sphere in a forced-dissipative configuration. The algorithm
allows one to obtain linear wave solutions resulting from ar-
bitrary combinations of the forcing and the background zonal
wind. These solutions can be used to systematically study
single- and double-jet configurations and are employed here
to show that the latitude of the jet stream does not appear
to affect waveguidability. The onset of barotropic instability
might hinder the applicability of the linear framework, but
it is shown that the nonlinear flow evolution can still be re-
trieved qualitatively from the linearized solution, both for the
stationary component of the wave field and for the temporal
evolution of transient waves.

1 Introduction

Rossby waves are a fundamental component of upper-
tropospheric dynamics (Rossby, 1939, 1940) and are instru-
mental in modulating the location, intensity and tracks of ex-

tratropical weather systems. They can be forced by baroclinic
instability, large-scale topographical features and meso- to
large-scale diabatic heating (e.g., Rhines, 1975; Hoskins and
Karoly, 1981; Held, 1983; Garcia and Salby, 1987; Held
et al., 2002; Brayshaw et al., 2009; Garfinkel et al., 2020;
Martius et al., 2021). A key characteristic of Rossby waves,
which has profound implications for their modulation of
weather systems, is their propagation. The Earth’s spheri-
cal geometry usually leads to the equatorward refraction of
Rossby waves (Hoskins and Karoly, 1981), yet the presence
of localized upper-tropospheric jet streams can favor a zonal
propagation (e.g., Hoskins and Valdes, 1990; Ambrizzi et al.,
1995; Branstator, 2002; Wirth et al., 2018). The capability
of jet streams to promote Rossby wave propagation, referred
to as “waveguidability”, has long been subject of research
(see the reviews by Wirth et al., 2018; White et al., 2022).
Waveguides typically exist for timescales longer than the
waves they “guide”, and this property can be exploited to
understand the persistence and predictability of midlatitude
weather (Martius et al., 2010).

The amplification and propagation of Rossby waves along
such waveguides have been related in the literature to the
occurrence of extreme weather events both in winter (e.g.,
Davies, 2015; Harnik et al., 2016; Kornhuber and Messori,
2023) and summer (e.g., Kornhuber et al., 2019; Teng and
Branstator, 2019; Di Capua et al., 2021; Rousi et al., 2022;
Jiménez-Esteve et al., 2022). In a number of these examples,
Rossby waves were identified as quasi-stationary and associ-
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ated with concurrent extremes in geographically remote re-
gions due to the zonally extended, large-amplitude nature of
the waves. The existence of quasi-stationary waves on a mid-
latitude waveguide has also been linked to the phenomenon
of quasi-resonance, namely a constructive self-interference
of the wave, which in turn may be linked to surface extreme
events (Petoukhov et al., 2013; Coumou et al., 2014); how-
ever, whether or not quasi-resonance is a relevant mechanism
in realistic situations is an unsolved question (Wirth and Pol-
ster, 2021).

The relevance that waveguidability plays in atmospheric
dynamics, as well as its connection to surface extremes in a
changing climate, has led to a renewed interest in its study
(White et al., 2022). In general, waveguidability is regarded
as a property of the background flow configuration in which
Rossby waves are propagating. The concept of background
flow is useful for decomposing the atmospheric flow into a
background component that varies gradually in space and
time, as well as a wave component (i.e., the Rossby waves
in the present work) that varies more rapidly. The feasibil-
ity of such a decomposition inherently relies on the assump-
tion that a clear scale separation exists between the waves
and the background flow such that the former are not leav-
ing an immediate signature on the latter. The identification
of the background flow can be practically done by using time
and/or zonal averages, a methodology based on the assumed
linearity of the waves; however, this assumption is violated
when Rossby waves reach significant meridional amplitudes,
as often happens in the context of large-scale flow configura-
tions associated with unusual or extreme weather (Wirth and
Polster, 2021).

The role of specific background flow configurations in
promoting waveguidability can be investigated in detail us-
ing idealized frameworks. Manola et al. (2013) and Wirth
(2020) are notable examples of such work for the cases of
single, localized jet streams in the Northern Hemisphere.
These studies noticed that waveguidability increases with the
strength of the jet and that latitudinally narrow jets are more
efficient waveguides than broad jets. Steady wave patterns
have been discussed by means of the ray-tracing technique
(Hoskins and Karoly, 1981; Hoskins and Ambrizzi, 1993;
Wirth, 2020), where the β-plane analysis of Rossby waves is
extended to slowly meridionally varying background flows
by means of Wentzel–Kramers–Brillouin (WKB) theory and
a Mercator projection. This enabled the identification of
waveguides as ridges in the so-called refractive index, dras-
tically simplifying the problem with respect to a full eigen-
value analysis. However, the ray-tracing approach is subject
to some crucial limitations. It is often implemented on a Mer-
cator projection of the flow field, leading to distortion in
the high latitudes, and the meridional and longitudinal vari-
ation in the background flow must be gradual compared to
the scale of the wave. Moreover, although ray tracing can in
principle be applied to transient waves, in practice it is typi-
cally used for the study of stationary waves (with the notable

exception of Yang and Hoskins, 1996). One therefore loses
information about how the waves are evolving in time or
whether the flow will ever approach a steady state. A critical
assessment of this approach was performed by Wirth (2020),
albeit limited to only a few background flows. There is in-
deed a lack of understanding of Rossby waveguides in com-
plex background flow configurations, such as the presence of
two separate jet streams, which has been linked to summer-
time heat waves (“double jets”; e.g., Coumou et al., 2014;
Rousi et al., 2022). Understanding waveguidability thus re-
quires a systematic investigation of a large number of differ-
ent background flows. Each case must also be investigated
for different forcings to assess the flow response, and this
task becomes quickly demanding in terms of computational
resources and expert analysis time.

