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Abstract. Weather types are used to characterise large-
scale synoptic weather patterns over a region. Long-standing
records of weather types hold important information about
day-to-day variability and changes in atmospheric circula-
tion and the associated effects on the surface. However, most
weather type reconstructions are restricted in their tempo-
ral extent and suffer from methodological limitations. In our
study, we assess various machine learning approaches for
station-based weather type reconstruction over Europe based
on the nine-class cluster analysis of principal components
(CAP9) weather type classification. With a common feedfor-
ward neural network performing best in this model compari-
son, we reconstruct a daily CAP9 weather type series back to
1728. This new reconstruction constitutes the longest daily
weather type series available. Detailed validation shows con-
siderably better performance compared to previous statistical
approaches and good agreement with the reference series for
various climatological analyses. Our approach may serve as
a guide for other weather type classifications.

1 Introduction

Weather type (WT) or circulation type classifications are a
widely used tool to characterise the prevailing large-scale
synoptic weather patterns over a specific region (Philipp et
al., 2010). In regions such as Europe, where daily weather
is largely governed by transient high- and low-pressure sys-
tems, such classifications prove particularly useful to de-
scribe the prevailing atmospheric conditions. WT time series
yield important information about variability and changes
in atmospheric patterns (Jones et al., 2014; Rohrer et al.,

2017; Kučerová et al., 2017) and the surface effects asso-
ciated with them (Paegle, 1974; O’Hare and Sweeney, 1993;
Kostopoulou and Jones, 2007; Lorenzo et al., 2008; Jones
and Lister, 2009; Casado et al., 2010; Küttel et al., 2011).
Various studies have assessed the links between WTs and
extreme events such as droughts (Fleig et al., 2010), temper-
ature extremes (Hoy et al., 2020; Sýkorová and Huth, 2020),
or extreme precipitation and floods (Minářová et al., 2017;
Petrow et al., 2009). Moreover, WT classifications are ap-
plied to evaluate weather forecast model outputs (Stryhal and
Huth, 2019; Weusthoff, 2011) or for forecasting in the renew-
able energy sector (Wang et al., 2022; Drücke et al., 2021; Li
et al., 2020), among other uses.

The first WT classifications were created by experienced
meteorologists, who classified the atmospheric situation, em-
ploying manually drawn weather charts derived from sta-
tion observations (Hess and Brezowsky, 1952; Lamb, 1972;
Schüepp, 1979). While these subjective classifications rep-
resent real synoptic features, they are often subject to in-
consistencies and ambiguities (e.g. James, 2007; Cahynová
and Huth, 2009; Jones et al., 2014; Wanner et al., 2000).
In more recent decades, hybrid (mixed) or objective (au-
tomatised) WT classifications have been introduced that clas-
sify atmospheric patterns numerically using various statisti-
cal approaches, such as clustering algorithms, class attribu-
tion based on a distance measure, or even machine learning
approaches (Huth et al., 2008; Mittermeier et al., 2022). Such
automatised WT classification is usually based on gridded
meteorological data (Huth et al., 2008). Because the tempo-
ral coverage of such gridded datasets is limited, WT classifi-
cations usually only reach back several decades. By creating
long-term time series of WT classifications, important infor-
mation may be gained to study long-term changes (i.e. over
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multiple decades or even centuries) in atmospheric circula-
tion patterns and associated surface effects.

Based on reanalysis datasets, many WT records have al-
ready been extended back to the 19th century and some even
back to the late 19th century (Philipp et al., 2010; Jones et
al., 2014). The latest generation of reanalyses would allow
these to be extended even further back in time. Currently,
the limit for WT classifications based on atmospheric fields
is set by the 20th Century Reanalysis version 3 (20CRv3;
Slivinski et al., 2019; Compo et al., 2011), which extends
back to 1806. Prior to that, historical station observations and
qualitative descriptions of the atmospheric conditions from
weather diaries are the only sources available for classify-
ing WTs. These data, however, are vital for the study of the
past development of atmospheric processes on a daily to sub-
daily scale far beyond the availability of reanalyses, as can
be done by creating station-based WT reconstructions. Re-
cent data rescue and digitisation efforts (Brunet and Jones,
2011; Brönnimann et al., 2019; Pfister et al., 2019; Brug-
nara et al., 2019, 2020b, 2022b) brought to light a vast num-
ber of early-instrumental meteorological records that can be
used for this purpose, particularly in central Europe. Only a
small number of studies have used these data so far, resulting
in some long-term station-based WT reconstructions starting
in the middle of the 18th century (Schwander et al., 2017;
Delaygue et al., 2019). Despite the fact that station observa-
tions as point measurements hold only limited information
on the circulation patterns over the typically large areas cov-
ered by WT classifications, these studies revealed promising
results. However, the main limitations of the station-based
reconstructions that are currently available are that they use
relatively simple statistical approaches (i.e. the shortest Ma-
halanobis distance (SMD) from a defined centroid) that only
capture the most prominent features of atmospheric circu-
lation patterns and that they are restricted to using continu-
ous data such as pressure and temperature. Especially dur-
ing the early-instrumental period, such quantitative data are
scarce, whereas qualitative meteorological information from
weather diaries is more widely available. More complex ap-
proaches that can detect patterns in more detail and make use
of qualitative data could improve existing WT reconstruc-
tions and might even allow us to extend them backwards in
time, where even less quantitative information is available.

While common statistical approaches have been effective
in capturing prominent atmospheric patterns, their ability to
handle more complex nonlinear relationships and incorpo-
rate qualitative data is limited. Supervised machine learning
(ML) classification methods offer a promising alternative, as
they are well suited for the identification of intricate nonlin-
ear patterns in atmospheric variables. Furthermore, they can
handle mixed data types; i.e. they could also include qual-
itative data on past weather in a categorised form. Nowa-
days, machine learning is commonly used for classification
and pattern recognition in meteorological and climatolog-
ical research, such as detection of extreme events (Racah

et al., 2017; Chattopadhyay et al., 2020), frontal systems
(Dagon et al., 2022; Bochenek et al., 2021; Biard and Kunkel,
2019), blocking situations (Muszynski et al., 2021; Thomas
et al., 2021), and storms and cyclone tracks (Accarino et al.,
2023; Kumler-Bonfanti et al., 2020; Mittermeier et al., 2019;
Williams et al., 2008). In the specific context of WT recon-
struction, however, ML is still a rather novel approach. Schlef
et al. (2019) used neural networks to detect circulation pat-
terns associated with extreme floods in the USA. Luferov
and Fedotova (2020) used a convolutional neural network
to reconstruct Dzerdzeevskii WTs for the Northern Hemi-
sphere (Dzerdzeevskii, 1962). Mittermeier et al. (2022) stud-
ied WT pattern changes in the context of climate change us-
ing ML classifications of the Großwetterlagen (general WTs)
for central Europe, following Hess and Brezowsky (1952).
While the abovementioned pioneering work of WT recon-
struction is entirely based on gridded data from atmospheric
reanalyses, the application of ML approaches to station-
based WT classification in order to reconstruct long-term WT
series is currently lacking.

In our study, we address this gap by assessing different
machine learning approaches for station-based WT recon-
structions over Europe. Our aim is to demonstrate not only
the potential of different ML approaches for this task but
also their limitations. For this method intercomparison, we
use the nine-class cluster analysis of principal components
(CAP9) WT classification representative of central Europe
(Weusthoff, 2011). As CAP9 is an objective (i.e. based on
statistical approaches) WT classification based on a cluster
analysis of principal components from reanalysis pressure
data, it does not suffer from the aforementioned issues with
subjective WT classes and thus provides an ideal test bed for
training and evaluating our ML approaches. Our study pur-
sues two aims: (i) providing a comprehensive assessment of
different ML approaches for the purpose of objective WT
classification using station observations and (ii) extending
the CAP9 WT reconstruction to the period of 1728–2022.
Our assessment of the ML approaches is performed using
the same input data that Schwander et al. (2017) used for
their Mahalanobis-distance-based approach, which serves as
a baseline for comparison. The reconstruction methods are
compared using a simplification of the CAP9 WT classifi-
cation, with seven WTs (CAP7) introduced for the baseline
approach due to methodological limitations (see Schwander
et al., 2017). We assess logistic regressions; random forests;
and classical, recurrent, and convolutional neural network
approaches. The most powerful model from this comparison
is then retained to reconstruct daily CAP9 WTs back to 1728
from an extended set of station data. For this reconstruction,
additional station series that became available in recent years
were included (see Sect. 2.2). The reliability of the WT re-
constructions is evaluated in detail to provide a robust basis
for eventual application of this WT series, as well as to ex-
plore possible room for improvement for future attempts in
WT classification. In view of the ability of ML approaches
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to use categorical information as well, we provide a short as-
sessment of the impact of including time series of wet days
as model input. A more encompassing analysis of the effect
of using qualitative data for WT reconstruction – especially
data on wind direction, which would provide valuable infor-
mation on atmospheric circulation – must be left for future
research, as so far long-term homogeneous time series are
virtually nonexistent.

