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Abstract. Saturation vapor pressure deficit (VPD), a mea-
sure of the difference between how much moisture the at-
mosphere can hold versus how much is present, is highly
correlated with the annual mean area burned by wildland
fires in the western United States. The present analysis uses
linear inverse models (LIMs) to forecast seasonal VPD and
decompose skill into contributions from a nonlinear trend,
coupled sea surface temperature (SST)-VPD variability, and
VPD-only variability. Subregions of the western US are con-
sidered using Geographic Area Coordination Centers which
have different times of year and lead times for which VPD
forecast skill is greatest. However, the sources of skill are
similar among the subregions. In LIM forecasts, particularly
those made for summer and early fall, the trend contributes to
VPD skill up to 18 months in advance, with a secondary con-
tribution from internal VPD variability at lead times of one to
two months. Positive SST and VPD anomalies and negative
soil moisture anomalies are associated with the positive sign
of the trend time series, which has been observed without in-
terruption since the late 1990s. Coupled SST-VPD variability
contributes to VPD skill mainly for forecasts verifying be-
tween December to May for lead times up to 12 months in
some subregions. Forecasts that are especially skillful and
display high confidence, seasonal forecasts of opportunity
(SFOs), are associated with SSTs that produce high VPD
skill over California, the Southwest, and Texas, while inter-
nal VPD anomalies contribute to skill over the Great Basin
and western Northern Plains. SFOs are initialized during pe-
riods of El Niño-Southern Oscillation development, with La

Niña SSTs associated with positive western US VPD anoma-
lies and consequently, enhanced wildland fire risk.

1 Introduction

In the continental United States, wildland fires have in-
creased in terms of frequency and area burned in recent years
(Westerling et al., 2006; Higuera and Abatzoglou, 2021;
NIFC, 2022), with the “Western Wildfires of 2021” land-
ing on the U.S. 2021 and 2022 Billion-Dollar Weather and
Climate Disasters list (NOAA NCEI, 2022). The immedi-
ate physical danger and damage from wildfire impacts on air
quality and the water supply pose serious threats to public
health and well-being (Fifth National Climate Assessment
Chapters 25, 27, 28; Ostoja et al., 2023; Williams et al.,
2022) and to sensitive ecosystems (Coop et al., 2020; Yuan
et al., 2019). Past studies have revealed a positive and strong
relationship between water vapor pressure deficit (VPD) to
annual-mean burned area in the western US (Williams et al.,
2014; Abatzoglou and Williams, 2016; Higuera and Abat-
zoglou, 2021; Zhuang et al., 2021; Buch et al., 2023), while
higher nighttime VPD values have been linked to longer fire
days in recent decades (Chiodi et al., 2021). VPD (1) is the
difference between saturation vapor pressure (es) and actual
vapor pressure (ea), and is therefore a function of both tem-
perature and humidity. It has long been recognized as an ab-
solute measure of the near-surface atmospheric moisture dif-
ference (Anderson, 1936) with larger differences associated
with increased fuel aridity and higher burned area.
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Despite VPD’s relation to the area burned by wildland
fires, sources of seasonal (> one month lead time) VPD pre-
dictability have not been heavily studied, and it is unclear,
given how the two components of VPD are related to dif-
ferent climate patterns, what will influence the predictability
of the combination of temperature and moisture that VPD
represents. Through the large-scale and persistent circulation
anomalies it can produce, the El Niño-Southern Oscillation
(ENSO) has been linked to western US VPD anomalies and
drought; anomalous anticyclonic flow and subsidence asso-
ciated with La Niña conditions warms and dries the air col-
umn ultimately enhancing southwest US VPD (Hoell et al.,
2014; Seager et al., 2015, 2022; Mankin et al., 2021; Hoell et
al., 2022). Many studies have highlighted ENSO’s seasonal
predictability and its relevance for precipitation and temper-
ature forecasts (e.g., Barnett and Preisendorfer, 1987; Barn-
ston, 1994; Higgins et al., 2004; Quan et al., 2006; Tian et
al., 2014; Newman and Sardeshmukh, 2017; L’Heureux et
al., 2019, 2020; Becker et al., 2022), although these links
can depend on the time period studied and index used to cap-
ture ENSO (Wang and Kumar, 2015; Patricola et al., 2020).
The long-term temperature trend enhances VPD by increas-
ing es and influences the skill of temperature-related vari-
ables (Peng et al., 2013; Risbey et al., 2021). Conversely, ea
does not appear affected by the upward temperature trend and
was in fact found to decrease from 1981–2020 (Simpson et
al., 2024). Finally, soil moisture, a slowly-evolving quantity
that is the aggregate effect of precipitation, vegetation, and
surface fluxes on the moisture content of the soil, may also
be a source of VPD predictability given its high temporal au-
tocorrelation at depth (Rahman et al., 2015) and the potential
“reemergence” of soil moisture anomalies months after they
first develop (Kumar et al., 2019).

