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Abstract. Recent studies have highlighted the link between
upper-level jet stream dynamics, especially the persistence
of certain jet configurations, and extreme summer weather
in Europe. The weaker and more variable nature of the jets
in summer makes it difficult to apply the tools developed
to study them in winter, at least not without modifications.
Here, to further investigate the link between jets and per-
sistent summer weather, we present two complementary ap-
proaches to characterize the jet dynamics in the North At-
lantic sector and use them primarily on the Northern Hemi-
sphere summer circulation.

First, we apply the self-organizing map (SOM) clustering
algorithm to create a 2D distance-preserving discrete feature
space for the tropopause-level summer wind field over the
North Atlantic. The dynamics of the tropopause-level sum-
mer wind can then be described by the time series of visited
SOM clusters, in which a long stay in a given cluster relates
to a persistent state and a transition between clusters that are
far apart relates to a sudden considerable shift in the config-
uration of upper-level flow.

Second, we adapt and apply a jet core detection and track-
ing algorithm to extract individual jets and classify them into
the canonical categories of eddy-driven and subtropical jets
(EDJs and STJs, respectively). Then, we compute a wide
range of jet indices for each jet category for the entire year
to provide easily interpretable scalar time series representing
upper-tropospheric dynamics.

This work will focus on the characterization of historical
trends, seasonal cycles, and persistence properties of the jet
stream dynamics, while ongoing and future work will use the
tools presented here and apply them to the study of connec-
tions between jet dynamics and extreme weather.

The SOM allows the identification of specific summer jet
configurations, each one representative of a large number of
days in historical time series, whose frequency or persistence
had increased or decreased in the last few decades. Detecting
and categorizing jets adds a layer of interpretability and pre-
cision to previously and newly defined jet properties, allow-
ing for a finer characterization of their trends and seasonal
signals.

Detecting jets at pressure levels of maximum wind speed
at each grid point instead of in the dynamical tropopause is
more reliable in summer, and finding wind-direction-aligned
subsets of 0 contours in a normal wind shear field is a fast and
robust way to extract jet cores. Using the SOM, we isolate
persistent circulation patterns and assess if they occur more
or less frequently over time. Using properties of the jets, we
confirm that the Northern Hemisphere summer subtropical
jet is weakening, that both jets get wavier, and that these jets
overlap less frequently over time. We find no significant trend
in jet latitude or in jet persistence. Finally, both approaches
agree on a rapid shift in the subtropical jet position between
early and late June.
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1 Introduction

Extratropical tropopause-level jet streams are narrow bands
of westerly winds and are one of the most prominent features
of the upper-tropospheric circulation. Their large variability
at a daily timescale (Woollings et al., 2014) along with their
link to extreme weather (e.g., Martius et al., 2006; Mahlstein
et al., 2012; Harnik et al., 2014) makes them an important
object of research in meteorology and atmospheric dynam-
ics.

From a climatological perspective, jet streams are often
separated into two categories based on their location and
momentum source (Kållberg et al., 2005; Koch et al., 2006;
Harnik et al., 2014; Winters et al., 2020; Spensberger et al.,
2023). The subtropical jet (STJ) is located at the poleward
edge of the Hadley cell. It draws its momentum from the ther-
mally driven Hadley cell circulation and is mainly confined
to high levels, typically between 400 and 150 hPa (Krishna-
murti, 1961; Held and Hou, 1980). The eddy-driven jet (EDJ)
can be found further poleward, inside the Ferrel cell. It is
also referred to as the subpolar or extratropical jet. It is
driven by momentum flux convergence associated with mid-
latitude synoptic eddies (Palmen and Newton, 1948; Held,
1975; Schneider, 1977; Woollings et al., 2010). It has a much
deeper vertical extent, typically extending below 700 hPa.
The separation into STJ and EDJ is not always clear, as both
sources of momentum are often present to varying degrees
to drive either jet and depend on each other (Lee and Kim,
2003; Martius, 2014).

Certain features and configurations of the jet have received
particular attention over the last few years due to their links
to other aspects of the circulation, surface weather, or both.
The latitude of the low-level EDJ has been identified as a
major mode of variability of the wintertime Atlantic circula-
tion (Athanasiadis et al., 2010; Woollings et al., 2010; Han-
nachi et al., 2012). A very zonal EDJ (low tilt) paired with a
north-shifted STJ can create a rare but very persistent circu-
lation pattern with a merged jet (Harnik et al., 2014). An in-
stantaneously meandering jet is the marker of Rossby waves
(e.g., Vallis, 2017), but strong narrow jets can act as waveg-
uides for them too (Hoskins and Ambrizzi, 1993; Martius et
al., 2010; Wirth, 2020; White and Mareshet Admasu, 2025).
A locally sinuous jet may also mark the presence of a block
(e.g., Nakamura and Huang, 2018; Woollings et al., 2018b).
Jet properties also interact with each other. For instance, in
winter, the EDJ’s latitude influences its persistence and pre-
dictability (Franzke and Woollings, 2011; Barnes and Hart-
mann, 2011), and a jet with low speed has a higher daily vari-
ability in its waviness and latitude (Woollings et al., 2018a),
which is hypothesized to favor blocks. Jet properties have
also been linked to extreme events. The position of the EDJ
modulates the odds of extreme events in the midlatitudes
(Mahlstein et al., 2012), and so does its waviness (Röthlis-
berger et al., 2016b; Jain and Flannigan, 2021). Over Eura-
sia, the persistent simultaneous presence of the EDJ and STJ

is associated with increased odds of extreme heat in summer
in certain regions of western Europe (Rousi et al., 2022). Re-
cently, statistical models trained on time series of a few (5–
10) wintertime EDJ properties (introduced by Barriopedro et
al., 2023) were used to skillfully predict air stagnation (Mad-
dison et al., 2023) and temperature extremes (García-Burgos
et al., 2023).