The article is organised as follows: Sect. 2 gives an
overview of the data and machine learning approaches used
for WT reconstruction, as well as the model tuning strategy.
Results and discussion are presented in Sect. 3. The first part
shows a detailed intercomparison of the station-based WT
reconstruction methods using the example of CAP7 WTs.
The second part analyses the extended CAP9 reconstruction
using the best model from the comparison. A summary and
conclusions are given in Sect. 4.

2 Data and methods

2.1 Weather types

From the abundant number of WT classifications for Europe
(see Philipp et al., 2010, 2016, for an overview), we use the
CAP9 WT classification produced and continuously updated
by MeteoSwiss (Weusthoff, 2011). The CAP9 classification
was chosen as it is objective (see discussion in Sect. 1) and
because it has been shown to be a reliable predictor of sur-
face climatic conditions in the Alpine region (Schiemann and
Frei, 2010). Furthermore, a manageable number of nine WTs
– e.g. compared to the 29 WTs from Hess and Brezowsky
(1952) – was found to be more suitable for assessing our ML
approaches. Given the scarcity of meteorological records in
the early-instrumental period, classifications with abundant
WTs could not be accurately represented by the few obser-
vation sites available.

This WT classification is based on the CAP (cluster
analysis of principal components) method (for details, see
Weusthoff, 2011; Philipp et al., 2010; Comrie, 1996; Ek-
ström et al., 2002): in the first step, the gridded atmospheric
variables are rearranged into a time× grid cell matrix and
then decomposed into their principal components, to which
a Varimax rotation is applied for better interpretability of
the loadings (see Ekström et al., 2002). The principal com-
ponent scores are then clustered in the second step (non-
hierarchical clustering with a predefined class number that
minimises within-class dispersion) to derive WT classes. The
CAP9 classification by MeteoSwiss was derived from mean
sea level pressure from the ERA-40 reanalysis (Kållberg et
al., 2004; Uppala et al., 2005), whereas the attribution to the
nine WTs in operational use is based on the Euclidean dis-
tance from the respective pressure centroids of the ERA-40-
derived WTs (Weusthoff, 2011).

The daily time series of CAP9 WTs from 1 September
1957 to 31 December 2020 used as the predictand for the
model training and as the reference series for the analyses
in Sect. 3 obtained from MeteoSwiss. An overview of the
synoptic situations of the different WTs is given in Fig. 1a.
Shown are the filled contours of the average sea level pres-
sure derived from the ERA5 reanalysis (Hersbach et al.,
2020; Bell et al., 2021) over the period of 1957–2020. While
there are seven types associated with advective patterns in
the Alpine region, only WTs 5 and 8 are dominated by
convective circulation (Fig. 1b; categorisation into convec-
tive and advective WTs following Weusthoff, 2011). Note
that the CAP9 WTs have different persistence lengths and
different occurrence frequencies, with some WTs showing
strong seasonal patterns (Fig. 1c). For our model comparison
(Sect. 3.1), we use a reduced set of seven WTs (CAP7) in
order to compare the results directly with the Mahalanobis
distance approach from Schwander et al. (2017). They found
types 5 and 8, as well as 7 and 9, in the CAP9 classifi-
cation hard to distinguish and merged the respective WT
pairs. While we merge the same pairs for the analyses in
Sect. 3.1, the machine learning models are trained on the
original CAP9 WTs.

For our reconstruction, the WT classification must be as-
sumed to be stationary over time, meaning that the domi-
nant circulation patterns over central Europe remained the
same for the last 300 years. Our WT reconstruction thus
does not yield information on whether the characteristics of
the prevailing synoptic situations changed, which, due to the
scarcity of data for the earlier periods covered by our recon-
struction, is not possible. This stationarity assumption is fur-
ther discussed in Sect. 3.

2.2 Station observations

Meteorological observations used for WT reconstruction are
located around and within the greater Alpine region in cen-
tral Europe, for which the CAP9 classification is representa-
tive (Fig. 1; see also Weusthoff, 2011). Note that the available
stations are relatively well distributed across central Europe,
which is crucial to capture the large-scale synoptic situa-
tion. However, in southern and eastern Europe, unfortunately
the available digitised station records were scarce. While the
CAP9 classification is based solely on sea level pressure data,
the station observations used for our reconstructions also in-
clude other variables, i.e. temperature and categorical rain
data. Sea level pressure represents the synoptic atmospheric
flow, whereas the other variables represent the associated sur-
face effects and thus may provide valuable additional infor-
mation for WT reconstruction (Schwander et al., 2017), es-
pecially in the context of the early-instrumental period with
scarce data availability. A summary of the available daily sta-
tion records is given in Table 1, with the data source indicated
in the last column.
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Figure 1. (a) Climatological average of sea level pressure in 1957–2020 for CAP9 WTs. White-filled circles indicate station locations (see
Sect. 2.2). The dotted rectangle represents the wider Alpine area for which the CAP9 WT classification is representative. (b, c) Description of
CAP9 WTs, including their average persistence [d] in the period of 1957–2020 (b) and their average monthly occurrence in 1957–2020 (c).

For the comparison of reconstruction methods (Sect. 3.1),
we use the same set of stations and variables that were used
by Schwander et al. (2017) without any further preprocess-
ing (see the SMD station sets in Fig. 2). This encompasses
station records from London (Cornes et al., 2012a), Milan,
Uppsala, Stockholm (Moberg et al., 2000; Maugeri et al.,
2002), Turin (Di Napoli and Mercalli, 2008), Prague (Ky-
selý, 2007; Stepanek, 2005; Brázdil et al., 2012), Hohenpeis-
senberg (Winkler, 2009), De Bilt (Klein Tank et al., 2002),
Paris (Cornes et al., 2012b, only temperature), Bern, and
Lugano (Füllemann et al., 2011; Begert et al., 2005). Us-
ing the same data allows a direct comparison between our
machine learning approaches and the Mahalanobis-distance-
based method used in Schwander et al. (2017). In accordance
with the latter study, daily mean temperature, sea level pres-
sure, and the computed pressure difference vs. the previous
day (1p; see Table 1) were used as input variables for this
comparison.

Further early-instrumental station series have been made
available as a result of data rescue efforts in recent years
(Brönnimann et al., 2019; Brugnara et al., 2020b), enhancing
the data coverage in our area of interest and extending the pe-
riod for which WTs can be reconstructed. Unfortunately, the
majority of available records cover only a few years and thus
are not suitable for our purposes. Using short observation
records would lead to varying sets of stations, which, on the

one hand, would introduce inconsistencies in reconstructed
WTs and, on the other hand, constitute immense computa-
tional efforts, as for each set of stations, a new model has to
be trained. Further issues arise from inhomogeneities in the
observation series in time (e.g. observation errors, artificial
trends or shifts), which originate from changes in instruments
or observation sites, as well as various error sources related to
early-instrumental data (see e.g. Brugnara et al., 2020a; Win-
kler, 2006; Böhm et al., 2010). Such inhomogeneities would
again lead to errors or biases in the reconstructed WT series.

Where possible, long-term homogenised station records
that contain no or only a few and short gaps were used for our
approach. For some locations, however, multiple historical
observation records from the same location had to be merged
into a single time series. For the temperature series from
Bern, Basel, Geneva, and Zurich, we benefitted from previ-
ous efforts to merge and homogenise daily temperature se-
ries (Brugnara et al., 2022a). Only stations at close locations,
i.e. within a radius of less than 15 km, have been merged,
with the exceptions of Cadiz (merged with T and p data from
Huelva) and De Bilt (merged with T data from Haarlem and
p data from Zwanenburg, Haarlem, Den Helder, and Delft),
where the existing series could not be complemented with
nearby station records. Complementary series have been re-
trieved from the ECA&D database (Klein Tank et al., 2002),
as well as from the databases of MeteoSwiss (Füllemann et
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Table 1. Daily meteorological data used for WT reconstructions. T is temperature, p is pressure, 1p is the temporal pressure gradient, and
rr are wet days.

