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Abstract. With climate change, extremes such as heatwaves,
heavy precipitation events, droughts and extreme fire weather
have become more frequent in different regions of the world.
It is therefore crucial to further their physical understanding,
but due to their rarity in both observational and climate mod-
eling samples, this remains challenging. For numerical simu-
lations, one way to overcome this under-sampling problem is
Ensemble Boosting, which uses perturbed initial conditions
of extreme events in an existing reference climate model sim-
ulation to efficiently generate physically consistent trajecto-
ries of very rare extremes in climate models. However, it has
not yet been possible to estimate the return periods of these
simulations, since the conditional resampling alters the prob-
abilistic link between the boosted simulations and the under-
lying original climate simulation they come from.

Here, we introduce a statistical framework to estimate re-
turn periods for these simulations by using probabilities con-
ditional on the shared antecedent conditions between the ref-
erence and perturbed simulations. We validate this frame-
work with a simple red-noise process and find the typical
time scale at which one could expect to sample stronger
extremes. This is then applied to simulations of the fully-
coupled climate model CESM2: first for a pre-industrial con-
trol simulation, and then in present-day conditions, where,
as an example, we estimate the return period of the record-
shattering 2021 Pacific Northwest heatwave to be 2500
[2000–4000] years. Our evaluation of the method shows that
return periods estimated from Ensemble Boosting are con-
sistent with those of a 4000-year control simulation, while
using approximately 6 times less computational resources.
We thus outline the usage of Ensemble Boosting as an effi-

cient tool for gaining statistical information on rare extremes.
This could be valuable as a complement to existing storyline
approaches, but also as an additional method of estimating
return periods for real-life extreme events within a climate
model context.

1 Introduction

Extreme weather events, or phenomena that occur at the
tails of the climatological distribution, can have devastat-
ing impacts on ecosystems, human life, settlements, and in-
frastructure. In recent years, climate change has caused the
frequency of extremes such as heatwaves, heavy precipita-
tion events, drought and fire weather to increase (Ranas-
inghe et al., 2021; Seneviratne et al., 2021). Additionally,
the non-stationary climate that arises through climate change
also means that record-shattering heatwaves are on the rise,
which can pose challenges for adaptation, since communities
are more vulnerable to extremes they have not yet witnessed
(Fischer et al., 2021).

In particular, heatwaves have become not only more com-
mon, but also more intense and long-lived compared to the
pre-industrial climate, a change which is projected to con-
tinue with climate change (Meehl and Tebaldi, 2004; Rahm-
storf and Coumou, 2011; Thiery et al., 2021; Seneviratne
et al., 2021). Several impactful summer heatwaves have been
observed in the last decades: examples include the 2003
European heatwave, claiming approximately 70 000 lives
(Robine et al., 2008), the month-long 2010 Russian heat-
wave (Otto et al., 2012) and the unprecedented Pacific North-
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West (PNW) heatwave of 2021, that broke observational
records by more than 5 °C (Bartusek et al., 2022; Malinina
and Gillett, 2024; McKinnon and Simpson, 2022; Neal et al.,
2022; Overland, 2021; Philip et al., 2022; Schumacher et al.,
2022; White et al., 2023). Studying such heatwaves is soci-
etally relevant, due to their significant socio-economic and
ecological impacts (Gourdji et al., 2013; Dunne et al., 2013)
– in particular the high mortality tolls such heatwaves can
incur (Robine et al., 2008; Vicedo-Cabrera et al., 2021).

Summer heatwaves in the mid-latitudes are associated
with persistent anticyclonic flow anomalies that can give rise
to prolonged anomalies of temperatures (Perkins, 2015; Hor-
ton et al., 2016; Barriopedro et al., 2023). These anomalies of
temperature occur through three physical mechanisms: hor-
izontal advection of warmer air from neighboring regions,
adiabatic warming by subsidence within the anticyclone, and
diabatic fluxes such as increased radiation due to the clear-
sky conditions and sensible heat fluxes from the ground
caused by reduced soil moisture (Pfahl and Wernli, 2012;
Miralles et al., 2014). The relative importance of these mech-
anisms can vary greatly from one region to another (Röthlis-
berger and Papritz, 2023).

Despite the societal relevance of – and significant research
on – heatwaves and their dynamics, their quantitative study
remains challenging due to limited sample sizes. Extreme
events are rare by definition, and it is therefore difficult to
obtain accurate climatological results concerning their dy-
namics. Several methods have been developed to overcome
this sampling challenge. For example, climate model Large
Ensembles constitute a brute-force approach to the problem
of sampling extreme events, and have been used to describe
heatwave dynamics quantitatively (Suarez-Gutierrez et al.,
2018; Schaller et al., 2018). However, the sampling density
necessary to adequately represent events such as the PNW
heatwave cannot be achieved even with these computation-
ally expensive large ensembles (Fischer et al., 2023).

Another way in which extremes can be studied is through
Extreme Value Theory (Coles et al., 2001). Extreme Value
Theory is based on the existence of asymptotic results of the
block-maxima and peak-over-thresholds distributions of any
random variable. For example, generalized extreme value
(GEV) distributions are often used to extrapolate probabilis-
tic information on block maxima from the sample at hand
(Philip et al., 2020; Cooley, 2013). However, such estima-
tions can be problematic. Using a large ensemble of a climate
model, Zeder et al. (2023), for example, showed that return
period estimates of temperature extremes are systematically
overestimated in short records. Additionally, while process-
based covariates can provide some dynamical insight into
heatwave drivers, this approach remains limited compared to
the information available directly from fully-coupled climate
models (Zeder and Fischer, 2023).

Therefore, there has been a recent push for methods that
can generate climate simulations of extremes more efficiently
than by producing ever larger climate model ensembles. One

such tool is the application of rare event algorithms to climate
models (Wouters and Bouchet, 2016; Plotkin et al., 2019;
Webber et al., 2019; Yiou and Jézéquel, 2020; Gessner et al.,
2021; Finkel and O’Gorman, 2024). In particular, Ragone
et al. (2018) used the Giardina-Kurchan-Tailleur-Lecomte
(GKTL) (Giardinà et al., 2006; Giardina et al., 2011) algo-
rithm to clone simulations that perform well with respect to
a defined score function to generate new, extreme, simula-
tions. This process is repeated in intervals of a given resam-
pling time; at each step, new simulations are given weights
based on their parent score, which allows for a retracing of
steps to calculate the probability of exceeding thresholds of
time averaged quantities.

By design, the GKTL algorithm is well suited for ex-
tremes that persist in time, since time needs to elapse be-
tween the repeated cloning and evaluation steps. However,
its use is limited when studying shorter extremes, like week-
long heatwaves or daily precipitation extremes. In compari-
son, Ensemble Boosting, proposed by Gessner et al. (2021),
is more suited for simulating short, very intense events. It
consists in perturbing the initial conditions of extreme events
selected from an already existing climate model simulation,
thus efficiently creating alternative, potentially substantially
more extreme versions of a given extreme event in a parent
simulation. However, in doing so, it breaks the probabilistic
link between the resulting simulations and the climate model
large ensemble they come from. Finding unconditional re-
turn periods directly through the boosted simulations is thus
not straightforward. Therefore, Ensemble Boosting is typi-
cally used within a storyline framework (Fischer et al., 2023;
Lüthi et al., 2024), an approach that seeks to complement
probabilistic confidence statements with plausible, episodic
information on representative case studies (Shepherd et al.,
2018).

A key difference between the GKTL algorithm and En-
semble Boosting is that in the latter case, the perturbation
is performed in anticipation of the extreme: this means that
there is no guarantee that the boosted simulation will be at
least as extreme as the parent event, thus breaking the nec-
essary assumption for the weighted probability calculation.
To overcome this, Finkel and O’Gorman (2024) showed that
a chained conditional probability calculation based on the
Subset Simulation framework (Au and Beck, 2001) could be
used to estimate probabilities for ahead-of-time resampled
simulations. However, this calculation is based on a resam-
pling method that is methodologically distinct to Ensemble
Boosting and can be difficult to apply in typical simulation
conditions of a climate model.

In this paper, we show how probabilities and return periods
of extreme events found using the Ensemble Boosting resam-
pling method can be estimated. In essence, we apply condi-
tional probabilities – to calculate the unconditional proba-
bility of a boosted simulation, the unconditional probability
of parent events selected for Ensemble Boosting is combined
with the conditional probability of parents and boosted simu-
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lations given Ensemble Boosting. We additionally show, with
a simple red-noise process, at which time scale Ensemble
Boosting is expected to sample more extreme events.

The method is evaluated by generating extreme heatwaves
for the region of the Pacific Northwest (45–52° N, 119–
123° W) with the Community Earth System Model 2.1.2
(Danabasoglu et al., 2020), first with pre-industrial (PI) con-
trol simulations as a proof of concept, and then with present
anthropogenic forcing conditions. The 2021 PNW heatwave
is used as a case study: by boosting analogue simulations un-
der current climatic conditions, we attempt to find the return
period of this record-shattering heatwave within the model.
We thus illustrate how we can both simulate the physical
mechanisms and estimate the probability of very extreme,
unseen events with a climate model.

The paper is organized as follows. Section 2 presents the
theoretical framework of the Ensemble Boosting estimator
for low probability events, showing that it is unbiased and
can reduce the relative error compared to a naive estima-
tor. In particular, we validate our approach with a simple 1D
red-noise process. Section 3 presents the results for the pre-
industrial control simulation with sensitivity tests, before ap-
plying the insights gained to the 2021 PNW heatwave in a
present world context. In Sect. 4, the gain in computational
resources, the choice of optimal parameter settings and the
distribution of the very tail extremes are discussed. Finally,
conclusions are presented in Sect. 5.

2 Methods

2.1 Resampling low probability events

The return period of a heatwave reaching temperature T over
a certain region is classically defined as the inverse of the
probability pT of exceeding the temperature T . The latter
can be estimated as the empirical frequency of occurrence:

p̂T =
1
N

N∑
n=1

1(T n ≥ T ), (1)

where (T n)1≤n≤N are N independent observations of the
temperature T and 1 is the indicator function equals to 1
if T n ≥ T and 0 otherwise. Since for each observation n,
E(1(T n ≥ T ))= pT ,

E(p̂T )= pT , (2)

which makes this estimator unbiased. Furthermore, using the
independence of each observation, its variance is V (p̂T )=
pT (1−pT )

N
. Therefore, for pT � 1, the relative error of this

estimator p̂T , RE, is:

RE :=

√
V (p̂T )

E(p̂T )
'

1
√
pTN

. (3)

This shows that the relative error of the naive estimator
increases as pT decreases, i.e. when the temperature T be-
comes more extreme. In other words, the problem of obtain-
ing precise climatological results for events reaching extreme
values of T comes from under-sampling such events for a
small number of observations N .

Ensemble Boosting addresses this problem by resampling
the most extreme events of an already existing climate model
simulation. In the following, we call these events the Par-
ent Ensemble. The resampling is done by perturbing the an-
tecedent conditions of the events inside the Parent Ensemble.
Since the perturbations are of a relative amplitude of 10−13

and are only performed once, physically consistent simula-
tions, hereby called the Boosted Ensemble, can be generated.
All members of the Boosted Ensemble are samples from a
distribution biased towards the upper tail of the distribution
of T (see Appendix Fig. A1) and, in particular, could sample
events that are more intense than any present in the Parent
Ensemble.

Figure 1 illustrates the Ensemble Boosting algorithm. A
detailed description of the algorithm employed is presented
below for temperature anomalies, but can be generalized to
any quantity of interest that one wants to maximize or mini-
mize:

1. A reference climate model simulation, spanning N

years, is used to select the Parent Ensemble. Here, we
consider the yearly summer maximum of daily maxi-
mum temperature anomalies with a running mean of 5 d
(hereby denoted by TXx5d), forming a set of temper-
atures T := {T n | n= 1,2. . .N}, with n indicating the
different simulation years. All years whose T n exceeds
a user-chosen temperature threshold Tref are selected to
form the Parent Ensemble. The total size of this ensem-
ble is denoted by Nparent ≤N . An illustration of the ref-
erence climate model simulation can be seen in Fig. 1a,
and an example of an event in the Parent Ensemble can
be seen in Fig. 1b.

2. Since the objective of Ensemble Boosting is to generate
a heatwave that is similar to, but substantially more in-
tense than the parent event, each parent event in the Par-
ent Ensemble is perturbed ahead of the parent event’s
peak. The number of days between the perturbation and
the parent peak is called the lead time and denoted by
t . Because of the chaotic nature of the model, the de-
viations between the boosted simulations and the par-
ent event will initially grow exponentially with time
(Lorenz, 2006). Figure 1c, d, e show boosted simula-
tions that have been perturbed at different lead times.
Here, we see how the lead time influences the tempera-
tures in the Boosted Ensemble: simulations perturbed at
−16 d in Fig. 1c have diverged for too long, thus revert-
ing back to the underlying climatology. Therefore, only
a few boosted simulations reach the parent TXx5d. Sim-
ulations perturbed at −7 d, on the other hand, as seen in
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Table 1. Definitions and descriptions of important quantities used in this study.

Symbol Formal definition Description

PNW Pacific North-West, region of interest in the study
TXx5d Yearly summer max. of daily max. temperature anomalies with a 5 d running mean
Z500 Geopotential height at 500 hPa
N Number of simulation years in the reference climate model simulation
Nlead The number of lead times used to generate boosted simulations
Nbatch The number of boosted simulations per lead time
Nparent The total number of simulations in the Parent Ensemble
Nb Nlead ·Nbatch ·Nparent The total number of simulations in the Boosted Ensemble
T {T n | n= 1,2. . .N} Set of TXx5d in the reference climate model simulation
Tb {Tmb | m= 1,2. . .Nb} Set of TXx5d in the Boosted Ensemble
Tref User-chosen TXx5d threshold. If T n ≥ Tref, it is selected to the Parent Ensemble
Text TXx5d ≥ Tref from the Boosted Ensemble
t Lead time at which Ensemble Boosting is performed
AC0

t { Xt | Tt=0 ≥ Tref } Set of antecedent conditions at t of all members of the Parent Ensemble
ACεt {Y t | ∃Xt ∈ AC0

t ,‖Xt −Y t‖ ≤ ε} Set of antecedent conditions that differ from AC0
t only by a perturbation ε at t

P Theoretical probability
p̂ Probability estimator
E1 The most extreme parent event in the 30-member Large Ensemble
Ẽ1 The most extreme parent event in the 100-member Large Ensemble

Fig. 1e, have not diverged enough for any boosted simu-
lation to deviate substantially from their parent. Fig. 1d,
at −12 d, illustrates an ideal lead time, i.e. where the
spread is neither too small nor too large, and a large por-
tion of boosted simulations exceed the parent TXx5d.
We propose an estimation of this “optimal lead time”
in the case of a red-noise process below. The difference
between the climatological distribution and the distribu-
tion of the boosted simulations at this lead time is shown
in Appendix Fig. A1.