Climate change is expected to affect the jet streams in
several ways. Through connections highlighted in the pre-
vious paragraph, themselves potentially affected by climate
change, trends in jet stream properties may translate into
trends in various aspects of atmospheric circulation and sur-
face weather (e.g., Held, 1993; Stendel et al., 2021). The
poleward shift of the jet streams under climate change was
hypothesized very early on (e.g., Held, 1993). It is now ob-
served in historical data in the global mean, albeit more
clearly in winter than in summer and mostly for the EDJ.
However, the signal is weak in the North Atlantic sector
(Woollings et al., 2023). This poleward shift is projected to
continue in future simulations (Barnes and Polvani, 2013;
Lachmy, 2022; Woollings et al., 2023). For the STJ, the his-
torical trend is season- and region-dependent. For the North
Atlantic sector, Totz et al. (2018) report a poleward trend in
the transition seasons and an equatorward trend in summer.
The North Atlantic STJ is also weakening with time, espe-
cially in summer (Woollings et al., 2023; D’Andrea et al.,
2024), and the North Atlantic EDJ has also been weakening
in the last 2 decades (Francis and Vavrus, 2012; Woollings
et al., 2018a), although an opposite trend has been observed
for longer time periods (Blackport and Fyfe, 2022). In future
simulations, a positive trend is projected for the maximum
speed of the EDJ core, although this signal is not yet appar-
ent in historical data (Shaw and Miyawaki, 2024). In past
data and using three different metrics, Francis and Vavrus
(2015), Di Capua and Coumou (2016), and Martin (2021) all
find slight increases in EDJ waviness, but a stable STJ wavi-
ness was found in the last cited paper. Further downstream,
however, Lin et al. (2024) find an increase in waviness for
the Asian jet that has an Atlantic origin. By contrast to past
trends, for future winters, Peings et al. (2018) find a decrease
in waviness accompanied by a strengthening and squeezing
of the EDJ. This opposite trend in EDJ waviness for past and
future data is consistent with the findings of Cattiaux et al.
(2016), who find a slight increase in waviness in the past only
for certain basins (including the North Atlantic) and seasons
but an overall decrease in waviness in future simulations. The
conflicting results in jet meandering depending on the period
and metric chosen were highlighted by Blackport and Screen
(2020) and overall remain a subject of discussion in the com-
munity (Geen et al., 2023).

Most of the current research in atmospheric science re-
quires reducing the complexity of the circulation from time-
varying 2D or 3D fields to a smaller feature space. These sim-
plified feature spaces are either continuous, like jet indices
(Woollings et al., 2010; Di Capua and Coumou, 2016; Bar-
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riopedro et al., 2023) or the projection of instantaneous fields
on principal components, or discrete, like weather regimes
(e.g., Michelangeli et al., 1995) or other types of cluster-
ing methods like the self-organizing map (SOM; Gibson et
al., 2017; Weiland et al., 2021; Rousi et al., 2022; Stryhal
and Plavcová, 2023). These methods can also be categorized
based on the number of choices the user needs to make,
from statistical, e.g., dimensionality reduction or clustering,
to expert-defined, e.g., jet indices, blocking indices, or wave-
breaking indices. Statistical approaches are typically less fal-
lible since they require fewer choices, but they tend to be
harder to interpret than expert-defined features. Certain sta-
tistical methods are also known to produce physically unreal-
istic patterns that can lead to wrong interpretations (Monahan
and Fyfe, 2006).

Here, to lay the groundwork for further research on all the
interactions between jet streams and other large-scale circu-
lation features or surface weather events, we develop two
complementary diagnostic tools for the jet streams. Using
two methods allows us to view the circulation from different
angles and to combine the strengths of statistical and expert-
defined approaches. Recently, Madonna et al. (2017) recom-
mended the use of different, complementary, and problem-
dependent approaches to describe the jet streams. Both of the
diagnostic tools presented in this work are adaptations of ex-
isting techniques widely used in the field of atmospheric sci-
ences, with implementation details changed and tailored for
the specific needs of summertime, upper-level circulation.

The first one is the self-organizing map, a clustering algo-
rithm. The SOM creates a distance-preserving discrete fea-
ture space that makes it a valuable tool to study stationarity
and recurrence (Tuel and Martius, 2023), a major factor in
extreme events. The second one is a set of jet characteristics
computed on individual jet cores that are extracted, tracked,
and categorized from wind fields. This provides a collection
of continuous interpretable time series representing the jets
over time.

After presenting both techniques in detail, we demonstrate
their capabilities on reanalysis data. This work focuses more
on summer than on the rest of the year. This season receives
less attention when designing methods to characterize the cir-
culation but is very important for extreme events and presents
interesting, different trends compared to the rest of the year
(Harvey et al., 2023). The SOM will only be trained on June,
July, and August (JJA) days, but the jets are detected using
year-round data to provide more context for the JJA results.

The seasonal variability of the upper-level circulation is
characterized using both the week-by-week mean pathway
through the SOM and the seasonal cycle of the jet properties,
and interannual trends are assessed for state occurrence fre-
quencies as well as for individual jet properties such as jet
waviness. The SOM approach is related to the more estab-
lished weather regimes, as their connections to weather im-
pacts have been thoroughly studied. Finally, the persistence
of the upper-level flow, characterized by both state persis-

tence using the SOM and feature lifetime using jet track-
ing, is quantified. These preliminary results are in preparation
for future work delving deeper into the comparison between
these two, sometimes diverging, notions of persistence.

2 Data and methods

2.1 Data

We use 6-hourly gridded fields for the 1959–2022 period,
over the 80° W–40° E and 15–80° N domain, extracted from
the European Centre for Medium-Range Weather Forecasts
reanalysis version 5 (hereafter, ERA5 reanalysis; Hersbach et
al., 2020). The main variables we use are the horizontal wind
components u and v and the wind speed U =

√
u2+ v2, on

the six following pressure levels: 175, 200, 225, 250, 300,
and 350 hPa.

Both algorithms take as input, at each time step, 2D
(longitude–latitude) fields of upper-tropospheric wind. We
flatten the three wind fields (u, v, and U ) in the vertical by
retaining, at every grid point, their value at the pressure level
where U is maximal since our goal is to detect jet cores, and
they are defined as local wind speed maxima. We keep track,
in a separate 2D field, of that pressure level to use later in
the jet categorization. Both methods then add different pre-
processing steps to this vertical maxima data, which will be
discussed in the relevant sections.