ID Name Lat Long Altitude Variables Period Source and comments
(m a.s.l.)

BAS Basel 47.541 7.584 316 T , 1756–2020 CHIMES (Brönnimann and Brugnara, 2020, 2021),
p, 1p 1764–2020 MeteoSwiss (Füllemann et al., 2011;
rr 1864–2020 Begert et al., 2005)

BER Bern 46.991 7.464 552 T , 1781–2020 CHIMES (Brugnara et al., 2022a),
p, 1p 1781–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al., 2005)

BRL Berlin 52.456 13.300 40 p, 1p 1728–2020 DWD (Behrendt et al., 2011; Kaspar et al., 2013),
rr 1876–2020 gap in pressure series in 1771–1875

BOL Bologna 44.497 11.353 53 T 1728–2020 Camuffo et al. (2017),
rr 1818–2020 ECA&D (Klein Tank et al., 2002)

CAD Cadiz 36.500 −6.260 1 T 1790–2020 IMPROVE (Camuffo and Jones, 2002;
p, 1p 1818–2020 Barriendos et al., 2002), ECA&D (Klein Tank et al., 2002)

DBL De Bilt 52.100 5.180 1 T 1738–2020 ECA&D (Klein Tank et al., 2002),
p, 1p 1738–2020 Brandsma et al. (2000)

ENG Engelberg 46.822 8.411 1035 rr 1864–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al., 2005)

GVA Geneva 46.248 6.128 410 T 1771–2020 CHIMES and DigiHom (Häderli et al., 2020;
p, 1p 1818–2020 Brönnimann et al., 2020),
rr 1864–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al., 2005)

HPE Hohenpeissenberg 47.800 11.020 995 T 1781–2020 Winkler (2006), Winkler (2009),
p, 1p 1781–2020 DWD (Behrendt et al., 2011; Kaspar et al., 2013)
rr 1818–2020

KAR Karlsruhe 49.039 8.365 112 p, 1p 1764–2020 Brugnara et al. (2015), DWD (Behrendt et al., 2011;
Kaspar et al., 2013), ECA&D (Klein Tank et al., 2002),
gaps in 1790–1818 and 1864–1876

LOH Lohn 47.752 8.678 585 rr 1864–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al., 2005)

LDN London 51.515 −0.120 1035 p, 1p 1728–2020 Cornes et al. (2012a), ECA&D (Klein Tank et al., 2002)

LUG Lugano 46.000 8.970 273 T 1864–2020 MeteoSwiss (Füllemann et al., 2011;
p, 1p 1864–2020 Begert et al., 2005)
rr 1864–2020

MIL Milan 45.470 9.180 132 T 1764–2020 IMPROVE (Moberg et al., 2000; Maugeri et al., 2002),
p, 1p 1874–2020 ECA&D (Klein Tank et al., 2002)

OXF Oxford 51.760 −1.260 63 rr 1864–2020 ECA&D (Klein Tank et al., 2002)

PAD Padua 45.398 11.800 12 T 1781–2020 IMPROVE (Camuffo and Jones, 2002;
p, 1p 1728–2020 Camuffo et al., 2006), Brugnara et al. (2015),

ECA&D (Klein Tank et al., 2002)

PAR Paris 48.817 2.322 77 T 1876–2020 Cornes et al. (2012b),
p, 1p 1749–2020 ECA&D (Klein Tank et al., 2002)

PRA Prague 50.090 14.420 190 T 1781–2020 Kyselý (2007), Stepanek (2005),
ECA&D (Klein Tank et al., 2002)

SAM Samedan 46.526 9.879 1708 rr 1864–2020 MeteoSwiss (Füllemann et al., 2011;
Begert et al., 2005)

STK Stockholm 59.350 18.050 44 T 1756–2020 IMPROVE (Moberg et al., 2000),
p, 1p 1756–2020 ECA&D (Klein Tank et al., 2002)
rr 1864–2020

STP St. Petersburg 59.967 30.300 3 T 1756–2020 IMPROVE (Camuffo and Jones, 2002),
ECA&D (Klein Tank et al., 2002)
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Table 1. Continued.

TOR Turin 45.070 7.680 281 T 1756–2020 Di Napoli and Mercalli (2008),
p, 1p 1818–2020 ECA&D (Klein Tank et al., 2002)

UPP Uppsala 59.861 17.641 15 T 1728–2020 IMPROVE (Moberg et al., 2000; Bergström and Moberg, 2002),
p, 1p 1728–2020 ECA&D (Klein Tank et al., 2002)

WIE Vienna 48.249 16.356 198 T 1781–2020 GeoSphere Austria (2021),
p, 1p 1864–2020 gap in temperature series in 1818–1864
rr 1864–2020

ZAG Zagreb 45.820 15.980 156 T 1864–2020 ECA&D (Klein Tank et al., 2002)
p, 1p 1864–2020

SMA Zurich 47.378 8.566 555 T 1764–2020 CHIMES (Brugnara et al., 2022a),
p, 1p 1764–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al., 2005),
rr 1864–2020 gap in pressure series in 1790–1818

al., 2011; Begert et al., 2005); the German weather service
DWD (Behrendt et al., 2011; Kaspar et al., 2013); the Royal
Netherlands Meteorological Institute (KNMI; Brandsma et
al., 2000); and GeoSphere Austria (2021), formerly the Aus-
trian Central Institution for Meteorology and Geodynamics,
ZAMG. The station sets used for the method comparison and
the reconstruction of CAP9 WTs (Sect. 3.1 and 3.3) are sum-
marised in Fig. 2 and labelled according to their respective
start dates. While the comparisons in Sect. 3.1 use temporal
pressure gradients as input, these gradients were omitted for
the CAP9 reconstructions (Sect. 3.2 and 3.3), as tests (not
shown) did not reveal consistent improvements by adding
this variable.

While in Schwander et al. (2017) observation records were
not homogenised, we deemed it suitable to apply such a
procedure to all pressure and temperature series that had
not been homogenised, as well as to the merged series. We
used the break point detection approach by Wang and Feng
(2018), combining a penalised maximal t test (Wang et al.,
2007) and a penalised maximal F test (Wang, 2008). As ref-
erence series, we used monthly pressure and temperature se-
ries extracted for the station locations from the EKF400v2
reanalysis (Valler et al., 2022). For further details on this
homogenisation approach, see Imfeld et al. (2023). Most of
the homogenised station records exhibit no or smaller gaps,
with a median of 31 d. All gaps up to a length of 5 years
were imputed with a k nearest neighbour approach, following
Batista and Monard (2002). This is the same approach used
by Schwander et al. (2017) for their WT reconstructions, thus
maintaining consistency in our datasets. Tests for the imputa-
tion approach with 25 % randomly introduced gaps revealed
an average bias of −0.063 hPa (−0.05 °C) and a mean ab-
solute error of 1.83 hPa (1.46 °C) for pressure (and temper-
ature). We thus deemed this method suitable for the task of
WT reconstruction. The series from Berlin, Karlsruhe, Vi-
enna (temperature), and Zurich (pressure) have longer gaps
in their station records, which were kept.

Further preprocessing was necessary to use the station
observations in the different machine learning models (the
results of the respective assessments are not shown). First
of all, a global warming trend is visible in all tempera-
ture records. In order to establish robust classification mod-
els, such non-stationarities in the data had to be removed.
Temperature trends were removed individually for each se-
ries using a third-order polynomial fit. Furthermore, the pro-
nounced seasonality of temperature might blur the tempera-
ture signals originating from atmospheric dynamics and lead
to inhomogeneous treatment of weather types throughout the
year. Thus, temperature data were corrected for seasonality
by fitting the first two harmonics to each temperature record
and then subtracting these harmonics from the data. Pressure
and precipitation data have not been corrected for a trend or
seasonality, which contribute only a negligible part to the to-
tal variability in these variables. All variables from all sta-
tions were standardised (i.e. by subtracting their average and
dividing by their standard deviation). An important point to
mention is that pressure gradients, and thus atmospheric pat-
terns, are less pronounced in summer than in winter (see, e.g.
Fig. 5 in Sect. 3.3). Although the general spatial distribution
of the pattern remains similar throughout the year, the same
WT shows different pressure amplitudes depending on the
season. This might lead to seasonal inconsistencies in the WT
reconstructions (see the discussion in Sect. 3.1 and 3.3). To
correct for this issue, a monthly standardisation of pressure
was tested (not shown). However, this degraded the recon-
structions and was thus dismissed.