3. The perturbations are performed on the 3D specific hu-
midity field Q at each grid cell, to obtain the perturbed
specific humidity field Q̃m for each boosted memberm:

Q̃m
i,j,k =Q

m
i,j,k

(
1+ 10−13Rmi,j,k

)
, (4)

for a given boosted simulation n and a given grid cell
i,j,k. Rmi,j,k is a random term drawn from a uniform
distribution between − 1

2 and 1
2 . Each newly generated

offspring simulation is then run for 21 d, and the max-
imum TXx5d, T mb , is considered. While a systematic
test has not been implemented, we do not expect the
choice of variable to influence results, since the pertur-
bation stays within numerical noise limits. Both spe-
cific humidity and temperature have been used in pre-
vious studies, with comparable results (Gessner et al.,
2021, 2022, 2023; Fischer et al., 2023).

4. For each lead time and each parent, new simula-
tions are generated in batches of size Nbatch, corre-
sponding to different realizations of the perturbed field

(Q̃m)1≤m≤Nbatch . The total number of simulations in the
Boosted Ensemble Nb is therefore:

Nb =Nlead ·Nbatch ·Nparent, (5)

where Nlead is the number of lead times where pertur-
bations are performed.

Computing the probability of exceeding an extreme tem-
perature T naively from simulations of the Boosted Ensem-
ble using Eq. (1) leads to a probability estimation conditional
on the initial conditions at lead time t of the parent events.
To recover the unconditional, i.e. climatological, probability
we use the framework of Subset Simulation (Au and Beck,
2001), where an iterative chain of conditional probabilities is
used to estimate the probability of simulated low-probability
events. Here, we illustrate how this framework can be used
with a deterministic climate model, with perturbations ahead
of time as in Finkel and O’Gorman (2024), and for the En-
semble Boosting setup, which generates batches of boosted
simulations, but here stops after one perturbation iteration.

The probability of exceeding the threshold temperature
Tref – used to select events for the Parent Ensemble – can
be estimated using the naive estimator of the reference cli-
mate model simulation (Eq. 1), since there are, by definition,
events in the reference climate model simulation that exceed
Tref. This also means that all parent events have in common
that the dynamical conditions of the climate model system in
the days leading up to the peak were such that the tempera-
ture Tref was reached.

One can thus define a set that includes the antecedent con-
ditions at lead time t of all the parent events:

AC0
t := { Xt | Tt=0 ≥ Tref }, (6)
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Figure 1. Illustration of the Ensemble Boosting algorithm for heatwaves. (1) The reference climate model simulation spanning the period
1801–1850. Each dot represents the yearly summer maximum of daily maximum temperature anomalies with a running mean of 5 d (TXx5d).
(2) One parent event of the Parent Ensemble: the heatwave itself is represented as a function of lead time, defined here as the number of
days before the parent event’s heatwave peak (solid black vertical line). The y-axis is the 5 d running mean daily maximum temperature
anomaly (Tx5d anomaly). (3) Boosted simulations (orange) of the parent event shown in (2), perturbed at a lead time of (c)−16, (d)−12 and
(e) −7 d. The perturbation lead time is highlighted by a black dashed vertical line. At each lead time, a “batch” of 100 boosted simulations
are generated.

where Xt is the state vector of the climate model at lead
time t , which encompasses all the degrees of freedom of the
system. Here, Xt is associated with a temperature Tt=0 :=

T (Xt=0) in the location of interest. The set AC0
t is imper-

fectly sampled in a simulation with a finite length, but we
assume that the antecedent conditions of the selected parent
events still represent a good enough sample. This is a key as-
sumption and it will be further discussed in the Results and
Discussion sections. The exact conditions constituting a rep-
resentative sample are unknown, since we do not know the
function giving the probability to reach an extreme given the
current state – the so-called committor function (see Milo-
shevich et al., 2023). Additionally, if we did, it may not be
transferrable across different regions. Instead, temperature at
t0 = 0 is used as a first order approximation to determine the
right antecedent conditions (at lead time t < t0) for a heat-

wave – if the antecedent conditions produced a heatwave, it
could potentially produce a more extreme one.

Since the antecedent conditions of the boosted simulations
only differ from their parent by the value of the perturbation
at lead time t , they are samples of the set ACεt := {Y t | ∃Xt ∈

AC0
t ,‖Xt −Y t‖ ≤ ε}, for a distance ‖.‖ and ε the absolute

value of the perturbation. By definition, AC0
t ⊂ ACεt . An il-

lustration of these two sets, and how they relate to each other,
can be seen in Fig. 2. Note that for the boosted simulations,
T mb can either be in AC0

t (and by extension, in ACεt ) or only
in ACεt , since there is no guarantee that they will exceed Tref
at t = 0.

The probability of any temperature Text ≥ Tref from the
Boosted Ensemble can thus be estimated by combining the
conditional probability of Tref and Text. These probabilities
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Figure 2. Schematic illustration of the antecedent condition set
ACεt and the stricter AC0

t ⊂ ACεt . The dark blue line shows the de-
lineation between ACεt and AC0

t , i.e. the condition that at t = 0,
T = Tref. Only simulations that exceed this requirement (the Parent
Ensemble) are selected from the reference climate model simula-
tion, and are shown in blue diamonds. Other events in the reference
climate model simulation are not depicted. The boosted simulations
are shown as orange dots. Since the boosting perturbation is per-
formed ahead of the parent peak, there is no a priori guarantee that
at t = 0, Tmb ≥ Tref, and the orange dots can therefore be on either
side of the delineation.

can be stated using the conditional probability definition as:

P(Tt=0 ≥ Tref ∩ACεt )= P(Tt=0 ≥ Tref | ACεt )P (ACεt ) (7)
P(Tt=0 ≥ Text ∩ACεt )= P(Tt=0 ≥ Text | ACεt )P (ACεt ). (8)

Since Text ≥ Tref and AC0
t ⊂ ACεt , the presence of antecedent

conditions in ACεt at time t = 0 and getting temperatures
above either Tref or Text at time t = 0 overlap perfectly.
Therefore P(Tt=0 ≥ Tref∩ACεt ) simplifies to P(Tt=0 ≥ Tref).
An equivalent simplification can be performed for P(Tt=0 ≥

Text). The subscript t = 0 indicates that this is the probabil-
ity at the day of the parent event’s peak. Since all values
considered in this study are summer temperature anomalies,
thus not presenting any seasonality changes with respect to
each other, we will assume that this probability is the same as
the climatological probability P(T ≥ Text), i.e. for any time
within the summers of the reference climate model simula-
tion.

From Eqs. (7) and (8), we can derive the probability of
Text:

P(T ≥ Text)= P(T ≥ Tref)
P (T ≥ Text | ACεt )
P (T ≥ Tref | ACεt )

. (9)

Here, P(T ≥ Tref) is the probability of reaching Tref in the
reference climate model simulation, P(T ≥ Tref | ACεt ) is
the probability of reaching Tref in the Boosted Ensemble, and
P(T ≥ Text | ACεt ) is the probability of reaching Text in the
Boosted Ensemble. In other words, the unconditional proba-
bility of exceeding the threshold is equal to the product of the

probability of exceeding the threshold given one has entered
the set, times the probability of entering the set. Note that
since the condition Text ≥ Tref is necessary to derive Eq. (9),
we can only use it to find probabilities for boosted simula-
tions where Tref is exceeded.

All terms in this equation can be estimated with the cli-
mate model simulations at hand: the probability of reaching
Tref can be approximated to its frequency of occurrence in
the reference climate model simulation, while the probabil-
ity of reaching Tref and Text given ACεt can be approximated
to their respective frequencies in the Boosted Ensemble. For-
mally this can be written as:

p̂T≥Text := p̂T≥Tref

p̂T≥Text|ACεt
p̂T≥Tref|ACεt

=

(
1
N

N∑
n=1

1(T n ≥ Tref)

)
1
Nb

∑Nb
m=11(T mb ≥ Text)

1
Nb

∑Nb
m=11(T mb ≥ Tref)

. (10)

The estimator p̂T≥Text will hereby be referred to as the boost-
ing estimator. As shown in Noyelle (2024) and derived in
Appendix Sect. A, this estimator is unbiased, if the follow-
ing assumptions are made:

1. the term p̂T≥Tref is independent from the ratio
p̂T≥Text|ACεt
p̂T≥Tref|ACεt

. This means that the probability of Tref is in-

dependent from how much more likely it is to reach Tref
than Text within the Boosted Ensemble.

2. the indicator variables (1(T mb ≥ Text))1≤m≤Nb and
(1(T mb ≥ Tref))1≤m≤Nb need to be independent.

These assumptions will be discussed in the discussion
Sect. 4.3. Note that these assumptions do not require that
Tref and Text occur independently of one another, but rather
explore the relationship between Tref and Text within the
boosted ensemble, and their link to Tref.

The choice of an intermediate temperature threshold to
create a link between the reference climate model simula-
tion and the Boosted Ensemble has been studied, albeit under
different conditions, in Finkel and O’Gorman (2024). How-
ever, beyond the higher complexity of the climate model used
here for Ensemble Boosting compared to that of the Lorenz
96 simulator used in Finkel and O’Gorman (2024), the most
important methodological difference lies in the process of
generating perturbed offspring. While Finkel and O’Gorman
(2024) boost one parent with a batch of 1 repeatedly until
reaching the desired extremes, calculating conditional prob-
abilities at each step, we perturb larger batches for ranges
of lead times (as detailed above) only once. The former ap-
proach would lead to a more targeted result, with fewer un-
used simulations. However, it would also take substantially
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more time to perform all computations, since there would be
no possibility of parallelization: given our current computa-
tional capacity (simulating approximately 1.1 climate model
years in 24 node hours, with a capacity of up to 4 nodes),
running the same 12 000 simulations generated for this study
with this approach would take approximately 1.5 node years.
Running large batches allows us to complete such setups
within a few weeks. There is thus a trade-off between mini-
mizing compute time using very effective sampling vs. mini-
mizing wall-clock time by running more parallel simulations.

2.2 Theoretical comparison to the naive estimator

In order for the boosting estimator to be useful beyond find-
ing return periods for temperatures that cannot be found
in the reference climate model simulation, it needs to have
lower errors than the naive estimator. In Appendix Sect. A,
the variance and relative error of the boosting estimator are
calculated, and can be shown to depend on the number of
simulation years in the reference climate model simulation
N , the total number of simulations in the Boosted Ensem-
ble Nb, and the three probability terms P(T ≥ Tref), P(T ≥
Text | ACεt ) and P(T ≥ Tref | ACεt ).

Therefore, in order to calculate the theoretical relative
error of estimating P(T ≥ Text), we need to estimate the
above unknowns. While the first three terms, N , Nb and
P(T ≥ Tref), are parameters that can be set by the ex-
perimenter, P(T ≥ Text | ACεt ) and P(T ≥ Tref | ACεt ) can
only be calculated once the boosting experiment is per-
formed, and will have to be approximated based on empir-
ical evidence. Furthermore, Text ≥ Tref and Text could ex-
ceed any T mb from the Boosted Ensemble. Therefore, P(T ≥
Text | ACεt ) ∈ [0,P (T ≥ Tref | ACεt )]. For illustration pur-
poses, we choose values of 0.75 and 0.3 for the estimation
of P(T ≥ Tref | ACεt ), which amounts to cases where either
75 % or 30 % of the boosted simulations exceed Tref. These
values were chosen because they correspond to the typical
value we find in practice (see Results Sect. 3.2).

The evolution of the theoretical relative error of the boost-
ing estimator with P(T ≥ Text), for different values of the
above mentioned parameters, can be seen in Fig. 3. Here,
three different configurations of the boosting estimator are
compared to the errors of the naive estimator. Since we need
to run a sample of non-boosted parents before generating
boosted samples, the total cost of the boosted simulations
takes this into account (N +Nb = 50 · 100+ 500 · 21 d, for a
parent ensemble of size 50, where each simulation is run for
100 d, and a boosted ensemble of size 500, where each simu-
lation is run for 21 d). To directly compare these results with
the naive estimator, we generate a non-boosted sample where
N is equivalent, in terms of computational resources, to those
of each boosting configuration. For example,N = 105·100 d
is equivalent toN+Nb = 50·100+500·21 d, since a boosted
simulation only needs to be run for 21 d, while the reference
climate model simulation needs approximately 100 d to gen-

erate a full summer. An important result of this computation
is that the relative errors of the boosting estimators are con-
strained by that of P(T ≥ Tref): any estimate of P(T ≥ Text)

will have errors equal to or higher than P(T ≥ Tref). An ac-
curate estimate of P(T ≥ Tref) is therefore necessary for ro-
bust results. This advocates for using either a longer test slice
as the reference climate model simulation or a less extreme
(and thus better sampled) Tref.

Nonetheless, the boosting estimator can reduce the rela-
tive error compared to that of the naive estimator. Firstly, in
all boosting configurations, relative errors are smaller than
for the naive estimator with N = 50 · 100 d. Secondly, each
boosting estimator reduces errors compared to its equiva-
lently expensive naive estimator for probabilities under a cer-
tain threshold value of p̂T≥Text , which depends onN+Nb. Fi-
nally, the boosting estimator with N = 50 · 100,Nb = 3000 ·
21 d reduces errors compared to the much more expensive
naive estimator with N = 4000 · 100 d in both Fig. 3a and b,
for a low enough probability p̂T≥Text .

Finally, Fig. 3 also shows that for both Nb and P(T ≥
Tref | ACεt ), the relative error decreases as these parameters
increase. There is therefore no optimal number of boosted
simulations Nb: the larger the better. Finding the optimal
P(T ≥ Tref | ACεt ) is however less trivial because it cre-
ates trade-offs. These will be further discussed in Results
Sect. 3.2.

2.3 Validation with an Ornstein-Uhlenbeck process

Before estimating return periods in a fully-coupled climate
model, a validation and exploration of parameter settings is
performed with a simple Ornstein-Uhlenbeck process, also
called red-noise process. The objective of this validation, be-
yond checking that the estimator yields correct results, is to
better quantify the uncertainties surrounding the boosting es-
timator, by separating the effect of parameter settings and
random variability. Due to the lack of computational con-
straints in running the Ornstein-Uhlenbeck process, larger
samples of simulations can be generated, which strengthens
confidence in the conclusions drawn.