We additionally use the potential temperature on the sur-
face of maximum wind speed and the horizontal wind speed
magnitude at the 500 hPa pressure level. Finally, summer
Euro-Atlantic weather regimes (Cassou et al., 2005; Grams
et al., 2017) are computed from 500 hPa geopotential height
anomalies from ERA5, computed relative to a daily clima-
tology including all years from 1959 to 2022 and smoothed
with a 15 d centered rolling window.

2.2 SOM clustering

2.2.1 Definition

The self-organizing map (SOM) is a clustering method first
introduced by Kohonen (1982) (see also Kohonen, 2013, for
an in-depth review), whose main appeal over simpler pre-
decessors like k means is the creation of a 2D distance-
preserving discrete feature space. The SOM may be pre-
sented as a modification of k means. In k means, data points
are split into k groups called clusters such that the variance
within the clusters is minimal and the variance between clus-
ters is maximal. Each cluster is then represented by the mean
of all its members, called the cluster center or sometimes
weight matrix. The SOM adds another layer to this algo-
rithm, by placing the clusters on the nodes of a regular 2D
grid of size k= n×m, typically rectangular or hexagonal,
and has a distance metric on this discrete space, for example
the Euclidean distance between nodes. There, a cluster i is
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defined by its weight matrix wi , which is not equal in gen-
eral to its center but is rather the result of a training process
during which clusters on neighboring nodes have an influ-
ence modulated by the distance between nodes. Hereafter,
we conflate the clusters and the nodes they sit on, and the
phrases “distance between clusters” and “neighboring clus-
ters” are to be understood as “distance between the nodes on
which the clusters sit” and “clusters on neighboring nodes”,
respectively.

The training then has a similar objective to k means, with
the additional constraint that a pair of neighboring clusters
should be more similar to each other than a pair of dis-
tant clusters. This constraint ensures the distance-preserving
property of the created phase space. The desired similarity
of neighboring clusters may be enforced by the choice of an
appropriate neighborhood function. The neighborhood func-
tion, typically a Gaussian, is a parametric function with pa-
rameter σ , the neighborhood radius, and is applied to the dis-
tance between clusters in the training process. The conver-
gence of the algorithm relies on decreasing σ , equivalent in
our case to the Gaussian’s scale parameter, over time during
the training. However, the initial and final σ values as well
as the decay function are additional choices that need to be
made. In general, a larger σ allows for more similar neigh-
bors, and the limiting case σ→ 0 is equivalent to k means.

Both the SOM and k means share the same challenge, that
is the choice of the number of clusters k. The SOM further
adds the choice of the shape of the grid, k= n×m.

Allowing neighboring clusters to be similar can lead the
SOM to be a worse clustering algorithm, in the usual sense
of cluster separation, than k means if the neighborhood ra-
dius is different from zero at the end of training (Gibson et
al., 2017). Its strength resides in the creation of a distance-
preserving feature space. One of the reasons we use SOM
is the interpretability of the trajectory when expressed as a
succession of cluster visits. Once the SOM is trained, each
time step is assigned to a cluster, its “best matching unit” or
BMU, defined as BMU(t)= argmini‖xt −wi‖, with xt be-
ing the wind field at time step t . Thus, the input time series
is represented as a succession of stays in clusters and jumps
between clusters, where long stays or short jumps point to
persistence, and long jumps indicate abrupt changes in the
configuration of the upper-level flow.

2.2.2 Specific implementation

For the SOM algorithm, the June–July–August (JJA) verti-
cally maximum wind speed field (see Sect. 2.1) is coars-
ened to a 1.5° resolution grid to reduce the computational
complexity and to focus on the larger-scale features. How-
ever, the final results are shown at the initial 0.5° resolution.
This is done by representing clusters with their centers, com-
puted with the original higher-resolution data, rather than
their weights.

Figure 1. Hexagonal topology SOM with ideal grid size. The SOM
clusters are in black, and the gray clusters illustrate the periodic
boundaries.

The grid (of size n×m) is hexagonal with periodic bound-
ary conditions and is associated with a discrete distance met-
ric. As a consequence, clusters are at a unit distance away
from their nearest neighbors, and the bottom row and left
column are at a unit distance away from the top row and
right column, respectively (see Fig. 1), such that each and
every cluster has six neighbors, all at a unit distance. Peri-
odic boundary conditions were chosen to avoid creating arti-
ficial over-representation of the central clusters, which would
have diminished the relevance of our persistence measures
later on. The SOM is initialized using the first two princi-
pal components of the input data to ensure reproducibility, as
recommended in Kohonen (2013). Before training, the data
are standardized and weighted by the cosine of latitude. We
use the single-batch training algorithm (Kohonen, 2013), re-
peated 50 times with the neighborhood radius σ exponen-
tially decaying from 2 to 0.2. This training algorithm does
not involve a learning rate.

To inform our decision regarding the SOM grid size, we
use two performance metrics of the SOM. The first one is the
energy function E of the SOM based on Heskes (1999) (see
Eq. 1), and the second one is the 5th percentile of the projec-
tion of data points on their BMUs, defined as P in Eq. (2).
These metrics are a function of the ensemble of SOM weights
W ={wi,1≤ i ≤ n×m}, and the ensemble of input data vec-
tors x ∈X, of size N , as well as the topological properties
of the SOM. The grid distance between two SOM clusters
i and j is precomputed and stored in a matrix of elements
dij . These distances are then transformed by the neighbor-
hood function to obtain the pairwise neighborhood param-
eters hij = f (dij ;σ) based on the SOM’s neighborhood ra-
dius σ . In this work, f is a zero-mean Gaussian with scale
parameter σ .

E(W)=
1
N

∑
x∈X

min
1≤i≤n×m

n×m∑
j=1

hij‖x−wj‖2 (1)

P(W)= Q5
x∈X

(
max

1≤i≤n×m

x ·wi
‖x‖‖wi‖

)
(2)

The goal is to minimize E and maximize P while main-
taining a reasonably low number of clusters. The E and P
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objectives are similar, but the latter allows one to explicitly
limit how poor the poorest projections on the SOM clusters
are, making sure that most days are well-described in the 2D
feature space described by the SOM since current and fu-
ture work includes working on extreme configurations of the
upper-level circulation. Testing for many sizes ranging from
4× 4 to 9× 9 was performed, and the chosen size is 6× 4.