2.3 Machine learning approaches

For our model comparison (Sect. 3.1), multiple machine
learning models are tested and compared against a baseline
WT classification approach. This baseline model is given by
the simple statistical classification approach from Schwander
et al. (2017) for their CAP7 reconstructions and is based on
the shortest Mahalanobis distance (SMD) of station obser-
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Figure 2. Station sets of (a) sea level pressure and (b) temperature used for the model comparison and WT reconstruction. The top three
rows (SMD, grey shaded) refer to the station sets in Schwander et al. (2017) with 5, 7, and 11 stations, respectively. Station sets indicated by
a date are used for the CAP9 reconstruction. The date refers to the start date of the respective station set. Data availability is indicated by the
filled blue (pressure) and red (temperature) squares.

vations to the centroids (station data averages) for each WT
previously calculated from the reference period data. Further
details on this approach are expounded in Schwander et al.
(2017). The focus of this section lies on the ML approaches,
including a multinomial logistic regression model, a random
forest model, feedforward neural networks, and recurrent and
convolutional neural networks. The best-performing model is
then selected for the reconstruction of daily CAP9 WTs back
to 1728 (see Sect. 3.3).

2.3.1 Multinomial logistic regression (MLG)

Multiple logistic regression is a commonly used method for
classification problems with a categorical outcome. With a
multiple-logistic-regression model, we can predict the oc-
currence probability p of a weather class WT as a function
of several different station observations x1,x2, . . .,xn as in-
dependent variables (Hosmer and Lemeshow, 2000). While
multiple logistic regression can predict only a binary depen-
dent variable y, multinomial logistic regression can handle
several response classes (if they have no natural order). The
occurrence probability p(x) is defined as

y = p(x)=
1

1+ e(−g(x))
, where 0≤ p(x)≤ 1.

The model is based on a linear regression function g(x):

g(x)= β0+β1x1+β2x2+ . . .+βnxn.

The regression coefficients βn are computed by applying
the maximum likelihood method to maximise the probability,
meaning that the coefficients are determined iteratively. For
details, see the documentation of the R caret package (Kuhn,
2008).

Compared to complex and more advanced machine learn-
ing methods, logistic regression has the advantage of inter-
pretability, as the relationships between the predictors and
predictand can be directly inferred. One major drawback,
however, is that often only a small number of covariates can
be used in a model, as an increasing number of covariates
may be subject to multicollinearity, which consequently can
lead to overfitting of the model. To avoid this, we limited the
number of predictors to five and constrained the variance in-
flation factor (VIF) to values below four. Model overfitting
is further restrained by the training procedure (see Sect. 2.4).
Furthermore, one has to keep in mind that logistic regression
only allows for a linear combination of covariates; thus non-
linear features in the predictor data with respect to WTs are
not captured by MLG.

2.3.2 Random forest (RF)

The second machine learning approach assessed in this pa-
per is random forests (RFs) (Ho, 1995; Breiman, 2001). In
contrast to single decision trees, RF use an ensemble of de-
cision trees built from subsamples of the training data. With
an increasing number of trees, the generalisation error in RF
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models decreases, and robust predictions can be established.
In the case of our classification application, RF can provide
a probabilistic estimate of the true WT using its ensemble
of decision trees. Compared to other machine learning ap-
proaches, RFs are fast to train (depending on the number of
trees) but can suffer from overfitting. In order to find a RF
architecture with an optimal balance between accuracy and
generalisability, several parameter sets are tested. These en-
compass the number of trees (between 10 and 400), the max-
imum depth (between 5 and 30), the minimum sample size
for splitting (between 2 and 10), and the minimum sample
size for a leaf (between one and four). Furthermore, the Gini
impurity and entropy were tested to determine the splits. For
further information, see the documentation of the scikit-learn
Python package (Pedregosa et al., 2011).

2.3.3 Feedforward neural network (NN)

The third approach is feedforward neural networks (NNs)
(Rosenblatt, 1958; Hastie et al., 2009). Similar to the RF ap-
proach, NNs provide estimates of probability for each class,
represented by the normalised weights of the output layer.
The NN architecture used for our work is not based on a pre-
designed NN model. While we prescribed the use of multi-
ple layers, including a dropout layer before the output layer
to avoid overfitting, optimal architectural properties such as
the number of layers and their sizes were determined from
scratch using a hyperparameter search on the training data
(see also Sect. 2.4). In particular, networks with a number of
layers between two and eight were tested with layer sizes be-
tween 32 and 256 (in steps of 32). Furthermore, dropout rates
between 0.05 and 0.2 (in steps of 0.05), as well as learning
rates between 10−4 and 10−2, were tested during model tun-
ing. The models were trained using the Adam optimisation
algorithm (Kingma and Ba, 2014) and the categorical cross-
entropy loss function. We set the batch size to 200 and the
maximum number of epochs to 50 (with early stopping with
a patience of 5 epochs). The NN approach, as well as the
other neural network approaches, was implemented using the
Tensorflow (Abadi et al., 2016a, b) and Keras (Chollet, 2021)
libraries.

2.3.4 Recurrent and convolutional neural network
(RNN and CNN)

Both the RF and the NN models described above use input
data from the same day as predictors. As circulation pat-
terns can persist for several days, it might be beneficial to
also include information from preceding days in our mod-
els. For this reason, we assess both recurrent neural networks
(RNNs) and one-dimensional (1D) convolutional neural net-
works (CNNs) in this study. For the RNN, we used long
short-term memory networks (LSTMs) that can retain or dis-
card information from previous time steps, and are thus able
to propagate relevant information over multiple time steps

(Hochreiter and Schmidhuber, 1997). Our RNN follows the
same architecture as the NN, again with a dropout layer be-
fore the output layer and the same settings for model training.
For reasons of computational costs, fewer architectural con-
figurations were assessed than for the NN (i.e. between two
and five layers with sizes between 32 and 128).

Similar to RNNs, convolutional neural networks (CNNs)
can also make use of data from previous time steps. While
a CNN is mostly applied to image data or to other multidi-
mensional datasets for pattern detection using trained filters
(Fukushima, 1980), we used its 1D equivalent for time se-
ries analysis (Kiranyaz et al., 2021). Similarly to the RNN, a
reduced set of architectural properties (i.e. between two and
five layers with sizes between 32 and 128) has been assessed,
while the rest of the tunable parameters were kept identical
to the other networks.

For both time-dependent neural networks (RNNs and
CNNs), we used data from 2 d prior to the day of interest (3 d
in total) to predict the WTs. A longer time window did not to
yield improvements in the results (not shown). Analogous to
NNs, RNNs and CNNs were also trained using the Adam op-
timisation algorithm with the categorical cross-entropy loss
function, a batch size of 200, and a maximum of 50 epochs
with early stopping.

2.4 Hyperparameter tuning and validation

Training and validation of the machine learning approaches
were performed with the data described in Sect. 2.1 and 2.2,
using the station observations as predictors and the CAP9
WT classification as the predictand. For the model compar-
ison (Sect. 3.1), temperature, pressure, and temporal pres-
sure gradients were used as predictors, as in the baseline ap-
proach (Schwander et al., 2017). The CAP9 reconstructions
(Sect. 3.2 and 3.3) only use pressure and temperature series,
as tests revealed no consistent improvements when including
pressure gradients (not shown). After preliminary tests with
certain subsets of stations and atmospheric variables (not
shown), which did not yield any clear gains in performance,
we chose to use the full set of stations and variables (pres-
sure and temperature) available for the respective periods.
For their approach, Schwander et al. (2017) used a reduced
set of seven WTs (CAP7). Two pairs of WTs, 5 (high pres-
sure over the Alps) and 8 (high pressure over central Europe),
as well as 7 (west–southwest, cyclonic) and 9 (westerly flow
over southern Europe, cyclonic) were combined into single
WTs, as they were found to be too similar to distinguish. In
order to compare our machine learning models to the SMD
approach in Schwander et al. (2017) in the model compari-
son (Sect. 3.1), our models are trained on the same station
data as was used in the original study but with the CAP9
WT series as the predictand. To make validation measures
comparable to the baseline model, CAP9 classes are subse-
quently converted into CAP7 by combining the pairs of WTs
accordingly. Also, the reference period for the model com-
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parison (Sect. 3.1) was chosen similar to the baseline study
by Schwander et al. (2017), spanning 1 January 1961–31 De-
cember 1998. For our new WT reconstructions (Sect. 3.3),
we made use of the full available period for model training,
spanning 1 September 1957–31 December 2020, and used
the CAP9 classification for the evaluation.

