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S1. LIM Tests  1 
 Penland and Sardeshmukh (1995) outline a series of tests to ensure the LIM that has been 2 
constructed behaves according to the underlying assumptions of a linear system forced by white 3 
noise. The noise covariance matrix should be positive and less than one, as is the case in both 4 
LIMs constructed here (Table S1), confirming the system composed by the state vector may be 5 
approximated by the LIM components, namely the deterministic operator and the noise. Another 6 
test is the behavior of the error; the error of both LIMs used in this study closely matches the 7 
error predicted from theory and is lower that of forecasts from persistence and a first-order auto-8 
regressive process (Fig. S3).  9 
 In a perfectly linear system, the LIM would be independent of its training lag 𝜏𝑜, while in 10 
reality this is not the case due to imperfect observations and nonlinearities (discussed further in 11 
Penland and Sardeshmukh 1995). One assessment of how linear a system represented by a LIM 12 
is, is to test how well the LIM, trained on a lag 𝜏𝑜 can reproduce the lagged covariance at lags 13 
longer than 𝜏𝑜 (Newman et al. 2011; example of LIM-predicted covariance for a 12-month lag: 14 
C(12)=G(3)^4*C0)). For VPD, the observed lagged covariance decreases markedly at a lead 15 
time of 6 months and longer, but persists even out to a 36-month lag in the western US (Fig. S4). 16 
The lagged covariance expected from the 3-month G produces a very similar evolution, although 17 
the amplitude of the covariance is lower than observations. However, this is the case even for the 18 
equal-time covariance C0-LIM, implying the variance truncation of VPD also affects the lagged 19 
covariance which is not surprising. Nonetheless, overall the evolution and pattern produced by 20 
the LIM is generally in good agreement with observations even lags that are 12 times longer than 21 
the 3-month training lag, so we conclude the LIM approximation of linearity holds suitably well. 22 
This is bolstered by the high forecast skill the LIM is able to produce at longer lead times (Figs. 23 
2-3).  24 
 25 
S2. LIM Trend Removal  26 
 The least damped eigenmode of the LIM that includes the trend displays a temporal 27 
evolution reflecting the trend (Fig. S5a). However, it is possible that some variability in the least 28 
damped eigenmode is a convolution with other modes of the system. For these reasons, the 29 
Gram-Schmidt orthogonalization procedure (Lankham et al. 2024) is used to remove any 30 
projection of other modes onto the least damped eigenmode, resulting in a time series with lower 31 
variability and behavior more indicative of the long-term warming trend (Fig. S5b). The pattern 32 
associated with this modified time series is determined by regressing the time series onto the 33 
VPD/SST/SM components of the state vector, and the combination of the time series and pattern 34 
are used to create trend-related anomalies for each timestep and variable in the record. To 35 
detrend each variable, these trend-related anomalies are subtracted from the full field anomalies. 36 
A new LIM is constructed using the detrended VPD and SST anomalies as described in the 37 
Methods section.  Time series of area-averaged VPD and SSTs with and without the trend thus 38 
defined confirm that this method of detrending has the desired effect (Fig. S6).  39 
 40 
 41 
 42 
LIM with Trend: 

eig(Q) 

LIM without Trend: 

eig(Q) 

    0.0008     0.0023 

    0.0017     0.0029 



    0.0033     0.0032 
    0.0037     0.0040 

    0.0041     0.0042 

    0.0044     0.0050 

    0.0051     0.0055 

    0.0060     0.0068 
    0.0069     0.0073 

    0.0077     0.0085 

    0.0093     0.0090 

    0.0103     0.0096 

    0.0130     0.0111 
    0.0136     0.0133 

    0.0181     0.0147 

    0.0219     0.0166 

    0.0246     0.0174 

    0.0315     0.0198 
    0.0499     0.0232 

    0.0663     0.0267 

    0.0975     0.0422 

    0.1333     0.0556 
    0.1848     0.1179 
     0.1234 
     0.1885 

 43 
Table S1: Eigenvalues of the noise parameters of the LIM including the trend (left column) and 44 
the LIM without the trend (right column) for each mode: there are 23 and 25 modes for the LIM 45 
including and removing the trend, respectively.  46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 



S3. Supplemental Figures 64 

  65 
Fig. S1: As in Figure 2 but using a LIM trained with NOAA Extended Reconstructed SST V5 66 
(ERSSTv5; Huang et al. 2017) anomalies instead of JRA-55 SST anomalies. Note: panel c) is 67 
identical to Fig. 2c.    68 
 69 