We use an empirical dynamical model – namely a linear
inverse model (LIM; Penland and Sardeshmukh, 1995) – to
test the hypothesis that sources of VPD predictability include
the long-term warming trend and ENSO, given their relation-
ship to VPD variability. A LIM decomposes climate anoma-
lies into a set of nonorthogonal eigenmodes, or “empirical
normal modes” (Hasselmann, 1988; von Storch et al., 1988;
hereafter referred to as “modes” or “LIM modes”). Due to
their nonorthogonality, these structures can evolve via inter-
ference to produce patterns of rapid anomaly growth or de-
cay (Penland and Sardeshmukh, 1995; Farrell and Ioannou,
1996; Henderson et al., 2020; see Albers et al., 2022, for a
recent discussion). LIM modes can be used to disentangle
how specific processes contribute to predictability on sea-
sonal and subseasonal timescales (Penland and Matrosova,
1994, 2006; Sardeshmukh et al., 2000; Newman et al., 2011;
Henderson et al., 2020; Albers and Newman, 2021; Breeden
et al., 2022b). Seasonal SST and ENSO forecasts produced
with a LIM can be as skillful as those from operational fore-
cast models (Newman and Sardeshmukh, 2017), suggesting
LIM may be useful for seasonal VPD prediction. Since LIM
forecasts here are built from reanalysis inputs, they do not

have biases that exist in seasonal forecast models such as
those related to ENSO (Beverley et al., 2023). This is advan-
tageous for a variable such as VPD, a quantity that climate
models struggle to simulate, given mean biases in the rep-
resentation of ea (Simpson et al., 2024) and that operational
seasonal forecast models have minimal low-level humidity
skill (McEvoy et al., 2016). Given the aforementioned skill
of LIM-based SST forecasts and the link between SST and
VPD in this region (e.g., Seager et al., 2015), we use a LIM
to represent and forecast seasonal VPD.

This article is organized as follows. Methods outlining the
reanalysis data used in this study and the processes to con-
struct LIM forecasts are discussed in Sect. 2. Section 3.1 ex-
amines seasonal western US VPD forecast skill and contri-
butions from a nonlinear trend, Sect. 3.2 considers detrended
forecast skill and contributions from coupled SST-VPD and
VPD-only variability, and Sect. 3.3 considers Seasonal Fore-
casts of Opportunity (SFOs) and their relationship to ENSO.

2 Data and Methods

2.1 Data

We use monthly mean Japanese Meteorological Agency
55 year Reanalysis (JRA-55; Kobayashi et al., 2015) SST,
top three levels of soil moisture (SM), 2 m air temperature
(2mT), and 2 m relative humidity (RH) from 1958–2021.
2mT and RH are used to calculate saturation vapor pressure
es, actual vapor pressure ea, and subsequently VPD (Eqs. 1
and 2):

VPD= es(T )− ea (1)

ea = es ·

(
RH
100

)
. (2)

The horizontal resolution and domains used for each variable
are shown in Tables 1 and 2. VPD, SST, and SM anomalies
are calculated with respect to the 1958–2021 monthly means;
a three-month running average is applied to the anomalies
thereafter.

VPD skill averaged over the western US is assessed us-
ing Geographic Area Coordination Centers (GACCs), or sub-
regions, that are used in resource planning and emergency
management by the National Interagency Fire Center (Fig. 1;
National Interagency Fire Center, 2025). This analysis con-
siders skill averaged over the Northern and Southern Califor-
nia, Great Basin, Southwest, and Northwest GACCs, as well
as over each of these subregions separately.

2.2 Linear Inverse Model

This study uses two Linear Inverse Models (LIMs): one
trained on anomalies that include a trend and one using de-
trended anomalies. For each LIM, the LIM operator and
LIM-based retrospective forecasts are calculated using the
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Table 1. Description of variables used to construct the VPD LIM that includes the trend. JRA-55 Reanalysis is used for each variable.

Variable Domain Horizontal Resolution # EOFs retained
(% variance explained)

SST 55° S–55° N, 0–358.75° E 1.25°× 1.25° 8 (54 %)
SM 24–50° N, 230–300° E 2°× 2° 6 (61 %)
VPD 25–50° N, 230–300° E 0.5°× 0.5° 9 (78 %)

Table 2. Description of variables used to construct the detrended VPD LIM. JRA-55 Reanalysis is used for each variable. Note that it is the
variance of the detrended anomalies that is indicated.

