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Abstract. This study evaluates the performance of high-
resolution (grid sizes of 9–28 km for the atmosphere; 5–
13 km for the ocean) global simulations from the EERIE
project in representing the persistence of the Southern An-
nular Mode (SAM), a leading mode of Southern Hemisphere
climate variability. Using the decorrelation timescale of the
SAM index (τ ), we compare EERIE simulations with CMIP6
models and ERA5 reanalysis.

EERIE simulations reduce long-standing biases in SAM
persistence, especially in early summer, with τ values of 9–
20 d compared to CMIP6’s 9–32 d and ERA5’s 11 d. This
improvement correlates with a more accurate climatological
jet latitude (λ0). EERIE atmosphere-only AMIP runs out-
perform the coupled simulations in both τ and λ0, show-
ing smaller biases and ranges of variability, underscoring the
critical role of sea surface temperature (SST) representation
in shaping atmospheric circulation. In these AMIP experi-
ments, the atmospheric eddy feedback strength, combined
with the damping timescale estimated via friction, correlates
more strongly with τ than λ0. We speculate that the well-
captured jet position (biases< 1° relative to ERA5), due to
prescribed SSTs, limits λ0’s explanatory power for τ differ-
ences, allowing other processes to dominate. Using a finer
model grid (9 km vs. 28 km) of the same AMIP model re-
duces τ , though the mechanism remains unclear. Finally, mo-
tivated by the importance of oceanic eddies in the Southern
Ocean, we conducted sensitivity experiments that filter tran-

sient mesoscale features from the SST boundary conditions.
The results suggest that oceanic eddies may enhance sum-
mertime SAM persistence (by ∼ 2 d), though this signal is
not statistically significant and is absent in the single 9 km
run, pointing to a subtle role of mesoscale ocean-atmosphere
interaction that remains to be explored.

1 Introduction

Over the extratropical Southern Hemisphere, the daily- to
decadal climate variability is dominated by the Southern
Annular Mode (SAM), a mode of natural variability man-
ifested in the large-scale oscillation of atmospheric mass
between mid- and high-latitudes and hence changes of the
eddy-driven jet in the midlatitudes (e.g., Fogt and Marshall,
2020). This internal variability both influences and is influ-
enced by the atmospheric circulation, affecting regional tem-
peratures and precipitation patterns, sea ice extent, and ocean
circulation, with consequences for global heat and carbon re-
distribution (e.g., Doddridge and Marshall, 2017; Gillett et
al., 2006; Lefebvre and Goosse, 2005; Lenton and Matear,
2007; Lovenduski and Gruber, 2005).

As implied by its name “annular”, the spatial structure
of SAM is approximately “ring-shaped” when viewed from
above the South Pole and is nearly barotropic in the vertical
direction (Gerber et al., 2010). During the positive phase of
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SAM, lower air pressure anomalies overlay Antarctica while
higher pressure anomalies spread over the mid-latitudes, and
such anomalous pressure distribution indicates a strength-
ening and poleward shifting of the westerly jet that clima-
tologically sits at around 50° S (Lim et al., 2013). While
the SAM can, to a first approximation, be described from
a zonal-mean perspective, its structure can deviate from the
zonal mean and vary across different timescales, affected by
factors such as the seasonal cycle of midlatitude jet (atmo-
spheric eddy activity), sea surface temperature (SST) vari-
ability, tropical oscillations such as the El Niño-Southern Os-
cillation (ENSO), stratosphere–troposphere interactions and
so on (e.g., Campitelli et al., 2022; Ding et al., 2012; Fogt
and Marshall, 2020; Karoly, 1989). On the seasonal scale,
SAM is overall more zonally symmetric in austral summer
(DJF) but exhibits asymmetric wavenumber 3 components
when entering autumn (MAM) and winter (JJA). Readers in-
terested in a comprehensive review of the SAM literature are
encouraged to consult Fogt and Marshall (2020) and Thomp-
son et al. (2011).

A key characteristic of SAM is its temporal persistence,
referring to how long a given phase of the SAM (positive,
negative or neutral) tends to last before transitioning. This
long persistence is important as it provides a source of pre-
dictability at a timescale longer than the one associated with
synoptic variability (e.g., Robinson, 2000; Lorenz and Hart-
mann, 2001; Simpson and Polvani, 2016). SAM persistence
is often measured as the decorrelation timescale (e-folding
timescale) which indicates the average duration over which
the SAM index remains strongly correlated with its past val-
ues. A standard explanation attributes the extended SAM
persistence to the reinforcement of westerly flow anomalies
by atmospheric eddy momentum fluxes, which are gener-
ated by changes in the mean flow and counteract dissipation
from surface friction. Several mechanisms may contribute
to the eddy–mean flow feedback that reinforces the shifted
jet. These include barotropic processes, such as anomalous
wave propagation and breaking, and baroclinic processes
related to enhanced eddy generation and increased lower-
tropospheric baroclinicity in response to shifts in the westerly
winds (e.g., Robinson, 2000, Lorenz and Hartmann, 2001;
Zurita-Gotor et al., 2014; Hassanzadeh and Kuang, 2019).
Westerly flow anomalies also induce changes in the diabatic
heating and cooling – through latent heat release and cloud
radiative effects – which alter temperature gradients and, in
turn, affect SAM persistence (Xia and Chang, 2014; Smith
et al., 2024; Vishny et al., 2024). In addition to this eddy-
mean flow feedback, SAM persistence can have an origin
from the stratosphere, which introduces some non-stationary
forcing to SAM. The main influence is likely in late spring
and summer at the time of the seasonal breakdown of the
stratospheric vortex (Simpson et al., 2011; Byrne et al., 2016,
2017; Saggioro and Shepherd, 2019). Furthermore, interac-
tions between a stationary mode and a propagating mode
of the zonal variability could also affect SAM persistence

(Lubis and Hassanzadeh, 2021; Sheshadri and Plumb, 2017;
Smith et al., 2024).

While global climate models (GCMs) have shown good
skill in capturing the spatial structure of SAM variability,
a long-standing challenge for GCMs is that they tend to
overestimate the SAM persistence during the austral sum-
mer. Based on global reanalysis data, the SAM decorre-
lation timescale is found to be approximately 10 d on an-
nual mean and is a couple of days higher in early summer
(November–January; NDJ), during which period GCMs typ-
ically show values that are two to three-times larger (Brace-
girdle et al., 2020). Overly persistent SAM in GCMs is cor-
related with a common bias in the climatological jet posi-
tion, whereby the simulated tropospheric jets are placed too
far equatorward (e.g., Kidston and Gerber, 2010; Simpson et
al., 2013a, b; Simpson and Polvani, 2016; Son et al., 2010).
A possible explanation is that models with lower latitude jets
exert stronger eddy-mean flow feedback to maintain SAM
(Codron, 2005; Simpson and Polvani, 2016).