Motivated by this open challenge and by the limitations
of ray-tracing theory, we extend in this paper the frame-
work of Wirth (2020) to study the propagation of forced
Rossby waves without recourse to ray tracing and avoiding
the numerical integration of the underlying nonlinear equa-
tions. Specifically, we study Rossby wave evolution by solv-
ing explicitly the linearized, two-dimensional barotropic vor-
ticity equation in terms of normal mode analysis. This en-
ables one to inexpensively obtain solutions for any forcing
under a given zonally symmetric background flow; further-
more, it allows one to study Rossby wave propagation with-
out the limitations imposed by ray-tracing methods, such as
the assumption of scale separation or the need to project the
flow on a Mercator plane. Similar approaches have been pre-
viously employed to study other types of oscillatory phe-
nomena, such as Rossby wave critical layers (Campbell and
Maslowe, 1998), equatorial waves (Boyd, 1978) and gravity
waves (Baldauf and Brdar, 2013). We first validate the so-
lutions by comparing them with the output of nonlinear nu-
merical simulations based on a spectral code built on spher-
ical harmonics. The joint analysis of linear and nonlinear
solutions further allows a detailed investigation of the sta-
bility of different wave modes, providing information about
the transient evolution of the Rossby waves. In the end we
use the novel algorithm in order to extend the analysis of
waveguidability of idealized zonal jets beyond what has been
done in previous publications. The paper is structured as
follows: Sect. 2 presents the theory behind the linear ap-
proach, while its discrete implementation based on orthog-
onal Chebyshev polynomials is discussed in Appendix A.
A comparison between linear and nonlinear calculations is
discussed in Sect. 3, where different zonal wind profiles are
investigated in terms of both the wave spatial structure and
integrated parameters such as the waveguidability. The sta-
tionary solutions for single-jet and double-jet configurations
are discussed, respectively, in Sects. 4 and 5. The paper is
closed by some concluding remarks in Sect. 6.
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2 Model framework and numerical details

Let us consider the two-dimensional barotropic vorticity
equation on a spherical planet with radius a∗ (in this section
dimensional quantities are indicated by means of an asterisk
superscript):

∂ζ ∗

∂t∗
+
(
V ∗ · ∇h

)(
ζ ∗+ f ∗

)
=−χ∗

(
ζ ∗− ζ

∗
)
+F ∗, (1)

where V ∗ is the horizontal velocity field, f ∗ = 2�∗ cosθ
is the Coriolis parameter and θ = π/2−ϕ is the colati-
tude (associated with the latitude ϕ). Similarly to Hoskins
and Ambrizzi (1993) and Wirth (2020), a damping term
−χ∗

(
ζ ∗− ζ

∗
)

is present: this term provides a stabilizing
effect that hinders a departure of the atmospheric state from
the background vorticity, ζ ∗. F ∗ indicates a generic forcing
in space and time. By normalizing physical quantities with
respect to the planetary radius a∗ and a characteristic veloc-
ity U∗s such that

t =
t∗

a∗/U∗s
,V =

V ∗

U∗s
,ζ =

ζ ∗

U∗s /a
∗
,f =

f ∗

2�∗
= cosθ,

F =
F ∗(

U∗s /a
∗
)2 , (2)

the barotropic vorticity Eq. (1) is re-written in dimensionless
form as

∂ζ

∂t
+ (V · ∇h)

(
ζ +

f

Ro

)
=

−χ
(
ζ − ζ

)
+F with Ro=

U∗s
2�∗a∗

. (3)

The choice of the characteristic velocity scale, U∗s , is arbi-
trary, but it should be of the same order of magnitude of the
velocity field. In the considered two-dimensional case, the
flow divergence is zero everywhere so that a streamfunction,
9, can be introduced, facilitating the determination of the
velocity and vorticity field as

uθ =−
1

sinθ
∂9

∂λ
,uλ =

∂9

∂θ
,ζ =∇2

h9, (4)

where λ indicates the longitude.
By assuming a zonal base flow uλ = U (θ) and uθ = 0, the

background vorticity, ζ , is given by

ζ (θ)=
1

sinθ
∂

∂θ
(U sinθ)= cotθ U +

∂U

∂θ
for 0< θ < π. (5)

Let us consider a perturbed state where the relative vor-
ticity is given by ζ = ζ + ζ ′. This will be associated with a
streamfunction, 9 +ψ ′, and velocity field

V = (uθ , uλ)= (0, U)+
(
u′θ , u

′
λ

)
= (0, U)+

(
−

1
sinθ

∂ψ ′

∂λ
,
∂ψ ′

∂θ

)
. (6)

The equation governing the small perturbation is obtained by
taking Eq. (3) and subtracting the base-state equation. The
forcing term is not included in the background flow equation
and generates a deviation from the latter. Furthermore, wave–
mean-flow terms are not accounted for, implying that the per-
turbation flow is assumed not to modify the background flow
itself. By also neglecting the nonlinear wave–wave terms,
one obtains the linearized equation for the perturbation vor-
ticity:

∂ζ ′

∂t
+

U

sinθ
∂ζ ′

∂λ
+ u′θ

∂

∂θ

(
ζ +

f

Ro

)
=−χζ ′+F , (7)

with

ζ ′ =∇2
hψ
′,u′θ =−

1
sinθ

∂ψ ′

∂λ
. (8)

The system can be better analyzed by taking the Fourier
transform in the zonal direction, defined as

ζ̂ (θ; m)=

2π∫
0

ζ(θ, λ)e−imλ dλ, (9)

leading to

∂ζ̂

∂t
+

(
imU

sinθ
+χ

)
ζ̂ + ûθ

∂

∂θ

(
ζ +

f

Ro

)
= F̂ , (10)

where

ζ̂ =
∂2ψ̂

∂θ2 + cotθ
∂ψ̂

∂θ
−

m2

sin2θ
ψ̂ = Lψ̂,

ûθ =−
im

sinθ
ψ̂, (11)

and L indicates the Laplace operator that, once discretized,
becomes a matrix. By introducing the matrix B= iL and the
streamfunction vector ψ̂j = ψ̂(θj ; m) evaluated at the dis-
crete colatitudes θj , the barotropic vorticity Eq. (10) is writ-
ten as

− iB
∂ψ̂j

∂t
+

[(
imU

sinθ
+χ

)
L−

im

sinθ
∂

∂θ

(
ζ +

f

Ro

)
I
]
ψ̂j

=−iB
∂ψ̂j

∂t
+Aψ̂j = F̂ , (12)

where the terms composing the matrix A are grouped within
the square brackets in Eq. (12) and I is the identity matrix
(see Appendix A for a detailed description of how the dif-
ferential operators are discretized and the matrices are con-
structed). Equation (12) is a linear system of ordinary differ-
ential equations in time with the streamfunction at the col-
location points as unknowns. By erasing the time derivative,
the equilibrium state of the linearized system is obtained as

ψ̂j = A−1F̂ , (13)
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similar to the formula provided by Hoskins and Karoly
(1981). Equation (13) corresponds to the steady solution of
the forced dynamical system achieved after a sufficiently
long time if the system is stable (see discussion below for
the flow stability analysis). Even if the system is unstable, the
state described by Eq. (13) is the only one that erases the time
derivative of the linearized system: thus, we choose to name
it the “equilibrium solution”. Its determination is only related
to the advection and dissipation of vorticity rather than the
vorticity temporal evolution and can therefore be obtained in
one computational step.