2.2.3 SOM metrics

We compute statistical properties from the trained SOM,
including the populations of each cluster and their annual
trends, two quality metrics, and the average and maximum
residence time in a given cluster.

The first SOM metric of note is an analogue to the persis-
tence index in dynamical systems theory. The average res-
idence time at a given cluster i is simply given by the av-
erage length of time during which BMU(t)= i, starting at
the transition from another cluster to i. The definition can
be loosened to the length of time during which BMU(t) re-
mains within a given distance of i. With a large SOM, which
sometimes features minute differences between neighboring
clusters, this second definition with a small distance can be
a more realistic measure of persistence. To account for vary-
ing degrees of similarity between neighboring clusters, we do
not use the discrete grid distance between clusters but instead
use the Euclidean distance between SOM cluster weight ma-
trices. At the start of JJA, the first stay starts on the first popu-
lated cluster, i0. The stay continues if BMU(t) is on i0 or any
other cluster whose weight matrix has a distance from i0 that
is within the 10th percentile of inter-cluster-weight distances.
When BMU(t) no longer respects this condition, a new stay
begins at a new cluster i1. The stay is associated with the
most visited cluster during the stay, which is not necessarily
the starting one.

We provide two cluster-wise quality metrics. The first one
is the root mean square error (RMSE), defined for each clus-
ter as the mean Euclidean distance between its weight matrix
and its members. A low RMSE is preferred. The second qual-
ity metric is the cluster separateness. We compute, for each
pair of clusters, the ratio of the Euclidean distances between
their weight matrix to the grid distance that separates them.
We then average all the ratios for all the pairs containing clus-
ter i to obtain cluster i’s separateness. High separateness is
preferred.

Finally, we will relate our SOM clustering to the sum-
mer Euro-Atlantic weather regimes. Following Grams et al.
(2017) but using only four weather regimes, we assign one
of four weather regimes to each day of summer if the asso-
ciated weather regime index is bigger than that of the three
other regimes for at least 5 consecutive days and is above
its temporal standard deviation within this time span. With
this definition, 40 % of the time steps are not assigned to any
weather regime. We then count the number of time steps pre-

viously assigned to a SOM cluster that are now also assigned
to a weather regime.

2.3 Feature detection and tracking

The SOM is a powerful clustering tool to characterize the
circulation as a whole in a given region. However, one might
want to know more specific information about some of the
components of the circulation, expressed as numbers rather
than features on a composite map. We now turn to the meth-
ods we use to detect jets in vertical maximum 2D wind fields,
to separate them into broad categories, to track them over
time to assess their lifetime and evolution, and finally to
extract a wide range of properties out of them. Thanks to
seasonally varying thresholds (see Sect. 2.3.1), our method
works equally well across the year. Therefore, we apply it to
the full dataset rather than only to JJA, which will allow us to
broaden the discussion of interannual trends to other seasons
and paint a full picture of the jets’ annual cycles.

2.3.1 Jet detection

Our jet detection algorithm is an adapted version of the
method by Spensberger et al. (2017, hereafter S17). It can
be applied to each time step independently, allowing for par-
allelization.

The vertical maximum wind speed fields (u, v, and U ;
see Sect. 2.1) are coarsened to a grid of 1.5°. Our choice
of 2D fields, the level of maximum wind speed over several
pressure levels, as described in Sect. 2.1, is the first differ-
ence from S17, who used wind fields interpolated onto the
2 PVU surface, where 1 PVU= 10−6 K kg−1 m2 s−1. Inter-
nal testing has shown that the STJ is often undetectable on
the 2 PVU surface in JJA, while it clearly appears on our 2D
fields. The main criterion used to find jets is the horizontal
normal wind shear τ := ∂U

∂n
=

v
U
∂U
∂x
−
u
U
∂U
∂y

. Following Berry
et al. (2007), τ = 0 is a necessary condition for a jet. The first
step of this algorithm is thus to find contours of τ = 0, using
a contour detection routine.

The points along the contours are filtered using a wind
speed and an alignment threshold. We use the day-of-year
climatological 75th percentile of 6-hourly wind speed as the
wind speed threshold, so the algorithm works equally well in
all seasons. The contour must also be aligned with the wind
speed. This is done by computing the local tangent vector
t = dx

ds with the linear path coordinate s and computing the
alignment dot product a= t

‖t‖
·

u
U

, as done in Molnos et al.
(2017). We require a > 0.3 for a jet. With very few values of
a different from either −1 or +1, the performance of the al-
gorithm is largely insensitive to the exact value of this thresh-
old.

Jets are defined as series of consecutive potential jet
points, i.e., points in the contours that follow the two point-
wise criteria defined in the previous paragraph. We allow se-
ries to contain small stretches of one to three points that do
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not respect the thresholds if they are surrounded by points
that do. The series need to verify one additional criterion
to be finally accepted as jets. The path integral of the wind
speed along the path of the series is computed using a method
detailed in Sect. 2.3.2 and is compared against a day-of-year-
varying threshold, heuristically constructed from the wind
speed threshold U∗, the radius of the Earth R, and the longi-
tudinal extent of the domain 13 as U∗R13cos(45°)/3.

Each jet Ja of length La is represented as a sequence of La
points k= 1, . . ., La , themselves a collection of coordinates
with longitude λka , latitude φka , and pressure level pka , along
with additional point-wise properties that can be of use to
derive jet properties, e.g., the uka or vka components of wind
or the wind speed U ka .