Variable Domain Horizontal Resolution # EOFs retained
(% variance explained)

SST 25° S–55° N 1.25°× 1.25° 13 (69 %)
VPD 25–50° N, 230–300° E 0.5°× 0.5° 12 (82 %)

Figure 1. Geographic Area Coordination Centers used by the Na-
tional Interagency Coordination Center.

same procedure (Sect. 2.2.1 and 2.2.2). The dynamical fil-
tering approach (Sect. 2.2.3) is used several ways: to iden-
tify a nonlinear trend and evaluate trend-related skill, detrend
anomalies for a second LIM, and decompose detrended VPD
forecast skill. Seasonal forecasts of opportunity are calcu-
lated for only the detrended LIM as described in Sect. 2.2.4.

2.2.1 LIM Operator

A LIM models the evolution of a subset of climate anoma-
lies defined by the state vector x (Eq. 3) using a linear ap-
proximation to the (fully nonlinear) slowly evolving dynam-
ics (Lx) and rapidly decorrelating stochastic processes F s
(Eqs. 4 and 5; Penland, 1989; Penland and Sardeshmukh,
1995). The linear approximation of the predictable dynamics
is determined by Eq. (5) using the lagged Cτo and zero-lag C0
covariance between the subset of relevant system variables
represented by x. A three-month lag τ0 is chosen to calculate

Cτo and subsequently L (e.g., Alexander et al., 2008; New-
man et al., 2011):

x = {SST,SM,VPD} (3)
dx
dt
= Lx+F s (4)

L= ln[Cτo · inv(C0)]/τo (5)

To reduce the dimensionality of x and consequently L, each
variable is considered in terms of empirical orthogonal func-
tions (EOFs) whose expansion coefficients, or principal com-
ponents (PCs), are used to construct x, L, and the EOF-
truncated forecasts. Enough PCs are included to retain the
majority of each variable’s variance over its respective do-
main (Tables 1 and 2). Since there are many SST datasets
available, we confirmed that VPD skill is insensitive to the
SST dataset used (Fig. S1 in the Supplement). Removing
SM anomalies from the LIM that includes the trend confirms
that including SM enhances the skill of VPD (Fig. S2 in the
Supplement). Several tests are required to ensure each LIM
is numerically stable and exhibits the properties of the lin-
ear approximation to the system; these tests, including the
tau-test, are detailed in Penland and Sardeshmukh (1995),
and are conducted for both LIMs used here to confirm the
suitability of the LIM to model the variables in x (Sect. S1;
Figs. S3 and S4, Table S1 in the Supplement).

2.2.2 VPD Forecasts

Retrospective forecasts x̂(τ ) of x are generated for a given
lead time τ , which ranges from 1–18 months, by integrating
the homogeneous component of Eq. (4) using the forecast
operator G(τ ) and initial conditions x(0):

x̂(τ )= x(0)exp(Lτ)= x(0)G(τ ) . (6)

Cross-validated forecasts are generated by dividing the data
into 16 “folds”, removing a single fold (4 years) at a time,
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recalculating L and using it to generate forecasts for the re-
moved four-year period (e.g., Breeden et al., 2022a, b; Albers
and Newman, 2019). To assess LIM forecast skill, we com-
pute the anomaly correlation coefficient (ACC) between time
series of the EOF-truncated forecast VPD and full-field (i.e.,
100 % variance) observed VPD at each grid point. The two
LIMs calculated using anomalies with or without the trend
included were used to generate separate forecasts. The LIM
forecasts containing the trend are verified against anomalies
also containing the trend, while the detrended LIM forecasts
are verified against detrended anomalies. LIM forecasts are
also compared to persistence forecasts that are generated us-
ing the full-field VPD anomalies. A persistence forecast as-
sumes there is memory in the system, which may arise from
a warming trend, or, say, slowly evolving SSTs that could
lead to forecast skill if current, initial conditions (ICs) are
well observed. Though they are simple, persistence forecasts
remain a competitive baseline that seasonal forecast models
struggle to beat for 2mT even one season in advance (Zhang
et al., 2019).

Confidence bounds for the ACC of each set of forecasts
are determined nonparametrically using bootstrapping with
replacement 10 000 times. This is done by resampling the
forecasts to create an equally plausible forecast set and cal-
culating the ACC of that set. This process is repeated 10 000
times, and the 95 % confidence bounds of the resultant ACC
estimate are calculated. When the ACC confidence bounds
are greater than the null hypothesis ACC, ACC is denoted
with black stippling.

2.2.3 Dynamical Filter

To diagnose sources of seasonal VPD skill, we use the dy-
namical filtering technique described in Penland and Ma-
trosova (1994). This perspective considers climate anoma-
lies to be the manifestation of the interference between the
modes of the system represented by L. While the patterns of
various modes may project onto one another – in contrast to
EOF patterns requiring their orthogonality – their timescales
and periods differ, so that the relative contributions from var-
ious modes change with time as each mode uniquely evolves.
LIM modes occur as either a pair with a decay timescale and
period, or as a single, non-oscillatory mode that purely de-
cays.