The evolution of this process obeys the following stochas-
tic equation:

dX(t)=−αXdt + σdW(t), (11)

where the statistical parameters α , σ are equal to 1 here,
and dW(t)∼N (0,dt) is a Wiener process. It is composed
of two terms: the first one, −αXdt , models a deterministic
drift towards 0, while the second one, σdW(t), generates
randomness that simulates natural variability. This creates
the characteristic mean-reverting evolution of the Ornstein-
Uhlenbeck process.

We simulate 106 parallel simulations of this process that
span 100 · τ , with τ = 1

α
the de-correlation time of the pro-

cess. This assures independence from each simulation’s ini-
tial value, which is sampled from the stationary distribution
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Figure 3. Theoretical relative error of the boosting estimator with N = 50 · 100 d and (solid orange line) Nb = 100 · 21 d, (dashed or-
ange line) Nb = 500 · 21 d and (dotted orange line) Nb = 3000 · 21 d. Theoretical relative errors computed for (a) p̂T≥Tref|ACεt = 0.75, and
(b) p̂T≥Tref|ACεt = 0.3. Since a boosted simulation is less computationally expensive to run (see text), the naive estimator with a equivalent
computational resource for each configuration of the boosting estimator is represented by a blue solid, dashed and dotted line, respectively.
The relative error of the naive estimator with (solid line) N = 4000 · 100 d and (dashed line) N = 50 · 100 d are shown in black.

of the Orstein-Uhlenbeck process. The set of maximum val-
ues, or events, found for each of these parallel simulations are
calculated to act as a ground truth. From this ground truth,
we sample N = 1000 events from which we select the par-
ent ensemble. The boosted ensembles with varying Nparent
and Nbatch are subsequently generated. Since the dynamics
of spread in a red-noise process is not directly comparable
to that of a fully-coupled climate model, we keep Nlead = 1,
and perturb at a lead time t = 0.2 · τ . Other lead times were
tried, with no substantial change in results (not shown). Each
simulation is then run until it is no longer correlated to its
parent (time' τ ), and its maximum value is calculated. This
process is repeated 1000 times to estimate uncertainties.

The evolution in time of one parent simulation, along with
the mean ±3 standard deviations of 1000 boosted simula-
tions is shown in Fig. 4a. Since the Ornstein-Uhlenbeck pro-
cess employed here is fully stochastic, the typical spread
of boosted simulations from their parent does indeed differ
from the evolution of boosted simulations in a fully-coupled
climate model as seen in Fig. 1. However, the spread be-
tween members, illustrated by the range of the mean ±3
standard deviations confidence interval, grows and saturates
faster than the memory of the parent intensity, shown by the
median of the boosted simulations, fades and reverts back
to zero. This opens a window of time when one can sample
events more intense as the parent x0. As derived theoretically
in Appendix Sect. B, for the Orstein-Uhlenbeck process, if
one wants to sample anomalies of size kσ , with k > 0 being
a function of the number of members in the boosted ensem-
ble, then the time where the maxima are expected to happen

(i.e. an approximation of the “optimal lead time”) is:

t∗ =
1

2α
ln

(
1+ k2 σ

2/2α
x2

0

)
. (12)

As a sanity check, this equation can be applied to our cli-
mate model setup (see Sect. 2.4). When considering the evo-
lution of temperature in summer, one would typically have
1/α '10 d (the de-correlation time scale in the atmosphere),
σ/
√

2α ' 3.5 K (the climatological standard deviation of
summer 5 d rolling average of daily maximum temperature
anomalies over the region of interest), x0 ' 10 K (the typical
value of Tref), and k ' 3 (the maximum number of standard
deviations one can expect to sample using Nb ' 100 to 1000
boosted members per parent). This leads to t∗ ' 15 d, with
expected maximum event magnitudes around 4 climatologi-
cal standard deviations, i.e. temperature anomalies of 14 K.

Figure 4b–e shows return period estimates in the boosted
ensemble, calculated with the boosting estimator for combi-
nations of Nparent = 10,100 and Nbatch = 10,100. In all pan-
els, the return period of the ground truth set, estimated with
Eq. (1), (in black) and sample sets from which we select each
parent ensemble (in blue) are shown for comparison. Firstly,
we see that the boosting estimator is indeed unbiased – all
median return period estimates using the boosting estimator
follow the ground truth, regardless of the configurations of
Nparent and Nbatch. Secondly, in all configurations of Nparent
andNbatch, higher return periods, up to more than an order of
magnitude, are estimated in the boosted ensemble than in the
parent ensemble.
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Figure 4. Estimating return periods from boosted simulations in an Ornstein-Uhlenbeck process. (a) Evolution in time of one parent (blue)
and its boosted simulations (orange). The mean ±3 standard deviations of the boosted simulations is shaded in orange. Additionally, the
theoretical mean (dashed line) and mean ±3 standard deviations (solid line), as derived in Appendix Sect. B, are shown in black. The
time at which the maximum theoretical boosted intensity is reached is highlighted by black dotted lines. Estimated return periods from
boosted simulations for (b) Nparent = 10, and Nbatch = 10, (c) Nparent = 100, and Nbatch = 10, (d) Nparent = 10, and Nbatch = 100, and
(e) Nparent = 100, and Nbatch = 100 are shown in orange: the median value, sampled from 1000 boosting experiments, is shown with a solid
line, while the 95 % confidence interval is delineated by dotted lines. In each panel, the ground truth is shown in black, while the 1000
repeated samples of the simulations used to select the parent ensemble are shown in blue (the median value as a solid line, and the 95 %
confidence interval is shaded).

Additionally, while median return period estimates of the
sample sets from which we select the parent ensemble also
follow the ground truth (as expected, since both are estimated
using Eq. 1), the uncertainty of the return periods estimated
from the boosted simulations seem to increase more slowly
than for the non-boosted simulations in the sample set. In-
deed, the 95 % confidence interval around the return peri-
ods of the boosted simulations are narrower than those of

the sample set for return periods above 102. As predicted
from the theoretical relative error calculation (see Sect. 2.2),
this reduction of uncertainty is more pronounced for a larger
Nbatch (Panels d, e) or Nparent (Panels c, e), with the smallest
uncertainty range found in Panel e, where the total compu-
tational cost is largest (10 000 simulations). This highlights
that while sparse sampling of either the parent or the boosted
ensemble can increase uncertainty and relative error with re-
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spect to the ground truth, it does not bias the return period
estimation.

Finally, comparing Panels c and d allows for evaluating
how Nparent and Nbatch affect the boosted simulations and
their subsequent return period estimation. At the same com-
putational cost as Panel c, Panel d presents boosted simula-
tions with higher return levels and similar, or at times smaller,
levels of uncertainty. This is because P(T ≥ Tref) here is
much higher (0.01 compared to 0.1 for Panel c), thus increas-
ing the chances of events in the boosted ensemble with larger
return periods.

By exploring different configurations of the relevant boost-
ing parameters Nparent and Nbatch, this evaluation thus
strengthens confidence in estimating return periods using
the boosting estimator. This confidence is underscored by a
more extensive uncertainty sampling of both the parent and
boosted ensemble than what would be possible in a fully-
coupled climate model. However, it is important to note that
the Ornstein-Uhlenbeck process is one-dimensional, while a
state-of-the art climate model has millions of degrees of free-
dom. Therefore, the transferability of results found here are
limited, in particular for the size of the parent ensemble nec-
essary to sample ACεt well.

2.4 Experimental setup of Ensemble Boosting in a
fully-coupled climate model

To show how the theoretical properties of the boosting es-
timator apply in a climate model context, beyond a simple
Ornstein-Uhlenbeck process, we generate simulations with
the state-of-the-art fully coupled Community Earth System
Model 2.1.2 (Danabasoglu et al., 2020). We seek to estimate
the return levels of the yearly maximum of 5 d rolling average
of daily maximum temperature anomalies (TXx5d) spatially
averaged over the region of the PNW heatwave (45–52° N,
119–123° W), corresponding to the region used by Fischer
et al. (2023).

First, we test our boosting estimator in a pre-industrial set-
ting. A 4000-year long pre-industrial control run is used to
act as a control period, while two 50-year time slices of this
simulation, test slice 1 (1801–1850) and test slice 2 (1851–
1900), act as our reference climate model simulations. While
these ranges are adjacent to one another, the starting point of
the total time range is selected randomly within the control
run. Additionally, since the time is only referenced as time
since the start of the simulation, the years do not bear any
meaning or relation to real-world weather at that time. Two
separate test slices are used to increase the robustness of the
results. Since they only span 50 years, extremes (i.e. events
with a return period longer than 50 years) will be scarce or
absent and their return period estimates highly uncertain. The
length of the time slice is selected to reflect typical timescales
of available historical records. While this can serve as a com-
parison to historical extreme event attribution studies, this
time scale might present highly uncertain estimations of Tref,

in particular due to the limited sample and the long term
temperature variability effects. All events in the Parent En-
semble, selected according to the boosting algorithm above,
are boosted according to the algorithm detailed above, and
their return periods are calculated using Eq. (10). This is
done independently for both test slices. The results can then
be directly compared against the more robust return periods
found in the control period. Additionally, we fit stationary
GEV distributions using both the maxima of the control pe-
riod and of the test slices. This is done to give an estimate
of return periods beyond these observational records with a
standard method from Extreme Value Theory. A bootstrap-
ping approach is used to calculate 95 % confidence intervals,
fitting GEV distributions to 1000 resamples drawn randomly
from the test slices and the control period.

In each test slice, the five most extreme years are se-
lected to form the Parent Ensemble, which corresponds to
taking Tref such that P(T ≥ Tref)= 0.1. This value is cho-
sen to balance rareness in the Parent Ensemble and the abil-
ity to robustly estimate P(T ≥ Tref) in the test slice. Chang-
ing the threshold of selection is equivalent to either chang-
ing Tref and keeping the sample size equal (which means
changing the number of parents) or keeping Tref but chang-
ing the sample size. The former will be evaluated in the dis-
cussion section, and the latter in the following subsection.
In order to sample the uncertainty of P(T ≥ Tref), this value
is estimated by bootstrapping the relevant test slice sample.
These are then subsequently boosted for all lead times in the
range of −7 to −18 d, with batches of 100 simulations per
lead time and per parent event. This leads to a total of 6000
boosted simulations for each test slice. The maximum 5 d
daily maximum temperature (Tx5d) anomaly over the 21 d
following perturbation is assessed, so that the block maxi-
mum approach stays the same as for the Parent Ensemble.
The length of 21 d is taken to correspond roughly to the sat-
uration time of the boosting algorithm, i.e. when the grow-
ing divergence between boosted simulations have saturated
to that of the reference climate model simulation. This is in
line with the time scale of classical weather predictability
of around 10 d (Krishnamurthy, 2019). The exact length is
determined through empirical trial and error, and will be dis-
cussed in Results Sect. 3.2.

In order to directly compare return periods calculated us-
ing the boosting estimator, the TXx5d need to reasonably ful-
fill the domain convergence conditions of GEV theory. While
21 d is not as long as the approximately 100 d of a full sum-
mer, we postulate that the boosted simulations comply rea-
sonably well with EVT requirements for the following rea-
sons: Firstly, since Tref is already a rare summer maximum,
the boosted simulations that exceed it are likely to also be
the summer maximum. Indeed, for the simulations that do
exceed Tref, only 4 %–5 % have a higher temperature in the
following 60 d. Secondly, the parent heatwaves do not all oc-
cur in the beginning of the summer. Since the boosted simu-

Weather Clim. Dynam., 6, 1147–1177, 2025 https://doi.org/10.5194/wcd-6-1147-2025



L. Bloin-Wibe et al.: Estimating return periods for extreme events in climate models 1157

lation shares the trajectory of its parent until it is perturbed,
the boosted simulations are generally longer than just 21 d.

A bootstrapping procedure is also performed to calcu-
late a confidence interval around the estimated return pe-
riod from the boosting estimator. However, since the num-
ber of boosted simulations where Text ≥ Tref is not always
the same in random samples of the Boosted Ensemble (since
some boosted simulations do not exceed Tref), the bootstrap-
ping proceeds as follows: for each Text ≥ Tref in the Boosted
Ensemble, 1000 random samples of the Boosted Ensemble
are generated to calculate P(T ≥ Tref | ACεt ) and P(T ≥

Text | ACεt ), and thus estimate P(T ≥ Text). Note that since
we do not change the experimental sample when calculating
the confidence interval (e.g. selecting and boosting a differ-
ent parent ensemble), this confidence interval may underes-
timate certain sources of uncertainty such as slow modes of
variability of the climate system.

Second, we boost simulations from the CESM2.1.2 cli-
mate model in present-like conditions (2005–2035, SSP3-
7.0 after 2015) to estimate the return period of the record-
shattering 2021 Pacific North-West heatwave. A 30-member
Large Ensemble is used as the reference climate model sim-
ulation, leading to take N = 30 · 31= 930 years. From this
initial simulation, 7 among the 13 most extreme events are
selected to form the Parent Ensemble, which is equivalent to
take P(T ≥ Tref)=

13
930 = 0.014.

Due to the presence of anthropogenic forcings in the refer-
ence climate model simulation from 2005 to 2035, the non-
stationarity in the underlying statistical distribution needs to
be accounted for. This is done by linearly de-trending the
TXx5d time series: for each year and each member of the
Large Ensemble, a 100-member Large Ensemble of the same
model (Rodgers et al., 2021) is used to produce a day-of-year
mean across members and a three-year window (the year in
question, and one year before and after) around each year.
The three-year window was chosen to create a larger sam-
ple of similar years, without adding the climate change sig-
nal present over longer time scales. While simple de-trending
could produce artifacts in the distributional tail, the forcings
in this historical and near-future sample is small enough for
the correction to be considered a reasonable approximation.

The 100-member Large Ensemble spans the same time
range (31 years) and is also corrected for non-stationarity in
the same way. However, this publicly available data set is not
locally bit-by-bit reproducible, which is necessary to gener-
ate boosted simulations. It will therefore act as a separate,
larger data set that can provide return periods that are more
precise than those of the 30-member Large Ensemble, since
here, N = 100 · 31= 3100 years.

Note that the 7 selected events for present-like conditions
are not, contrary to the pre-industrial control case, those with
the absolute highest TXx5d, but rather 7 among the top 13
events. This is because the correction for non-stationarity
was performed after the selection process, which was deter-
mined in a previous study (Fischer et al., 2023). In the con-

text of the boosting estimator, this simply corresponds to a
more sparse sampling of ACεt than what is maximally pos-
sible with the climate model simulation at hand: one could
imagine a reference climate model simulation with only these
7 events present.