Figure 2 demonstrates the jet detection algorithm in four
steps and compares its results against the original S17 algo-
rithm but is applied to the same 2D data to ignore the poten-
tial problems raised by the 2 PVU surface in this basin. The
algorithms produce similar results with a few disagreements
that can be explained by studying the differences between
our algorithm and S17. Our algorithm finds 0 contours of τ
rather than low values of d(τU)

dn and extracts jets as subsets of
contours using an alignment criterion instead of connecting
points using a shortest-path algorithm. These two differences
seem to help find jet cores closer to the local wind maxima,
a problem that was highlighted in the original work. Further-
more, by allowing jets to not respect the two local criteria
(speed and alignment) for up to three points, our algorithm is
more likely to find one long jet rather than several shorter
pieces. This latter point is sometimes a problem when an
EDJ and an STJ are detected as one long single jet. How-
ever, this does not happen often in 6-hourly data, and it is
typically accompanied by an abrupt change in pressure level,
wind speed, or alignment along the jet core, which helps to
highlight and resolve these cases. This issue is not solved sys-
tematically in the current version of the algorithm but might
come in a later version.

2.3.2 Jet properties

Introduced by Woollings et al. (2010), the Jet Latitude In-
dex (JLI) measures the latitude of maximum wind speed in
the profile obtained by averaging the wind speed field at low
altitudes to filter out the STJ and only capture the EDJ, in
a longitudinal band, originally 60° W–0° E, in the North At-
lantic basin. It is often used in combination with the Jet Speed
Index (JSI), the maximum wind speed used to find the JLI.
These simple and highly interpretable metrics have been used
to describe EDJ variability at timescales ranging from daily
to multi-decadal (Woollings et al., 2014, 2018a).

Over time, several other similarly simple yet powerful jet
indices have been developed to describe the jet stream in a
simplified way or to link it to other phenomena. Such indices
include the zonal jet index (Harnik et al., 2014), several sinu-
osity/waviness metrics (Francis and Vavrus, 2015; Di Capua

and Coumou, 2016; Cattiaux et al., 2016; Röthlisberger et
al., 2016a; Huang and Nakamura, 2016) linked to extreme
events and persistence (Röthlisberger et al., 2016b; Martin
and Norton, 2023), and a 10-index toolbox (Barriopedro et
al., 2023) that has been used for skillful predictions of cold
and hot spells in Europe (Maddison et al., 2023).

In the presence of several jets, many of these indices give
an incomplete or improper picture. Using our jet core detec-
tion algorithm (Sect. 2.3.1), all the jet indices can be com-
puted for each jet individually. The details of computations
and potential differences with the original metrics are ex-
plained in the following paragraphs.

In the previous section, Sect. 2.3.1, we mentioned point-
wise jet properties storing each point’s position and wind
speed. The mean of these point-wise jet properties consti-
tutes the first jet properties we compute. The ones of interest
correspond to the mean position of the jet. The properties
mean_lon, mean_lat, and mean_lev are all computed
as weighted averages of the longitude λ, the latitude φ, and
the pressure level p, respectively, using the point-wise wind
speed values U ka as weights. In the spirit of the JLI, the max-
imum wind speed is found and stored as spe_star. The
position on the long–lat plane of this maximum is stored as
lon_star and lat_star.

A path integral of the wind speed along the jet core and
using the haversine distance is performed and stored as
jet_int. Explicitly, the integral

∫
Uds is discretized us-

ing central finite differences and computed with a discretized
approximation of

ds = 2R arcsin

√
sin2

(
dφ
2

)
· cos2

(
dλ
2

)
+ cos2(φ) · sin2

(
dλ
2

)
,

with R= 6.378× 106 m being the radius of the Earth. This
integral is performed once more over a smaller domain
(λ> 10° W) and stored as int_over_europe.

To obtain the local width of the jet a at a point k along
its core, normal segments are drawn in continuous space on
either side of the jet core, of length 10° each (see Fig. 3).
Along each segment, the wind speed is interpolated from the
gridded wind speed field. For each segment, the haversine
distance between the core and the first point to have a wind
speed below 0.75×U ka represents the local width of the jet
on this side, and the full local width is the sum of the local
widths computed on either side. In some cases, only one seg-
ment can be drawn if the jet core is too close to a boundary. In
this case, the local width is simply twice the width computed
on the only valid side. The local widths wka are computed on
every jet core point and then averaged, with U ka as weights,
to finally obtain the jet’s mean width.

The tilt of the jet is computed as the slope of a U ka -
weighted linear fit of the φka against the λka . The linear co-
efficient is stored as tilt, while the intercept is discarded.
The quality of this linear fit, the R2 value, is used to compute
a natural measure of jet waviness: waviness1= 1−R2.

Weather Clim. Dynam., 6, 715–739, 2025 https://doi.org/10.5194/wcd-6-715-2025



H. Banderier et al.: Variability and persistence properties of the Euro-Atlantic jet streams 721

Figure 2. Results of our jet detection algorithm for 00:00 UTC on 9 October 1959. (a) The smoothed, vertical maximum wind speed [meters
per second] field given as input to the algorithm. (b) The smoothed horizontal normal wind shear on the same 2D surface. (c) The τ = 0
contours where the size of the points corresponds to the wind speed field and the color corresponds to the alignment with the horizontal wind
vector field from blue (close to −1) to red (close to +1). (d) The jets extracted from contours, as solid purple lines. The output of the S17
algorithm is represented as dashed cyan lines for comparison.

Another natural way of characterizing waviness from jet
cores is the U ka -weighted average distance between φka and
mean_lat, stored as waviness2. For short jets, the dif-
ference between the tilt and the waviness is hard to assess,
and in this case waviness1 will not capture waviness well.
However, if a jet is both tilted and wavy, only waviness1
will be able to separate these properties. These two waviness
metrics are compared against adaptations of waviness met-
rics found in the recent literature. wavinessFV15, adapted
from Francis and Vavrus (2015), is computed as the U ka -
weighted average of the local meridional circulation index:

MCIka =
(vka−va)|v

k
a |

(U ka )
2 . wavinessDC16, adapted from Di Ca-

pua and Coumou (2016), is computed as the ratio between
the haversine-integrated length of the jet (

∫
1ds) and the

length of the circle arc φ ·R ·1λa , where φ is mean_lat
and 1λa is the extent of the jet in longitude expressed in ra-
dians. Finally, wavinessR16, adapted from Röthlisberger
et al. (2016a), is computed as the sum of absolute differences
in latitudes between neighbors |φk+1

a −φka |, divided by the
sum of differences in longitudes.