As in past studies (Penland and Matrosova, 1994; Alexan-
der et al., 2008; Seager et al., 2023), we isolate a long-
term trend using the eigenmode with the longest e-folding
timescale, namely the least-damped eigenmode, with a slight
modification, to calculate a time series representing a nonlin-
ear trend (Sect. S2 in the Supplement). The pattern associated
with this modified time series is determined by regressing the
time series onto the untruncated VPD, SST and SM anoma-
lies, respectively, and the combination of the time series and
pattern are used to calculate trend-related anomalies for each
timestep and variable. We also consider the trend in the EOF-

truncated space of the LIM to filter x, which provides the
ICs for the forecasts, to contain only the trend mode, xtr.
Thereafter, trend-filtered forecasts are generated, x̂tr, whose
skill is evaluated against the unfiltered verification. Finally,
we detrend anomalies for a new LIM by subtracting the
trend-associated VPD and SST anomalies from the unfiltered
anomalies at each gridpoint, which is confirmed to be effec-
tive (Figs. S5 and S6 in the Supplement; Eq. 7).

VPDd = VPD−VPDtr (7)

A similar process is employed to detrend the SST anomalies;
thereafter EOFs and PCs are recomputed for both variables
to create a detrended state vector xd and a detrended LIM
(Table 2). Detrended SM anomalies were not included in the
detrended LIM because they did not improve VPD skill (not
shown). Forecasts are generated using the detrended LIM
to compare the seasonality and amplitude of seasonal VPD
forecast skill with and without the trend included.

To further decompose sources of VPD predictability, the
detrended LIM is filtered into its eigenmodes and the relative
amplitude of SST and VPD in each mode assessed (Fig. S7
in the Supplement; Newman et al., 2009; Henderson et al.,
2020). The most rapidly decaying eigenmodes are dominated
by large (relative) amplitude in VPD, while SST amplitude is
low until mode #11 and increases with increasing e-folding
timescale (Table S2 in the Supplement). We therefore define
two subspaces within the detrended LIM: a VPD-only sub-
space composed of the most rapidly decaying modes, modes
#1–10, and a coupled SST-VPD subspace composed of the
remaining modes, #11–25. These subspaces are used to fil-
ter xd:

xd = xd_VPDonly + xd_SST-VPD , (8)

thereby generating filtered ICs and forecasts associated with
the SST-VPD and VPD-only components of xd. The verifi-
cation in both cases is the full-field, detrended VPD anomaly
field. Note that while the components of xd are linearly addi-
tive, ACC is a quadratic field and therefore is not. However,
the relative importance of each component can still be evalu-
ated.

2.2.4 Seasonal Forecasts of Opportunity

In addition to considering the deterministic skill of all fore-
casts, the LIM can identify particularly confident and skill-
ful forecasts, defined as “seasonal forecasts of opportunity”
(SFOs). Each forecast’s signal covariance F(τ, t) and error
covariance E(τ ) are used to calculate the signal-to-noise ra-
tio S2, which is used to anticipate particularly skillful VPD
forecasts at the time the forecast is made. As S2 increases, so
does the expected skill ρ∞ of the forecast (Sardeshmukh et
al., 2000; Newman et al., 2003; Albers and Newman, 2019;
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Figure 2. VPD forecast skill (ACC; anomaly correlation coeffi-
cient) of the LIM and persistence forecasts. Panel (a) shows LIM
forecast skill verifying in June–July–August (JJA) for a six-month
lead time, i.e., for DJF initializations. The black line shows the
boundary of the region used for area-averaging forecast skill, which
includes the Southern and Northern California, Great Basin, South-
west, and Northwest subregions (Fig. 1). Area-averaged ACC over
the region covered by these subregions is shown from (b) the LIM
and (c) a full-field (i.e., 100 % variance) persistence forecasts. In
panels (b) and (c) the center month of the 3 month verification pe-
riod is shown on the x axis, and lead time is on the y axis. Skill that
is different from zero with 95 % confidence is indicated by black
dots.

Breeden et al., 2022a, b), as follows:

F(τ, t)= 〈x̂d(t + τ)x̂d(t + τ)
′
〉 (9)

E(τ )= C0−G(τ )C0G(τ )′ (10)

S2(τ, t)=
tr[F(τ )]
tr[E(τ )]

(11)

ρ∞(τ, t)=
S2(τ ){[

S2(τ )+ 1
]
S2(τ )

}.5 , (12)

where F(τ, t) is the forecast signal covariance that varies
with lead time τ and initialization time, t , and E(τ ) is the
forecast error covariance, which is a function of τ only. In
this study, we test if the detrended LIM can identify fore-
casts of opportunity for an area averaged over the combined
Southern California and Southwest subregions. SFOs are de-
fined as the forecasts initialized with the top 15 % of S2

and therefore ρ∞. The skill of that subset of forecasts is

compared with the remaining 85 % of forecasts, represent-
ing “non-SFOs”. Results are similar for SFOs defined using
the top 10 %–30 %. The detrended LIM filter is used to filter
the SFOs for their skill contributions from the SST-VPD and
VPD-only subspaces of the LIM.