However, the climatological position of the midlatitude jet
is not the only factor for the overly persistent SAM variability
in GCMs. Simpson et al. (2013a) performed a series of ex-
periments with nudging and bias correcting procedures using
a stratosphere-resolving GCM, the Canadian Middle Atmo-
sphere Model (CMAM). They found that the SAM persis-
tence bias remains even when the representation of the cli-
matological tropospheric winds is artificially improved. Sim-
ilar conclusions are obtained when another common bias for
the overly-persistent summertime SAM – the delayed break-
down of the stratospheric vortex – was manually nudged to-
ward the reanalysis-based seasonal climatology. These re-
sults suggest that they may not be the only underlying causes
of the SAM persistence bias.

As GCMs improve in their representation of physics, res-
olution, and overall complexity, some advancements have
been made in reducing biases associated with SAM persis-
tence and the climatological jet latitude. Compared to earlier
versions of Coupled Model Intercomparison Project (CMIP)
models, noticeable reductions in these biases have been re-
ported. Bracegirdle et al. (2020) found that the ensemble-
mean bias in the westerly jet latitude decreased from 1.9° in
CMIP5 to 0.4° in CMIP6 on an annual mean basis. Consis-
tently, the early-summertime SAM persistence was reduced
from approximately 30 d in CMIP5 to 20 d in CMIP6. Never-
theless, the SAM decorrelation timescale remains systemati-
cally biased. While higher resolution is generally regarded as
beneficial, it is worth exploring whether additional improve-
ments are achievable by further increasing the resolution or
if other factors become increasingly significant when the res-
olution is sufficiently high.

Here we revisit this issue using new high-resolution sim-
ulations from the Horizon Europe project European Eddy-
Rich Earth System Models (EERIE) (Roberts et al., 2024a,
2024b, 2024c). A distinctive feature of the atmosphere-
ocean coupled Earth System Models (ESMs) built under
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EERIE is their adoption of high oceanic resolutions (grid
size of 5–13 km) to explicitly represent ocean mesoscale pro-
cesses, which have been increasingly recognized as critical
for weather and climate simulation (e.g., Busecke and Aber-
nathey, 2019; Chassignet and Xu, 2021; Hewitt et al., 2020).
Mesoscale oceanic features can influence SAM persistence
by strongly affecting surface heat fluxes and surface stress
in the Southern Ocean – a hotspot of mesoscale activity
(Frenger et al., 2013; Bishop et al., 2017). These ocean-
atmosphere interactions can alter atmospheric temperature
gradients and boundary layer structure, modifying diabatic
heating and low-level baroclinicity, both of which have been
linked to SAM persistence (Xia and Chang, 2014; Smith et
al., 2024; Robinson, 2000; Zurita-Gotor et al., 2014). Fur-
thermore, surface stress also plays a role as it tends to damp
the westerly winds but also to enhance baroclinicity and
the baroclinic feedback (Robinson, 2000; Zurita-Gotor et
al., 2014; Vishny et al., 2024).

EERIE also includes a suite of atmosphere-only simula-
tions and idealized experiments to facilitate exploration of
the atmosphere response to the ocean mesoscales by exclud-
ing effects attributed to the air-sea coupling and SST bi-
ases. Those experiments will allow disentangling the role of
the explicit resolution of the eddies compared to the one of
increasing the model resolution. Using those experiments,
we specifically analyze the potential role of the mesoscale
oceanic eddies on SAM persistence, a contribution that has
been studied to a minimum to date. The data sources and di-
agnostics are detailed in Sects. 2 and 3, respectively, followed
by the results in Sect. 4 and the conclusions in Sect. 5.

2 Data

2.1 EERIE models and simulations

Running from January 2023 to December 2026, the EERIE
project aims to build new generations of ESMs run at “eddy-
rich resolution” (note that the “eddy” here refers to ocean
eddies), which explicitly resolve ocean mesoscale processes
with scales of 10–100 km. Crucial components at this scale
include mesoscale eddies (analogous to cyclones in the at-
mosphere) and boundary/frontal currents. EERIE will de-
liver simulations over multi-centennial timescales centered
on four global coupled ESMs and two atmosphere-only mod-
els, with an overarching objective to reveal and to quantify
the role of ocean mesoscales in shaping the climate trajec-
tory over seasonal to centennial time scales, regionally and
globally (European Commission, 2024).

2.1.1 Coupled simulations

This study evaluates the preliminary EERIE Phase 1 simu-
lations (Wachsmann et al., 2024). To facilitate direct com-
parison across experiments, all outputs were regridded to a
uniform 0.25°× 0.25° grid prior to analysis, except for the

westerly jet location identification (Sect. 3.2). A detailed de-
scription of the EERIE models can be found in Roberts et
al. (2024a), and Table 1 briefly summarizes the simulations
used in the current study. IFS-FESOM2 and ICON model
simulations are being conducted following a protocol similar
to the CMIP6 HighResMIP (High Resolution Model Inter-
comparison Project; Haarsma et al., 2016). The HadGEM3-
GC5-EERIE model simulation follows protocol similar to
CMIP6 DECK (Diagnostic, Evaluation and Characterization
of Klima; Eyring et al., 2016). HighResMIP differs from
CMIP6 DECK primarily in its use of 1950s’ climate condi-
tions instead of 1850s’ as the initial state and a shorter spin-
up (∼ 50 years instead of ≥ 200 years; which have been dis-
carded and not counted in the simulation length shown in Ta-
ble 1) due to the computational demands of high-resolution
models. Using the IFS-FESOM2 model, we analyze a 65-
year control simulation conducted under fixed 1950 forcings
(referred to as 1950control), along with a historical simula-
tion covering the period from 1950 to 2014. For the ICON
model, the 22-year 1950control and the historical run are
analyzed. For the HadGEM3 model, we examine a 30-year
pre-industrial control simulation (piControl) forced by 1850
conditions.