To calculate the TXx5d of the 2021 PNW heatwave, a
detrended time series of the ERA5 reanalysis data set of
the ECMWF (Hersbach et al., 2020), regridded to fit the
CESM2.1.2 model grid, is used. The return period of this
return level is then calculated using the boosting estimator,
and, for comparison, the GEV fits of the 30- and 100-member
Large Ensembles. A median (percentile) return period esti-
mate is written as∞ when the median (percentile) probabil-
ity is 0.

3 Results

3.1 PI-control runs

Figure 5 shows return period estimates for TXx5d in the
Boosted Ensemble, calculated with the boosting estimator,
for test slice 1 (Panels a, b) and test slice 2 (Panels c, d).
For comparison, return period estimates calculated with the
naive estimator are shown for the control period, and a GEV
fit of the test slice itself provides an extrapolation outside
the fitting period. In order to increase diversity and robust-
ness among the boosted simulations, results are calculated by
pooling together perturbation lead times from −18 to −13 d
in Panels a,c, and−12 to−7 d in Panels b, d. This categoriza-
tion remains somewhat arbitrary, however; results calculated
lead time by lead time for test slices 1 and 2 can therefore be
seen in Appendix Figs. A2 and A3, respectively.

In Fig. 5, the results found using the boosting estimator
stand in stark contrast to those of the non-boosted test slices.
First, the maximum TXx5d sampled through boosting sub-
stantially exceed those of the test slices, by up to 2.9 °C,
and even reaches the maximum TXx5d of the control period
(Fig. 5b, d). Second, return period estimates of the simula-
tions in the two test slices deviate more from the control pe-
riod than those of the Boosted Ensemble, in particular for
Test slice 1. This follows the theoretical results presented in
Fig. 3: for Nb = 3000 years, any configuration of the boost-
ing estimator should lead to return period estimates with less
relative error than for the naive estimator with N = 50 years.
The GEV distribution fitted to the test slices is also error-
prone; for return periods up to 1

P(T≥Tref)
, estimates calculated

with the boosting estimator in all configurations (Panels a, b,
c, d) follow the control period better than the median GEV
fits of the test slices. It is also worth noting that the confi-
dence interval of the GEV fit of both test slices is much wider
than that of the boosting estimator; in particular, the upper
bound of the confidence interval of test slice 2 is unbounded.
These deviations from the control period are to be expected
given the short climate model record (N = 50 years) – both
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Figure 5. Return periods of TXx5d in the PNW region estimated with the boosting estimator under stationary climate conditions. Estimated
return periods with the boosting algorithm for parent events selected (a, b) from test slice 1 (1801–1850) and (c, d) from test slice 2 (1851–
1900) of the pre-industrial control simulation are shown in orange. Perturbation lead times are pooled together from (a, c) −18 to −13 d
and (b, d) −12 to −7 d. In each panel, the TXx5d of the 4000 years of the pre-industrial control simulation are shown in black. The TXx5d
of the two 50-year test slices are shown in blue. The five selected parent events in each test slice are highlighted in diamonds. The horizontal
dashed orange line represents the reference TXx5d Tref in each test slice. For the return periods of the control and test slice simulations, a
GEV law is fitted and the estimated return period is shown (solid line) with a bootstrap 95 % confidence interval (shaded). For the boosted
simulations, the shaded area shows the bootstrap 95 % confidence interval (see Methods).

Zeder et al. (2023) and Noyelle et al. (2024a) have shown that
GEV fits from short records are prone to systematic biases.

Furthermore, Fig. 5a shows that return period estimates,
calculated with the boosting estimator for lead times from
−18 to −13 d in test slice 1, follow the estimate using the
control period for all Text present in this sample: both me-
dian boosting estimates and the confidence interval overlap
with the control period remarkably well. Results from test
slice 2, for lead times from −18 to −13 d (Fig. 5c), indicate
that estimates using the boosting estimator also can deviate
from the control period, although they remain within an order
of magnitude compared to the control period estimate. A rea-
son for this deviation might be that the test slices span only
50 years, and only 5 parent events were selected for boost-
ing. Therefore, it is possible that the Parent Ensemble does
not sample ACεt sufficiently well, and that the return period
estimates calculated are actually conditional on a particular
feature of long term natural variability present in test slice
2 only. In Appendix Fig. A4, the return periods calculated
by combining the two test slices into one 100-year long time

series are shown. Here, the return periods again follow the
control period very well.

For shorter lead times, between −12 and −7 d, return pe-
riod estimates deviate from the control period confidence in-
terval already at around 30–40 years for simulations from
both test slices (Fig. 5b, d). This is likely because the short
lead time leads to simulations that are too constrained by
the maximum TXx5d of the parent events, since they do not
have enough time to deviate enough from their parents. In
Appendix Figs. A2 and A3, it can be seen that this devia-
tion is gradual, that appears around −13 d for Test slice 1,
although for Test slice 2, the picture is less clear – some de-
viation is present already at −18 d. In particular, we observe
“step-like” behavior of the boosted return periods around the
values of the parent events for shorter lead times (Appendix
Fig. A2j, k, l), meaning that the TXx5d of the boosted simu-
lations are very similar to that of their parent, forming return
levels that resemble a step function. If the boosted simula-
tions are too close to their parents, this additionally means
that there is less independence between boosted simulations,
thus breaking one of the assumptions made in the methods to
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show the unbiasedness of the boosting estimator. This could
also contribute to why we have such a discrepancy for short
lead times.

It is worth noting that the increase in estimation uncer-
tainty, illustrated by a widening of the confidence interval as
return periods increase, shows that the most extreme events
are estimated less precisely. Additionally, the confidence in-
tervals should be interpreted somewhat cautiously, since they
are computed through bootstrapping. This means they are
fundamentally limited by the sample at hand, and not rep-
resentative of all uncertainty factors such as potential multi-
decadal variability beyond the time scales sampled here.

3.2 Sensitivity tests: theoretical assumptions and
parameter choices

The difference in results between longer and shorter lead
times, seen in Fig. 5, as well as the differences in relative er-
ror depending on Nb and P(T ≥ Tref | ACεt ) seen in Fig. 3,
show that the parameter choices and assumptions made can
influence the quality of the estimation obtained. This war-
rants a deeper analysis of these choices and assumptions.

First, the effects of the lead time chosen when boosting
are assessed beyond the separation of short and long lead
times in Fig. 5. Figure 6 shows the TXx5d of the boosted
simulations of the parent events separately, as a function of
lead time.

Although there are variations between simulations stem-
ming from different parent events, certain patterns are visi-
ble. For all panels, the spread between boosted simulations
shrinks as the lead time grows shorter, centering around the
parent peak. This corresponds to boosted simulations being
more and more constrained by the dynamics of their parents.
Conversely, for longer lead times, the median tends to de-
crease and the spread tends to grow. In other words, simu-
lations diverge from the parent (and each other) so that the
memory of the parent heatwave fades and simulations revert
back to the underlying climatology. There are exceptions to
this general picture, however, in particular for parent events
from Test slice 2. Here, simulations from parent events 1, 2
and 5 seem to show less sensitivity to lead times, with rel-
atively consistent levels of spread and medians and visibly
less spread than simulations from other parent events at long
lead times.

It is also worth noting that from one lead time to another,
both median, spread and maximum values can vary substan-
tially. Additionally, the maximum TXx5d in a given panel
is not always from the lead time with the highest median or
95th percentile. This suggests that several lead times might
be necessary to better sample the antecedent conditions ACεt .

The effect of the day at which perturbation is performed
on the estimation of return periods using the boosting esti-
mator is broken down in more detail in Fig. 7. Panel a shows
how simulations spread after perturbation: we see that for
both test slice 1 and test slice 2, the spread between simula-

tions initially grows exponentially, before slowing into a lin-
ear growth phase and finally saturating to the climatological
spread between the simulations in the non-boosted ensemble
of the control period. This type of growth is described in er-
godic chaos theory, which shows that initially, boosted sim-
ulations diverge from their parent exponentially fast with a
typical time scale around the inverse of the largest Lyapunov
exponent of the system, and has been extensively studied
for both climate and weather forecast models (e.g., Trevisan
and Palatella, 2011; Vannitsem, 2017). Boosted simulations
with short lead times are thus still in the exponential spread
stage by the time the heatwave peaks, and will therefore be
significantly constrained by the value of the parent event at
that time. This means that the dynamics governing the heat-
waves in the boosted simulations are structurally too similar
to those of the parent event to produce a largely different
TXx5d value.

Note that, given the results of Fig. 7a, the empirical satu-
ration time after boosting is set to 21 d (see Methods). This
means that the maximum Tx5d of the boosted simulations
are only assessed in this time range, because afterwards, the
memory of the parent, and thus the antecedent conditions
leading to a heatwave, are assumed to be lost.

Fig. 7b, on the other hand, shows that p̂T≥Tref|ACεt in-
creases as the lead time grows shorter. Since Fig. 3 shows
that a higher p̂T≥Tref|ACεt leads to smaller theoretical errors,
shorter lead times should give fewer errors. In other words,
a smaller p̂T≥Tref|ACεt indicates that there are fewer simula-
tions that surpass Tref, and thus less extreme events to find re-
turn periods for overall. However, as previously mentioned,
the longer the lead time, the more each simulation has had
time to spread, and thus gain independence from both par-
ents and siblings. Therefore, a trade-off between relative er-
ror minimization and sampling more intense events appears.
Note that one cannot reliably estimate the spread as a func-
tion of lead time, since each boosted simulation may not ex-
actly follow the theoretically predicted ergodic growth speed,
in particular due to the extreme nature of the parent events.
This is evidenced by the large variation of growth exhib-
ited between boosted simulations from different parents (see
Fig. 7). Therefore we cannot explicitly state the boundary
lead times of this trade-off, in particular since any effort to do
so would be both location- and variable-specific (heatwaves
in the PNW region).

The above-described effects do not all set in at the same
time across parent events and test slices. Figure 7a shows
that while the median spread overlaps well between Test slice
1 and 2 until around 18 d after perturbation, the saturation
sets in earlier for Test slice 2. Figure 7b also shows some
differences: while both test slices have the same trend, sim-
ulations from Test slice 1 seem to have higher p̂T≥Tref|ACεt
than for simulations from Test slice 2 until a lead time of
around −10 d. Pooling the simulations perturbed at different
lead times, like in Fig. 5, may therefore provide more robust
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Figure 6. TXx5d of boosted simulations as a function of lead time and parent event. Boosted simulations from parents 1–5 in (a–e) test
slice 1 and (f–j) test slice 2. For each parent event a batch of Nbatch = 100 boosted simulations are generated at every lead time. The median
(orange solid line), 5th to 95th percentile range (orange shaded area), and maximum TXx5d (orange plus-sign) are shown. TXx5d for the
parent event is represented by a blue horizontal line.

Figure 7. Link between boosted simulations and perturbation time in (blue) test slice 1 and (orange) test slice 2. (a) Evolution of boosted
simulation standard deviation bewteen members with respect to the time elapsed since perturbation. Standard deviation between boosted
simulations, divided by the standard deviation of the pre-industrial control simulation: (solid line) median spread across parent events and
(shaded area) range of spread across parent events. (b) Frequency of events exceeding Tref in the Boosted Ensemble (p̂T≥Tref|ACεt ) as a
function of lead time. Error-bars denote the bootstrapped 95 % confidence interval.

results. This has the added benefit of adding more indepen-
dence between boosted simulations.

Finally, Fig. 8 shows that there is only a weak relationship
between the TXx5d of the parent event and that of its boosted
simulations. Indeed, the Spearman correlation between the
90th percentile of the boosted simulations and the 10 par-
ent events, shown in Appendix Fig. A5, is only 0.3. Further-

more, Fig. 8 shows that the boosted simulations present a re-
markable variation, not only in the distance from their parent,
but also in their median and spread. It is, however, important
to note that the boosted simulations generated for this study
only belong to a limited number of parent events (Nparent = 5
for each test slice), thus preventing us from concluding on a
wider basis. Nevertheless, this suggests that a larger Parent
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Figure 8. Relationship between TXx5d of parent event (blue diamond) and boosted simulations (orange box plot) for (a) test slice 1 and
(b) test slice 2. Simulations are pooled together from lead times between −18 and −13 d. Boxplot whiskers are drawn at 1.5 inter-quantile
range.

Ensemble, i.e. a wider variety of parent events, would not
necessarily lead to less extreme boosted simulations, at least
not for parents above a certain threshold of intensity.

3.3 Estimating a return period for the Pacific
North-West heatwave of 2021

As a further application and a case study, we now use the
boosting estimator to estimate a return period, based on the
CESM2 climate model, for the record-shattering PNW heat-
wave of 2021. To do this, we employ a present-climate 30-
member Large Ensemble corrected for non-stationarity (see
Method Sect. 2.4) as a reference simulation, from where
boosted simulations are generated. The median return period
of the 2021 PNW heatwave is calculated using the boosting
estimator, and found to be 2500 years with a 95 % confidence
interval of 2000 to 4000 years. In comparison, the GEV fit
of the reference 30-member Large Ensemble and the 100-
member Large Ensemble give higher median return period
estimates, of 106 [10 000,∞] years and 15 000 [5000, 107]
years, respectively.

Figure 9a shows all return periods calculated with the
boosting estimator for boosted simulations with Text ≥ Tref.
Lead times are chosen to be [−18,−13], corresponding to
the lead times that did not show significant constraints by
parent events in the pre-industrial control experiment. A lead
time by lead time breakdown of return periods is neverthe-
less shown in Appendix Fig. A6. In Fig. 9a, we see that the
median return period estimates deviate from those of the 30-
and 100-member Large Ensembles and their GEV fits for re-
turn periods between around 200 and 10 000 years, although
this deviation is always within an order of magnitude error of
the upper bounds of the GEV fit of both the 30- and the 100-
member Large Ensemble. This deviation is more present for

shorter lead times, not included in Fig. 9, but visible in Ap-
pendix Fig. A6.

One hypothesis that could explain this deviation is that
the boosted simulations from the most extreme parent event,
hereafter denoted byE1, are biased due to the intensity of the
event. Indeed, E1 stands in contrast to the rest of the events
in the Parent Ensemble – with a TXx5d of 14.7 °C, it is 1.6 °C
warmer than the second most extreme parent event E2. Re-
markably, the 100-member Large Ensemble also presents
such an event, Ẽ1, with TXx5d of 15.88 °C, that is 2.0 °C
warmer than Ẽ2.