Note that the same data are used for both hyperparameter
tuning and validation of the models. In order to ensure in-
dependence between model tuning and evaluation, a nested
cross-validation (Cawley and Talbot, 2010) is implemented.
For the RF and neural network approaches, an outer loop
splits the data into training and independent test sets. An in-
ner loop is applied to the training set for hyperparameter tun-
ing, again splitting off part of the data for validation of the
model configurations in order to find the optimal hyperpa-
rameters independent from the training data. The outer loop
then serves to independently estimate the validation metrics.
Optimal hyperparameters are determined using Bayesian op-
timisation (Snoek et al., 2012). A total of eight folds for the
outer loop and seven folds for the inner loop, without shuf-
fling and without overlap, are applied. For the MLG model,
we followed the same structure of outer and inner loops but
with 10 outer and 10 inner folds (with overlap) instead of
8 and 7. The outer loop splits the data randomly into 80 %
training and 20 % independent testing datasets. The inner
loop uses the 80 % folds to find the best combination of sta-
tion variables, again splitting the data into 70 % for train-
ing and 30 % for validation. We find the best combination
and best number of predictors manually using a bidirectional
stepwise approach, looking at mean performance, signifi-
cance, and the z values of predictors. Once a model was
found that worked well on all 10 inner folds and showed a
good balance between over- and underfitting, we retrained it
with the 80 % sets and evaluated it with the independent test
sets (20 %) in the outer loop.

As Schwander et al. (2017) did not perform an indepen-
dent validation of their approach, the validation measures are
not comparable. For this reason, we reconstructed their ap-
proach and applied a cross-validation with the same training
and test splits as in the eight outer loops described above. Re-
sults from this independent cross-validation can be directly
compared to our approaches. When reconstructing the Ma-
halanobis distance approach of Schwander et al. (2017), an
error in their model setup became apparent: when calculating
the distance to each WT centroid using the covariance ma-
trix derived for the respective WT, considerably lower accu-
racies than indicated in the original study were obtained (not
shown). However, when using the covariance matrix from the
true (observed) WTs, which of course would be unknown
for the reconstructions, accuracies reached the values from
the original study. For our validation of the SMD approach,
the distance was calculated for each WT centroid using the
correct covariance matrix of the respective WT.

Model performance is estimated using the overall accu-
racy and average Heidke skill score (HSS; Heidke, 1926;

Cohen, 1960) values for all WTs and all seasons. The over-
all accuracy represents the fraction or percentage of days for
which the WTs were correctly classified. The HSS represents
the proportion of correct predictions scaled by the expected
correct forecasts due to chance for categorical forecasts (see
Hyvärinen, 2014) and is calculated for each WT. In contrast
to overall accuracy, the HSS accounts for differences in the
occurrence of individual WTs. To obtain a robust and inde-
pendent estimate of the true performance of the best mod-
els, an average of these validation measures is taken over the
outer folds of the nested cross-validation (i.e. 10 and 8 test
sets for MLG and the other approaches, respectively). Note
that the model used for the WT time series reconstruction is
retrained with the full available dataset within the validation
period. The accuracies indicated for the individual models
are thus arguably pessimistic.

3 Results and discussion

3.1 Model intercomparison for CAP7 weather types

The performance of the WT classification approaches pre-
sented in Sect. 2.3, as well as the SMD approach by Schwan-
der et al. (2017) for the CAP7 WT classification, is indi-
cated in Table 2. The accuracies and HSS shown represent
an average from the k-fold cross-validation over the period
of 1 January 1961–31 December 1998 (see Sect. 2.4) based
on three different subsets with data from 5, 7, and 11 sta-
tions, as was used in Schwander et al. (2017) (see also Table 3
therein). For the logistic regression model, only results from
the optimal selection of station series is shown (see Sect. 2.3).
The best-performing MLG model uses the following six vari-
ables: pressure in Milan and Paris, temperature in Prague and
Stockholm, and the temporal pressure gradient in Milan and
Stockholm.

Evidently, all ML approaches outperform the baseline
model (SMD, in italics) for all sets of stations. With an inde-
pendent validation and correcting the error in the SMD model
(see Sect. 2.4), accuracies are by far lower than indicated in
Schwander et al. (2017), dropping below 70 % overall and
below 60 % in the summer months. The machine learning ap-
proaches show accuracies of about 75 % even for the small-
est set of stations (and the selection of the MLG). Accuracies
of the RF models are typically lower by 2 %–3 % compared
to the neural networks, regardless of the station set. Valida-
tion measures improve with the number of stations, reaching
a maximum overall accuracy of 85.7 % for the NN model
with 11 stations. Note that in contrast, the SMD approach
shows lower accuracy values for the largest station set than
for the other two, pointing to issues arising from data qual-
ity or the spatial distribution of the station network for this
approach. The Heidke skill score (HSS) shows a similar pat-
tern, with scores between 0.7 and 0.83 (compared to values
between 0.56 to 0.61 for SMD). The superiority of the ma-
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Table 2. Validation metrics of all approaches applied for the CAP7 WT reconstruction, as well as the baseline model (SMD, in italics) using
different data subsets. The value before the slash indicates the average accuracy in percent; the value after the slash indicates the Heidke skill
score. Shown are values for the whole year (ANN) and for the individual seasons (winter – DJF; spring – MAM; summer – JJA; autumn –
SON). The highest values per station set are marked in bold.

Station set Model ANN DJF MAM JJA SON

Custom selection of variables and stations MLG 74.5/0.70 74.3/0.71 74.4/0.70 73.8/0.67 75.3/0.71

SMD (5 stations) SMD 64.7/0.58 73.3/0.60 62.9/0.56 56.3/0.45 66.3/0.58
RF 74.3/0.70 78.4/0.70 71.8/0.67 72.2/0.63 75.1/0.69
NN 76.1/0.72 79.9/0.72 73.7/0.70 73.7/0.65 77.1/0.72
RNN 76.8/0.73 80.6/0.72 75.1/0.71 73.8/0.65 77.9/0.73
CNN 76.0/0.72 79.2/0.71 74.8/0.71 72.4/0.63 77.7/0.72

SMD (7 stations) SMD 67.4/0.61 75.7/0.64 66.3/0.61 59.0/0.48 68.8/0.61
RF 78.4/0.75 80.9/0.73 77.6/0.74 75.8/0.67 79.2/0.74
NN 81.6/0.78 84.5/0.78 81.1/0.78 78.3/0.71 82.4/0.78
RNN 80.5/0.77 83.1/0.76 79.5/0.76 78.1/0.71 81.3/0.77
CNN 81.3/0.78 83.3/0.76 80.4/0.77 79.4/0.72 81.9/0.78

SMD (11 stations) SMD 62.9/0.56 70.6/0.56 61.1/0.55 55.1/0.44 64.8/0.56
RF 82.6/0.79 83.6/0.77 82.0/0.79 81.2/0.73 83.7/0.80
NN 85.7/0.83 87.8/0.82 84.8/0.82 83.8/0.78 86.6/0.83
RNN 85.4/0.83 88.2/0.83 84.6/0.82 83.1/0.78 85.8/0.82
CNN 85.5/0.83 87.2/0.82 84.7/0.82 84.4/0.79 85.8/0.82

chine learning approaches might be explained by their ability
to (in theory) better fit nonlinear relationships and interac-
tions in the data compared to common statistical approaches
(see also Sect. 2.3).