As these simulations cover different time periods and some
of them include transient forcings, linear and low-frequency
nonlinear trends are removed as standard procedures in the
SAM-related diagnostics. This should reduce the impact of
the difference in experimental design on the evaluation of
the model performance. However, this removal does not fully
eliminate the non-stationary features that could have a clear
influence on the evaluation of SAM persistence and of the
eddy feedbacks (Byrne et al., 2016). We therefore adopt a
bootstrapping procedure (Sect. 3.1) to provide partial quan-
tification of the influence of non-stationarity and uncertainty
due to the short period of some simulations. As will be shown
later, through bootstrapping resampling, different results can
be obtained with the same model even after de-trending. We
also provide results using two different periods of the ERA5
reanalysis (Sect. 2.2) as references for comparisons. Note
that the difference can be partly attributed to the larger data
coverage after 1979 in ERA5.

2.1.2 Atmosphere-only simulations and sensitivity
experiments

The EERIE AMIP simulations were performed for the
historical period of 1980–2023 following the High-
ResMIP2 highresSST-present experimental design (Roberts
et al., 2025). We analyze the simulations produced with the
IFS model in two model grid sizes (∼ 28 and ∼ 9 km; both
with convection parameterization), and the higher-resolution
configuration is identical to the atmosphere component of
the coupled IFS-FESOM2 (Table 1). One member has been
performed at the 9 km resolution, but the 28 km simulations
are supplemented with five ensemble members to represent a
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Table 1. EERIE simulations analyzed in the current study.

Institution Alfred Wegener Max Planck Met Office European Centre for
Institute (AWI) Institute (MO) Medium-range Weather

(MPI-M) Forecasting (ECMWF)∣∣ Coupled atmosphere-ocean models (eddy-rich) Atmospheric model

System name IFS-FESOM2 ICON HadGEM3-GC5-EERIE IFS

Model components IFS CY48R1, ICON-A, UM, NEMO4.0.4, IFS CY48R1
FESOM2, FESIM2 ICON-O SI3

Atmos. grid (km) Tco1279 (∼ 9 km) R2B8 (∼ 10 km) N640 (∼ 20 km Tco1279 (∼ 9 km)
at 50° N) Tco399 (∼ 28 km)∗

Atmos. vertical
levels (model top) 137 (0.01 hPa) 90 (0.01 hPa) 85 (85 km) 137 (0.01 hPa)

Ocean grid (km) NG5 (∼ 13–5 km) R2B9 (∼ 5 km) eORCA12 (∼ 8 km) –

Ocean vertical levels 70 72 75 –

Protocol
∣∣ CMIP6 HighResMIP CMIP6 DECK HighResMIP2

Simulations (analyzed 1950control (65 years) 1950control (22 years) piControl Historical
segment lengths) Historical (1950–2014) Historical (1950–2014) (30 years) (1980–2023)

∗ Five ensemble members.

range of model uncertainty or noise. These ensemble mem-
bers are generated by perturbing the atmospheric initial con-
ditions on 1 January 1980, using the same methodology em-
ployed in operational ECMWF ensemble forecasts (Roberts
et al., 2024a).

The prescribed boundary conditions are taken from the
daily-mean SST reanalysis from the European Space Agency
Sea Surface Temperature Climate Change Initiative (ESA
CCI SST v3) and the daily-mean sea-ice concentration from
the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) Ocean and Sea Ice Satel-
lite Application Facility (OSI-SAF), both retrieved on a
0.05°× 0.05° grid. External radiative forcings are generally
specified following CMIP6/HighResMIP protocols, and the
specificity can be found in Roberts et al. (2024a).

To explore the atmospheric response to extratropical ocean
mesoscale features, EERIE project also conducted idealized
experiments with modified SST boundary conditions. Taking
the IFS-AMIP simulations as the control experiments (de-
noted as ObsSST), NoEddies experiments have the transient
oceanic eddy features removed from their SST boundary
conditions with a spatial low-pass filter applied to the SST
anomaly field (difference from the climatological mean). Sea
ice cover remains unchanged in NoEddies. We emphasize
that such a design only allows us to test ocean eddies’ direct
thermodynamic impact (as reflected in SSTs) but not their
mechanical influence (through the so-called wind stress feed-
back or relative winds-currents effects).

The employed filter is a Gaussian filter from the GCM-
Filters Python package (Loose et al., 2022). The filter length

scale is set to be 20LR, where LR is the spatially varying,
climatological Rossby radius in the ocean with a lower and
higher limit of 30 and 700 km, respectively. The filter with a
smaller LR at high latitudes effectively removes the smaller
oceanic eddies there. However, it also removes the larger-
scale tropical instability waves near the equator when LR
reaches its maximum. This potentially obscures the impact
of targeted extratropical ocean mesoscales due to tropical-
extratropical teleconnections. To avoid this, low-latitude ar-
eas are masked out from the filtering with a function rang-
ing from 0 to 1: M(λ)= 1

2

(
tanh

(
|h−λ|
s

)
+ 1

)
, where h= 10

determines the latitude where the M value is halved (0.5)
and s= 3 scales the steepness of the masking function. Like
the ObsSST, the NoEddies experiment is run with two model
grid sizes of ∼ 28 km (five ensemble members) and ∼ 9 km
(one member). For more details of the experimental design,
we refer readers to Roberts et al. (2024b).

2.2 CMIP6 models and ERA5 reanalysis

For the diagnostics of SAM persistence and westerly jet
characteristics, the CMIP6 models are used to compare with
EERIE models. We analyze 31 CMIP6 historical simulations
from their first ensemble member that provide outputs of
daily geopotential at 500 hPa level and monthly zonal wind
at 850 hPa. All CMIP6 outputs are regridded to a uniform
1°× 1° grid with the bilinear interpolation before perform-
ing the analysis and only the period of 1980–2014 is ex-
tracted to ensure a uniform data length. As a proxy of ob-
servation, we use the global reanalysis dataset ERA5 (Hers-
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bach et al., 2020) for the same variables and a total period
from 1958 to 2023 to cover the earlier period included in
some EERIE simulations. Among the reanalysis products
that extend backwards in time beyond 1979 (ERA5, 20CRv3,
JRA-55), ERA5 is found to agree best with station observa-
tions and produces good representation of SAM, both before
and after the advent of satellite sounder data (Marshall et
al., 2022). While we analyze ERA5 on the commonly dis-
tributed 0.25°× 0.25° grid, we have tested the impact with
regridding it to the 1°× 1° grid and found no notable changes
in our results.