Finally, to consider the patterns associated with SFOs, we
assess the resemblance of the ICs observed during SFOs to
the “optimal initial conditions” (OPT-ICs; Farrell, 1988; Pen-
land and Sardeshmukh, 1995; Tziperman and Ioannou, 2002)
of the system. OPT-ICS identify the VPD and SST patterns
that maximize system growth over a specified period of time.
Our hypothesis is that SFOs are associated with periods when
the earth system is conducive to the “optimal” growth of fa-
miliar patterns such as ENSO (e.g., Penland and Sardesh-
mukh, 1995; Breeden et al., 2022b). OPT-ICs are determined
from solving the eigenvalue problem for a specified time in-
terval or growth period τ ,[
G(τ )TG(τ )

]
v(τ )= µ(τ )v(τ ) , (13)

where v(τ ) and µ(τ ) are the eigenvectors and eigenvalues,
respectively, representing the patterns and amplification of
the domain-integrated variance of xd. Two patterns associ-
ated with the greatest and second-greatest eigenvalues of the
system, “OP1” and “OP2”, are considered for growth periods
of seven and three months, respectively. These growth peri-
ods represent the τ with the greatest system amplification
(i.e., the largest positive µ(τ ) of all τ ). To test the hypothesis
that SFOs are more strongly associated with optimal patterns
than non-SFOs, the amplitude of the projection of ICs onto
OPT-ICs associated with OP1 and OP2 is compared during
SFOs and non-SFOs.

3 Results

3.1 VPD LIM

VPD skill produced by the LIM that includes the trend peaks
in the western US and Mexico during summer and exceeds
the skill of persistence for lead times greater than two months
(Fig. 2). Some VPD skill from the LIM is also observed over
the eastern United States, while a skill minimum is located in
the Great Plains and upper Midwest (Fig. 2a). ACC is simi-
lar between lead times of three – eighteen months and peaks
late in the warm season over the western US (Fig. 2b). High
skill (> 0.5 ACC) at lead times of up to 14 months in a per-
sistence forecast is also observed during MJJ, JJA, and JAS
seasons, but not for all lead times as in the LIM (Fig. 2c).
The LIM outperforms persistence at lead times greater than
three months for all verification months, which is notable
since the LIM is only trained on 78 % of VPD variance while
persistence uses full-field (100 % variance) VPD anomalies;
both are verified against full-field anomalies. The LIM out-
performs persistence most notably at lead times of around
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Figure 3. ACC averaged over (a) the western US (Fig. 2a), (b) Southwest, (c) Southern California (SoCal), (d) Northern California (NorCal),
(e) Great Basin, and (f) Northwest subregions for LIM forecasts that included the trend in its suite of unfiltered ICs.

seven and nineteen months, corresponding to forecasts for
summer made the prior winter.

Considering VPD ACC for each western US subregion
shows that peak skill may differ in magnitude but occurs
during the June–September timeframe everywhere except for
the Southwest (Fig. 3). Skill is greatest in the Great Basin
during JJA-JAS seasons when ACC values exceed 0.6 up to
18 months in advance (Fig. 3e), while skill is lowest in the
Southern California region, where ACC rarely exceeds 0.5
(Fig. 3c). The Southwest is unique in that ACC peaks earlier
in the year, during boreal spring, at all lead times, with lower
skill during boreal summer when the other western US sub-
regions have greatest skill. It is possible that Southwest skill
is lower due to the influence of the North American Mon-
soon, which could reduce VPD predictability in the LIM dur-
ing summer when the monsoon is active (Prein et al., 2022).
LIM forecasts with high ACC have lower root-mean-square
error (RMSE, here normalized by the standard deviation of
observed VPD), with RMSE lower than one standard devia-
tion of VPD (Figs. S8 and S9 in the Supplement). The LIM

RMSE is overall lower RMSE than a persistence forecast
(Fig. S8b and c).

Given the strong relationship between VPD and 2mT, it
is likely that LIM VPD skill is influenced by the long-term
warming trend as observed in other forecast systems (Ris-
bey et al., 2021). We use the LIM’s modified least damped
eigenmode to construct the trend time series which over the
1958–2021 period is not linear (Fig. 4; see Sect. S2 for de-
tails). Regressing full-field anomalies onto the time series in-
dicates that positive SST and VPD anomalies and negative
SM anomalies are associated with the positive sign of the
trend, which is observed without interruption after the late
1990’s.