The solution of Eq. (12) describing the growth of an in-
finitesimally small perturbation (be it initiated by the forcing
or by a generic initial condition) can be written as the sum
of the homogeneous solution (starting from a given initial
condition) plus a forced solution. By introducing a perturba-
tion as a modal ansatz ψ̂j = ψ̃j e

−iωt , it is possible to solve
the homogeneous problem as an eigenvalue one, identifying
the complex eigenvalues, ω, and the associated eigenfunc-
tions for each azimuthal wavenumber, m. The advantage of
the proposed framework is that the behavior of the system is
determined from the eigenvalues of the homogeneous prob-
lem, which are independent of the forcing and have indeed
general validity for a given zonal background flow. If all the
complex eigenvalues have negative imaginary parts, the sys-
tem is stable and will converge to the equilibrium state given
by Eq. (13), while the perturbations will grow with time if at
least one eigenvalue has a positive imaginary part. Thus, the
sign of the imaginary part of the eigenvalues (hereafter re-
ferred to as the mode growth rate) determines whether a per-
turbation will grow or decay. The real part of the eigenvalues,
on the other hand, is associated with phase propagation in the
zonal direction. In this framework, the evolution of the per-
turbation is obtained as an initial value problem, drastically
simplified by means of the modal analysis (details are pro-
vided in Appendix A). As a note of caution, the linearization
is performed around the background state,9, while the pres-
ence of the forcing shifts the equilibrium state of the system
to 9 +F−1 (A−1F̂

)
(with F−1 indicating the inverse zonal

Fourier transform). The modal analysis assumes infinitesi-
mal deviations from the equilibrium state, while here it is
performed around the background flow. The two lineariza-
tions are identical when the forcing is infinitesimal, but the
modal analysis is still expected to be qualitatively similar for
reasonably small forcing, an hypothesis to be verified a pos-
teriori. The choice to linearize around the background flow
has the practical advantage that the Fourier decomposition
can be applied to the linearized barotropic vorticity equation
without the appearance of convolution terms that would hin-
der the separation of individual waves. Furthermore, as the
forcing is not included in the modal analysis, its contribu-
tion is accounted for a posteriori, making the computational
approach simpler and more insightful.

3 Model setup and validation

The proposed linearized framework, based on Chebyshev
polynomials for the treatment of the solution in the merid-
ional direction, is first compared with the test cases pro-
posed by Wirth (2020) for two of the investigated zonal ve-
locity profiles. The code has been written in Python, where
Chebyshev polynomials have been implemented following
Peyret (2002) and Canuto et al. (2006). In all simulations,
only the dissipative term −χ∗∇2

hψ
′ (with χ∗ = (7d)−1 as in

Wirth, 2020) was used to make the barotropic wave decay,
and no hyperviscosity was introduced. The planetary radius
was taken as 6371 km, while the planetary rotation speed was
�= 7.292115× 10−5 rad s−1. The linear problem has been
discretized into an equal number of latitudes and longitudes
without any aliasing consideration or numerical stability con-
straints (see Appendix A for the numerical details).

In order to check the code, an independent numerical so-
lution of the barotropic vorticity equation has been imple-
mented by using the spherical harmonics transform (SHT)
package from Schaeffer (2013). Both the linear and nonlinear
barotropic vorticity equations were implemented and com-
pared to the results of the proposed linearized framework. A
triangular truncation scheme was adopted with an aliasing-
removal approach in both the linear and nonlinear simula-
tions with spherical harmonics. A leapfrog scheme was used
for the temporal discretization with a time step of 10 min. A
Robert Asselin filter with filter parameter 0.01 was imple-
mented to eliminate the spurious computational mode asso-
ciated with the leapfrog method (Kalnay, 2003).

Since the topographic forcing F is stationary, the constant
forcing solution provided by Eq. (A7) is used. The expression
is further simplified here as the initial perturbation stream-
function is assumed to be zero, implying the vanishing of the
first term of Eq. (A7) so that only the forced response needs
to be computed. The forced response is obtained from the
method of variation of constants and therefore facilitated by
the eigenfunctions calculated from the homogeneous prob-
lem.

In the special case of a solid-body zonal velocity pro-
file, U = U0 sinθ = U0 cosϕ, the zonal velocity is obtained
as if the atmosphere was rotating at a slightly higher angular
velocity than � and the linearized homogeneous barotropic
vorticity Eq. (7) reduces to

∂∇2
hψ
′

∂t
+U0

∂∇2
hψ
′

∂λ
+2(U0+�a)

∂ψ ′

∂λ
+χ∇2

hψ
′
= 0 . (14)

Equation (14) can be solved analytically by means of the
ansatz ψ ′ ∝ Yml (θ, λ)e

−iωt , where Yml is the spherical har-
monic with degree l and order m. The resulting dispersion
relationship is

ω =m

[
U0−

2U0+ 2�a
l(1+ l)

]
− iχ , (15)
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which is a well-known analytical result for Rossby–Haurwitz
waves (Haurwitz, 1940). The attenuation parameter χ makes
the eigenvalues stable, while the first term of Eq. (15) is
associated with the zonal phase propagation of the wave,
similarly to the planar case. From this analysis it is already
known that (i) all the modes of the solid-body zonal veloc-
ity case are stable (since χ > 0), (ii) the modes are spher-
ical harmonics and (iii) the dispersion relationship is given
by Eq. (15). Simulations done with different grid resolutions
showed an excellent agreement between the analytical rela-
tionship (Eq. 15) and the numerical eigenvalues, with error
comparable to the precision of the machine (not shown).

Figure 1a shows the meridional velocity field (positive
northward) and the associated wave pattern at the equilib-
rium state (Eq. 13) forced by a smooth, idealized mountain
located at latitude ϕF = 45° N and longitude λF = 30° E and
described by

F =−GF (λ− λF) exp

[
−
(ϕ−ϕF)

2

2σ 2
ϕ,F

−
(λ− λF)

2

2σ 2
λ,F

]
hF , (16)

where σϕ,F = σλ,F = 10°, hF = 0.3 and GF = 7.73× 10−9,
unless otherwise stated. The zonal background flow is given
by U = 15 cosϕm s−1 (or with U0 = 15 ms−1 as above).
Figure 1a should be compared to the nonlinear solution in
Fig. 3a of Wirth (2020): the structure of the wave pattern is
very similar, although here obtained without any time inte-
gration since the flow will in time approach the steady-state
solution because the eigenvalue growth rate is negative.

The linear spherical harmonics solution is practically iden-
tical to the Chebyshev approach, and therefore the results
will not be shown here. The nonlinear solver has slight dif-
ferences from the linear method, such as a more rapid wave
attenuation away from the forcing (as visible in Fig. 1b).