3 Diagnostics

For the overall assessment of model performance, the diag-
nostics described in Sect. 3.1 and 3.2 below are applied to all
available CMIP6 historical and EERIE simulations. Due to
the limited accessibility of the EERIE data at the time of writ-
ing, diagnostics in Sect. 3.3 and 3.4 are only performed on
the EERIE atmosphere-only sensitivity experiments to pro-
vide deeper investigation on the tropospheric mechanisms
critical to the SAM persistence.

3.1 SAM persistence timescale

Some variations exist in the definition of the SAM across the
literature (Ho et al., 2012), and its persistence estimation may
be sensitive to the methods employed. While many studies
adopt similar methodological concepts, the details are often
not fully transparent. To ensure clarity, we provide a step-by-
step explanation of our approach. Note that SAM is a rather
barotropic feature, so even though some traditional defini-
tions consider the vertical averaged field, we have chosen to
follow Bracegirdle et al. (2020) using a single level for sim-
plicity.

We define the SAM as the first empirical orthogonal func-
tion (EOF) of daily zonal-mean geopotential anomalies on
the 500-hPa level for the region south of 20° S (Bracegirdle
et al., 2020). The anomalies are calculated based on Gerber
et al. (2010). First, a time series of 500 hPa zonally mean
8(λ, t) is taken, where λ and t refer to latitude and time at
daily intervals, respectively, and the bar indicates zonal av-
erage. Then, for each day, we subtract the global mean of
500 hPa geopotential from 8(λ, t) at each latitude, and the
resulting data is linearly detrended. Lastly, a slowly varying
climatology 8̃(λ, t) is subtracted to remove the seasonal cy-
cle and the low-frequency nonlinear trends associated with
known external forcings such as the ozone hole formation/re-
covery and global warming signal. Such 8̃(λ, t) field is de-
rived in two steps following Gerber et al. (2010). To avoid
overfitting high-frequency noise, a 60 d low-pass filter is first
applied to the detrended8(λ, t) along the t axis to retain only
seasonal-scale variability. Specifically, we apply the discrete
Fourier transform to the time series and filter out compo-

nents with frequencies higher than 1/60 d−1. The resulting
smoothed time series is then reindexed by calendar day (d)
and year (y). For each calendar day (e.g., 1 January, 2 Jan-
uary, etc.), a 30-year low-pass filter is subsequently applied
along the y axis to extract long-term variations. If the data
span fewer than 30 years, the average across all available
years for that calendar day is used, resulting in a fixed, re-
peating annual cycle.

The resultant anomalies 8′(λ, t) reflect the internal/nat-
ural variability. We can then obtain SAM as the first EOF
of 8′(λ, t) over 20–90° S. For the computation of EOFs,
8′(λ, t) is weighted by

√
cos(λ) to account for the de-

creasing distance between meridians toward the pole. The
resultant leading EOF e (λ) represents the spatial patterns
of SAM, and its corresponding principal component time se-
ries PC(t) is referred to “SAM index”, expressed in normal-
ized form with zero mean and unit variance (Fig. 1a–b).

To quantify the SAM persistence, the decorrelation time
scale is computed based on the autocorrelation function of
the SAM index following Simpson et al. (2013a):

ACF(d, l)=

∑N−1
y=1 PC(d,y)PC(d + l,y)√∑N−1

y=1 PC(d,y)2
∑N−1
y=1 PC(d + l,y)

2 (1)

Here, the daily time series PC(t) is reindexed as a function of
calendar day d (e.g., 1 January to 31 December) and year y,
and N denotes the total number of years. Equation (1) com-
putes the autocorrelation of PC between a given day d and
a lagged day d + l, averaged over all available years. The
ACF(d, l) is then smoothed over a 181 d window along the d
axis (to smoothen daily fluctuations) using a Gaussian filter
with a full width at half maximum of 42 d (standard devia-
tion of 8 d). Finally, for each d, an exponential curve is fitted
to the smoothed ACF(l) up to a lag of 50 d using the least
squares method, and the e-folding time scale (τ ) is then de-
rived at which the exponential fit decreases to e−1 (Fig. 1c).

To provide a measure of sampling uncertainty of τ , we
perform 1000 times of bootstrap resampling, each time re-
drawing all yearly PC(d,y) with replacement to form a new
sample as large as the original sample size (N ). Repeating
the above ACF calculation for all bootstrap samples leads us
to 1000 values of τ for a given day (Fig. 1c), showing its
possible range.

Note that the above EOF analysis is performed separately
for all datasets to identify SAM as the leading mode within
each simulation, allowing for potential differences in its spa-
tial structure across models.

3.2 Tropospheric westerly jet position

The westerly jet position is diagnosed following Menzel et
al. (2019) and Barnes and Polvani (2015) using the output on
the native model grid. We first identify the latitude (λmax) of
the maximum monthly zonally averaged 850 hPa zonal wind
between 75 and 10° S. Then, we apply a quadratic fit to the
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Figure 1. Example of the SAM decorrelation timescale and eddy feedback strength calculation based on ERA5: (a) the first EOF pattern
based on 500 hPa geopotential; (b) the associated first PC1 time series (only a partial segment is shown here); (c) autocorrelation function
(ACF) of the SAM index (smoothed with a Gaussian filter) shown for a given day of the year (black dashed), and an exponential fit (yellow).
The e-folding timescale is denoted as τ . The calculation of ACF is repeated 1000 times for the bootstrap samples (gray). (d) Same as panel (a)
but based on vertically averaged zonal wind. (e) Lagged regression of the budget terms in Eq. (3) onto the SAM index. (f) Eddy feedback
strength b for lags 7–14 d.

zonally averaged zonal wind at λmax and at the two adjacent
latitudes to the north and south. The latitude corresponding to
the maximum value of this quadratic fit defines the position
of the tropospheric westerly jet.