To test this hypothesis, Fig. 9b shows return periods cal-
culated excluding boosted simulations fromE1. These return
period estimates follow the 95th percentile of the uncertainty
range of the 100-member Large Ensemble GEV fit. Addi-
tionally, this effect is unique to the removal of boosted simu-
lations from E1: when removing any other parent event, the
results look largely the same (see Appendix Fig. A7).

We also see that removing E1 has a strong impact on
the GEV distribution fit of the 30-member Large Ensemble
data: in Fig. 9a, the confidence intervals of black and blue
fits overlap significantly, while in Fig. 9b, they are almost
disjoint. This highlights the previously stated uncertainty of
the bootstrapped confidence interval of the 30-member Large
Ensemble, and suggests that the presence of E1 in the Parent
Ensemble largely affects the naive return period estimation.
Indeed, when removing E1 from the Parent Ensemble, the
median return period estimate is infinite, with a confidence
interval of 108 to ∞ years. Removing E1 when using the
boosting estimator, on the other hand, leads to a median esti-
mate of 3500 years with a 95 % confidence interval of 2500
to 7000 years, which is within 1000 years of the original es-
timate.
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Figure 9. Return periods of TXx5d in the PNW region estimated with the boosting estimator corrected for non-stationary (climate change)
conditions for a lead time range of −18 to −13 d. Estimated return periods for boosted simulations from (a) the entire Parent Ensemble and
(b) the entire Parent Ensemble except the most extreme parent (E1) are shown in orange. The TXx5d of the (black dots) 100-member and
(blue dots) 30-member Large Ensemble, with a fitted GEV law and shown with the median (solid line) and a bootstrapped 95 % confidence
interval (shaded area). The parent events in the Parent Ensemble are shown with blue diamonds, and the most extreme parent E1, and the
most extreme event in the 100-member Large Ensemble Ẽ1 are highlighted with stars. The orange horizontal line denotes the reference
TXx5d Tref, while the black horizontal line denotes the 2021 ERA5 TXx5d.

In other words, had E1 not occurred in the reference sim-
ulation, the 2021 PNW heatwave and indeed E1 itself would
be judged impossible with only the Large Ensemble data.
However, the boosting estimator can provide return periods
for extreme events like the 2021 PNW heatwave that depend
less on E1, and that, importantly, stay finite. We can thus see
that in addition to providing more robust return period esti-
mates for extreme events, Ensemble Boosting also demon-
strates that both E1 and the 2021 PNW heatwave events
are physically possible, according to the climatology of this
model.

To gain a picture of the atmospheric dynamics associated
with E1 and the other most intense heatwaves in the 30-
member Large Ensemble, the Tx5d anomaly and Z500 con-
tour lines are plotted on the day of each heatwave peak in
Fig. 10. E1 distinguishes itself from the other top 13 events,
and from the 2021 PNW heatwave by the presence of a more
distinct cyclonic anomaly in the Z500 field over the East-
ern Pacific, flanking the region of interest. Furthermore, the
blocking high is centered around the PNW region for both
E1 and the 2021 PNW heatwave, while the center of the
blocking high shown in the composites is located further
South. However, the E1 blocking high is more oblong and
rotated due to the presence of the Pacific trough.

While the composite maps ofE2−3 andE2−13 look dis-
tinct from that of E1, individual events within this selection
could look different to their mean. Therefore, all 13 events
were plotted individually in Appendix Fig. A8. While there
are events that show a third Z500 trough next to the PNW re-
gion (events E4 and E11), these are either less distinct from

the main troughs forming the block, or fail to create a signif-
icant blocking high around the PNW region.

Additionally, when analyzing the most extreme from the
100-member Large Ensemble Ẽ, we see that it presents a
similar dynamical situation to that of E1 (see Appendix
Figs. A9 and A10) with a third Pacific trough that is not seen
in the other top events of the 100-member Large Ensemble.

4 Discussion

4.1 Reduction of errors and computational costs of the
boosting estimator compared to the naive estimator

The theoretical derivation of the boosting estimator variance
has shown that it can reduce the relative error compared to
equivalently expensive naive estimators – and even an esti-
mator based on the full 4000-year control period – given the
right configuration and an extreme enough event (see Fig. 3
and method Sect. 2.2).

The computational resource use of the boosting estimator
compared to a naive estimator can be assessed in more detail.
In order to be useful as an estimator, generating the boosted
simulations necessary to reduce errors compared to the con-
trol period should also be less computationally costly. For
this comparison, will use Nb = 3000 years, where relative
error is reduced for values under a certain P(T ≥ Text). The
following estimate is calculated to compare these costs: gen-
erating Nb = 3000 boosted simulations of 21 d and N = 50
parent summers amounts to generating 68 000 d of climate
model simulations if the length of a summer is approximated
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Figure 10. Tx5d anomaly [°C] and Z500 [m] contour lines on the peak day of each heatwave, for (a) the most extreme event in the 30-
member Large Ensemble E1, (b) ERA5 data of the PNW heatwave on 2021-06-28, and composites of (c) E2−3 and (d) E2−13, both from
the 30-member Large Ensemble. The black box indicates the region of interest. The anomaly calculations are corrected for non-stationarity
(see Methods Sect. 2.4).

to be 100 d. On the other hand, the N = 4000 summers of
the control period would require 400 000 d. The boosting es-
timator could thus work as a more efficient way of estimat-
ing return periods of very rare extremes, since it would use
approximately 6 times less computational resources, which
given our computational capacities could save almost 20 000
node hours, and yield less erroneous results for a specific ex-
treme of interest.

4.2 Effect of the number of parent events on return
period estimates of the boosting estimator

Since the relative error of boosting estimator will always
be at least equal to that of p̂T≥Tref , selecting more parent
events reduces errors because of a more precise estimation
of p̂T≥Tref : more parent events lead to a lower Tref, since this
is the threshold that needs to be reached by all parents. A
lower Tref, in turn, leads to a higher p̂T≥Tref . Since p̂T≥Tref

is estimated naively, its relative error decreases when p̂T≥Tref

is higher (see Eq. 3). This could help explain the discrep-
ancy between test slices 1 and 2, since Tref differ between
the test slices (9.78 in test slice 1 and 9.39 °C in test slice
2). This leads to a relative error of P(T ≥ Tref) of 15.9 %,
16.4 %, respectively, compared to the control period. While
these numbers cannot act as a ground truth, since control pe-
riod estimate itself also has errors, this finding still indicates
that the parent event selection in test slice 2 could underesti-
mate Tref.

In a similar vein, more parent events also increase the sam-
ple size of antecedent conditions in ACεt , making it more
likely that this set is sufficiently well represented. Con-
versely, a non-representative Parent Ensemble could lead to
error-prone results. Results from test slice 1+ 2 (see Ap-
pendix Fig. A4) corroborate this line of reasoning, since this

larger sample follows the control period estimate well. How-
ever, the typicality argument (Galfi and Lucarini, 2021; Lu-
carini et al., 2023; Noyelle et al., 2024b) states that the more
extreme an event is, the more dynamically similar it is ex-
pected to be compared to other extremes of that magnitude.
It follows that the number of events necessary to sample rea-
sonably well ACεt may actually be small.

Finally, Fig. A5 shows that the correlation between a par-
ent event’s intensity and its 90th percentile simulations is
0.3, which implies that in our limited sample, there does not
seem to be a strong relationship between parent maximum
and intensity of boosted simulations. One could imagine that
this hypothesis breaks down if the selection threshold is low-
ered to include much less extreme parent events, since the
dynamics of such events would be distinct from those of
a heatwave. In this sense, there may exist a form of bias-
variance dilemma for the Boosting Estimator: selecting more
parents decreases the variance but increases the bias, where
here “bias” would be understood as the lack of intensity of
extremes simulated. It would therefore be necessary to test
whether this holds for a larger number of parent events, but it
indicates that more parent events would not necessarily give
less extreme boosted simulations. All in all, while the opti-
mal number of parent events is not found here, a general rec-
ommendation to set a large enough number of parent events
can be stated.

4.3 Effect of perturbation lead times on return period
estimates of the boosting estimator

If the dynamics of extremes studied can be approximated by
red-noise dynamics, we have shown that Eq. (12) gives an or-
der of magnitude for the typical lead time to be used (15 d in
our case) and the expected intensity of the extremes sampled
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(4 standard deviations, or 14 K anomalies in our case). These
approximations are remarkably close to the values found em-
pirically with the CESM2 climate model. This illustrates that
the mechanism outlined in the red-noise process – i.e. the
idea that there is a window of time for sampling more ex-
tremes while the variance increases, but before the mean re-
verts back to the climatology – is a theoretical justification
for the possibility to sample more extreme events with En-
semble Boosting.

Additionally, as discussed in Results Sect. 3.2, the optimal
lead time at which boosting is performed is found through a
trade-off between error minimization and independence be-
tween boosted simulations. Here, we empirically solve the
present trade-off by pooling lead times where boosted simu-
lations are not substantially constrained by their parent. The
assumption of independence between the theoretical proba-
bility P(T ≥ Tref) and the ratio P(T≥Text | ACεt )

P (T≥Tref | ACεt )
, which is pos-

tulated in order to prove the unbiasedness of the boosting
estimator, is another argument in favor of pooling boosted
simulations from longer lead times. This rather unintuitive
relationship can be broken down to the stricter question of
independence between Tref and the boosted simulations: if
exceeding Tref is independent of exceeding extreme values
obtained through boosting, P(T ≥ Tref) will be independent
of both P(T ≥ Text | ACεt ) and P(T ≥ Tref | ACεt ). To test
this assumption, one would need to vary Tref (corresponding
to varying the size ofNparent) and see how the boosted TXx5d
varies.

Figures 8 and A5 show that this independence is a valid
assumption in our samples, since the relationship between
parent TXx5d and the median, spread and 90th percentile of
boosted TXx5d is weak. Given this weak relationship, we
do not expect a clear trend in the resulting boosted TXx5d
as more (less extreme) parent events are included. However,
these figures are plotted for lead times between −18 and
−13 d. With a shorter lead time, the boosted simulations will
be constrained by their parent, therefore inducing a stronger
relationship between Nparent (and thus Tref) and the result-
ing boosted simulations. Thus, longer lead times, or at least
lead times where the boosted simulations aren’t substantially
constrained by the TXx5d of their parent, is recommended.

4.4 Critically assessing the estimated return period of
the 2021 PNW heatwave

While the boosting estimator is a promising tool for estimat-
ing return periods within climate models, it is important to
first underline the large uncertainties attached to raw climate
model output. Climate models remain an imperfect represen-
tation of the full Earth system, and comparison with obser-
vational data should be performed with caution, at the risk
of over-interpretation. Nevertheless, temperature anomalies,
or temperature anomalies divided by climatological standard
deviation has been used in several studies when comparing
observational and climate model data for estimating return

times for the 2021 PNW heatwaves (Bartusek et al., 2022;
Malinina and Gillett, 2024; McKinnon and Simpson, 2022).

In Results Sect. 3.3, it has been shown that return period
estimates deviate from the confidence interval of GEV fits for
return periods from the 30- and 100-member Large Ensem-
ble – although only within less than one order of magnitude.
This deviation disappears when removing boosted simula-
tions from E1 (see Fig. 9). Two hypotheses can be put forth
to explain this discrepancy.

Given the known shortcomings of GEV distribution ex-
trapolations to calculate return periods, it might be that the
return periods are not biased by E1, but rather that the GEV
distribution fit is both overconfident (only capturing uncer-
tainties from bootstrapping the limited sample, leading to a
smaller confidence interval) and systematically overestimat-
ing return periods due to limitations of the sample size at
hand. Additionally, a non-representative sampling of ACεt ,
could explain the sensitivity to boosted simulations from E1,
in particular since only 7 of the 13 most extreme events from
the reference simulation were selected as parent events (see
Methods).

Another hypothesis is that E1 is dynamically distinct to
the other heatwaves studied, thus justifying the removal of
the boosted simulations perturbed from E1 when estimating
return periods. This could be done since the antecedent con-
ditions of E1 would not be a representative sample of ACεt
when estimating a return period for the 2021 PNW heatwave.
A dynamical analysis of the heatwave peak day corroborates
this – both E1 and Ẽ1, from the 100-member Large Ensem-
ble, seem to distinguish themselves from other parent events
and observational data for the 2021 heatwave (see Figs. 10
and A9). This hints at a potential bimodality in the dynamics
of extremes in the tail, and somewhat contrasts the typical-
ity argument presented above, which postulates that the more
extreme a heatwave is, the more dynamically similar it is to
heatwaves of the same intensity. Yet, previous studies on the
typicality of heatwaves also have indicated the possibility of
such a tail bimodality (Noyelle et al., 2024b).

The dynamical analysis performed remains superficial,
however, and further analysis of other heatwave mechanisms
and longer time spans would be needed to conclude. Addi-
tionally, the ERA5 TXx5d for the 2021 PNW heatwave is
of the same magnitude as E1; and while it is possible that
the two distinct hypothesized distributions – the one giving
events like E1 and Ẽ1, and the other giving events like the
2021 PNW heatwave and E2− 13 – could overlap in terms
of TXx5d, it questions the selection of E1 as distinct based
on the jump in temperature anomaly between itself and the
other parent events. The strong Pacific trough present next to
the PNW region for E1 and Ẽ1 is also noticeable in certain
other less intense parent events (see Appendix Fig. A8) and
even in the ERA5 heatwave (Fig. 10), although to a substan-
tially lesser degree, and with a blocking high placed slightly
shifted from the exact PNW region studied in this paper.
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The justification for removing E1 when estimating return
period estimated for boosted analogues of the 2021 PNW
heatwave thus remains unclear. However, return period esti-
mates calculated with and without boosted simulations from
E1 seem consistent, with 95 % confidence interval between
103 and 104 in both cases, and, importantly, remaining finite.
This is not the case for estimates from the Large Ensembles
only, where estimates range between 5000 years and∞. The
return period estimates using the boosting estimator also fit
into the range of attributed return periods to the PNW 2021
shown in the review paper by White et al. (2023) which spans
200 years to∞.

