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This supplement provides additional information on the method and additional figures in support of discussion in the results
section. Figures include the auto-correlation of index, horizontal circulation of IG and MRG waves at 150 and 925 hPa, total
signal from the regression, the evolution of IG waves and MRG waves at 925 hPa, the evolution of divergence associated
with different waves related to the SWNP convection, global variance of Rossby waves and Kelvin waves associated with the
SWNPI as a function of zonal wavenumber and horizontal circulation of k=1-3 Rossby waves and Kelvin waves.

Sect. S1 Equatorial wave filtering on the sphere

The wave filtering known as the MODES software is based on the normal-mode decomposition (NMD). It performs the pro-
jection of global circulation to the the Rossby, inertia-gravity (IG), Kelvin and mixed Rossby-gravity (MRG) eigensolutions of
the linearized global primitive equations. As a complete decomposition, it enables the quantification of atmospheric variability
associated with these waves, and analysis of variability in barotropic and baroclinic quasi-geostrophic Rossby waves at various
zonal wavenumbers in midlatitudes and the equatorial waves for different vertical structures. The basic equations for linearized
motions and their eigensolutions have been derived many times in literature and the solutions for the terrain-following (o)
coordinate by Kasahara and Puri (1981).

The NMD projects the 3D data on the eigensolutions of the linearized adiabatic equations for oscillations in the zonal
wind (u'), meridional wind (v’) and geopotential height (h’), superimposed on a basic state of rest with temperature 7Tj.
Eigensolutions are derived by the method of the separation of the variables, where the vector of variables [u’,v’,h’]T as
functions of the longitude (), latitude (i), vertical level (o) and time ¢ is represented as the product of 2D motions (their
vector denoted [u, v, k] and the vertical structure functions. The set of three equations for the horizontal oscillations is identical
in form with the global shallow water equations having the water depth D (Hough, 1898; Swarztrauber and Kasahara, 1985;
Zagar and Tribbia, 2020).

. . . . . . . . - T .
As the non-dimensional equations are linear with respect to time, their solution [&@yy,, Urm, hun]  can be expressed in terms of
harmonics in time as

W (A 9,8) = [l B, o] = HE (A, g9,m) e~ PR 0™ (Eq. S1)

Here the subscript m denotes the m—th vertical mode after the vertical projection and the horizontal motions [ty , Uy, hm]T
and time ¢ are made non-dimensional as

U v ~ h -
Uy = e, Uy = ——e, Ay = —=, £ =2Q. (Eq. S2)
V9Dm V9Dm Dy,

The horizontal structure functions H (\,,m), known as the Hough harmonics, depend on the zonal wavenumber & and
meridional mode index n for every m and the corresponding dimensionless frequency is denoted v¥ (m). The separation of
the zonal and meridional dependencies and the periodic boundary conditions in the longitudinal direction lead to the following
solution for HX (m) for discrete values of k:

H (A, ,m) = OF (p,m)e’™, (Eq. S3)

where the meridional dependence is described by the Hough function vector ©, ©% (o,m) = [UF(p,m),iV,F (o, m), ZF(p,m)] T

with U, V and Z representing the meridionally dependent profiles of the Hough functions for the zonal velocity, meridional

velocity and geopotential height, respectively, all characterized by the zonal wavenumber &k and meridional mode index n for

each m. For every combination of the three indices k, n and m, the dimensionless frequency v*(m) defines three eigensolu-

tions of the horizontal oscillations. One of the solutions is a low-frequency, westward-propagating Rossby wave, also denoted

balanced mode. The other two solutions are high-frequency inertial gravity (IG) waves that propagate eastward or westward.
The derivation of solutions in the form (Eq. S1) applies the following global inner product:

2w 1
1 .
(W), W) = / / (ﬂ;ﬂr—i—ﬁ;f}r—i-h;m) dpdA, (Eq. S4)
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where 11 = sin(¢) and the asterisk () denotes the complex conjugate. Subscript p refers to a particular mode corresponding to
a zonal wavenumber k), a meridional index n, and a vertical mode index m,,, while subscript " indicates another mode. The
global orthogonality of the Hough functions for each m can be written as

27 1

’ 1 * ’
<H§,HZ/>=% / / (HE)" - HE dpdX = 6 O (Eq. S5)
0 -1

Similarly, the orthogonality of the vertical structure eigenfunctions is written as

/G dJ = 6ij7 (Eq S6)

where §;; = 1 if ¢ = j and zero otherwise, and o is the top level. For details of the derivation of the vertical and horizontal
structure functions in the terrain following sigma coordinate presented above, as well as in the pressure coordinates, the reader
is referred to various chapters in the book on normal-mode functions (Zagar and Tribbia, 2020), or original papers by Kasahara
and Puri (1981), Tanaka (1985), Swarztrauber and Kasahara (1985) and follow on studies (e.g. Zagar et al., 2023).