A sensitivity study can be performed for different grid res-
olutions to assess the appropriate number of polynomials to
be used in order to achieve the desired convergence. The
waveguidability, as defined in Wirth (2020), has been used
here as the key quantity for the comparison. The estimate by
Wirth (2020) corresponds to the ratio between the enstrophy
found in a monitoring region downstream of the forcing (30
and 60° N, 180 and 270° E) and the total enstrophy integrated
over all latitudes across 180 and 270° E. Figure 2a shows the
convergence of the waveguidability metric around 45° N for
different grid resolutions in order to quantify the minimum
number of polynomials needed for numerical convergence.
It is noteworthy that the convergence of the results is ob-
tained even for moderate resolutions with the linear Cheby-
shev and linear SHT simulations, while the nonlinear simula-
tion approaches a higher value of the waveguidability metric,
suggesting a difference between linear and nonlinear anal-
yses. Having assessed the grid convergence, the rest of the
work will use grid resolution N = 256 for the solution of the
linearized eigenvalue problem via Chebyshev polynomials,
while a T170 truncation will be used for the nonlinear spher-

ical harmonics simulations. Since the linear Chebyshev and
the linear SHT code agree with each other and are both based
on Eq. (7), only the Chebyshev implementation will be dis-
cussed in the following and it will be referred to as the linear
simulation. The only nonlinear implementation of Eq. (3) is
by means of the SHT, which will be hereafter denoted simply
as the nonlinear simulation.

4 Single-jet configuration: stability and dynamics

We will now focus on the case of a latitudinally confined jet
described by

U = U0 cosϕ+UJ exp

[
−
(ϕ−ϕJ)

2

2σ 2
J

]
+L(ϕ) , (17)

where UJ is the jet velocity, U0 = 15ms−1, ϕJ = 45° N is the
jet latitude and σJ = 5° (unless otherwise stated). L indicates
a linear correction that imposes U = 0 at the two poles.

With this setup, we notice that the linear method is capa-
ble of replicating the waveguidability increase with jet speed,
obtaining similar values as Wirth (2020) for a jet located at
45° N (Fig. 2b). Interestingly, the linear method features a
convergence of the solution only for not-too-high jet speeds:
in particular, for a speed faster than 20 ms−1, some of the
eigenvalues λi have a positive growth rate and lead to diver-
gence. The reasons for this behavior and the usefulness of
the linear method even in such a case will be illustrated in
Sect. 4.1 and 4.2.

The difference in the waveguidability metric between the
linear and nonlinear solutions must be related to a stabiliz-
ing effect of the nonlinear terms (accounting for the effect
of the waves on other waves and the basic state), neglected in
the linear analysis. The Wirth (2020) waveguidability metric,
however, cannot be easily applied to compare waveguides lo-
cated at different latitudes: in fact, the physical distance be-
tween the forcing and the monitoring sector would vary when
the jet latitude is changed, leading to a spurious increase in
waveguidability towards the pole. An adapted metric will be
proposed in Sect. 5.1 in the attempt to provide a definition
able to account for jets at different latitudes.

4.1 Stability analysis

As noticed by Wirth (2020), the strong-jet case with UJ =

40 ms−1 is characterized by an unsteady velocity field that
does not achieve a steady state, regardless of the integra-
tion time. This unsteady behavior is partly explained by the
eigenvalues provided by the linear analysis: some eigen-
values have a positive growth rate, and, therefore, the flow
field is unstable. According to linear theory, the atmospheric
state should diverge exponentially from the equilibrium state
(shown in Fig. 3a), and each unstable Rossby wave should
grow without bounds. The nonlinear simulation, however,
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Figure 1. Meridional velocity pattern at the equilibrium state for the zonal velocity profileU = 15cosϕms−1 from the linear analysis (a) and
after 100 d with the nonlinear solver (b). The ellipse indicates the topographic forcing.

Figure 2. (a) Waveguidability for a Gaussian mountain located at ϕF = 45° N estimated from different linear and nonlinear simulations at
different grid resolutions when U = 15cosϕms−1 (namely without any latitudinally confined jet). Nθ indicates the number of latitude grid
points. (b) Waveguidability assessed for the linear and nonlinear simulations for Nθ = 256 (corresponding to a T170 resolution) for different
jet velocities UJ (according to the zonal velocity profile given in Eq. 17).

does not display such an unrealistic divergence of wave am-
plitudes, and the time-averaged field, shown in Fig. 3b, re-
mains close to the linear estimation. A great-circle wave
propagation is still present as in the solid-body velocity case,
as well as a wave pattern in the zonal direction of the waveg-
uide corresponding to the strong jet.

We conduct here a systematic linear and nonlinear stability
analysis to identify at what jet velocity and width unsteady
traveling-wave patterns begin to appear. The Rayleigh stabil-
ity criterion provides a necessary condition for the onset of
barotropic instability, namely a change in sign of the absolute
vorticity gradient ∂(ζ + 2� cosθ)/∂θ . Since linear dissipa-
tion is present in the current problem, we slightly modify the
Rayleigh criterion such that, whenever the absolute vorticity
gradient changes sign, the imaginary part of ω can be differ-
ent than−χ : this implies an ample stability margin before the
actual onset of the linear instability (namely when the imagi-
nary part of ω becomes positive with a positive growth rate).
This result pinpoints the role of dissipation in retarding the
onset of barotropic instability, confirming that the Rayleigh
criterion provides a necessary but not sufficient condition for
the onset of instability (Kuo, 1949).

Let us consider first the results of the eigenvalue analysis
for a narrow zonal jet profile (σJ = 5°) over an array of differ-
ent jet speeds UJ and latitudes ϕJ, shown in Fig. 4a. At low
UJ, the growth rate of the most unstable eigenvalue corre-
sponds to the dissipation rate, χ , which is negative (meaning
that perturbations are dampened with the same rate). This as-
sertion is valid as long as the absolute vorticity gradient has
the same sign throughout the domain. As the sign starts to
flip (dashed line in Fig. 4a), a transitional regime is reached
where the eigenvalue growth rate is still negative but not as
low as −χ . This is related to the fact that, in the presence of
dissipation, the simple change in sign of the vorticity gradient
(i.e., the Rayleigh–Kuo criterion) is not sufficient to ensure
the onset of barotropic instability. As UJ increases, the sta-
bility margin decreases, and above 15–22 m s−1 (depending
on the jet latitude) the growth rate of at least one eigenvalue
becomes positive, leading to the divergence of the linear so-
lution (bold black line in Fig. 4a). The nonlinear simulations,
on the other hand, approach divergence for larger jet veloc-
ities than for the linear method: this is marked by the green
line in Fig. 4a, denoting the locus where the meridional ve-
locity time variance equals 2 m2 s−2 as an arbitrary threshold.
Above such a threshold, the velocity variance increases dras-
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Figure 3. Meridional velocity in the strong-jet case (UJ = 40 ms−1) from the linear method at the equilibrium state (a). Meridional velocity
field averaged between 10 and 100 d from the simulation start with the nonlinear solver (b). The ellipse indicates the topographic forcing.

tically, and it is concentrated at the jet location irrespective of
the forcing, indicating the presence of barotropic instability.
The neutral curve from the linear stability analysis provides
then only a conservative estimate of the onset of instability:
this underlines the stabilizing role of nonlinear terms (such as
wave–wave and wave–mean-flow interactions) not included
in the linear method.