From the seasonal validation measures, we see a slight
drop in accuracy (stronger for the HSS) for spring and sum-
mer, which was also found in Schwander et al. (2017), espe-
cially for summer. Weaker pressure gradients hamper a ro-
bust detection of WTs for these months. The difference be-
tween spring–summer and autumn–winter, however, is much
smaller for the machine learning approaches compared to
SMD. All of our models are thus more capable of coping
with seasonal differences, although some seasonal patterns
in the accuracy remain.

Random forests and multinomial logistic regression allow
some inference about the stations and variables that prove to
be crucial for WT classification. Regarding the spatial dis-
tribution of the stations, it is not a high density of stations
within the area for which the CAP9 classification is repre-
sentative (see Fig. 1) but instead an even distribution of sta-
tions around the borders of this area that leads to the most
accurate predictions. This becomes evident for the optimal
selection in the MLG approach, with all predictors being
highly significant in the model (p≤ 0.05). The MLG coef-
ficients for each covariant and for each WT are listed in the
Supplement (Sect. S2), together with further illustrations dis-
playing the relationship of each predictor to the probability
of each class response in the model. Also, RF results under-
pin the fact that a spatially well distributed station network is
crucial for a robust WT classification. This is not surprising,

as for WT classification, the models benefit not from the lo-
calised effects in the station observations but from the infor-
mation on the atmospheric state over a larger region. In this
context, more stations located in southern, eastern, and also
western Europe (see Fig. 1) could improve the accuracy of
the models. Looking at the feature importance (i.e. for each
feature (predictor), the average reduction in the Gini impurity
or entropy in the split classes over all trees) in RF, pressure
data show the highest importance, followed by temperature
(see Sect. S3). The temporal pressure gradient, on the other
hand, showed lower importance values by 1 order of magni-
tude compared to the other variables. These results are robust
also in the MLG model, where pressure showed the highest
importance, followed by temperature and the pressure gra-
dient. We want to note, however, that the MLG models still
always preferred a combination of all three types of informa-
tion instead of using just pressure data. This holds equally
for the other approaches, where preliminary tests using only
pressure data vs. using all variables confirmed the use of our
multivariate input data (not shown).

The model comparison revealed that on average the feed-
forward neural network (NN) exhibits the highest accuracy
and HSS estimates, although only slightly better than those
of RNN and CNN. Note that for particular station sets or
seasons, RNN and CNN show better metrics than the feed-
forward NN. An interesting result is that, opposite to our ex-
pectations, including the temporal evolution of the previous
days (linked e.g. to preferential WT transitions) as input in
RNN and CNN did not yield clear improvements. While this
temporal information may yield benefits when only a small
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number of input series is available (see the RNN results in
Table 2), measurements from a single day are generally suf-
ficient to correctly detect WTs. The NN can be considered
the best model for another reason: in contrast to RNN (and a
bit less so for CNN), it is considerably faster to train, making
it favourable also from the computational resources perspec-
tive. Regarding this aspect, it is important to mention that
the simplest approaches we tested (MLG, RF) are much less
costly in terms of computation hours than neural networks.
Depending on the task and the related goal of accuracy, using
these simpler methods is thus highly recommended. From
this point on, we will only use the feedforward neural net-
work model for further analyses and for the final reconstruc-
tion.

3.2 The effect of categorical weather data

As stated in the introduction, ML approaches have the ad-
vantage of being able to process continuous and categorical
information simultaneously. In this section, we assess the ef-
fect of including time series of wet days based on rain infor-
mation (see Sect. 2.2) as additional model input, as they have
proven to be very valuable for statistical weather reconstruc-
tions (Imfeld et al., 2023). For this purpose, we trained an
NN model for two different station sets used for our new re-
construction (Sect. 3.3), once without and once with the cat-
egorical rain series. Model building and validation has again
been performed as described in Sect. 2.4. We used the station
set available from 1728 (fewest predictors – four pressure
and two temperature series; see Fig. 2) and the one available
from 1864 (most predictors – 17 pressure and 18 temperature
series; see Fig. 2) to analyse the impact of adding categori-
cal data for different numbers of predictors. Both station sets
were complemented with 13 series of wet days (Sect. 2.2).
Note that these categorical rain records do not go as far back
as 1728 but mostly only to 1864 (see Table 1). In order to bet-
ter illustrate the effect of adding categorical data, we decided
to use all available wet-day series for both experiments.

For the 1728 station set without wet-day series, the overall
accuracy is estimated at 77.8 % (see also Table 3). By adding
wet days, this increased by 0.5 %, to 78.3 %. While for the
autumn and winter months, the accuracy increased by 1 %,
it declined by 0.5 % for the summer months. For the 1864
station set, adding wet days to the predictors decreased to-
tal accuracy by 0.8 %, to 86.5 % (compared to 87.3 % with-
out wet days). Also, all seasonal accuracies show a decrease
between 0.4 % and 1.3 %. This shows that adding wet-day
series to the model input leads to negligible changes in ac-
curacy, which are mostly within the range of uncertainty in
model training (i.e. smaller than the variance of accuracy and
HSS in the outer folds of model training). With very few
pressure and temperature records available (i.e. for the 1728
station set), wet days can provide supplementary informa-
tion for WT classification. However, in our case, improve-
ments were limited to autumn and winter, where precipitation

is largely determined by large-scale circulation, whereas for
summer, the results are slightly less accurate when including
rain observations, which is arguably linked to precipitation
being more frequently driven by local convection. If abun-
dant pressure and temperature series are available (i.e. for
the 1864 station set), using wet days as predictors yields no
benefits. In this context, we decided to omit wet-day series
for our final CAP9 reconstructions in Sect. 3.3.

3.3 Reconstructing CAP9 weather types, 1728–2020

3.3.1 Model performance and reconstruction quality

With the feedforward neural network (NN) outperforming
the other approaches (Sect. 3.1), we extended the current WT
series for the CAP9 classification back to 1728. In order to
provide an estimate for the model performance and by that
of the reliability of our CAP9 reconstructions, a validation
procedure as described in Sect. 2.4 was applied. The station
series (sea level pressure and temperature records) that have
been used as predictors are described in Sect. 2.2. A sum-
mary of the resulting model architectures can be found in
the Supplement (Sect. S4). Table 3 gives an overview of the
validation results in the form of overall accuracy and aver-
age HSS for predicted CAP9 WTs vs. the original predictand
time series (1957–2020) by MeteoSwiss for all station sets.
The results are again given for the whole period and are dis-
tinguished by season. The accuracy achieved when using the
smallest station set (stations available from 1 January 1728 to
31 December 1737) is already remarkably high, with a value
of 77.8 % despite the limited set of available stations. Adding
more station series generally improves the accuracy and skill
score values (with some remaining variability depending on
model training runs). Note that the validation metrics shown
in Table 3 only provide values with respect to the reference
period of 1957–2020. The actual values for the past periods
may be lower due to larger uncertainties and errors in the
data, but unfortunately they cannot be determined due to the
lack of a historical reference WT series. While reconstruc-
tions for most station sets show slightly less skill and lower
accuracies for the summer months (JJA), differences vs. the
overall average remain small, with values of approximately
1 % for accuracy and 0.1 for the HSS. Those seasonal differ-
ences in model skill are arguably linked to the model being
trained over the full year (see the discussion in Sect. 3.3.2).

To provide more insight into the patterns of correctly and
wrongly classified WTs and the reasons why the model is
not able to assign certain WTs correctly, further analyses
have been performed. Figure 3 shows the confusion matrices
for the station sets 1728 and 1864 for the reference period
of 1957–2020. While accuracy may vary among the mod-
els, training runs, and station sets, the actual WTs that are
wrongly assigned to each true class are similar. For the “ex-
treme” WTs, 8 and 9, most false predictions – as expected –
identified WTs 5 and 7, which show the most similar patterns
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Table 3. Validation results for the feedforward NN models with different station sets (named after their starting year). The value before the
slash indicates the average accuracy in percent; the value after the slash indicates the Heidke skill score. Shown are estimates over the whole
year (ANN) and for the individual seasons (winter – DJF; spring – MAM; summer – JJA; autumn – SON).