The NMD procedure in MODES consists of two steps (Zagar et al., 2015). In the first step, the input data vector X (), ¢, oj)
at time step ¢ on j-th o level is decomposed using a series of M orthogonal vertical structure functions G, (j) as

X ,05) ZG m(Ae) (Eq. S7)

where S,,, is a 3 x 3 diagonal matrix with elements v/gD,,, /gD, and D,, for the purpose of normalization (Eq. S2). The
vertical mode index m varies from the external (barotropic) mode, m = 1, to the total number of vertical modes M, with

M < J. The number of o levels with data is J. The result of (Eq. S7) is the vector X, (A, ) = [tm,, U, ﬁm]T defined above.
In the second step, the dimensionless horizontal motions for each m are represented by a series of the Hough harmonics H”
using the complex Hough expansion coefficients x* (m) as

Z Z X (m sp3m). (Eq. S8)

n=1k=—K

In (Eq. S8), the parameter K denotes the maximal number of zonal waves whereas the total number of meridional modes,
denoted R, combines all of the Rossby modes, the eastward-propagating IG modes and the westward-propagating IG modes.
For each of the three types of eigensolutions, n varies between n = 1 and n = R/3 i.e. the meridional mode n — k varies from
0 to R/3 — 1. The three indices k, n, and m constitute the 3-component modal index v = (k,n,m) of the Hough expansion
coefficients, x, .

In practice, the computation of X,,, is performed first as

J
X (0 0) =8, G X(\p,05) (Eq. $9)

Jj=1

where we use (Eq. S7) and the orthogonality (Eq. S6) for discretized vertical structure functions. This is followed by the
computation of the Hough expansion coefficients y, as

2

: /
Xv = =50
0

1
/(Hﬁ)* X, dpd. (Eq. S10)
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The zonal expansion is performed by using the fast Fourier transform while the Gaussian quadrature approximates the integra-
tion in the meridional direction. Equations (Eq. S7) and (Eq. S9) are the vertical transform pair whereas equations (Eq. S8) and
(Eq. S10) are the horizontal transform pair.

The result of the expansion (Eq. S9-Eq. S10) is the time series of the non-dimensional coefficients x, (¢), such as used in
this study. Note that the study used the pressure system version of MODES, which is described in Zagar et al. (2023).
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Figure S 1. (a) Time series of the standarized daily SWNPI from June to August during 1979-2021 and (b) the auto-correlations of SWNPI.
The red dash line denotes the value of e~ *.
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Figure S 2. As in Figure 2 but for (a-b) all modes related to the SWNPI and (c-d) differences between Figures 2a-b and Figures S2a-b. Black
vectors indicate the horizontal wind anomalies whose magnitude is larger than 0.5 m/s for all modes and 0.1m/s for differences at 150 hPa

and 850 hPa.
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Figure S 3. As in Figure 5, but at 150 hPa and 925 hPa.
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Figure S 4. As in Figure.9 but at 925 hPa. Black vectors indicate the horizontal wind anomalies whose magnitude is larger than 0.1 m/s at
150 hPa and 925 hPa.
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Figure S 5. (a) OLR anomalies regressed onto the SWNPI from day -10 to day 10 averaged over the SWNP region. Divergence (1x10~°) of
different waves related to the SWNPI from day -10 to day 10 at (b) 150 hPa and (c) 925 hPa averaged over the SWNP region.
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Figure S 6. Global variance of Rossby waves and Kelvin waves associated with the SWNPI as a function of zonal wavenumber.



PEIPUN I R
XV Ty X

M PR Y
ZZpyvVis 4

L 5 < & .:.m; mq :Alva;mﬁ
“.ﬁ ¥ ér_ - 7 *L:v;.:r?.v
1 + - . A A <y |
4 »
oo y v
. ..Sm Nt
Vf- F AR AN A A % vy
=
AL Avq<._m.a "RAKann  [ord rerYY
=y P nabyv[S] N AAAAAR £ S .
m 3 AAA m »w Awibbyy
= SN~ ay LEPYY
= AAA 294 n<
PN ..v...u...m. AAA - .W yNALEFPY L
s wryy ©|® . e A
I %U "I AA ﬂ 4 rﬁu
=)o wy Ul N T i
Sk re v~ ) o = = g
T T T T T T - . . ‘
L L 2 M & F
e mq >>9’b>%ﬁ 5&\*?4.%%
raad 1 &gl >>’> afpa>vadal
Y IA ¥ Aaaf 1 &Ar
T b_\ J- T - af v L
f sk o h <
. / g <<Q o
.q i . L - ) ot
LK
o G—& viy @ Dh.m A ] —k—%
e W N ¢¢< 3714 M yv
T 1.5# «Mr.__ -4 <4@«c<< 4 (e ke_,.-
(=]
B LR AR I vy m \ Al
m te v Arkrbum YYyvvy -m vhtl*kfrk
A i v | [
o ¥ra vyuale MR AA—;J.AA
I I ¥ = v A
v vl S [P ATNY RN
L Nk
TF¥Y AbaN>9lT R o =2
i l . J L] T T T T
Z Z © 0 WwZZ O Y BZ Z © O W
8 ¥ 0 Qo 10 B © S b tr
(-] — - ”m m — — @ 5 5 el b1

60E 90E 120E  150E 180
m/s

18030E

60E 90E 120E  150E

30E

35 -3 -25-2-15 -1 -0505

15 2 25 3 35

1

Figure S 7. As in Figure 3, but for k=1-3 Rossby waves and Kelvin waves.
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