It is also interesting to monitor the wavenumber associ-
ated with the most unstable eigenvalue. Beyond the onset of
the linear instability, this wavenumber does not depend on
UJ, and therefore the wavenumber associated with the maxi-
mum growth rate in Fig. 4b is only shown for UJ = 40 ms−1,
where the jet is unstable at all latitudes (see Fig. 4a). For
ϕJ = 45° N a wavenumber m= 6 is the most unstable, the
wavenumber typical of midlatitude Rossby waves. However,
as the jet is shifted to the pole, the most unstable wavenum-
ber systematically decreases following the cosine of ϕJ. It is
possible to explain this trend by assuming that the instability
is associated with a wavelength independent of the latitude,
given by

L=
2π
m
a cosϕ = constant, (18)

so that the wavenumber is indeed proportional to cosϕ. This
implies that the most barotropically unstable Rossby wave
has the same wavelength at different latitudes for a zonal jet
of a given width. As the jet width increases, the fixed wave-
length L increases too, leading to the decrease in the most
unstable zonal wavenumber m with σJ visible in Fig. 4b.

The width of the jet also modulates the onset of instability
in the considered setup, with narrow jets being more prone to
barotropic instability than wide jets (Fig. 4c). This behavior
is related to the large meridional vorticity gradients associ-
ated with narrow jets and is illustrated in Fig. 4c by the rapid
increase in the growth rate of the most unstable wave for de-
creasing values of σJ. Such a connection between jet width,
growth rate and zonal wavelength of the most unstable wave
is consistent with previous studies about barotropic-like in-
stabilities (e.g., in the context of frontal instability, Joly and
Thorpe, 1990; Leutwyler and Schär, 2019). The growth rate

at fixed σJ also seems to exhibit a weak latitudinal depen-
dence, likely related to the decrease in β towards the poles
facilitating the onset of instability (see Gill, 1982, Sect. 13.6).

4.2 Wave evolution in the linearly unstable regime

After having mapped the conditions that determine the on-
set of instability and related them to the onset of barotropic
instability, we describe here the type of instability present in
the model at high jet speeds. The linear eigenvalue analy-
sis points out that the equilibrium state given by Eq. (13) is
indeed unstable. Nevertheless, such an unstable equilibrium
state resembles quite closely the time-averaged nonlinear so-
lution, which is bounded and characterized by the averaged
field reported in Fig. 3b. This is noteworthy because it points
to a possible usefulness of the linear approach even outside
the expected range of applicability dictated by the stability
analysis. Beyond the linearly stable range, only the nonlin-
ear simulations can provide information about the flow evo-
lution and whether or not an equilibrium state is achieved.
In order to shed some light, an empirical orthogonal function
(EOF) approach has been applied to the nonlinear simula-
tion for a single jet with UJ = 40 ms−1 and ϕJ = 45° N. The
EOF algorithm was applied on the meridional velocity field
between 10 and 100 d after the start of the simulation with-
out removing the time average. This provided a set of modes
orthogonal to each other, including the time-averaged one,
which facilitates the development of a reduced-order model
of the velocity field. The corresponding modes are shown in
Fig. 5 to highlight the most energetic scales governing the
temporal flow evolution. The first mode is practically con-
stant in time and remains close to the time-averaged field of
the nonlinear simulation, while the second and third, fourth
and fifth, and sixth and seventh modes organize themselves
to create traveling-wave patterns with zonal wavenumbers
m= 5, m= 6 and m= 7, respectively (the sixth and seventh
modes are not shown). These first seven modes contain 60 %
of the meridional velocity variance. The modal coefficients
of modes 2 and 3 are in quadrature with each other and simi-
larly for modes 4 and 5. The trajectories in the plane spanned
by the corresponding temporal coefficients, shown in Fig. 6,
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Figure 4. (a) Maximum growth rate of the linear eigenvalues for a given jet velocity (normalized by χ) when σJ = 5°. The solid black
line indicates the neutral curve, the dashed line is the locus where the absolute vorticity gradient changes sign (Rayleigh stability criterion),
and the green line is the locus beyond which the temporal variance of the meridional velocity in the nonlinear simulation becomes larger
than 2 m2 s−2 (the chosen threshold for defining the neutral curve in the nonlinear case). (b) Azimuthal wavenumber of the most unstable
eigenvalue for UJ = 40 ms−1 for different jet widths and latitudes. The black lines in (b) are curves m∝ cosϕJ fitting the linear stability
results. (c) Growth rate of the most unstable wave normalized by χ for UJ = 40 ms−1 for different jet widths and latitudes. The dashed black
line marks the boundary between the stable region (underneath) and the unstable region (above).

belong to a closed orbit and behave as traveling waves: the
presence of closed orbits is also a nonlinear behavior, which
is however different from the exponential growth in wave
magnitude expected from the positive growth rates calcu-
lated from the linear framework. This observation suggests
that a nonlinear adjustment takes place after the onset of the
unstable wave growth, leading to an interplay between sev-
eral nonlinear traveling waves maintaining the flow around
an equilibrium state (Hou and Farrell, 1986; Lachmy and
Harnik, 2016).

Additional simulations where the orographic forcing was
moved to lie right on the Equator did not change this over-
all picture, and the traveling waves (i.e., the EOF modes be-
yond the mean component) remained at the jet latitude (not
shown). This implies that the wave components described
by the EOF analysis are traveling waves determined just by
the background flow rather than by the forcing, similarly to
what is suggested by the linear analysis. One might wonder
if there is a correspondence between the unstable modes of
the linear analysis and the most energetic EOF modes. The
linear unstable waves are located at the jet latitude (Fig. 7)
and have similar wavenumbers to the first EOF modes. De-
spite the similarity, however, the most rapidly growing mode
(m= 6; Fig. 7) does not exactly match the EOF patterns cor-
responding to modes 2 and 3 (which appear to project on
m= 5; see Fig. 5).