3.3 Contribution of atmospheric eddy feedback
strength to SAM persistence

Various methods have been proposed to quantify the strength
of tropospheric eddy-mean flow feedback. We adopt the ap-
proach of Simpson et al. (2013b), as it has been applied
to CMIP5 model evaluation and is highly correlated with
the summertime SAM persistence bias (coefficient of 0.83).
This approach estimates the contribution of eddy momentum
flux convergence to the tendency of SAM-associated west-
erly wind anomalies. Therefore, within this framework, SAM
is alternatively described by the first EOF of vertically av-
eraged (pressure weighted) zonal-mean zonal wind anoma-
lies, deseasonalized and detrended, over 20–90° S. The re-
sultant EOF latitudinal pattern (e) and associated PC time
series are defined such that the former has units of m s−1

(Fig. 1d), the latter has unit variance, and their multiplication
reconstructs the SAM-associated zonal wind anomaly fields
in latitude and time space. This shift from a definition of the
SAM persistence timescale using geopotential height to the

zonal wind for the estimation of the eddy-mean flow feed-
back is based on the standard assumption that geostrophic
equilibrium provides a good approximation of the relevant
variables. However, ageostrophic terms can also contribute
to SAM persistence, introducing limitations to this hypoth-
esis (Vishny et al., 2024; Smith et al., 2024). For simplicity
and consistency with Simpson et al. (2013b) in their CMIP5
assessment, only three pressure levels of 850, 500, 250 hPa
are utilized for this analysis.

A quantity or a forcing term (denoted asX as an example)
associated with the SAM is derived by projecting it onto the
EOF pattern (e) with the operator:

[
X
]
s
=

[
X
]

We
√
eTWe

, (2)

where the overbars denote the zonal mean, brackets indicate
the vertical average,

[
X
]

is a vector form of
[
X
]
(λ, t), where

λ and t are latitude and time, and W is a matrix with di-
agonal elements equal to the cos(λ) weighting (Simpson et
al., 2013b). The resultant

[
X
]
s

is a time series. How strongly
the eddy forcing sustains the SAM wind anomalies is then
estimated by projecting the vertically and zonally averaged
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zonal momentum equation onto e:

∂[u]s
∂t
= [m]s +

[
F
]
s

(3)

[m]s =−

 1
acos2λ

∂
(
u′v′cos2λ

)
∂λ


s

(4)

where [m]s is the eddy momentum flux convergence at-
tributed to SAM, u′ and v′ are the deviation of the zonal
and meridional velocities from their zonal means, respec-
tively, and are calculated based on the instantaneous fields
at 6-hourly intervals before being converted to daily means,
a is the Earth radius, and

[
F
]
s

represents all the residual
momentum forcing associated with SAM. Note that Eq. (3)
assumes that the sum of individual projected forcing terms
on the right-hand side is in balance with the tendency of the
SAM anomalies. Simpson et al. (2013b) demonstrate the va-
lidity of this assumption.

Lorenz and Hartmann (2001) hypothesized that the eddy
forcing of the SAM consists of a random component and
a feedback component that depends linearly on the pre-
existing state of SAM, [m]s = m̃+ b[u]s , where b de-
notes the eddy feedback strength. To obtain b, Simpson et
al. (2013b) performed the lagged linear regressions of [m]s
and [u]s onto the SAM index PC(t), such that for a lag day
l, [m]s (t + l)≈βm(l)PC(t) and [u]s (t + l)≈βu(l)PC(t),
where βm and βu are the regression coefficients (Fig. 1e). Ac-
cordingly, the eddy forcing of SAM at lag l, [m]s (t + l), can
be expressed as βm(l)PC(t)=βm̃(l)PC(t)+ bβu(l)PC(t).
Assuming that the random component of the eddy forcing is
uncorrelated at sufficiently large positive lags, i.e., βm̃ ≈ 0,
we can estimate the eddy feedback strength as a function of
lag days (l) by

b(l)=
βm(l)

βu(l)

Following Simpson et al. (2013b), b is averaged over lags 7
to 14 d (Fig. 1f). The approach followed here assumes that
analyzing only the first PC is a good approximation to study
SAM persistence. While the PCs are uncorrelated on short
timescales (by construction), this is not the case at longer
lags and the coupling between the first two components influ-
ences SAM persistence (Sheshadri and Plumb, 2017; Lubis
and Hassanzadeh, 2021; Lubis and Hassanzadeh, 2023). An-
alyzing only the first PC brings thus clear limitations in our
analysis. Furthermore, positive regression coefficients could
be caused by non-stationarity of the series and in particu-
lar by interaction with the stratosphere and not just by eddy
mean flow interactions. This introduces biases in the estimate
of eddy feedback, particularly in late spring and summer
(Byrne et al., 2016, 2017), although this does not necessarily
prevent using the regression method (Ma et al., 2017). The
methodology is thus imperfect, but it provides an interpre-
tative framework for the difference between the simulations
and allows a comparison with earlier studies.

3.4 Contribution of surface friction to SAM persistence

While eddy momentum flux convergence primarily supports
the persistence of SAM, surface friction predominantly acts
to dissipate SAM anomalies. Since the friction forcing is not
a standard output of EERIE simulations, we estimate it from
the available variable: the turbulent wind stress in the east-
ward direction (in units of N m−2). By assuming the turbu-
lent wind stress is zero at the model top, we can estimate the

friction as 0−ρ−1
0 WS0
H0

, where WS0 indicates the daily-mean
eastward turbulent stress near the surface, resulting from tur-
bulent atmospheric eddies (due to the roughness of the sur-
face) and turbulent orographic form drag. For simplicity, we
assume fixed values of the air density ρ0= 1.204 kg m−3 and
the atmosphere column depthH0= 8464 m here. Following a
similar approach for calculating [m]s , we projected the result
onto the EOF pattern (e) to obtain the frictional forcing for
the SAM zonal wind anomalies, denoted as

[
f
]
s
. To provide

an alternative measure of friction forcing and verify the esti-
mation, the residual term of Eq. (3),

[
F
]
s
, is also computed

based on the estimates of the acceleration and eddy momen-
tum flux convergence, given the dominance of friction in this
residual as shown in Simpson et al. (2013b).

It is important to note that the projection values of all bud-
get terms are resolution (number of data points)-dependent,
as defined by Eq. (2). Therefore, their magnitudes are not di-
rectly comparable across datasets with differing resolutions
unless regridded to a common grid, as done here.