An index that can be computed that will not be catego-
rized per jet is the double-jet index. From the jets found, a
2D (time–longitude) binary array is built, where an element
is set to True if at least two jets can be found at this time step
and longitudinal band over all latitudes and one hemisphere.
The index is the zonal average of this array for longitudes
over Europe, 10° W<λ< 40° E.

In Sect. 2.3.4, tracking the jets allows us to determine the
lifetime of a jet object, as well as the instantaneous speed of
the jet’s center of mass.

2.3.3 Jet categorization

While some literature sees the types of jets highlighted in
the Introduction as regimes of a singular jet stream (Harnik
et al., 2014, 2016), this work benefits from seeing them as
categories one may assign to the previously detected jets. In
instantaneous data, one cannot distinguish the jet from the
eddies potentially driving it, since the quantification of the
eddy momentum flux requires temporal filtering and aver-
aging (e.g., Lachmy, 2022). One may instead rely on the
vertical extent or baroclinicity of the jet, which is some-
times misleading due to the many factors influencing low-
level winds; latitude, which is not sufficient on its own for
global data (Winters and Martin, 2017); or potentially other
metrics like vertical shear (Martius et al., 2010) or the height
of the tropopause above the jet core. A recent, promising ap-
proach to establish this categorization bins the jets on the 2D
feature space (wind speed–potential temperature). The algo-
rithm then extracts regions of high occurrences for oceanic
basins across the world and for the whole year. The approach
always finds two distinct regions that may be labeled STJ and
EDJ, except for the North Atlantic basin in JJA (Spensberger
et al., 2023; see their Supplement for JJA).
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Figure 3. Schematic representing the local width computation,
along a jet core a drawn in purple, for a single point k. In the
schematic, the wind speed interpolated onto the half segments is
represented using a color gradient from black (core wind speed at
the point of interest, Uka ) to yellow (three-quarters of local jet core
wind speed, 0.75×Uka ) with a tick every 0.05×Uka . The schematic,
especially the grid spacing, is not to scale.

A very similar approach is used here but with another fea-
ture space to better highlight the weak but still present bi-
modality in the jet property distribution in this basin and sea-
son. Our version of the algorithm uses the (baroclinicity–
potential temperature) 2D phase space and fits a two-
component Gaussian mixture model to facilitate the discov-
ery of the two regions. The baroclinicity or vertical-extent
proxy is similar to that used by Koch et al. (2006) and is
defined as the ratio of low-level (500 hPa) horizontal wind
speed magnitude at the horizontal position of the jet point to
the jet core speed itself. An illustration of this binning can be
seen in Fig. 4, where the count of jet points in each hexagonal
bin is represented by its lightness and size.

A two-component Gaussian mixture model assumes that
the data are bimodal and tries to fit their empirical distribu-
tion as a sum of two Gaussian distributions. Each Gaussian
is defined by a mean and covariance matrix that are fitted to
the data. The model is fitted independently for each month
to accommodate the large seasonal variation in the STJ’s oc-
currence frequency. The density in the EDJ Gaussian com-
ponent at each point, computed using the standardized dis-
tance to this component’s center, is then used as a continu-
ous score and not a hard assignment. The EDJ component
is identified as the component with lower potential tempera-
ture. Most jet points will have a score close to 0 (STJ point)

or close to 1 (EDJ point), but some points lie in between and
can be thought of as hybrid. The jets as a whole are assigned
a category based on the mean of the scores of the points that
constitute them.

The nature of this potential hybrid jet category is discussed
in Appendix A. In short, it has an almost identical seasonal
cycle to that of the STJ and is almost only present in JJA.
Our final decision was therefore to carry on with only two
categories, with a categorization cutoff informed by the dis-
tribution of the EDJ component mean score.

2.3.4 Jet tracking

A straightforward object tracking algorithm is presented in
this section. The program will assign a flag n to each jet at
each time step, where the flag is carried over from a jet in
a time step to a jet in the next one according to a distance
threshold.

The algorithm starts by assigning each jet in the first time
step a unique flag of 1,2,3, etc. It then iterates over all time
steps t . For all flags that have appeared at least once in the
previous four time steps (t − 1, t − 2, t − 3, t − 4, i.e., a day
with a time resolution of 6 h), the algorithm extracts the most
recent jet with this flag into a list of potential parents. This
allows for jets to disappear for a few time steps and mitigates
the issue of short jets blinking in and out of the jet integral
threshold from Sect. 2.3.1. The potential children are all the
jets present in the current time step. For all pairs of a potential
parent jet a and a child jet b, an overlap measure oa,b as well
as a vertical distance δa,b is computed as described in Eqs. (3)
and (4).

oa,b =
|3a ∩3b|

2

(
1
La
+

1
Lb

)
, (3)

δa,b =
1

|3a ∩3b|

La ,Lb∑
k,l:λk=λl

|φl −φl | , (4)

where 3a is the ensemble of longitudes in jet a.
Both overlap and vertical distance metrics need to satisfy

a certain threshold, 0.5 and 10°, respectively. If both are met,
the jets match and the child jet is assigned the parent’s flag. If
a child matches no potential parent, it is assigned a new flag,
the latest assigned flag plus 1. If a child has two potential
parents fulfilling both criteria or if a parent has two children
fulfilling them, the winner is the most recent one, and if both
are as recent, then the winner is the longest.

Using this, it is possible to infer the lifetime of a jet from
its genesis to its decay, as well as track the speed of its center
of mass (COM), in meters per second using the haversine dis-
tance between two 6-hourly time steps. The first use of these
new jet properties is to filter out jets with 1- or 2-time-step
lifetimes to filter out residual noise. The lifetime and (the in-
verse of the) COM speed can be seen as additional measures
of persistence of the jet and can be compared against those
developed within the framework of the SOM.
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Figure 4. Demonstration of the jet categorization for each month of the year. The jet points are binned in the 2D space (baroclinicity proxy–
potential temperature), in order to illustrate the underlying distribution in this 2D space. The size and lightness of each hexagon illustrate its
height, while its color indicates the mean Gaussian assignment score, from pink (0 score, close to STJ component) to purple (1 score, close to
EDJ component). The crosses indicate the center of each Gaussian, x1 and x2. In the lower-right corner of each box, the quantity log ‖x−x1‖

‖x−x2‖
is binned, where x is a 2D vector containing a jet point’s vertical-extent proxy and potential temperature and ‖y‖ is the 2-norm of the vector
y. This quantity is not the final score but serves illustrative purposes. The final score is averaged for each bin and indicated with the color of
each bar, as for the hexagons.