5 Waveguidability assessment

5.1 Extending the Wirth (2020) diagnostic

Determining a general definition of waveguidability and esti-
mating it remain open research questions. A universal waveg-
uidability metric should inform about the ability of Rossby
waveguides to duct waviness and should be in principle ap-
plicable to any background flow. While developing such a
metric is not the focus of the current study, we nonetheless
need a metric that enables the comparison of background
flows with jets at different latitudes. Here, we opt to consider
the amount of enstrophy that remains at the forcing latitude
compared to the global enstrophy. This implies a minimal
change with respect to Wirth (2020), with an integration over
all longitudes rather than just a sector. The normalized merid-
ional enstrophy density E of a layer centered around ϕ = ϕ0
is here defined as

E(UJ, ϕ0)=

∫ ϕ0+1ϕ
ϕ0−1ϕ

cosϕ
∫ 2π

0 E (ϕ, λ)dλdϕ∫ π/2
−π/2 cosϕ

∫ 2π
0 E (ϕ, λ)dλdϕ

, (19)

where 1ϕ = 15° and E (ϕ, λ)= 〈ζ − ζ 〉2/2 is the square of
the time-averaged vorticity anomaly from the background
state. The time averaging operation is indicated by 〈·〉. It is
important to consider that this definition requires a forcing
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Figure 5. First five modes of the EOF decomposition of the meridional velocity field obtained from the nonlinear simulations (top) and their
temporal coefficient normalized by their root mean square value (bottom) for the strong-jet case with UJ = 40 ms−1. The number in the
bottom-left corner of the first row indicates the energy contribution of each mode in percent. The color scale in the top row is not consistent
between the different modes since each mode has unitary norm.

Figure 6. Evolution of the temporal coefficient of mode 2 (4) plot-
ted against the one of mode 3 (5) from the EOF analysis shown in
Fig. 5. The temporal coefficients have been normalized by their root
mean square.

centered around the same latitude where E is computed, ϕ0,
as a source of vorticity. The so-defined metric E takes into
account the enstrophy in the vicinity of the forcing, which
will be high even in the absence of jet streams and thus can-
not be directly used as a measure of the waveguidability.
Within the definition (Eq. 19) the jet latitude ϕJ, forcing lat-
itude ϕF, and latitude where the enstrophy anomaly is com-
puted ϕ0 coincide with the same value: this enables the eval-
uation of the jet’s capacity to hold the enstrophy (injected at
the same latitude of the jet stream) within itself.

5.2 The single-jet case

With the help of the newly developed linear method, it is
possible to efficiently estimate the equilibrium state for many
jet velocities and jet latitudes and use it to calculate E for the
linear simulations. This is shown in Fig. 8a for single jets
with different jet latitudes and strengths. It is clear that the
stronger the jet, the higher the normalized enstrophy density
E, as noticed already for the jet at 45° N. However, when
no jet is present (and therefore no waveguide should exist),
E remains still high due to the enstrophy generated in the
vicinity of the forcing. We also notice that E increases with
latitude, as more enstrophy is found along the short latitude
circles close to the pole.

In order to isolate just the contribution of the waveguide
in keeping the energy at that latitude, Fig. 8b shows the dif-
ference 1E between E(UJ, ϕ0) and E(0, ϕ0) (namely the
normalized enstrophy density without any jet). Removing the
contribution of solid-body rotation isolates the increase in E
due to the presence of a waveguide. We see that1E increases
with jet speed in a consistent way for all latitudes. An equa-
torial westerly jet (which is obviously not relevant to realistic
situations) results in a weaker 1E than in midlatitudes; this
last result is presumably due to the fact that the Equator al-
ready constitutes a waveguide for a background solid-body
rotation even without any jet superimposed.

The increment 1E due to the presence of the jet is, as ex-
pected, small for low jet speeds. However, 1E remains be-
low 50 % even for the high jet speed of 40 ms−1, for which
one would expect values closer to 100 % (as in Wirth, 2020).
This indicates that, even though useful to understand the rela-
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Figure 7. The four most unstable modes from the linear analysis sorted according to their growth rate in the strong-jet case.

Figure 8. (a) Normalized meridional enstrophy density of the single-jet zonal profiles (as in Eq. 17) for different jet latitudes and strengths,
estimated according to Eq. (19) with ϕ0 equal to the jet latitude. The enstrophy field has been computed from the equilibrium state obtained
from the linear method. Only narrow jets with σJ = 5° have been considered. (b) Difference E(UJ, ϕ0)−E(0, ϕ0) used to highlight the
increment in normalized enstrophy density with the jet speed with respect to the solid-body case. (c) Estimated waveguidability calculated
according to Eq. (20). All color scales are expressed in percent.

tive waveguidability increase,1E would not make an appro-
priate universal waveguidability metric. In order to propose a
simple assessment of the waveguidability property, one could
consider how 1E compares to an “ideal” waveguide at the
same latitude, i.e., a waveguide that would keep all the en-
strophy in the same latitude circle of the jet (E = 1). This

could be computed as the ratio

W(UJ, ϕ0)=
E(UJ, ϕ0)−E(0, ϕ0)

1−E(0, ϕ0)
, (20)

which is defined to be a number between 0 (no jet) and
1 (ideal waveguide). This ratio gives a direct measure of
how the normalized enstrophy density is increased by the
jet presence, relative to the increase achievable with an ideal
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waveguide. The so-defined waveguidability metric (Eq. 20)
increases with jet speed from 0 % to around 90 %, as ex-
pected, but it also features an increase with latitude for strong
jets (Fig. 8c). This trend of W with latitude is likely not due
to the fact that high-latitude jets act as better waveguides than
low-latitude jets because1E (i.e., the numerator ofW ) does
not feature an analogous latitudinal variation. On the other
hand, it likely results from the relative variation in E(0, ϕ0)

with latitude visible in Fig. 8a, which leads to a reduction in
the denominator of Eq. (20) at high latitudes. From a physi-
cal point of view, this means that a large part of the enstrophy
is already kept at the latitude of the forcing even in the ab-
sence of a jet. For this reason, it is much easier to approach
the status of “ideal waveguide” at high latitudes than at low
latitudes, at least according to the W metric. This analysis
also indicates that care is needed when estimating waveguid-
ability, even in relatively simple single-jet configurations, as
conclusions might be metric-dependent.

5.3 The double-jet case

After having considered the single-jet case, we now consider
a configuration with two separate jets of width σJ = 5° lo-
cated at different latitudes. The double-jet setup was chosen
as it is representative of the interplay between the subtropi-
cal and the eddy-driven jet streams observed in the Northern
Hemisphere and because recent research has connected it to
the occurrence of quasi-stationary Rossby waves and sum-
mer heat extremes (Rousi et al., 2022). The first jet is located
at ϕJ = 30° N and has a jet velocity of UJ = 40 ms−1 (the
associated perturbation field is shown in Fig. 9 for both the
linear and nonlinear simulations). The second jet is located
at ϕJ = 60° N and also has a jet velocity of UJ = 40 ms−1

(the associated perturbation field is shown in Fig. 10). A to-
pographic forcing is imposed at the center of the latitudinal
band where waveguidability is assessed using Eq. (20).