4 Results

4.1 Model performance for SAM persistence

Figure 2 compares the performance of EERIE and CMIP6
models in representing SAM persistence, measured by the
decorrelation time scale (τ ). Consistent with Bracegirdle et
al. (2020), CMIP6 models tend to overestimate SAM persis-
tence compared to the reanalysis data analyzed over the same
historical period (1980–2014). On the annual mean, CMIP6
presents a median value of 11 d, while the ERA5 shows a τ of
8 d. A reduced bias is found for EERIE coupled simulations
with a median τ of 9 d, although the distribution spread is
still large, suggesting a large inter-model variability. Among
these simulations, positive biases persist in the IFS-FESOM2
1950control (τ = 13) and historical (τ = 11) runs, and ICON
historical simulation show negative bias (τ = 6). Meanwhile,
HadGEM3 piControl (τ = 9) and ICON 1950control (τ = 8)
runs are closer to ERA5. Given that some of these simula-
tions are run under a pre-industrial 1850s’ or 1950s’ forcing,
we also examine the result based on an earlier-period ERA5
(1958–1978), for which τ increases to 10 d. Note, however,
that there is relatively less confidence in the accuracy of the
value of the SAM in ERA5 prior to the satellite era. Never-
theless, EERIE still show an improved agreement with ERA5
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as their τ fully cover the uncertainty ranges of ERA5 for both
periods.

During the austral early summer (NDJ), the overestima-
tion of SAM persistence in CMIP6 is more pronounced with
a longer tail of τ distribution. The maximum and median τ in
CMIP6 is 32 and 17 d, respectively, compared to the ERA5
value of 11 d for the same historical period. Compared to
CMIP6, EERIE coupled simulations exhibit some improve-
ment with the maximum and median values dropping to 20
and 16 d, respectively. However, the spread among different
EERIE simulations remains large; while the positively biased
τ are mostly captured by IFS-FESOM2, ICON tends to ex-
hibit much smaller τ than ERA5 at 6–7 d.

Interestingly, the atmosphere-only EERIE simulations
(IFS-AMIP) generally outperform the ocean-coupled runs,
exhibiting a reduced positive bias in τ compared to their cou-
pled versions (IFS-FESOM2) and a much smaller spread.
This suggests that the prescribed historical SST boundary
condition serves a strong physical constraint on the SAM per-
sistence. With all five members considered, the simulated τ
at 28 km is still positively biased for both annual and austral-
summer means, but the biases do not exceed more than 4.5 d
and at least one member presents almost identical values (8 d
annually and 11 d in NDJ) to ERA5 (1980–2014). Refining
the atmospheric resolution from 28 to 9 km suggests a lower-
ing of the SAM decorrelation timescale, with τ of 8 d an-
nually and 10 d in NDJ. However, the difference may not
be robust, as the bootstrapped error bars of both resolutions
overlap.

4.2 The relationship between jet location and τ

The bias relationship between westerly jet location (λ0) and
SAM decorrelation timescale (τ ) is then re-visited. Similar
to their predecessors, CMIP6 models show a positive corre-
lation between λ0 and τ , that is, models with a more equa-
torward jet location tend to exhibit a more persistent SAM.
Consistent with Simpson and Polvani’s (2016) result based
on CMIP5 models, the slope of the linear fit is larger during
NDJ, indicating a larger variation in τ given the same varia-
tion in λ0 during this season.

As EERIE results suggest that higher resolution may re-
duce persistence biases, we examine the model resolution of
each CMIP6 simulation. However, there appears no strong
or clear relationship between the model resolution and the
model biases in either τ or λ0 (the conclusion holds for both
latitudinal and longitudinal resolutions and for both atmo-
spheric and oceanic components, although only the atmo-
spheric latitudinal resolution is expressed in Fig. 3). A po-
tential dependency on resolution could be obscured in the
CMIP6 ensemble by other compensating factors arising from
different model configurations and system designs. However,
it is also possible that resolution-driven improvements have
plateaued within the typical grid size range of current GCMs
(e.g., CMIP6). For instance, based on simplified atmospheric

GCMs with idealized forcing, Gerber et al. (2008) found that
the decorrelation timescale of the annular mode is unrealisti-
cally large at a coarse resolution of T21 (5.6°). While such a
bias was notably reduced by refining the model resolution to
T42 (2.8°), no further improvement was shown with a higher
resolution of T85 (1.4°) and the τ converges to a still pos-
itively biased value. No test was performed in this study to
determine if τ is improved again at even higher resolution or
if the plateau continues.

On the annual mean, EERIE simulations generally fall
within a region smaller than that covered by CMIP6, with
the IFS-FESOM 1950control being the worst performing ex-
periment among the EERIE simulations (Fig. 3a), showing
both the greatest positive bias in τ and λ0. For NDJ, the
spread of EERIE clearly shifts toward a lower τ , closer to
ERA5’s τ compared to other CMIP6 exhibiting a similar jet
location. In all, a positive λ0–τ relationship remains and ap-
pears stronger in summertime across EERIE models (Fig. 3).
The most skillful EERIE simulations for the SAM persis-
tence, IFS-AMIP, all well capture the jet location (with a bias
1°). This highlights again the importance of well-represented
sea surface features to the large-scale atmospheric circulation
and variability. Still, even with the same IFS model and the
same 28 km grid size, the five IFS-AMIP ensemble members
exhibits a spread in τ of about 5 d, which is not positively cor-
related with the corresponding simulated jet location. Note
that the ensemble members were generated by perturbing the
initial conditions, and so the only difference is the internal
atmospheric variability. This result suggests that the docu-
mented bias relationship between τ and λ0 in the literature
does not hold in this configuration with prescribed SSTs. It
is also possible that when the jet location has already been
well-captured, other factors become increasingly important
to influence the persistence of SAM, and we explore some
of these potential factors in the next section using idealized
sensitivity experiments.

4.3 Sensitivities to varying SST boundary conditions

EERIE simulations demonstrate a reduced bias in summer-
time SAM persistence compared to CMIP6, but identifying
the cause is challenging due to variability in model systems.
Although CMIP6 results show no clear link between model
resolution and performance in τ and λ0, the higher resolu-
tion in EERIE remains one possible contributing factor to
such an improvement. One piece of evidence is the reduction
in τ when transitioning from a 28 to a 9 km model grid size
using a consistent IFS model. Another possibility is that the
new generation of models in EERIE improves model physics,
reducing the biases in processes that resulted in a overly-
persistent SAM in earlier CMIP-like GCMs. In addition,
EERIE begins to explicitly resolve the ocean mesoscales,
which are parameterized in CMIP6, though the resulting im-
pacts on SAM persistence have not been investigated. To ex-
plore these possibilities within a controlled framework, this
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Figure 2. Distribution of τ (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations. CMIP6 and EERIE AMIP
are both historical simulations, with a fixed period indicated in the x-axis labels, and the EERIE coupled simulations cover varied periods
as indicated in Table 1. ERA5 is analyzed for two time periods. CMIP6 results from 31 experiments are presented in violin plot, in which
the width indicates the density of the data points, the thin gray vertical box in the middle shows the 25th–75th quantiles, and the white dot
presents the median. For the rest, error bars are added wherever applicable to show the ±1 standard deviation of τ from the 1000 bootstrap
resampling.