Evaluating the skill of the trend mode’s contribution to the
VPD forecasts confirms our hypothesis that most VPD skill
at long lead times is associated with a trend during the warm
season (Fig. 5). While both persistence and the LIM contain
information about the trend in their forecasts, the LIM likely
outperforms persistence because VPD evolves seasonally. As
such, a persistence forecast from winter into summer shows
poor skill, as the physical processes that produce winter VPD
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Figure 4. Characteristics of the trend. Panels (a)–(c) show the re-
gression patterns and (d) time series used to construct an estimate
of the trend for (a) SST (units °C), (b) SM (units relative fraction)
and (c) VPD (units hPa) associated with a +1σ value of the mod-
ified trend eigenmode time series shown in panel (d); see Sect. S2
for more information.

anomalies are not relevant for the summer VPD forecast. In-
deed, winter persistence forecasts display low skill for sum-
mer verifications (Fig. 2c), while LIM forecasts remain skill-
ful. In contrast to persistence, the LIM captures the time evo-
lution of all modes, and since the trend mode decays the most
slowly by definition, it emerges as the leading pattern in the
forecast at longer lead times, which produces high VPD fore-
cast skill in the warm season.

3.2 Detrended LIM

To assess VPD skill beyond the trend, a second LIM is
trained using detrended VPD and SST anomalies (see Meth-
ods for details). The amplitude and timing of greatest de-
trended VPD skill differs notably from the LIM including
the trend, underscoring the trend’s strong influence on skill
and VPD in the warm season. Forecasts made for the NDJ –
MAM seasons have the highest skill with a minimum ob-
served during JAS-SON, when ACC is negligible at lead
times longer than two months over many subregions (Fig. 6).
The greatest skill in any season is observed in the South-
west, which has ACC different from zero during the OND
– AMJ seasons for lead times up to 17 months but mini-
mal skill in summer and early fall (Fig. 6b). Conversely, the
Northern California subregion only has skill during the AMJ
– JJA seasons up to six months in advance (Fig. 6d). South-
ern California and the Great Basin display skill in both the
warm and cool seasons to varying degrees, while the North-
west subregion has minimal skill beyond a one-month lead
time except in the meteorological winter, when VPD anoma-
lies are small (Fig. 6c, e, and f). Comparing VPD skill that
arises from a LIM trained on linearly detrended anomalies,
which would be simpler and has been previously done (Vi-
mont, 2012; Newman, 2013), shows a similar skill pattern
but lower skill during the cold season than the LIM trained
on anomalies detrended using the LIM’s least-damped eigen-
mode (Fig. S10 in the Supplement). This could be because
the linear trend is a mixture of the externally forced signal
and multidecadal variability, the latter of which may enhance
VPD predictability. As such, linear detrending may convolve
the trend with variability.

Despite regional differences in the timing and magnitude,
coupled SST-VPD modes are the leading source of detrended
VPD skill in all subregions except the Great Basin (Figs. 7–
9). We determine which modes of variability contribute most
to VPD skill by filtering LIM ICs using the LIM eigenmodes
(Sect. 2.2.3). SST variance resides purely in the coupled SST-
VPD modes by definition, while VPD variance is shared al-
most equally between the two groups (Fig. 7). Total VPD
variance does not equal the sum of the variances of the two
groups due to the nonnormality of the system (Farrell and
Ioannou, 1996; Albers and Newman, 2021), but their pat-
terns are similar to total variance suggesting that the peaks
in VPD variance observed over the southern and western US
– particularly Texas and southern California – can be under-
stood as locations with strong interference between VPD-
only and SST-VPD modes. VPD skill is associated mainly
with SSTs, with a secondary contribution from VPD-only
modes at shorter lead times (cf., Figs. 6, 8, and 9). The Great
Basin and Southwest have the greatest contributions from the
VPD-only modes, though there are only rare occurrences of
skill greater than zero observed beyond a one-month lead
time. SST-VPD modes have slower decay rates (Table S2)
given the high autocorrelation of SSTs, making it unsurpris-
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Figure 5. As in Fig. 3 but for LIM forecasts that only include the trend mode in its ICs.

ing that these contribute more to seasonal VPD predictability
than the rapidly decaying VPD-only modes. Still, at shorter
lead times, and particularly in summer and early fall, greater
skill from the VPD-only modes means it is important to in-
clude information from both components of the system.

3.3 VPD SFOs

Periods of anomalously high skill and confidence, so-
called “forecasts of opportunity”, are often considered on
subseasonal-to-seasonal timescales (Mariotti et al., 2020) to
understand fluctuations in forecast skill that are related to
variability, as opposed to a trend. With SSTs contributing
substantially to detrended VPD predictability, we hypoth-
esize that VPD SFOs are associated with ENSO-like SST
anomalies, as has been found to be the case on subseasonal
timescales for a range of target variables (Albers and New-
man, 2021; Breeden et al., 2022a, b) and for reference evapo-
transpiration (ETo) one season ahead (McEvoy et al., 2015).