 70 
Fig. S2. ACC difference between the LIM including SM subtracted from the LIM without SM 71 
(SM – no SM). Positive (blue) values indicate skill improvements with the inclusion of SM.  72 



73 

 74 
Figure S3: Forecast error as a function of lead time for the LIM compared to error from  75 
persistence and AR(1) forecasts, as well as the LIM error that is expected from theory, trace(E), 76 
for a) the LIM including the trend and b) the LIM without the trend.  77 



 78 
Figure S4: Observed (left two columns) and LIM-calculated (right two columns) VPD 79 
covariance calculated at lags from 0 – 36 months.  80 
 81 
 82 
 83 

 84 
Figure S5: a) Time series of the unaltered least damped LIM eigenmode and b) the modified 85 
‘trend’ time series after the Gram-Schmidt orthogonalization procedure has been performed.  86 



 87 
Figure S6: Panels a) – b) show the time series of VPD anomalies averaged over the western US 88 
GACCs (Fig. 1), computed a) before and b) after the trend is removed. Panels c) – d) show the 89 
time series of SST anomalies averaged over the western tropical Pacific (5S - 10N, 120 – 90 
160E) computed a) before and b) after the trend is removed.  91 
 92 

 93 
Figure S7: Relative amplitude of each mode in the detrended LIM. Modes are arranged from 94 
shortest (left) to longest (right) e-folding timescale.  95 
 96 
 97 
 98 
Mode # Period (months) E-folding Timescale 

(months) 

1,2    60.1940     1.5369 



3,4    12.3509     1.5439 

5,6   537.2377     2.0707 

7,8    20.1352     2.2749 

9,10    16.0148     2.5968 

11,12    40.7331     2.7562 

13          0     3.6566 

14,15    37.0622     4.1187 

16           0     4.6003 

17           0     5.7027 

18          0     7.0340 

19,20    30.3200     8.0506 

21,22    83.1904     9.5954 

23          0    11.5343 

24           0    17.0438 

25          0    19.0051 

 99 
Table S2: E-folding timescale and period of detrended LIM eigenmodes. Modes 1-10 (red) 100 
represent the VPD-only subspace while Modes 11-15 (blue) compose the SST-VPD subspace.  101 
 102 



 103 
Fig. S8: As in Figure 2 but for root-mean-square error (RMSE) of VPD. Panel a) RMSE of DJF 104 
LIM forecasts made for the following JJA, b) area-averaged LIM forecasts and c) a persistence 105 
forecast. RMSE is normalized by the standard deviation of the observed VPD anomalies, which 106 
is calculated for each verification month separately.  107 



 108 
 109 
Fig. S9: Normalized RMSE averaged over a) the western US (Fig. 2a), b) Southwest, c) Southern 110 
California (SoCal), d) Northern California (NorCal), e) Great Basin, and f) Northwest subregions 111 
for LIM forecasts that included the trend in its suite of unfiltered ICs. 112 
 113 
 114 
 115 
 116 
 117 



 118 
 119 
Figure S10: Area-averaged (see Fig. 1) ACC of VPD in the detrended LIM, using a) full initial 120 
conditions (ICs) and LIM-based least damped eigenmode method of trend removal, b) full ICs 121 
and linear detrending method of trend removal. Both forecasts are verified against detrended 122 
VPD anomalies using the altered least damped eigenmode. 123 

 124 
Figure S11: Skill of six-month a) SFOs and b) non-SFOs, and the decomposition of SFO skill 125 
into c) SST-VPD and d) VPD-only contributions. Black stippling in panel a) shows where SFO 126 
ACC is statistically significantly different from non-SFO ACC at 95% confidence. 127 
 128 



 129 
Figure S12: Number of three-month lead time SFOs counted for each initialization season.  130 
 131 

 132 
Fig. S13: Relative risk of 3-month lead time VPD SFOs as a function of Niño3.4. The risk is 133 
relative to the unconditional probability of an SFO occurring, which is 0.15. 134 
 135 
 136 



 137 
Figure S14: System growth measured by the first (black, OP1) and second (blue OP2) greatest 138 
eigenvalues, as a function of growth period, for OP1 and OP2. The black dotted line shows the 139 
growth associated with the error covariance, trace(E).  140 
 141 
 142 
 143 
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