3 Results

3.1 Atlantic JJA SOM space

The results of the SOM training are summarized in Fig. 5
in a grid that represents its topology. Each panel is a wind
speed composite of all time steps belonging to the corre-
sponding cluster. The population of each cluster is shown
in Fig. 6a. The jet finding and categorization algorithm is
applied to these composites, and the results are overlaid
with purple and pink lines for the EDJs and STJs, respec-
tively. Since composites have lower wind speeds than instan-
taneous data, the point-wise wind speed threshold is lowered
to 20 m s−1 and the jet-wise integrated wind speed threshold
to 3×108 m2 s−1. Long jets that exhibit an EDJ region and an
STJ region (see Sect. 2.3.1) are split into two automatically,
on clusters 1 and 7, so that we can later on derive jet proper-
ties directly from the SOM composites, in Appendix C.

We first assess a few regions of interest in the SOM from
a qualitative study of the composites. Clusters where both
jets are present and overlap zonally (double jets) are located
on the right side of the grid and in the bottom row. A subsec-
tion of this high-overlap region of the grid on the center-right
columns, clusters 16, 17, 22, and 23, has the subtropical jet
over the Sahara, while for most other clusters with double
jets, the STJ is further north above the Mediterranean. The
EDJ is especially wavy in clusters 2, 6, 9, 12, 13, 14, 17, 18,
and 24. Clusters 11 and 16 contain more noisy and smaller-
scale jet features than the rest of the SOM. In the composites
of cluster 2, the region of high wind speed at the eastern edge
that could be interpreted as an STJ is too weak and short in
the domain to be captured by the jet detection algorithm.

Figure 6 shows six SOM cluster-wise properties using
a hexagonal grid representing the SOM. The first property
(panel a) is the cluster population. There is up to a factor of
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Figure 5. SOM training results on JJA wind speed fields. Composites of horizontal wind speed for all days corresponding to a cluster and
results of the jet core detection algorithm applied to the composite wind fields overlaid as colored lines: pink for STJ and purple for EDJ.
The SOM cluster number is indicated by a number in the bottom-left corner.

Figure 6. Climatological SOM cluster-wise properties. (a) Population, in number of days in JJA 1959 to 2022. (b) Weather regime with max-
imum occurrence frequency relative to each SOM cluster, excluding “no regime”. The shorthand terms correspond to NAO− (N−), Atlantic
Ridge (AR), Atlantic Low (AL), and Scandinavian blocking (SB). (c) Proportion of time steps within each SOM cluster not associated with
any weather regime, as in Grams et al. (2017), in percent. (d) Trends (1959–2022) in population in days per JJA. Significant trends at the
95th percentile are marked with black crosses. (e) Root mean square error of each cluster. (f) Separateness of each cluster, as defined in the
main text.

> 3 between the least and the most visited cluster, and the
left side of the SOM, featuring shorter and weaker STJs, is a
lot more represented than the right side. The least populated
cluster, 22, corresponds to a south-shifted STJ with a wavy
EDJ, while the most populated cluster, 2, features a strong,
elongated, and wavy EDJ and does not feature a visible STJ.

The clusters are related to the summer Euro-Atlantic
weather regimes (Fig. 6b and c) to simplify their interpre-
tation and compare both approaches. This is done by cal-
culating the weather regime occurrence probabilities condi-
tional on each SOM cluster occupancy. The most represented
weather regime in each SOM cluster, excluding “no regime”,
is shown in panel (b), while the proportion of time steps dur-
ing which a SOM cluster is occupied but no regime occurs is
presented in panel (c). Clusters 18, 12, 17, and 14 are asso-
ciated with the Scandinavian blocking regime, and the cor-

responding relative occurrence frequencies are the highest in
all the cluster–regime pairs (not shown). This is probably due
to the distinctive footprint blocking has on the jet, a large
poleward shift of the EDJ above Europe. Interestingly, clus-
ter 13, which has a very similar jet structure, is not as strongly
linked to this regime but instead to the Atlantic Low regime,
along with clusters 7 and 9. The NAO− regime is associated,
as expected, with SOM clusters with a very zonal EDJ (1, 3,
4, 8, and 11), although the conditional probabilities remain
low. The Atlantic Ridge is not strongly associated with any
SOM cluster in particular, and no regime appears frequently
in most SOM clusters, up to 70 % of the time.

In panel (d), interannual population trends are shown for
all clusters. The most negative trend in population, cluster 1,
corresponds to a zonal EDJ and a short, north-shifted STJ
and is strongly associated with NAO− (panel b). The sec-
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ond most negative trend, cluster 19, features a zonal EDJ and
weak, north-shifted and elongated STJ and is not strongly
associated with any weather regime. The strongest positive
trends (clusters 3 and 9) correspond to strong EDJ situations,
one zonal (3) and one wavy (9), as well as weak and short
STJs, without strong association with any weather regime.

We also provide two quality metrics for each SOM clus-
ter: the associated RMSE (Fig. 6e), where a high value rep-
resents a cluster whose weight matrix is a poor representa-
tive of many of its members, and the separateness (Fig. 6f),
where a low value represents a cluster whose weight matrix
is very similar to that of its neighbors. We see hotspots in
both RMSE and separateness for clusters 10, 11, 16, and 23.
These clusters contain more diverse synoptic situations (high
RMSE) than the other clusters and are different in their mean
to the rest of the clusters, especially those close to them on
the grid.

Next, we show the typical JJA pathway through the SOM
in Fig. 7. This figure shows weekly binned cluster popula-
tions for all weeks of JJA and averaged over all JJA seasons
for 1959 to 2022. It shows that a small subset of clusters in
the center-right columns of the SOM represents most of the
circulation during the first week of June, while clusters on
other columns are much more likely to be visited in July and
August, indicating a marked transition of the circulation pat-
terns during June in the mean over all years. The shift from
the center-right columns to the center-left and edge columns
of the SOM grid at the end of June corresponds to a reduc-
tion in double-jet occurrence and an increase in mean STJ
latitude, particularly in July and August.