Using the detrended LIM signal-to-noise ratio (Eqs. 11
and 12), SFOs can be identified for VPD averaged over the
combined Southern California and Southwest subregions for

lead times up to eight months (Figs. 10 and 11). Three-month
SFOs are indeed more skillful than non-SFOs in the South-
west and Southern California subregions, remaining true for
areas farther north, west, and south (Fig. 10a and b). Skill
improvements during these events are greatest in southern
California and Nevada and western Texas, where ACC ex-
ceeds 0.5. Most of the skill during SFOs is associated with
the SST-VPD eigenmodes, with the VPD-only ICs contribut-
ing to skill over the interior western US including areas in the
Southwest and Great Basin (Fig. 10c and d). SFOs calculated
for lead times longer than five months remain skillful but
are associated only with SST-VPD modes, though recall that
quadratic values such as ACC do not sum to unity (Figs. 11
and S11 in the Supplement). Three-month SFOs are initial-
ized most often during the JJA–DJF seasons (Fig. S12 in the
Supplement), corresponding to verifications during SON–
MAM seasons. This timing aligns with the mature phase of
ENSO events and when ACC peaks in these regions (Fig. 6b
and c). A minimum in SFO frequency is observed for FMA
and MAM initializations, the time of year known for when
ENSO is often waning or changing phase.
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Figure 6. As in Fig. 3 but for LIM forecasts from the detrended LIM and using detrended ICs.

Figure 7. Filtered SST and VPD variance for (a, c) the SST-VPD and (b, d) the VPD-only subspaces of the detrended LIM.
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Figure 8. As in Fig. 6 but for SST-VPD filtered ICs.

SFOs are initialized during periods when an ENSO event
is underway or expected to develop, and are up to three times
as likely when forecasts are initialized during strong El Niño
and La Niña events (Figs. 12 and S13 in the Supplement).
The increase in VPD SFO occurrence as a function of the
Niño3.4 index is roughly equal for strong negative and posi-
tive index values (Fig. S13). The relationship with ENSO can
be further understood by considering the two leading “opti-
mal patterns” (OPs) that maximize SST and VPD anomaly
growth and include ENSO-like SSTs (OP1, OP2; Sect. 2.2.4;
Penland and Sardeshmukh, 1995). Each OP has a unique set
of optimal ICs (OPT-ICs) that evolve into a final pattern (OP1
or OP2) over a specified time interval. Growth varies as a
function of the time interval and peaks over a seven-month
interval for OP1 and a three-month interval for OP2 (Fig. S14
in the Supplement). OP1 shows OPT-ICs with weak cold
SST anomalies in the tropical and subtropical east Pacific
that evolve into a mature ENSO pattern with SST anoma-
lies that are strongest in the central tropical Pacific (Fig. 13).
La Niña-like SSTs co-evolve with positive VPD anomalies
across the southeastern US and northern Mexico (Fig. 13),

also the location of highest ACC during SFOs (Fig. 10). Cold
eastern Pacific SSTs in OP2 co-evolve with a couplet of posi-
tive and negative VPD anomalies across the western and cen-
tral US, respectively (Fig. 14). The linearity of OPs means
that opposite-signed SST anomalies co-evolve with opposite-
signed VPD anomalies.

Comparing the ICs of SFOs and non-SFOs and their re-
semblance to the OPT-ICs reveals a stronger resemblance
during SFOs. The amplitude of the projection of the ob-
served ICs onto the OPT-ICs measures the similarity be-
tween conditions that trigger these patterns and each ini-
tialization, indicating the similarity between actual ICs and
OPT-ICs is greater during SFOs than non-SFOs (Fig. 15).
The differences in the timescale of the two OPs corresponds
to differences in the lead times for which they are related
to SFOs. For three-month SFOs, both the projections of OP1
and OP2 OPT-ICs display stronger projections than those ob-
served during non-SFOs (Fig. 15a and b), while shifts during
six-month SFOs are evident for OP1 but not OP2 (Fig. 15c
and d). As such, the relevant patterns to SFOs depend on the
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Figure 9. As in Fig. 6 but for VPD-only filtered ICs.

Figure 10. Panel (a) shows ACC for SFOs at a three-month lead time for the Southwest California and Southwest subregions, compared to
(b) the ACC for non-SFOs. Black stippling in panel (a) indicates where SFO ACC is different from non-SFO ACC with 95 % confidence.
Panels (c) and (d) show the skill contributions from the SST-VPD and VPD-only subspaces for the SFOs.
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Figure 11. ACC during SFOs, as a function of lead time, of VPD
averaged over the Southern California and Southwest subregions.
ACCs associated with the unfiltered ICs (black), SST-VPD ICs
(blue), and VPD-only ICs (red) subspaces for SFOs are shown.

Figure 12. Three-month lead time SFOs (black dots) and the
Niño3.4 index (°C) at the time of initialization.

lead time of interest due to the different growth periods of
OP1 and OP2.