5 Conclusions

In this study, we develop a methodological framework, in-
spired by the iterative conditional probability chains de-
scribed in Subset Sampling (Au and Beck, 2001; Finkel and
O’Gorman, 2024), that can estimate unbiased, climatological
probabilities of extreme events through Ensemble Boosting.
We theoretically show that the boosting estimator is unbi-
ased and that its relative errors are smaller than an equiva-
lently expensive, brute force sampling estimator. The method
is validated with a 1D red-noise process, for which we can
give an expression for the window of time when more ex-
treme events can be sampled. Using typical parameters of
the CESM2 climate model, this expression gives remarkably
precise estimates for both the lead time to select extremes
and the intensity of the most extremes one can expect. The
boosting estimator is evaluated on simulations from the fully-
coupled climate model CESM2, where we show that it can
accurately estimate the probability of very extreme events.
We also show that the quality of these estimations depends
on the number of parent events selected and the lead times
used. Finally, as an application of the method, we estimate a
return period for an event as intense as the record-shattering
2021 PNW heatwave in the climate model.

The main findings can be listed as follows:

1. Return periods can be estimated for simulations gener-
ated through boosting, and their relative error is usu-
ally smaller than that of a naive estimator, for a suffi-
ciently large return period. It is also approximately 85 %
cheaper to generate enough ensemble-boosted simula-
tions to estimate return periods robustly than it is to do
the same for climate model simulations using a naive
estimator.

2. We provide a formula to estimate an order of magnitude
of the lead time to use in practical cases where the dy-
namics of the extreme studied can be approximated by
a red-noise process (Eq. 12). In general, we show that
return periods can be estimated more accurately and ro-
bustly when pooling boosted simulations for a range of
longer lead times. In this study, this corresponds to−18

to −13 d before the event. These lead times neverthe-
less represent a somewhat empirical optimum between
simulation independence and the likelihood of sampling
more extreme events. Additionally, increasing the num-
ber of parent events in the Parent Ensemble is shown
to also improve accuracy and robustness of return pe-
riod estimates, by better estimating the theoretical prob-
ability P(T ≥ Tref) and sampling the set of antecedent
conditions of the extreme studied. Since we find a weak
relationship between the intensity of parent events and
that of its boosted simulations, we recommend to sam-
ple a large diversity of parent events from the original
climate model simulation.

3. Ensemble Boosting can be used as a tool to estimate
return periods for real-life events like the 2021 PNW
heatwave in a model context, conditional on the fact that
the above parameter recommendations can be fulfilled.
It can additionally be seen to be more efficient and ro-
bust compared to a naive estimator of a long climate
simulation. However, caution needs to be taken when
interpreting beyond the model world, and the numerical
model’s representation of extreme events and their fre-
quency is required to be sufficiently similar to that of
the real-world.

Appendix A: Statistical properties of the boosting
estimator

A1 Unbiasedness of the boosting estimator

To estimate the expectation of the boosting estimator 10, we
make the assumption that on the right hand side, the esti-

mator p̂T≥Tref is independent from the ratio
p̂T≥Text|ACεt
p̂T≥Tref|ACεt

. In

other words, we assume that the probability to reach Tref in
the parent ensemble is independent from how more likely
it is to reach Text than to reach Tref in the boosted ensem-
ble. We make a second approximation, which is that in the
boosted ensemble the (T mb )1≤m≤Nb are independent one from
another, see the main text for a discussion of these two hy-
potheses.

Under these hypotheses, the expectation of the boosting
estimator is:

E[p̂T≥Text ] = E[p̂T≥Tref ]E

[
p̂T≥Text|ACεt
p̂T≥Tref|ACεt

]
. (A1)

The first term on the right hand side is easily estimated:

E[p̂T≥Tref ] = pT≥Tref . (A2)

Let us note N :=
∑Nb
m=01(T mb ≥ Text) and D :=∑Nb

m=01(T mb ≥ Tref) the numerator and denominator of
the ratio on the right hand side. The expectation of the
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ratio can then be approximated, by a Taylor expansion, as
(Kendall and others, 1948):

E

[
N
D

]
=
E[N ]
E[D]

(
1−

Cov[N ,D]
E[N ]E[D]

+
V [D]
E[D]2

)
. (A3)

The terms in this equation can be estimated independently:

E[N ] =NbE[p̂T≥Text ] =NbP(T ≥ Text | ACεt )

=NbpT≥Text|ACεt (A4)

E[D] =NbE[p̂T≥Tref ] =NbP(T ≥ Tref | ACεt )

=NbpT≥Tref|ACεt (A5)

V [D] =
Nb∑
m=0

V [1(T mb ≥ Tref)] =NbpT≥Tref|ACεt

(1−pT≥Tref|ACεt ) (A6)

E[ND] =
Nb∑

m,m̃=0

E[1(T mb ≥ Text)1(T m̃b ≥ Tref)]. (A7)

For the last equation, one can separate the cases:

– there are Nb cases where n=m:

E[1(T mb ≥ Text)1(T mb ≥ Tref)] = E[1(T mb ≥ Text)]

= pT≥Text|ACεt
(A8)

because Text ≥ Tref,

– there are Nb(Nb− 1) cases where m 6= m̃, using the in-
dependence assumption:

E[1(T mb ≥ Text)1(T m̃b ≥ Tref)] = E[1(T mb ≥ Text)]

E[1(T m̃b ≥ Tref)] = pT≥Text|ACεt pT≥Tref|ACεt .

(A9)

In the end, this gives:

E[ND] =NbpT≥Text|ACεt (1+ (Nb− 1)pT≥Tref|ACεt ). (A10)

Therefore:

V [D]
E[D]2

=
1−pT≥Tref|ACεt
NbpT≥Tref|ACεt

(A11)

and

Cov[N ,D]
E[N ]E[D]

=
E[ND]

E[N ]E[D]
− 1

=
1+ (Nb− 1)pT≥Tref|ACεt

NbpT≥Tref|ACεt
− 1

=
1−pT≥Tref|ACεt
NbpT≥Tref|ACεt

. (A12)

As a result:

E

[
N
D

]
=
E[N ]
E[D]

, (A13)

which shows that the boosting estimator is unbiased:

E[p̂T≥Text ] = pT≥Text . (A14)

A2 Variance of the boosting estimator

For the boosting estimator to be useful to sample extremes,
one needs to show that the relative error made when using
this estimator is better than when using a naive estimator on
the initial simulation. We now estimate the variance of the
boosting estimator. With the same independence argument
as previously:

E[p̂2
T≥Text

] = E[p̂2
T≥Tref

]E[
N 2

D2 ]. (A15)

The E[p̂2
T≥Tref

] term can be computed the same way as for
the E[ND] term previously, which gives:

E[p̂2
T≥Tref

] =
pT≥Tref · (1+ (N − 1) ·pT≥Tref)

N
. (A16)

The ratio can then be computed using the same formula as
previously:

E

[
N 2

D2

]
=
E[N 2

]

E[D2]

(
1−

Cov[N 2,D2
]

E[N 2]E[D2]
+
V [D2

]

E[D2]2

)
. (A17)

The terms E[N 2
] and E[D2

] can be estimated as previ-
ously:

E[N 2
] =Nb ·pT≥Text|ACεt · (1+ (Nb− 1) ·pT≥Text|ACεt ) (A18)

E[D2
] =Nb ·pT≥Tref|ACεt · (1+ (Nb− 1) ·pT≥Tref|ACεt ). (A19)

The term E[N 2D2
] is less straightforward. By the defini-

tion of the product:

E[N 2D2
] =

Nb∑
m̃,m,o,p=1

E[1(T m̃b ≥ Text)

1(T mb ≥ Text)1(T ob ≥ Tref)1(T
p

b ≥ Tref)]. (A20)

This sum has N4 terms that can be decomposed into four
cases for the quadruplet (m̃,m,o,p):

– two terms in the quadruplet are equal and the two others
are different and different from one another, e.g. m̃=
m= 2, o= 3 and p = 4. Among them:

– there are Nb(Nb− 1)(Nb− 2) such quadruplets for
which m̃=m and the associated expectation for
each of them is:

E[1(T m̃b ≥ Text)]E[1(T ob ≥ Tref)]E[1(T
p

b ≥ Tref)]

= pT≥Text|ACεt (pT≥Tref|ACεt )
2 (A21)

Weather Clim. Dynam., 6, 1147–1177, 2025 https://doi.org/10.5194/wcd-6-1147-2025



L. Bloin-Wibe et al.: Estimating return periods for extreme events in climate models 1167

– there are 5Nb(Nb−1)(Nb−2) such quadruplets for
which m̃ 6=m and the associated expectation for
each of them is:

E[1(T m̃b ≥ Text)]E[1(T mb ≥ Text)]E[1(T ob ≥ Tref)]

= (pT≥Text|ACεt )
2pT≥Tref|ACεt (A22)

– three terms in the quadruplet are equal and the last one is
different from them, e.g. m̃=m= o 6= p. Among them:

– there are 2Nb(Nb− 1) such quadruplets for which
m̃=m and the associated expectation for each of
them is:

E[1(T m̃b ≥ Text)]E[1(T ob ≥ Tref)]

= pT≥Text|ACεt pT≥Tref|ACεt (A23)

– there are 2Nb(Nb− 1) such quadruplets for which
m̃ 6=m and the associated expectation for each of
them is:

E[1(T m̃b ≥ Text)]E[1(T mb ≥ Text)]

= (pT≥Text|ACεt )
2 (A24)

– the four terms in the quadruplet are equal: there are Nb
such quadruplets and the associated expectation is:

E[1(T m̃b ≥ Text)] = pT≥Text|ACεt (A25)

– the four terms in the quadruplet are different: there
areN4

b−6Nb(Nb−1)(Nb−2)−4Nb(Nb−1)−Nb such
quadruplets and the associated expectation is:

E[1(T m̃b ≥ Text)]E[1(T mb ≥ Text)]E[1(T ob ≥ Tref)]

E[1(T pb ≥ Tref)] = (pT≥Text|ACεt pT≥Tref|ACεt )
2 (A26)

Thus, in the end:

E[N 2D2
] =

(
N4

b − 6Nb(Nb− 1)(Nb− 2)− 4Nb(Nb− 1)−Nb

)
(pT≥Text|ACεt pT≥Tref|ACεt )

2

+Nb(Nb− 1)(Nb− 2)pT≥Text|ACεt (pT≥Tref|ACεt )
2

+ 5Nb(Nb− 1)(Nb− 2)(pT≥Text|ACεt )
2pT≥Tref|ACεt

+ 2Nb(Nb− 1)pT≥Text|ACεt pT≥Tref|ACεt

+ 2Nb(Nb− 1)(pT≥Text|ACεt )
2

+NbpT≥Text|ACεt (A27)

With a similar manner, one retrieves the fourth moment of
D (to compute the variance of D2):

E[D4
]=

(
N4

b − 6Nb(Nb− 1)(Nb− 2)− 2Nb(Nb− 1)−Nb

)
(pT≥Tref|ACεt )

4

+ 6Nb(Nb− 1)(Nb− 2)(pT≥Tref|ACεt )
3

+ 4Nb(Nb− 1)(pT≥Tref|ACεt )
2

+NbpT≥Tref|ACεt . (A28)

Using the formulas above, one can then give an expression
for the variance of the boosting estimator and the relative
error (of which we do not give a closed form here):

RE :=

√
V [p̂T≥Text ]

E[p̂T≥Text ]
=

√
E[p̂2

T≥Text
]

E[p̂T≥Text ]
2 − 1. (A29)

Figure A1. Density distribution of boosted yearly summer max-
imum of daily maximum temperature anomalies with a running
mean of 5 d (TXx5d) compared to that of the climatology. Clima-
tological distribution (in black) is derived from the control period,
while the distribution of boosted simulations at lead time −12 (in
orange) comes from one parent event. The magnitude of the parent
event is highlighted (in blue).
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Figure A2. Return periods of TXx5d in the PNW region estimated with the boosting estimator under stationary climate conditions. Estimated
return periods with the boosting algorithm for parent events selected from test slice 1 of the pre-industrial control simulation, with perturbation
lead times from −18 (a) to −7 (l) d, are shown in orange. In each panel, the TXx5d of the 4000 years of the pre-industrial control simulation
are shown in black. The TXx5d of the 50-year test slice is shown in blue. The five selected parent events are highlighted in diamonds. The
vertical dashed orange line represents the reference temperature Tref in each test slice. For the return periods of the control and test slice
simulations, a GEV law is fitted and the estimated return period is shown (solid line) with a bootstrap 95 % confidence interval (shaded). For
the boosted simulations, the shaded area shows the bootstrap 95 % confidence interval (see Methods).
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Figure A3. As Fig. A2 for test slice 2.

Figure A4. Return periods of TXx5d in the PNW region estimated with the boosting estimator under stationary climate conditions. Estimated
return periods with the boosting algorithm for parent events selected from test slice 1+ 2 of the pre-industrial control simulation are shown
in orange. Perturbation lead times are pooled together from (a) −18 to −13 d and (b) −12 to −7 d. In each panel, the TXx5d of the 4000
years of the pre-industrial control simulation are shown in black. The TXx5d of the 100-year test slice is shown in blue. The 10 selected
parent events are highlighted in diamonds. The horizontal dashed orange line represents the reference temperature Tref in each test slice. For
the return periods of the control and test slice simulations, a GEV law is fitted and the estimated return period is shown (solid line) with a
bootstrap 95 % confidence interval (shaded). For the boosted simulations, the shaded area shows the bootstrap 95 % confidence interval (see
Methods).
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Figure A5. Spearman correlation between TXx5d of parent event and the 90th percentile of TXx5d among its boosted simulations.

Figure A6. Return periods of TXx5d in the PNW region estimated with the boosting estimator for non-stationary (climate change) conditions.
Estimated return periods with the boosting algorithm for all parent events in the Parent Ensemble, with perturbation lead times from −18 (a)
to −7 (l) days, are shown in orange. The TXx5d of the (black dots) 100-member and (blue dots) 30-member Large Ensemble, with a fitted
GEV law and shown with the median (solid line) and a bootstrapped 95 % confidence interval (shaded area). The parent events in the Parent
Ensemble are shown with blue diamonds, and the most extreme parent E1, and the most extreme event in the 100-member Large Ensemble
Ẽ1 are highlighted with stars. The orange horizontal line denotes the reference TXx5d Tref, while the black horizontal line denotes the 2021
ERA5 TXx5d.
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Figure A7. Return periods of TXx5d in the PNW region estimated with the boosting estimator for non-stationary (climate change) conditions
for a lead time range of −18 to −13 d. Estimated return periods with the boosting algorithm for (a) all parent events in the Parent Ensemble,
and (b–h) E1−E13 are shown in orange. The TXx5d of the (black dots) 100-member and (blue dots) 30-member Large Ensemble, with
a fitted GEV law and shown with the median (solid line) and a bootstrapped 95 % confidence interval (shaded area). The parent events in
the Parent Ensemble are shown with blue diamonds, and the most extreme parent E1, and the most extreme event in the 100-member Large
Ensemble Ẽ1 are highlighted with stars. The orange horizontal line denotes the reference TXx5d Tref, while the black horizontal line denotes
the 2021 ERA5 TXx5d.
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Figure A8. Tx5d anomaly [°C] and Z500 [m] contour lines on the peak day of each heatwave, for the top 13 most extreme events (a–m) E1
to E13 in the 30-member Large Ensemble. The black box indicates the region of interest.