Figure 3. Scatter plot of climatological jet latitude (degrees) versus SAM decorrelation timescale τ (days; error bar indicates ±1 standard
deviation from the bootstrapping) for (a) annual and (b) early-summer (NDJ) means in the Southern Hemisphere. Green crosses are based
on CMIP6 historical simulations (colored by their latitudinal atmospheric resolution). Model names are not labeled here for visual clarity,
but details are provided in Table S1 in the Supplement. ERA5 reanalysis and EERIE simulations are indicated as in the legend. Vertical and
horizontal black lines are the ERA5 values. The green dotted straight line is the linear least-squares regression fit for CMIP6 models (slope
is denoted as m, and Pearson correlation coefficient r is expressed in bold if statistically significant with the p value< 0.05 in green in the
top left corner). Similarly, the black dotted fitted line is for all EERIE simulations.

section focuses on EERIE atmosphere-only sensitivity exper-
iments with and without SST eddies (ObsSST vs. NoEddies)
at two model resolutions.

We first focus on the 28 km simulations. Regarding the
seasonal variation of τ (Fig. 4a), the NoEddies experiments

exhibit intermingled patterns overlapping with those of Ob-
sSST. Although their ensemble means suggest a slight re-
duction in τ (by approximately 2 d) in NDJ in the absence of
ocean eddies – hinting that mesoscale SST features may help
sustain SAM persistence – this difference is not statistically
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Figure 4. Analysis of the IFS-AMIP idealized experiments (black for ObsSST and red for NoEddies; yellow for ERA5 as reference): (a) SAM
decorrelation timescale (τ ) as a function of month for 28 km simulations (dashed for individual ensemble members and solid for ensemble
means). (b) Similar to panel (a) but for 9 km experiments (shades for the ±1 standard deviation of τ from the 1000 bootstrap resampling).
(c) Scatter plot of τ (days; y axis) and westerly jet latitude (x axis; filled-color markers for 28 km; hollow stars for 9 km simulations). (d)–
(e) Similar to panel (c) but with x-axis variable replaced with the eddy feedback strength and frictional impact, respectively. In panels (b)–(d),
the same marker shape indicates the same ensemble member. The gray dotted line represents the linear regression fit, and the correlation
coefficient and p value are indicated in the top-right corner.

significant at 95 % confidence level. For the 9 km configu-
ration, the subtle impact of ocean eddies is not observed as
NoEddies shows no clear changes in τ from ObsSST, and
both show smaller τ than the 28 km counterparts (Fig. 4b).

All these sensitivity experiments show a slightly poleward
biased jet latitude compared to ERA5 (within 1°) during
NDJ, and ObsSST are generally less biased than NoEddies
(Fig. 4c). While this seems to be in agreement with the lit-
erature that a more southward-shifted jet is associated with
a longer SAM persistence, the correlation between λ0 and
τ is weak (with a correlation coefficient of 0.03) across all
simulations in the IFS-AMIP configurations.

Compared to λ0, the metric eddy feedback strength b

shows a much stronger correlation with SAM persistence
τ , with a higher correlation coefficient of 0.52 and a lower
p value of 0.08 (Fig. 4d), suggesting it may be a more infor-
mative indicator of SAM persistence in this configuration.
Meanwhile, the surface friction and τ exhibit a negative cor-
relation (Fig. 4e) with a moderate correlation coefficient of
−0.48 and p value of 0.11. It is worth noting that our results
using

[
f
]
s

based on surface wind stress show qualitatively
consistent patterns with those using the residual estimates,[
F
]
s
, across simulations despite some differences in the ab-

solute values (Fig. S1a, b in the Supplement). A closer exam-
ination shows that the member with the largest value in

[
f
]
s

is accompanied by the weakest eddy feedback b (red cross
markers in Fig. 4d, e) and vice versa (red square). The op-
posite shifts of these two dominant mechanisms indicates an
offset between each other, leading to subtle combined effects
on the SAM persistence.

Lorenz and Hartmann (2001) proposed that the eddy feed-
back can interact with the frictional impact to lengthen the
effective timescale of SAM by tf

(1−btf )
, where tf is the

damping timescale. Here, we estimate tf by taking the ra-
tio between the regressed [u]s (in unit of m s−1) and the re-
gressed

[
F
]
s

(unit of m s−2) averaged over the 7–14 lag days,
which gives a value of 8.6 d for ERA5 (close to the 8.9 d in
Lorenz and Hartmann, 2001). This metric correlates with τ
more strongly than b or

[
f
]
s
(
[
F
]
s
) alone, showing a higher

correlation coefficient of 0.61 and a lower p value of 0.03
(Fig. S1d). This result points to the importance to assess the
joint/net impact of the competing dominant mechanisms.

However, although those metrics explain some of the
differences between individual experiments, none of them
shows systematic differences between ObsSST and NoEd-
dies and none clearly accounts for the significant reduction in
τ when the model grid size is refined from 28 to 9 km. Con-
sidering the large variability in the 28 km ensemble mem-
bers, one member at 9 km may be not enough to identify the
influence of the resolution. Additional simulations and dif-
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ferent experimental approaches may be required to confirm
the underlying cause for the observed model grid spacing de-
pendency.

5 Discussion and conclusions

This study assesses the performance of new high-resolution
global model simulations developed under the EERIE project
in capturing the persistence of the Southern Annular Mode
(SAM), a leading mode of climate variability in the South-
ern Hemisphere. EERIE simulations are conducted with a
model grid size of 9–28 km for the atmosphere and 5–13 km
for the ocean. The persistence of the SAM is assessed using
the decorrelation timescale of the SAM index (τ ), for which
CMIP GCMs have historically exhibited a systematic posi-
tive bias (overly persistent) in austral summer, often corre-
lated with a climatological westerly jet that is too equator-
ward. Our conclusions and discussion based on the phase 1
preliminary simulations of the EERIE models are organized
into two subsections: (1) the performance of coupled simu-
lations, and (2) the performance of atmosphere-only (AMIP)
simulations and insights obtained from the sensitivity experi-
ments with varied SST boundary conditions under the AMIP
setup.