4 Conclusions and Discussion

This analysis demonstrates the seasonal predictability of
western US VPD driven mainly by a nonlinear, long-term
warming trend and seasonal-to-annual SST variability, which
can be used to inform seasonal outlooks of wildland fire dan-
ger. Understanding sources of skill is important for directing
efforts to improve forecast skill and anticipating when and
why skill may be high or low. While skill from the trend is not
episodic, it is a large component of VPD (e.g., Abatzoglou
and Williams, 2016); indeed, Zhuang et al. (2021) found that
anthropogenic warming accounted for two thirds of the ob-
served VPD trend amplitude from 1979–2020, eclipsing nat-
ural variability. There is seasonality in the trend contribution
to skill (Fig. 5), meaning warm-season VPD – and VPD skill
– is more heavily influenced by the trend than other seasons
when non-trend variability, such as that related to ENSO, can
obscure effects of the trend (Seager et al., 2015). Detrended
VPD skill is observed from a broad verification period from
December–May and is driven mainly by SST anomalies that
include ENSO variability. Wildland fire danger is emerging
as a year-round concern in much of the west (Westerling et
al., 2006; Colorado Division of Fire Prevention and Control,
2023), and our results indicate that different sources of VPD
predictability should be considered at different times of year.
Prediction tools should similarly be designed to capture the
aggregate effect of these processes.

The timing of SST-related VPD skill in the detrended LIM
corresponds to when ENSO matures, peaks, and wanes in
winter and spring, consistent with the seasons highlighted
in past research (Seager et al., 2015). There is minimal de-
trended VPD skill in forecasts for ASO, however, meaning
SSTs do not produce skillful VPD forecasts in the LIM at
this time of year. Revisiting this result with a more sophisti-
cated LIM or an alternative modeling approach is warranted,
although using a seasonally varying “cyclostationary” LIM
did not improve detrended VPD skill in these months (not
shown). A minimum in SST-related VPD skill during late
summer and early fall is similar to the skill of reference evap-
otranspiration (ETo), a measure of evaporative demand that
is used in drought indicators and that includes VPD, in an op-
erational forecast model (McEvoy et al., 2015). It is also con-
sistent with what Quan et al. (2006) found using a regression
model between tropical SSTs and 2mT over the continental
US, which showed that the regression model had lowest skill
in summer. While neither of these studies examined VPD,
there may be consistencies since ETo, is partially a function
of VPD and therefore temperature. Our result of more fre-
quent VPD SFOs during ENSO events also supports the find-
ings of McEvoy et al. (2015) for ETo over the western US,
suggesting VPD makes a positive contribution to ETo skill
during these events. We also note that additional factors not
explicitly included in the LIMs used here may impact autumn
western US wildfires, such as sea ice concentrations and the
West Pacific pattern (Zou et al., 2021; Liu et al., 2024), al-
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Figure 13. Initial optimal ICs (a, c), and final evolved anomalies (b, d), associated with the leading optimal pattern (OP1) maximizing system
growth over a 7 month growth period for (a, b) SST and (c, d) VPD. Patterns are dimensionless.

Figure 14. As in Fig. 13 but for the second leading optimal pattern (OP2) maximizing system growth over a three-month growth period.

Figure 15. PDFs of the projection onto the optimal ICs (OPT-ICs) during SFOs and non-SFOs for lead times of (a, b) three and (c, d)
six months, for the two leading optimal patterns, OP1 and OP2. PDFs are shown for SFOs (black lines) and non-SFOs (blue lines) for the
detrended LIM. The green and black dots indicate the median and 95th percentiles, respectively, with 95 % confidence intervals denoted
based on bootstrapping indicated by bars and whiskers.
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though they may not be completely independent from SST
variability (Ding et al., 2014; Baxter et al., 2019).

The mechanisms linking cold central Pacific SSTs to the
uniformly positive VPD anomaly in OP1, and cold east Pa-
cific SSTs to the couplet of VPD anomalies in OP2, merit fur-
ther investigation. Comparing optimal patterns derived from
observations/reanalysis to those produced by climate models
or seasonal forecast models offers a dynamically-based ap-
proach to understanding VPD biases in these models, which
could reflect biases in both temperature and RH. Future work
could also assess the seasonal predictability of metrics that
incorporate wildland fire danger indicators that are unre-
lated to VPD, including wind speed, fuels and vegetation in-
formation, such as those within the United States National
Fire Danger Rating System: Burning Index, Energy Release
Component, and Spread Component (Bradshaw et al., 1983;
Cohen and Deeming, 1985). For example, this study does not
consider the wind-driven component of fire spread, which
is a critical component for a comprehensive view of wild-
land fire predictability. It is unclear, however, whether near-
surface wind speed is predictable on seasonal timescales
(McEvoy et al., 2015). However, whether any components of
these indicators that are unrelated to VPD can be modeled as
linear and forced by white noise, as was done for LIM-based
VPD forecasts herein, remains to be determined.
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