The perturbations resulting from the 30° N jet feature a
combination of great-circle and along-jet propagation that is
properly represented by both the linear and nonlinear ap-
proaches (Fig. 9). On the other hand, for the jet at 60° N
the along-jet propagation is obtained only in the linear sim-
ulation, while it is much weaker in the nonlinear simulation
(Fig. 10). The weakening of along-jet propagation can be due
to an enhanced equatorward propagation of the stationary
wave in the nonlinear case, given that the forcing is located at
45° N, possibly combined with enhanced dissipation. By us-
ing Eq. (20), the waveguidability of the 30° N jet (calculated
from the linear simulations and at the jet latitude) is 84 %,
while the one of the 60° N jet is 92 %, highlighting that jets
with the same velocity but different latitudes act as similarly
efficient waveguides.

Moving to the double-jet configuration we notice, first
of all, a good agreement between the linear and the non-
linear solution (Fig. 11). Rossby wave propagation oc-
curs separately along the waveguides delineated by the two

jet streams, while great-circle propagation to the Southern
Hemisphere is smaller in the double-jet configuration than
for the jets taken individually. The double-jet pattern cor-
responds roughly to the combination of the patterns of the
linear solutions for the two individual jets. However, this is
not true for the nonlinear solutions because of the previously
discussed lack of Rossby wave propagation along the 60° N
jet in the nonlinear single-jet case. It might be that forced
meridional velocity perturbations along the 30° N jet stream
could provide energy to the jet at 60° N, which would other-
wise be attenuated as in the single-jet case (Fig. 10b); how-
ever, this hypothesis would need further verification. Fur-
thermore, the waveguidability of the two jets is lower than
the one of the two distinct jets: the 30° N jet has a value of
the waveguidability metric of 70 %, while the 60° N jet has
a value of 82 %. The waveguidability of the 60° N jet has
been estimated using Eq. (20), considering a fictitious forcing
centered at 60° N and by monitoring the enstrophy anomaly
around the same latitude (and similarly for the 30° N jet).
The fact that the waveguidability is reduced compared to the
isolated jet case by 10 % for both jets is probably due to the
jet streams’ ability to attract leaked enstrophy from the sur-
rounding regions (including the other jet stream), making the
two jets more leaky than the ideal waveguides. However, the
reader is warned that these results are likely sensitive to the
choice of the reference state in Eq. (20) (here taken as the
solid-body background flow).

6 Conclusions

Even though the basic physical concepts behind Rossby wave
propagation have been known for several decades, we are still
far from a general comprehension of Rossby wave evolution
in non-idealized flow setups, such as the ones typically as-
sociated with extreme weather events. The understanding of
Rossby wave propagation along the waveguide provided by
the upper-level jet stream, in particular, remains challenging.
This work revisited the problem of Rossby wave propagation
in a non-divergent, barotropic flow on a sphere, following the
specification of a zonally symmetric background flow. Such
a simplified setup allowed us to advance the state of the art,
both in terms of model and process understanding.

We described a novel, linearized mathematical treatment
of the barotropic Rossby wave propagation problem that al-
lows one to efficiently obtain the steady-state Rossby wave
response to a given topographic forcing. The approach re-
lies on the framing of the barotropic vorticity equation on
the sphere as an eigenvalue problem. Here, the eigenfunc-
tions represent the flow response to the topographic forcing
in the meridional direction only (as the background flow is
zonally symmetric and a Fourier series decomposition is ap-
plied in the zonal direction), while the sign of the eigenval-
ues’ imaginary part (the growth rate) allows one to determine
the stability of the eigenfunctions, with a positive value indi-
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Figure 9. Meridional velocity associated with a zonal jet characterized by UJ = 40 ms−1 with ϕJ = 30° N at the equilibrium state from the
linear analysis (a) and averaged between 10 and 100 d from the simulation start with the nonlinear solver (b).

Figure 10. Meridional velocity associated with a zonal jet characterized by UJ = 40 ms−1 with ϕJ = 60° N at the equilibrium state from the
linear analysis (a) and averaged between 10 and 100 d from the simulation start with the nonlinear solver (b).

cating linear instability and exponential growth of the mode
when triggered. In distinct contrast to ray-tracing theory, the
present approach has general validity for any background
flow and forcing combination, does not require projecting the
flow field on a Mercator plane, and does not assume any scale
separation between the background flow and the waves.

Some features of Rossby waves occurring in the barotropic
model have been elucidated, in particular for the onset and
the evolution of transient Rossby waves that, under some
circumstances, accompany the steady-state response. Such
waves are the result of a barotropic instability arising at high
jet speed, when the growth rate actually turns positive. The
change in sign in the absolute vorticity gradient (i.e., the
Rayleigh criterion in the non-dissipative case) is not im-
mediately associated with the onset of barotropic instabil-
ity, which was observed at higher jet speeds. This happens
because dissipation shifts the linear neutral curve towards
higher velocities. Even more intriguing, nonlinear simula-
tions showed signs of barotropic instability further beyond
the linear neutral curve, pointing to potential damping effects
operated by nonlinear terms (e.g., wave–wave and wave–
mean-flow interactions). This dynamic was further investi-
gated by means of empirical orthogonal functions, which
showed that modes with an azimuthal wavenumber of 5 up
to 7 are associated with traveling waves of fixed amplitude,

a dynamic originated by nonlinear effects. Nevertheless, the
averaged flow field in the nonlinear simulation resembles the
unstable equilibrium state calculated from the linear method.
The latter is an equilibrium state obtained by removing the
time derivative and is therefore an approximation of the equi-
librium condition of the nonlinear system, too.

By means of the linearized analysis we revisited the
waveguidability problem for a variety of background flow
configurations. A new metric of waveguidability, based on a
time average of the enstrophy anomaly, has been proposed to
compare jet streams located at different latitudes. We recon-
firmed earlier results and noticed that, in a barotropic frame-
work, jet waveguidability is strongly related to jet speed,
while jet latitude plays a considerably smaller role. The ap-
plication of the proposed approach to a double-jet configura-
tion showed that (a) the equatorward propagation of Rossby
waves is weakened in a double-jet case compared to the no-
jet case, (b) the double-jet response roughly corresponds to
the linear combination of the individual jet responses, al-
though (c) the waveguidability of each jet taken individu-
ally seems to be higher than when the two jets occur in a
double-jet configuration. These results extend the analysis by
Wirth (2020) and pave the way for a more targeted analy-
sis of Rossby wave propagation in the presence of multiple
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Figure 11. Meridional velocity associated with two zonal jets (UJ,1 = 40 ms−1 with ϕJ,1 = 30° N and UJ,2 = 40 ms−1 with ϕJ,2 = 60° N)
at the equilibrium state from the linear analysis (a) and averaged between 10 and 100 d from the simulation start with the nonlinear solver (b).

jets, together with the development of appropriate metrics to
quantify waveguidability in such circumstances.