Figure A9. As Fig. 10 for the 100-member Large Ensemble.
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Figure A10. As Fig. A8 for the 100-member Large Ensemble.

Appendix B: Ensemble boosting with the
Orstein-Uhlenbeck process

Starting an ensemble of boosted members from a parent
reaching the value x0 with the Orstein-Uhlenbeck process,
it can be shown (Risken, 1996) that the distribution of this
ensemble is Gaussian with a mean m evolving as:

m(t)= x0e
−αt (B1)

and a variance s2:

s2(t)=
σ 2

2α
(1− e−2αt ). (B2)

An example of the evolution of such an ensemble can be
seen in Fig. 4a. At the limit t→∞, the mean decreases
back to 0, while the variance reaches the stationary vari-
ance σ 2/2α. This does not allow to sample extremes with
a limited sample size. However, in the short term the vari-
ance increases faster than the mean decreases, which opens
a window where the boosted ensemble can reach higher val-
ues than its starting point x0. We now show this mechanism
more formally. We consider the evolution of the mean plus
a number k > 0 of standard deviations, where k would typi-
cally be a function of the number of members in the boosted
ensemble:

f (t) :=m(t)+ ks(t)= x0e
−αt
+

kσ
√

2α

√
1− e−2αt . (B3)

We find the time t∗ where f reaches its maximum by setting
its derivative to 0:

f ′(t∗)=−αx0e
−αt∗
+

kσ
√

2α

αe−2αt∗

√
1− e−2αt∗

= 0, (B4)

which admits as solution:

t∗ =
1

2α
ln

(
1+ k2 σ

2/2α
x2

0

)
. (B5)

The maximum value reached by f is then:

f (t∗)= σ 2/2α

√(
x0

σ 2/2α

)2

+ k2. (B6)

Code and data availability. The ERA5 re-analysis and the 100-
member CESM2 data are publicly available:

– CESM2: https://www.cesm.ucar.edu/community-projects/
lens2/data-sets (Rodgers et al., 2021)

– ERA5: https://doi.org/10.24381/cds.adbb2d47 (Hersbach
et al., 2023)

Pre-processed data (CESM2 and ERA5) is available at
https://doi.org/10.3929/ethz-b-000720049 (Bloin-Wibe et al.,
2025a).

All code (preprocessing, calculation and plots) is available
at https://github.com/luna-bloin/Boosting_estimator (Bloin-Wibe
et al., 2025b).

https://doi.org/10.5194/wcd-6-1147-2025 Weather Clim. Dynam., 6, 1147–1177, 2025

https://www.cesm.ucar.edu/community-projects/lens2/data-sets
https://www.cesm.ucar.edu/community-projects/lens2/data-sets
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.3929/ethz-b-000720049
https://github.com/luna-bloin/Boosting_estimator


1174 L. Bloin-Wibe et al.: Estimating return periods for extreme events in climate models

Author contributions. LBW: conception, formal analysis, method-
ology, data curation, investigation, software, writing (original draft
preparation, review & editing); RN: conception, formal analysis,
methodology, supervision, writing (review & editing); VH: concep-
tion (original idea), methodology, investigation, writing (review &
editing); UB: resources, data curation, software (climate model sim-
ulations), writing (review & editing); EF: funding acquisition, writ-
ing (review & editing); RK: funding acquisition, writing (review &
editing).

Competing interests. The authors declare that one of the co-authors
is a member of the editorial board of WCD (Erich Fischer).

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. Also, please note that this paper has not re-
ceived English language copy-editing. Views expressed in the text
are those of the authors and do not necessarily reflect the views of
the publisher.

Acknowledgements. The authors would like to thank Lukas Pa-
pritz and Belinda Hotz, for providing the detrended ERA5 tem-
perature time series. We also thank all contributors, including the
National Center for Atmospheric Research (NCAR) for developing
the Community Earth System Model, and the IBS Center for Cli-
mate Physics in South Korea for running the 100-member Large
Ensemble CESM2 data set. Furthermore, since all analysis was car-
ried out in Python, we thank all its contributors, as well as those
who contributed to Python packages, in particular xarray, numpy
and scipy. Finally, we would like to thank the anonymous referees
for their useful comments, in particular C. Martínez-Villalobos for
suggesting to validate the theoretical methodology with a red-noise
process.

Financial support. This research has been supported by the
EU Horizon 2020 Project XAIDA (grant no. 101003469). Addition-
ally, Luna Bloin-Wibe and Reto Knutti are part of SPEED2ZERO,
a Joint Initiative co-financed by the ETH board.

Review statement. This paper was edited by Roberto Rondanelli
and reviewed by Cristian Martinez-Villalobos and one anonymous
referee.

References

Au, S.-K. and Beck, J. L.: Estimation of small failure probabili-
ties in high dimensions by subset simulation, Probabilistic Engi-
neering Mechanics, 16, 263–277, https://doi.org/10.1016/S0266-
8920(01)00019-4, 2001.

Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles,
D. G., and Salcedo-Sanz, S.: Heat Waves: Physical Under-
standing and Scientific Challenges, Reviews of Geophysics,
61, e2022RG000780, https://doi.org/10.1029/2022RG000780,
2023.

Bartusek, S., Kornhuber, K., and Ting, M.: 2021 North Amer-
ican heatwave amplified by climate change-driven nonlin-
ear interactions, Nature Climate Change, 12, 1143–1150,
https://doi.org/10.1038/s41558-022-01520-4, 2022.

Bloin-Wibe, L., Noyelle, R., Humphrey, V., Beyerle, U., Knutti,R.,
and Fischer, E.: Estimating return periods for extreme events in
climate models through Ensemble Boosting, ETH Bibliography
[data set], https://doi.org/10.3929/ethz-b-000720049, 2025a.

Bloin-Wibe, L., Noyelle, R., and Humphrey, V.: Boost-
ing_estimator, GitHub [code], https://github.com/luna-bloin/
Boosting_estimator, 2025b.

Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduc-
tion to statistical modeling of extreme values, 208, Springer,
https://doi.org/10.1007/978-1-4471-3675-0, 2001.

Cooley, D.: Return Periods and Return Levels Under Climate
Change, in: Extremes in a Changing Climate: Detection, Anal-
ysis and Uncertainty, edited by: AghaKouchak, A., Easter-
ling, D., Hsu, K., Schubert, S., and Sorooshian, S., Springer
Netherlands, Dordrecht, 97–114, ISBN 978-94-007-4479-0,
https://doi.org/10.1007/978-94-007-4479-0_4, 2013.

Danabasoglu, G., Lamarque, J., Bacmeister, J., Bailey, D. A., Du-
Vivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R.,
Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lau-
ritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K.,
Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-
Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., Van Kam-
penhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C.,
Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner,
P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K.,
Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The
Community Earth System Model Version 2 (CESM2), Journal
of Advances in Modeling Earth Systems, 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020.

Dunne, J. P., Stouffer, R. J., and John, J. G.: Reductions in labour
capacity from heat stress under climate warming, Nature Cli-
mate Change, 3, 563–566, https://doi.org/10.1038/nclimate1827,
2013.

Finkel, J. and O’Gorman, P. A.: Bringing Statistics to Story-
lines: Rare Event Sampling for Sudden, Transient Extreme
Events, Journal of Advances in Modeling Earth Systems,
16, e2024MS004264, https://doi.org/10.1029/2024MS004264,
2024.

Fischer, E. M., Sippel, S., and Knutti, R.: Increasing probability of
record-shattering climate extremes, Nature Climate Change, 11,
689–695, https://doi.org/10.1038/s41558-021-01092-9, 2021.

Fischer, E. M., Beyerle, U., Bloin-Wibe, L., Gessner, C., Humphrey,
V., Lehner, F., Pendergrass, A. G., Sippel, S., Zeder, J.,
and Knutti, R.: Storylines for unprecedented heatwaves based

Weather Clim. Dynam., 6, 1147–1177, 2025 https://doi.org/10.5194/wcd-6-1147-2025

https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/10.1029/2022RG000780
https://doi.org/10.1038/s41558-022-01520-4
https://doi.org/10.3929/ethz-b-000720049
https://github.com/luna-bloin/Boosting_estimator
https://github.com/luna-bloin/Boosting_estimator
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1007/978-94-007-4479-0_4
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1038/nclimate1827
https://doi.org/10.1029/2024MS004264
https://doi.org/10.1038/s41558-021-01092-9


L. Bloin-Wibe et al.: Estimating return periods for extreme events in climate models 1175

on ensemble boosting, Nature Communications, 14, 4643,
https://doi.org/10.1038/s41467-023-40112-4, 2023.

Galfi, V. M. and Lucarini, V.: Fingerprinting Heatwaves and Cold
Spells and Assessing Their Response to Climate Change Using
Large Deviation Theory, Physical Review Letters, 127, 058701,
https://doi.org/10.1103/PhysRevLett.127.058701, 2021.

Gessner, C., Fischer, E. M., Beyerle, U., and Knutti, R.:
Very rare heat extremes: quantifying and understanding us-
ing ensemble re-initialization, Journal of Climate, 1–46,
https://doi.org/10.1175/JCLI-D-20-0916.1, 2021.

Gessner, C., Fischer, E. M., Beyerle, U., and Knutti, R.: Multi-year
drought storylines for Europe and North America from an itera-
tively perturbed global climate model, Weather and Climate Ex-
tremes, 38, 100512, https://doi.org/10.1016/j.wace.2022.100512,
2022.

Gessner, C., Fischer, E. M., Beyerle, U., and Knutti, R.: Develop-
ing Low-Likelihood Climate Storylines for Extreme Precipita-
tion Over Central Europe, Earth’s Future, 11, e2023EF003628,
https://doi.org/10.1029/2023EF003628, 2023.

Giardina, C., Kurchan, J., Lecomte, V., and Tailleur, J.: Simulat-
ing Rare Events in Dynamical Processes, Journal of Statisti-
cal Physics, 145, 787–811, https://doi.org/10.1007/s10955-011-
0350-4, 2011.

Giardinà, C., Kurchan, J., and Peliti, L.: Direct Evaluation of Large-
Deviation Functions, Physical Review Letters, 96, 120603,
https://doi.org/10.1103/PhysRevLett.96.120603, 2006.

Gourdji, S. M., Sibley, A. M., and Lobell, D. B.: Global crop
exposure to critical high temperatures in the reproductive pe-
riod: historical trends and future projections, Environmen-
tal Research Letters, 8, 024041, https://doi.org/10.1088/1748-
9326/8/2/024041, 2013.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G.,
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S.,
Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P.,
Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vam-
borg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global re-
analysis, Quarterly Journal of the Royal Meteorological Society,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut,
J.-N.: ERA5 hourly data on single levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.

Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E., and Ray-
mond, C.: A Review of Recent Advances in Research on Ex-
treme Heat Events, Current Climate Change Reports, 2, 242–
259, https://doi.org/10.1007/s40641-016-0042-x, 2016.

Kendall, M. G. and others: The advanced theory of statistics. Vols.
1., The advanced theory of statistics. Vols. 1., 1, publisher:
Charles Griffin and Co., Ltd., 42 Drury Lane, London, 1948.

Krishnamurthy, V.: Predictability of Weather and Cli-
mate, Earth and Space Science, 6, 1043–1056,
https://doi.org/10.1029/2019EA000586, 2019.

Lorenz, E. N.: Predictability – a problem partly solved, in:
Predictability of Weather and Climate, edited by: Palmer,
T. and Hagedorn, R., Cambridge University Press, 1 edn.,
40–58, ISBN 978-0-521-84882-4 978-0-511-61765-2 978-1-
107-41485-3, https://doi.org/10.1017/CBO9780511617652.004,
2006.

Lucarini, V., Galfi, V. M., Riboldi, J., and Messori, G.:
Typicality of the 2021 Western North America summer
heatwave, Environmental Research Letters, 18, 015004,
https://doi.org/10.1088/1748-9326/acab77, 2023.

Lüthi, S., Huber, V., Pascal, M., Beyerle, U., Pyrina, M., Domeisen,
D., Vicedo-Cabrera, A. M., and Fischer, E.: Storylines for
month-long heatwaves and associated heat-related mortality
impacts over Western Europe, https://doi.org/10.21203/rs.3.rs-
5356341/v1, 2024.

Malinina, E. and Gillett, N. P.: The 2021 heatwave
was less rare in Western Canada than previously
thought, Weather and Climate Extremes, 43, 100642,
https://doi.org/10.1016/j.wace.2024.100642, 2024.

McKinnon, K. A. and Simpson, I. R.: How Unex-
pected Was the 2021 Pacific Northwest Heatwave?,
Geophysical Research Letters, 49, e2022GL100380,
https://doi.org/10.1029/2022GL100380, 2022.

Meehl, G. A. and Tebaldi, C.: More Intense, More Frequent, and
Longer Lasting Heat Waves in the 21st Century, Science, 305,
994–997, https://doi.org/10.1126/science.1098704, 2004.

Miloshevich, G., Cozian, B., Abry, P., Borgnat, P., and Bouchet, F.:
Probabilistic forecasts of extreme heatwaves using convolutional
neural networks in a regime of lack of data, Physical Review Flu-
ids, 8, 040501, https://doi.org/10.1103/PhysRevFluids.8.040501,
2023.

Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C.,
and Vilà-Guerau De Arellano, J.: Mega-heatwave tem-
peratures due to combined soil desiccation and atmo-
spheric heat accumulation, Nature Geoscience, 7, 345–349,
https://doi.org/10.1038/ngeo2141, 2014.

Neal, E., Huang, C. S. Y., and Nakamura, N.: The 2021 Pa-
cific Northwest Heat Wave and Associated Blocking: Meteo-
rology and the Role of an Upstream Cyclone as a Diabatic
Source of Wave Activity, Geophysical Research Letters, 49,
e2021GL097699, https://doi.org/10.1029/2021GL097699, 2022.

Noyelle, R.: Statistical and dynamical aspects of extreme heat-
waves in the mid-latitudes, Ocean, Atmosphere, Université Paris-
Saclay, https://theses.hal.science/tel-04632646v2 (last access:
17 October 2025), 2024.