Station set ANN DJF MAM JJA SON

1728 77.8/0.76 78.9/0.75 77.0/0.75 77.8/0.69 77.6/0.74
1738 78.9/0.77 80.0/0.77 78.2/0.77 79.5/0.72 77.8/0.75
1749 82.8/0.81 84.0/0.81 82.7/0.81 81.6/0.73 82.9/0.80
1756 83.2/0.82 84.3/0.82 82.8/0.82 82.8/0.78 82.9/0.80
1764 84.8/0.84 85.6/0.83 85.2/0.84 83.4/0.76 85.1/0.83
1771 83.9/0.83 83.8/0.81 83.9/0.83 83.6/0.75 84.4/0.83
1781 84.8/0.83 84.6/0.82 85.0/0.84 84.8/0.77 84.8/0.83
1790 84.7/0.84 84.8/0.82 84.8/0.84 84.3/0.77 84.9/0.83
1818 84.3/0.83 84.1/0.81 84.6/0.83 83.9/0.73 84.7/0.83
1864 87.3/0.86 87.6/0.85 87.8/0.87 86.9/0.82 87.0/0.85

to the correct WTs, 8 and 9, respectively (see Fig. 1). While
Schwander et al. (2017) found these two WT pairs hard to
distinguish and reduced the number of WTs accordingly, the
NN model accuracies for WTs 8 and 9 are comparable to the
other WTs. The NN model is thus capable of correctly dis-
tinguishing between these extreme (i.e. with respect to the
intensity and extent of high- and low-pressure systems) WTs
and their less extreme counterparts.

Figure 4 shows the patterns of pressure deviations from
the average of the time series (in standard deviations) for
each station and weather type within the reference period.
Indicated are the average values for correctly assigned (blue)
and wrongly assigned (red) WTs, as well as the range be-
tween the 5 % and 95 % quantiles (shaded areas) from the
reconstruction with the 1864 station set. Deviations of the
red and blue circles at individual/all observation points in-
dicate regional/overall discrepancies in the observed pres-
sure distribution as the reason for false detections. Coincid-
ing red and blue circles mean that observation patterns of
true and false predictions are identical and that the reason
for the false predictions cannot be explained by the observa-
tions. Evidently, some WTs have very similar patterns with
a large overlap (e.g. WT 5 and WT 8), making distinction
difficult. For most WTs dominated by extremely high or low
pressure (e.g. WTs 5, 8, and 9), wrongly assigned WTs are
linked to more moderate values in the pressure data. Further-
more, regional differences in the pressure distribution can be
identified as a source of error. For example, WT 6 is more
likely to be confused with other WTs for days with stronger
low-pressure systems over northern central Europe. Such re-
gional patterns can also be found for WTs 3, 4, and 7. The
corresponding temperature profiles (see Fig. S8) show simi-
lar patterns to observed temperatures for days with wrongly
assigned WTs closer to the mean (WTs 2, 3, and 6) or re-
gional differences (WTs 7, 8, and 9), although these patterns
are much less distinct. The same evaluation for the other sta-
tion sets provides similar results (not shown).

Figure 5 shows average sea level pressure maps for the
period of 1957–2020 derived from ERA5 (Hersbach et al.,
2020; Bell et al., 2021). The maps are separated by season,
namely winter (DJF, Fig. 5a) and summer (JJA, Fig. 5b), as
well as by reference series (top), correctly attributed WTs
(centre), and false predictions (bottom). Note that WT 8 does
not occur during the summer months (see the seasonality in
Fig. 1, as well as Fig. S9) and that no day was wrongly as-
signed to WT 9 in the reference period, hence the empty pan-
els in Fig. 5b. While false predictions for the winter months
are strongly dominated by weaker-than-average pressure dis-
tribution rather than regional shifts, results are less clear for
the summer months. While slight regional shifts are apparent
(e.g. for WTs 1, 3, and 7), the reason for false predictions
in summer seems to originate from other sources, arguably
patterns in temperature or general difficulties of the model in
capturing the smaller pressure gradients in this season.

Transitions between weather types may follow preferen-
tial patterns. A comparison of preferential transitions in the
CAP9 reference series and reconstructions for the reference
period from different station sets (Fig. S10a–c) did not show
strong differences, although reconstructions show a small
bias towards persistence. Our analyses furthermore revealed
that those preferential transitions show only small changes
throughout the reconstruction period (Fig. S10d–f). Prefer-
ential transitions between WTs are thus generally well rep-
resented in the CAP9 reconstructions. As the synoptic circu-
lation is constantly changing, weather types might change
over the course of 1 d. This has to be taken into account
when analysing daily WT reconstructions, as such WT tran-
sitions may be a source of error. In the reference CAP9 se-
ries, 19.1 % of days are persistent weather situations, with
the same WT on the days before and after. A majority of the
days (46.4 %) have a partly transient situation, with the same
WT on one of the neighbouring days and a different one on
the other, and in 34.5 % of the cases, different WTs occur on
both neighbouring days (transient situation). Taking recon-
structions using station set 1864 as an example, the correctly
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Figure 3. Confusion matrices for reconstructions (columns) with station sets 1728 (a) and 1864 (b) against reference CAP9 series (rows) for
the reference period. Values are given as a percentage of the respective WT occurrence.

classified WTs show the same percentages. For the days with
false predictions, however, transient situations are overrepre-
sented (48.0 %), whereas only 7.6 % show persistent condi-
tions. We can conclude that transient situations play an im-
portant role as a source of uncertainty in daily WT recon-
structions. The WT chosen for these cases is typically the
one with the strongest imprint on the daily average station
observations and not necessarily the one persisting through-
out most of the day. Furthermore, a dominant WT might be
chosen by a very small margin. This issue might be solved
by introducing a neutral (transient) class or by calculating
WTs for a specific time of the day (e.g. 12:00 UTC) using
subdaily data that is, however, less readily available for the
early-instrumental period.

The next interesting feature to look at is the confidence of
the model in its predictions, i.e. the probabilities with which
the WTs are classified. As stated in Sect. 2.3, for each day, the
NN attributes a probability to all WT classes, and the class
with the highest probability is selected as the predicted (or
most likely) WT. Figure 6a (for comparison with the base-
line approach, see Fig. S11) shows a 1-year running mean
of the daily probabilities of the predicted WTs by season for
the whole period of reconstruction. It shows values around
0.8 in the first 2 decades, increasing to values between 0.825
and 0.875 in the middle of the 18th century and to values
between 0.85 and 0.9 in 1864. The fact that detection proba-
bilities remain nearly constant at a high level over the last
300 years suggests that the stationarity assumption of the
WT classification (see Sect. 2.1) is reasonable, as otherwise,
larger shifts towards lower detection probabilities would be
expected. Also the seasonal differences in detection proba-
bilities are small. The distinction of daily maximum proba-
bilities according to correct and false classifications in the
reference period (Fig. 6b) reveals that the model used for

our CAP9 reconstruction is less confident for WTs that were
wrongly assigned (median= 67.4 %) than for correct attri-
butions (median= 97.3 %). This is in line with the above
finding on transient WTs, where mixed signals in the sur-
face observations may lead to false classifications. Seasonal
differences are again small, with only slightly lower values
in summer, showing that the model being trained over the
full year can be considered reasonable. The same applies to
differences in detection probability between individual WTs
(Fig. 6c). Only the two extreme WTs, 8 and 9 show slightly
different patterns (i.e. higher probabilities).

3.3.2 The new CAP9 reconstructions in a
climatological context

In this section, we look at the CAP9 WT reconstructions
produced with the NN approach (Sect. 2.3) for the full pe-
riod of 1728–2022. The aim is to analyse their quality and
consistency, i.e. look for possible discontinuities in WT fre-
quencies, as have, for example, been found for the Hess and
Brezowski WT classification in the mid-1980s (Mittermeier
et al., 2022). Furthermore, we compare occurrence frequen-
cies of reconstructed CAP9 WTs with the CAP9 reference
series on climatological timescales to analyse the representa-
tion of internal climate variability in WTs in the past decades
to centuries. For a comparison with the WT reconstruction
by Schwander et al. (2017), the supplement provides the fig-
ures presented in this section with the addition of the CAP7
reconstructions (see Figs. S11–S13).