We envisage several future applications of our analysis
approach, for example, a systematic waveguidability assess-
ment for different forcings and background zonal wind pro-
files, including a detailed investigation of double-jet config-
urations. Another relevant application would be to under-
stand the role of orography in forcing Rossby waves with
specific zonal wavenumbers, as amplified waves of specific
wavenumbers have been related to surface weather extremes
during summer (as noticed, among others, by Coumou et al.,
2014; Jiménez-Esteve et al., 2022). Although we do not
attempt this here, this evidence could enable building a
reduced-order model of a barotropic atmosphere where the
spatial modes are provided by the equilibrium state and by
the most unstable modes (this information being retrieved ex-
clusively from the linear analysis), while the temporal coeffi-
cients could be determined by solving a small set of nonlinear
ordinary differential equations (Holmes et al., 2012).

In conclusion, we present a relatively simple and com-
putationally efficient way to study the steady and unsteady
Rossby wave response to topography in a variety of idealized
background flow configurations. This approach goes beyond
a number of limitations of ray-tracing theory for determining
waveguidability, and we have illustrated the physical insights
it can provide by considering a wide parameter sweep of jet
speeds and latitudes and a double-jet configuration.

Appendix A: Spectral solution of the barotropic
vorticity equation

Equation (11) introduces the Laplace operator L in the trans-
formed space together with the boundary conditions needed
to avoid the pole singularity:

ψ̂(θ = 0)= 0 for m 6= 0

and
∂ψ̂

∂θ

∣∣∣∣∣
θ=0

= 0 for m 6= ±1, (A1)

and similarly for θ = π . Consequently, there are two bound-
ary conditions for |m| ≤ 1 and four otherwise. An additional
boundary condition must be introduced at m= 0 as ψ̂(θ =
0)= 0 in order to set the value of the streamfunction at one
pole since, otherwise, the streamfunction would be defined
up to an additive constant, making the numerical problem
singular.

Following Peyret (2002), the solution of Eq. (10) is calcu-
lated by a spectral collocation method in terms of orthogonal
polynomials. In the present work, Chebyshev polynomials,
Tq (θ), and the decomposition

ψ̂ (θ, t; m)≈

N∑
q=0

aq(t; m)Tq (θ) (A2)

are used. The N + 1 collocation points are described by a
shifted Gauss–Lobatto distribution:

θj =
π

2

[
1− cos

(
π
j

N

)]
with j ∈ {0, 1, . . ., N − 1, N} , (A3)

implying a refinement of the colatitude distribution near the
poles. This is in contrast to the Legendre and associated Leg-
endre polynomials that account for a more appropriate res-
olution at the poles. Nevertheless, Chebyshev polynomials
have been preferred here since an exact method to calculate
the spectral coefficients exists for them, while the Legendre
polynomials require a numerical quadrature scheme (Krish-
namurti et al., 2006). The choice of the specific family of
polynomials influences only the derivatives in the meridional
direction and the meridional discretization, while the zonal
discretization is still based on the Fourier transform, as is the
case for spherical harmonics.

Rather than working with the spectral coefficients,
aq(t; m), here it is preferred to work directly with the
value of the streamfunction at the collocation points, ψ̂j =
ψ̂
(
θj , t; m

)
, as unknowns collected into a vector, signifi-

cantly facilitating the interpretation of the results. The deriva-
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tives of the streamfunction are calculated as

∂ψ̂

∂θ

∣∣∣∣∣
j

≈ D(1)ψ̂j ,
∂2ψ̂

∂θ2

∣∣∣∣∣
j

≈ D(2)ψ̂j , (A4)

where the matrices D(1) and D(2) provide the first- and
second-order derivatives (Peyret, 2002). Another advantage
of the Chebyshev basis is that the matrices D(1) and D(2) are
analytically known (Peyret, 2002; Canuto et al., 2006), al-
though some modifications to limit the effect of round-off
errors have been implemented (Bayliss et al., 1995).

By exploiting Eq. (A4), the discretized Laplace operator
becomes

L≈ D(2)+ cotθ D(1)−
m2

sin2θ
I, (A5)

where I indicates the identity matrix. This implies that the
Laplace operator becomes a numerical matrix since the spa-
tial dependence of the variables is provided by the Fourier
modes (in the zonal direction) and by the Chebyshev polyno-
mials (in the meridional direction). Once the Laplace opera-
tor has been discretized, the matrices A and B in Eq. (12) are
obtained from their definition.

As stated in Eq. (A1), the boundary conditions at the poles
have been imposed by removing two, three or four points
from the analysis so that the size of the matrices A or B is
N − 2×N − 2 for m= 0, N − 1×N − 1 for |m| = 1 and
N − 3×N − 3 otherwise. This has the advantage that the
reduced forms of A and B are just related to the dynamics
of the modeled system rather than the boundary conditions
(the reader is referred to Sect. 3.7.1 of Peyret, 2002, for a
detailed description of how the matrices can be reduced), to-
gether with a decrease in the computational cost.

If B is nonsingular, it is possible to perform the eigende-
composition B−1A= P3P−1, where the columns of P are
the eigenvectors and 3 is a diagonal eigenvalue matrix. The
analytical solution of Eq. (12) is found to be

ψ̂j (t; m)= Pe−i3tP−1ψ̂j (0; m)+ i

t∫
0

ei3τP−1B−1F̂ (τ )dτ

 , (A6)

with ψ̂j (0; m) indicating the initial condition of the stream-
function. In the special case of a steady forcing, Eq. (A6)
becomes

ψ̂j (t; m)= Pe−i3tP−1ψ̂j (0; m)

+

(
I −Pe−i3tP−1

)
A−1F̂ . (A7)

The first term of Eqs. (A6) and (A7) is the homogeneous
unforced solution of the linear system with initial condition
ψ̂j (0; m), while the second term is the forced solution with
zero initial condition.

Since the eigenvalues, 3, and eigenfunctions, P, depend
on the zonal velocity, U ; Rossby number, Ro; and wavenum-
ber, m, they are calculated and stored for all the considered
wavenumbers for a given zonal velocity profile and Rossby
number. Since they do not depend on the actual forcing ap-
plied, once they are computed they can be used with any
kind of forcing according to Eqs. (A6)–(A7). Furthermore,
since the equation is linear, no aliasing instability is present
and each eigenmode does not interact with the others. Equa-
tion (A6) enables the calculation of the solution at any time
without the need for numerical integration. This is neverthe-
less necessary if the forcing is time dependent, although with
a definite integral instead.

Code availability. The code can be downloaded from
GitHub (https://github.com/AntSegalini/barotropic_instability_
Chebyshev, last access: 4 August 2024) with the DOI
https://doi.org/10.5281/zenodo.13215495 (Segalini, 2024).

Data availability. The simulation results are available upon request
to the authors.
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