Noyelle, R., Robin, Y., Naveau, P., Yiou, P., and Faranda, D.: Inte-
gration of physical bound constraints to alleviate shortcomings of
statistical models for extreme temperatures, https://hal.science/
hal-04479249, 2024a.

Noyelle, R., Yiou, P., and Faranda, D.: Investigating the typical-
ity of the dynamics leading to extreme temperatures in the
IPSL-CM6A-LR model, Climate Dynamics, 62, 1329–1357,
https://doi.org/10.1007/s00382-023-06967-5, 2024b.

Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G.,
and Allen, M. R.: Reconciling two approaches to attribution of
the 2010 Russian heat wave, Geophysical Research Letters, 39,
https://doi.org/10.1029/2011GL050422, 2012.

https://doi.org/10.5194/wcd-6-1147-2025 Weather Clim. Dynam., 6, 1147–1177, 2025

https://doi.org/10.1038/s41467-023-40112-4
https://doi.org/10.1103/PhysRevLett.127.058701
https://doi.org/10.1175/JCLI-D-20-0916.1
https://doi.org/10.1016/j.wace.2022.100512
https://doi.org/10.1029/2023EF003628
https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1088/1748-9326/8/2/024041
https://doi.org/10.1088/1748-9326/8/2/024041
https://doi.org/10.1002/qj.3803
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1007/s40641-016-0042-x
https://doi.org/10.1029/2019EA000586
https://doi.org/10.1017/CBO9780511617652.004
https://doi.org/10.1088/1748-9326/acab77
https://doi.org/10.21203/rs.3.rs-5356341/v1
https://doi.org/10.21203/rs.3.rs-5356341/v1
https://doi.org/10.1016/j.wace.2024.100642
https://doi.org/10.1029/2022GL100380
https://doi.org/10.1126/science.1098704
https://doi.org/10.1103/PhysRevFluids.8.040501
https://doi.org/10.1038/ngeo2141
https://doi.org/10.1029/2021GL097699
https://theses.hal.science/tel-04632646v2
https://hal.science/hal-04479249
https://hal.science/hal-04479249
https://doi.org/10.1007/s00382-023-06967-5
https://doi.org/10.1029/2011GL050422


1176 L. Bloin-Wibe et al.: Estimating return periods for extreme events in climate models

Overland, J. E.: Causes of the Record-Breaking Pacific North-
west Heatwave, Late June 2021, Atmosphere, 12, 1434,
https://doi.org/10.3390/atmos12111434, 2021.

Perkins, S. E.: A review on the scientific understanding
of heatwaves–Their measurement, driving mechanisms, and
changes at the global scale, Atmospheric Research, 164–165,
242–267, https://doi.org/10.1016/j.atmosres.2015.05.014, 2015.

Pfahl, S. and Wernli, H.: Quantifying the relevance of atmo-
spheric blocking for co-located temperature extremes in the
Northern Hemisphere on (sub-)daily time scales: blocking
and temperature extremes, Geophysical Research Letters, 39,
https://doi.org/10.1029/2012GL052261, 2012.

Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R.,
van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., and
van Aalst, M.: A protocol for probabilistic extreme event attribu-
tion analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203,
https://doi.org/10.5194/ascmo-6-177-2020, 2020.

Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Anslow, F. S.,
Seneviratne, S. I., Vautard, R., Coumou, D., Ebi, K. L., Arrighi,
J., Singh, R., van Aalst, M., Pereira Marghidan, C., Wehner,
M., Yang, W., Li, S., Schumacher, D. L., Hauser, M., Bonnet,
R., Luu, L. N., Lehner, F., Gillett, N., Tradowsky, J. S., Vec-
chi, G. A., Rodell, C., Stull, R. B., Howard, R., and Otto, F.
E. L.: Rapid attribution analysis of the extraordinary heat wave
on the Pacific coast of the US and Canada in June 2021, Earth
Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-
1689-2022, 2022.

Plotkin, D. A., Webber, R. J., O’Neill, M. E., Weare, J., and Abbot,
D. S.: Maximizing Simulated Tropical Cyclone Intensity With
Action Minimization, Journal of Advances in Modeling Earth
Systems, 11, 863–891, https://doi.org/10.1029/2018MS001419,
2019.

Ragone, F., Wouters, J., and Bouchet, F.: Computation of extreme
heat waves in climate models using a large deviation algorithm,
Proceedings of the National Academy of Sciences, 115, 24–29,
https://doi.org/10.1073/pnas.1712645115, 2018.

Rahmstorf, S. and Coumou, D.: Increase of extreme
events in a warming world, Proceedings of the Na-
tional Academy of Sciences, 108, 17905–17909,
https://doi.org/10.1073/pnas.1101766108, 2011.

Ranasinghe, R., Ruane, A., Vautard, R., Arnell, N., Coppola, E.,
Cruz, F., Dessai, S., Islam, A., Rahimi, M., Ruiz Carrascal, D.,
Sillmann, J., Sylla, M., Tebaldi, C., Wang, W., and Zaaboul, R.:
Climate Change Information for Regional Impact and for Risk
Assessment, in: Climate Change 2021: The Physical Science Ba-
sis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited
by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, UK and New York, NY,
USA, 1767–1925, https://doi.org/10.1017/9781009157896.014,
2021.

Risken, H.: The Fokker-Planck Equation: Methods of Solution and
Applications, vol. 18 of Springer Series in Synergetics, Springer
Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-61530-
9 978-3-642-61544-3, https://doi.org/10.1007/978-3-642-61544-
3, 1996.

Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen,
H., Griffiths, C., Michel, J.-P., and Herrmann, F. R.:
Death toll exceeded 70,000 in Europe during the sum-
mer of 2003, Comptes Rendus Biologies, 331, 171–178,
https://doi.org/10.1016/j.crvi.2007.12.001, 2008.

Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A.,
Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simp-
son, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bó-
dai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque,
J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S.
G.: Ubiquity of human-induced changes in climate variability,
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-
12-1393-2021, 2021 (data available at: https://www.cesm.ucar.
edu/community-projects/lens2/data-sets, last access: 7 October
2025).

Röthlisberger, M. and Papritz, L.: Quantifying the physical pro-
cesses leading to atmospheric hot extremes at a global scale, Na-
ture Geoscience, 16, 210–216, https://doi.org/10.1038/s41561-
023-01126-1, 2023.

Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams,
C. M., and Russo, S.: Influence of blocking on Northern
European and Western Russian heatwaves in large climate
model ensembles, Environmental Research Letters, 13, 054015,
https://doi.org/10.1088/1748-9326/aaba55, 2018.

Schumacher, D. L., Hauser, M., and Seneviratne, S. I.:
Drivers and Mechanisms of the 2021 Pacific North-
west Heatwave, Earth’s Future, 10, e2022EF002967,
https://doi.org/10.1029/2022EF002967, 2022.

Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C.,
Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto,
F., Pinto, I., Satoh, M., Vicente-Serrano, S., Wehner, M., and
Zhou, B.: Weather and Climate Extreme Events in a Changing
Climate, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Re-
port of the Intergovernmental Panel on Climate Change, edited
by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, UK and New York, NY,
USA, 1513–1765, https://doi.org/10.1017/9781009157896.013,
2021.

Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Des-
sai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun,
D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A.,
Tett, S. F. B., Trenberth, K. E., Van Den Hurk, B. J. J. M.,
Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Story-
lines: an alternative approach to representing uncertainty in phys-
ical aspects of climate change, Climatic Change, 151, 555–571,
https://doi.org/10.1007/s10584-018-2317-9, 2018.

Suarez-Gutierrez, L., Li, C., Müller, W. A., and Marotzke, J.: Inter-
nal variability in European summer temperatures at 1.5 °C and
2 °C of global warming, Environmental Research Letters, 13,
064026, https://doi.org/10.1088/1748-9326/aaba58, 2018.

Thiery, W., Lange, S., Rogelj, J., Schleussner, C.-F., Gudmunds-
son, L., Seneviratne, S. I., Andrijevic, M., Frieler, K., Emanuel,
K., Geiger, T., Bresch, D. N., Zhao, F., Willner, S. N., Büch-
ner, M., Volkholz, J., Bauer, N., Chang, J., Ciais, P., Dury, M.,
François, L., Grillakis, M., Gosling, S. N., Hanasaki, N., Hick-

Weather Clim. Dynam., 6, 1147–1177, 2025 https://doi.org/10.5194/wcd-6-1147-2025

https://doi.org/10.3390/atmos12111434
https://doi.org/10.1016/j.atmosres.2015.05.014
https://doi.org/10.1029/2012GL052261
https://doi.org/10.5194/ascmo-6-177-2020
https://doi.org/10.5194/esd-13-1689-2022
https://doi.org/10.5194/esd-13-1689-2022
https://doi.org/10.1029/2018MS001419
https://doi.org/10.1073/pnas.1712645115
https://doi.org/10.1073/pnas.1101766108
https://doi.org/10.1017/9781009157896.014
https://doi.org/10.1007/978-3-642-61544-3
https://doi.org/10.1007/978-3-642-61544-3
https://doi.org/10.1016/j.crvi.2007.12.001
https://doi.org/10.5194/esd-12-1393-2021
https://doi.org/10.5194/esd-12-1393-2021
https://www.cesm.ucar.edu/community-projects/lens2/data-sets
https://www.cesm.ucar.edu/community-projects/lens2/data-sets
https://doi.org/10.1038/s41561-023-01126-1
https://doi.org/10.1038/s41561-023-01126-1
https://doi.org/10.1088/1748-9326/aaba55
https://doi.org/10.1029/2022EF002967
https://doi.org/10.1017/9781009157896.013
https://doi.org/10.1007/s10584-018-2317-9
https://doi.org/10.1088/1748-9326/aaba58


L. Bloin-Wibe et al.: Estimating return periods for extreme events in climate models 1177

ler, T., Huber, V., Ito, A., Jägermeyr, J., Khabarov, N., Koutroulis,
A., Liu, W., Lutz, W., Mengel, M., Müller, C., Ostberg, S.,
Reyer, C. P. O., Stacke, T., and Wada, Y.: Intergenerational in-
equities in exposure to climate extremes, Science, 374, 158–160,
https://doi.org/10.1126/science.abi7339, 2021.

Trevisan, A. and Palatella, L.: Chaos and weather forecasting: the
role of the unstable subspace in predictability and state estima-
tion problems, International Journal of Bifurcation and Chaos,
21, 3389–3415, https://doi.org/10.1142/S0218127411030635,
2011.

Vannitsem, S.: Predictability of large-scale atmospheric mo-
tions: Lyapunov exponents and error dynamics, Chaos: An
Interdisciplinary Journal of Nonlinear Science, 27, 032101,
https://doi.org/10.1063/1.4979042, 2017.

Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schnei-
der, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula,
D. M., Abrutzky, R., Tong, S., Coelho, M. d. S. Z. S., Saldiva, P.
H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Oso-
rio, S., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola,
J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K.,
Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A.,
Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B.,
Diaz, M. H., Valencia, C. D. L. C., Overcenco, A., Houthuijs,
D., Ameling, C., Rao, S., Di Ruscio, F., Carrasco-Escobar, G.,
Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni,
S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B.,
Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong,
B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung,
D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., and Gaspar-
rini, A.: The burden of heat-related mortality attributable to re-
cent human-induced climate change, Nature Climate Change, 11,
492–500, https://doi.org/10.1038/s41558-021-01058-x, 2021.

Webber, R. J., Plotkin, D. A., O’Neill, M. E., Abbot, D. S., and
Weare, J.: Practical rare event sampling for extreme mesoscale
weather, Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 29, 053109, https://doi.org/10.1063/1.5081461, 2019.

White, R. H., Anderson, S., Booth, J. F., Braich, G., Draeger, C.,
Fei, C., Harley, C. D. G., Henderson, S. B., Jakob, M., Lau, C.-
A., Mareshet Admasu, L., Narinesingh, V., Rodell, C., Roocroft,
E., Weinberger, K. R., and West, G.: The unprecedented Pacific
Northwest heatwave of June 2021, Nature Communications, 14,
727, https://doi.org/10.1038/s41467-023-36289-3, 2023.

Wouters, J. and Bouchet, F.: Rare event computation in determin-
istic chaotic systems using genealogical particle analysis, Jour-
nal of Physics A: Mathematical and Theoretical, 49, 374002,
https://doi.org/10.1088/1751-8113/49/37/374002, 2016.

Yiou, P. and Jézéquel, A.: Simulation of extreme heat waves with
empirical importance sampling, Geosci. Model Dev., 13, 763–
781, https://doi.org/10.5194/gmd-13-763-2020, 2020.

Zeder, J. and Fischer, E. M.: Quantifying the statistical dependence
of mid-latitude heatwave intensity and likelihood on prevalent
physical drivers and climate change, Adv. Stat. Clim. Meteorol.
Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,
2023.

Zeder, J., Sippel, S., Pasche, O. C., Engelke, S., and Fischer, E. M.:
The Effect of a Short Observational Record on the Statistics
of Temperature Extremes, Geophysical Research Letters, 50,
e2023GL104090, https://doi.org/10.1029/2023GL104090, 2023.

https://doi.org/10.5194/wcd-6-1147-2025 Weather Clim. Dynam., 6, 1147–1177, 2025

https://doi.org/10.1126/science.abi7339
https://doi.org/10.1142/S0218127411030635
https://doi.org/10.1063/1.4979042
https://doi.org/10.1038/s41558-021-01058-x
https://doi.org/10.1063/1.5081461
https://doi.org/10.1038/s41467-023-36289-3
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.5194/gmd-13-763-2020
https://doi.org/10.5194/ascmo-9-83-2023
https://doi.org/10.1029/2023GL104090

	Abstract
	Introduction
	Methods
	Resampling low probability events
	Theoretical comparison to the naive estimator
	Validation with an Ornstein-Uhlenbeck process
	Experimental setup of Ensemble Boosting in a fully-coupled climate model

	Results
	PI-control runs
	Sensitivity tests: theoretical assumptions and parameter choices
	Estimating a return period for the Pacific North-West heatwave of 2021

	Discussion
	Reduction of errors and computational costs of the boosting estimator compared to the naive estimator
	Effect of the number of parent events on return period estimates of the boosting estimator
	Effect of perturbation lead times on return period estimates of the boosting estimator
	Critically assessing the estimated return period of the 2021 PNW heatwave

	Conclusions
	Appendix A: Statistical properties of the boosting estimator
	Appendix A1: Unbiasedness of the boosting estimator
	Appendix A2: Variance of the boosting estimator

	Appendix B: Ensemble boosting with the Orstein-Uhlenbeck process
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