An important quality characteristic is biases in the occur-
rence of different WTs. Figure 7 illustrates the percent bias
(with respect to the number of days of the year) in yearly
WT occurrence for the reference period (n= 63 years), sepa-
rated by station set and weather type (for comparison with the
baseline approach, see Fig. S12). The median biases remain
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Figure 4. Station data pressure patterns for correct (blue) and false (red) predictions from the 1864 station set for all nine WTs. Shown are
the average (lines) and the 5 %–95 % quantile interval (shaded areas) in units of standard deviations.

within 1 %–2 % for all WTs and station sets, with no sys-
tematic over- or underestimation of an individual WT. Some
outlier years are evident for WTs 1, 3, and 6 (overestimation),
as well as WTs 2 and 3 (underestimation).

Figure 8 illustrates the full reconstructed time series of
the yearly occurrence for each WT (in black), again with
the CAP9 reference series (in red) for comparison (a com-
parison with the baseline approach is given in Fig. S13).
For better readability, a 10-year running average is indi-
cated. The yearly WT occurrence in our new CAP9 recon-
struction shows high correlation values (average= 0.948)
and relatively low root-mean-squared error values (aver-
age= 3.35 d). A positive bias for WTs 6 and 9, as well as
a negative bias for WT 8 determined in Fig. 7, can also be
seen in the time series. In the time series presented in Fig. 8,
no apparent artificial discontinuities that go beyond natu-
ral variability can be determined, which is expected, as ho-

mogenised input data are used. In order to study discontinu-
ities and trends in further detail, statistical tests were applied.
To detect discontinuities (i.e. changes in the data structure) in
yearly WT occurrence, we applied a pruned exact linear time
(PELT) algorithm following Killick et al. (2012) (see also
Truong et al., 2020), with the constraint that change points
are 10 samples apart at least. Between 9 and 17 change points
were detected over the full reconstruction period (Fig. S14).
This analysis does not allow us to infer whether the disconti-
nuities detected are artificial or whether they originate from
natural variability. However, only a few common breakpoints
between individual WTs are found, and the majority of de-
tected discontinuities do not coincide with changed station
sets in the input. This points to the fact that the discontinuities
discovered are not introduced artificially and that our CAP9
reconstructions can be considered homogeneous over time.
Long-term trends were examined using a Mann–Kendall test
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Figure 5. Climatological average of sea level pressure in 1957–2020 for CAP9 WTs for the (a) winter and (b) summer months. Shown
in each panel are the averages according to the official WT series by MeteoSwiss (left, obs column), correctly predicted WTs (centre, true
column), and wrongly predicted WTs (right, false column). The number of cases (n) is indicated in the top-right corner of each subpanel.
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Figure 6. (a) The 1-year running mean of the daily maximum probability (fraction) of the reconstructed CAP9 WT series, separated by
season. (b) Boxplots of the probability for correctly (true) and wrongly (false) attributed WTs within the reference period, separated by
season. Panel (c) is the same as panel (b) but separated by weather type. The thick line indicates the median; the boxes extend to the quartiles
and whiskers to 1.5 times the interquartile range.

Figure 7. Bias of yearly WT occurrence (in % of days of the year) for all WTs (x axis) and station sets (colours) in the NN reconstruction.

(Kendall, 1975) at a significance level of α= 0.05. No sig-
nificant trends in the yearly occurrence have been found (see
Fig. S15). These analyses support the stationarity assump-
tion (see Sect. 2.1). If this assumption were not to pertain, a
pronounced decline in the frequency of occurrence would be
expected, as the predefined modern WTs would only rarely
be observed in the distant past. For the yearly average per-
sistence, however, statistically significant trends were deter-
mined for WTs 4 (decrease), 7 (decrease), and 9 (increase),
although they were small in magnitude (see Fig. S16).

More detail on the occurrence frequency is given in Fig. 9,
where we show the 10-year running average yearly WT oc-
currence distinguished by season. These seasonal occurrence
patterns of CAP9 reconstructions generally match the occur-
rence in the reference series. For WTs 6 and 9, the positive
bias observed in the reconstructions can be mainly attributed
to an overestimation of WT occurrence in spring (MAM).
The negative bias of WT 8, on the other hand, is linked to
an underestimation of this WT in the winter months (DJF).
The attribution of a bias to seasonal differences points to an
important issue in WT reconstruction. As most WTs (1, 5,
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Figure 8. Yearly occurrence of reconstructed CAP9 WTs (lighter colours) with the 10-year running mean (darker colours). Shown are the
CAP9 reference series (red) and the CAP9 reconstructions (black). The correlation and root-mean-squared error for the yearly WT occurrence
with respect to the reference series are written above each subpanel.

7, 8, and 9) show a pronounced seasonality, they can be dif-
ficult for a model that is trained over all seasons to predict.
Tests training individual models for each season improved
the results, although for some WTs (e.g. WT 8 in summer),
the available sample for model training becomes too small.
Another option might be to include seasons or months as cat-
egorical predictor variables, although this has not been tested
in this study. Seasonal shifts in WT occurrence are assessed
in Fig. S17. WT 1 exhibits a stronger seasonality in recent
decades, whereas the seasonal variation in WTs 4 and 7 tends
to decrease. The winter occurrence peak in WT 3 is shifted
towards autumn, and WT 2 shows a tendency towards a sec-
ond occurrence peak in summer. However, those seasonal
shifts are small compared to the large year-to-year variability
in WTs.

4 Conclusions

In our study, we applied various supervised machine learn-
ing (ML) methods for station-based weather type (WT) re-
construction in order to assess their performance and to find
an optimal ML approach for this purpose. With the model

showing the best performance and using additional station
observations, existing CAP9 WT series have been extended
back to 1728.

Our results show that all ML approaches perform well
when tested on the daily CAP7 WT classification. Indepen-
dent estimates of accuracy and HSS show better performance
of all models tested compared to the common statistical clas-
sification approach used as a baseline. ML methods can in-
deed profit from their ability to detect nonlinear patterns.
The best-performing method varies between the three neu-
ral network approaches tested depending on the season, data
used, and validation metric, although even the simpler and
less computationally demanding multinomial linear regres-
sion and random forest approaches yield good results. Over-
all, the feedforward neural network was found to be slightly
better than the other ML approaches and was therefore used
to create the CAP9 WT reconstruction. The use of qualitative
rain observations did not improve our reconstructions but in-
stead yielded partially worse results and was thus omitted
for our reconstructions. The extension of the existing CAP9
classification back to 1728 constitutes a novelty in WT recon-
struction. The resulting WT time series proves to be accurate
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Figure 9. The 10-year running average of yearly WT occurrence by season (DJF – blue; MAM – green; JJA – red; SON – brown) and WT
(the labels above each subplot). Shown are the CAP9 reference series (solid lines) and the CAP9 reconstructions (dashed lines).

in various ways. No artificial trends or discontinuities were
detected. The year-to-year variability and the seasonality of
the WTs are well reproduced. Nevertheless, depending on the
set of stations available, some over- and underestimation of
WT occurrence was determined. Our results emphasise the
importance of continuously improving methods of WT re-
construction when new options and data become available.

Some challenges or limitations related to our approach
persist. First, the station data availability is usually scarce
in the early-instrumental period. Further data rescue efforts
may provide additional observations at important locations
for WT classifications. Although our experiment with adding
qualitative rain information did not improve the reconstruc-
tions, other qualitative information more directly linked to
large-scale circulation, such as wind direction, might lead to
improvements. Unfortunately, digitised, long-term wind di-

rection records are sparse and therefore could not be assessed
in this study. A second challenge is the occurrence frequency
of each WT in the reference series. WTs with low occur-
rence frequencies and strong seasonality can pose a challenge
for our WT reconstruction approach. Adding seasons as ad-
ditional predictors or training different models per season
could solve this issue, although the sample size of rare WTs
might be too small. Also in general, the size of the training
dataset has to be proportional to the number of WT classes
in order to find robust model weights and biases. A third is-
sue is the daily resolution of input and WT data: transient
situations leave a mixed signal in the daily average observa-
tions, making the distinction at a daily resolution difficult.
This issue might be solved with the use of subdaily data that
are, however, less readily available in the form of long and
homogeneous time series.
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Our CAP9 reconstruction represents the longest daily WT
series available and allows us to study decadal circulation
variability in the context of past climatic changes, as well as
the impacts of associated synoptic situations on the surface,
e.g. extreme events. On the methodological side, future re-
search may focus on including wind direction observations
to improve and extend WT reconstructions even further back
in time, although this requires tremendous digitisation ef-
forts. While we focused on reconstructing CAP9 WTs, our
ML models may be adapted to other WT classifications and
regions.
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