5.1 EERIE Coupled simulations

Compared to CMIP6, the EERIE coupled simulations show
improvement in representing the SAM persistence. Although
the inter-model variability remains large, the annual τ distri-
bution of EERIE coupled simulations clearly shifts to lower
biases with a median value of 9 d, closer to the ERA5 value
of 8 d than the CMIP6’s median of 11 d. During early sum-
mer, the pronounced long tail of τ in CMIP6 simulations is
also noticeably reduced in EERIEs, with the former ranging
from 9 to 32 d (median: 16 d) and the latter ranging from 9
to 17 d (median: 14 d) closer to ERA5’s 11 d. The relation-
ship between biases in the westerly jet location (λ0) and τ
remains positively correlated in EERIE simulations as has
been documented for CMIP-like models. Consistently, the
smaller bias for τ in EERIE simulations is accompanied by
improved representation of λ0 compared to CMIP6. How-
ever, some CMIP6 models capture jet locations similar to
EERIE, yet still perform worse for τ , suggesting other fac-
tors are at play. While the improvement of EERIE models
compared to CMIP6 indicates that increased resolution can
offer benefits, the varied skills within CMIP6 in represent-
ing either λ0 or τ do not show a clear dependency on the
model resolution. It is possible that the impact of resolu-
tion is outweighed by other varying factors in CMIP6, or that
resolution-driven benefits have plateaued within the grid-size
ranges in current CMIP6 and require more substantial reso-
lution refinement to emerge.

5.2 EERIE Atmosphere-only simulations

Among EERIE simulations, the IFS-AMIP runs with pre-
scribed historical SST and sea ice boundary conditions show
the optimal performance in both SAM persistence and west-
erly jet location, with smaller spreads and closer values to
ERA5 than the coupled runs. This highlights the importance
of accurately representing sea surface thermal conditions
to improve the simulation of these large-scale atmospheric
quantities. While Sen Gupta and England (2006) showed that
air-sea coupling is critical for modulating the SAM – albeit
focusing on interseasonal timescales, which are longer than
the intraseasonal scale investigated here – our results suggest
that atmosphere-ocean coupling plays a secondary role. In-
stead, SST biases introduced by the coupling – an ongoing
challenge in coupled GCMs (Zhang et al., 2023) – appear to
be more influential.

For the AMIP historical simulations, the λ0–τ bias rela-
tionship is virtually absent. We speculate that when the jet is
already well captured (all AMIP runs are with< 1° bias) and
SSTs are prescribed, other second-order processes may come
into play to affect τ . Indeed, we find that the metrics of at-
mospheric eddy-mean feedback strength, surface friction and
their joint effect correlate more strongly with τ than with λ0
in the AMIP configurations, highlighting the importance of
these mechanisms on SAM persistence. However, these met-
rics cannot fully explain the clear reduction of τ when the
model resolution is refined from 28 to 9 km using the same
atmospheric model.

Finally, the thermodynamic impact from the ocean
mesoscale features is explored via idealized AMIP exper-
iments by filtering out the transient ocean eddies (NoEd-
dies) in the SST boundary conditions. While the difference
between the 28 km ensemble means of ObsSST and NoEd-
dies imply that the ocean mesoscale SST features may help
to maintain the SAM anomalies (increase τ by roughly 2 d)
in early summer, such an impact is not statistically signif-
icant and is not captured in the 9 km simulations. Among
the 28 km members, we also do not see a systematic change
of eddy feedback or surface friction due to the presence
or absence of ocean eddies in the SST field. The critical
role of oceanic mesoscale eddies in the Southern Ocean cli-
mate system is well documented. While their local impact on
the atmospheric boundary layer is well established, their di-
rect influence in modulating large-scale modes such as the
SAM appears limited under our AMIP setup without air-
sea coupling. A similar conclusion was obtained by Purich
et al. (2021) with a coarser coupled GCM (model resolu-
tion of ∼ 130 km), ACCESS1.0. They found that suppress-
ing Southern Ocean SST variability by restoring the SST
to the monthly mean patterns does not impact SAM persis-
tence in their simulations, but they also concluded that eddy-
resolving models are required to properly capture the air–sea
feedbacks in the Southern Hemisphere.
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The superior performance of the AMIP compared to cou-
pled simulations might suggest that model skill in repre-
senting SAM persistence gains little from two-way ocean–
atmosphere coupling or explicit resolving ocean mesoscale
features. Our hypothesis is that while coupled models offer a
more physically consistent representation of the climate sys-
tem, they also tend to introduce SST biases – potentially due
to under-tuning in high-resolution configurations or imbal-
ances in the coupling process. In fact, previous studies have
shown that eddy-permitting models can exhibit larger SST
biases than either coarser models with parameterized eddy
fluxes or fully eddy-rich models (e.g., Storkey et al., 2025).
Reducing SST biases remains essential for advancing the
representation of SAM and Southern Hemisphere climate
variability. The large variability among ensemble members
highlights the intricate mechanisms behind SAM persistence
in GCMs. It urges deeper investigation and alternative ap-
proaches to resolve outstanding questions regarding the at-
mospheric variability in the Southern Hemisphere. For ex-
ample, this study only considers the zonally averaged prop-
erties, but non-zonal components likely play important roles
in shaping SAM characteristics and hence their representa-
tion in GCMs (e.g., Barnes and Hartmann, 2010; Sen Gupta
and England, 2006). Nevertheless, the general improvements
seen in the phase 1 simulations of the EERIE coupled mod-
els present promising results in addressing the long-standing
GCM biases in SAM persistence, especially considering the
challenges in optimally configuring high-resolution models
(i.e., tuning) and the lack of community experience in doing
so. Furthermore, the controlled framework of the IFS-AMIP
idealized eddy-rich experiments offers significant potential
for enhancing our understanding of atmospheric responses
to ocean mesoscales.

Code and data availability. All EERIE simulation outputs are pub-
licly accessible at https://eerie.cloud.dkrz.de (last access: 29
September 2025) and https://doi.org/10.5281/zenodo.14243677
(Wachsmann et al., 2024). The calculation of EOFs was
performed using the publicly available Python package by
Dawson (2016). Example scripts used for the analysis and
figure generation can be found in the GitHub repository
https://doi.org/10.5281/zenodo.17258010 (Chen and Davrinche,
2025).
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