The first week of June, which is climatologically different
from the rest of JJA, has its variability almost entirely con-
strained to a few clusters, 10, 11, 16, 17, and 23 (Fig. 7).
The RMSE on these clusters is higher than for the rest of the
SOM (Fig. 6e). The clusters previously identified as early-
June clusters are almost never populated again past 1 July.
The clusters in the upper-left corner (1, 2, 3, 7, 8, and 9) are
the most populated in late July and early August.

3.2 Jet stream properties

Using the detected and categorized jets, we study the prop-
erties of each jet category separately. We have defined nu-
merous jet properties, and many of them are correlated with
one another, so only a selection of six are shown in the main
text, while results for a larger selection are presented in Ap-
pendix B.

The six properties chosen have all seen keen interest in
the literature. The average latitude can be compared to the
JLI (Woollings et al., 2010), while the max speed can be
compared to the JSI or to the 99th percentile of wind speed
(Shaw and Miyawaki, 2024). The (inverse of the) jet’s COM
speed can be viewed as a proxy for persistence. The wavi-
ness, as defined by Di Capua and Coumou (2016) and here-
after named DC16 waviness, is a simple metric to quantify

the departure from zonality of the detected jets. The width of
the jet has been emerging as another feature of interest in the
recent literature (Peings et al., 2018) and is here computed
using natural coordinates. Finally, we determine, at each lon-
gitude, whether both jets are present and average this over-
lap Boolean quantity over the European sector (λ> 10° W).
The mean latitude, max speed, and width distributions have
low skew, while the COM speed, waviness, and double-jet
index’s distributions are very skewed with tall peaks at low
values and long tails.

The seasonal variability of this selection of jet properties
is presented in Fig. 8. Several interesting features can be ob-
served in this figure. First, the month of June is once more
highlighted as a transition month that is different from the
rest of JJA. More precisely, the speed of both jets and the
waviness of the STJ reduce in the months leading up to June
(Fig. 8b and d). Then, during June, both jets move poleward,
with a much more pronounced shift for the STJ (Fig. 8a).

The seasonal variability in latitude and the seasonal vari-
ability in speed of the EDJ are very comparable to the Jet
Latitude Index and Jet Speed Index seasonal variabilities
(Woollings et al., 2014) and the storm track seasonal vari-
abilities (Hoskins and Hodges, 2019) for the equivalent EDJ
properties (average latitude and max speed, respectively).
The amplitude and width of the JJA peak in STJ latitude can
be compared with those in Maher et al. (2020). Seasonally,
the STJ follows the expansion and weakening of the Hadley
cell in the Northern Hemisphere summer (Dima and Wallace,
2003; Davis and Rosenlof, 2012).

In contrast, the speed of the COM, the DC16 waviness and
the width do not show strong seasonal variabilities (Fig. 8c,
d, and e), with signals staying well below the interannual
variability, with the exception of the STJ’s waviness, which
shows a peak in spring and a slight dip in EDJ width in sum-
mer compared to winter. The jets are much closer together in
JJA than the rest of the year but overlap less often, mainly due
to the subtropical jet occurring less often in JJA (see Fig. 4).

An important question is how these properties have
evolved under past climate change. Figure 9 shows the inter-
annual JJA trends for the six selected properties. Statistical
significance is tested using block bootstrapping, with 10 000
bootstrapped time series created with a block size of 4 years.

Trends in JJA are yet to emerge out of the interannual vari-
ability, as only 3 of the 11 trends shown in Fig. 9 are signif-
icant, a negative trend in the max wind speed of the STJ and
a positive trend in the waviness of both jets with the DC16
definition. The STJ max wind speed trend is consistent with
the findings of D’Andrea et al. (2024), who report a signifi-
cant decrease in zonal wind of between−0.1 and−0.5 m s−1

per decade in the area corresponding to the location of the
STJ in JJA (see Fig. 5). The trends in waviness, while large
in this figure, are dependent on the definition, as we show-
case in Appendix B. An increase in waviness in this region
is consistent with, e.g., Francis and Vavrus (2015) and Catti-
aux et al. (2016). It is also consistent with a positive trend in
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Figure 7. Weekly JJA pathway, the weekly binned cluster population for all weeks of JJA and averaged over all JJA periods. Week 1
corresponds to the first week of June and week 12 to the previous to last week of August.

Figure 8. Euro-Atlantic jet property seasonal variability. The results are split by jet category and always colored in the same way: pink for
the STJ and purple for the EDJ. The double-jet index is colored in shades of gray. A 15 d window averaging is applied to the day-of-year
mean (thick line) as well as the day-of-year median (thin dotted line) but not to the inter-quartile range (shading). The marker label for each
month corresponds to the first day of this month. The gray rectangle in the middle of each panel represents JJA.

occurrence frequencies for SOM clusters featuring wavy or
tilted (3, 9) and negative trends in clusters presenting more
zonal jets (1 and 19). It is worth mentioning that, with our
definition, there is only a non-significant negative trend in
double-jet index in this domain.

Trends of these six jet properties can be viewed at a finer
temporal scale, for each day of the year, in Fig. 10. The sig-
nificance is once more established using block bootstrapping
with the same settings as for Fig. 9, and it is assessed prior to
the 60 d rolling-window smoothing.

The EDJ exhibits a poleward shift across most seasons,
consistent with the arguments of Held (1993) (Fig. 10a).
The STJ shows an equatorward trend in spring and a pole-
ward trend in autumn (Fig. 10a). The EDJ maximum wind
speed increases consistently across the whole year, with the
strongest of intensification in February, March, May, and
June (Fig. 10b). This result can be linked to results in past
data (Woollings et al., 2018a; Harvey et al., 2023) and in
future simulations (Shaw and Miyawaki, 2024). The STJ
has opposite trends in its max speed between JJA, where
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Figure 9. Euro-Atlantic jet property JJA means and interannual trends, split by jet category. Linear trends represented by dashed lines are
significant at the 95th percentile, while the dotted lines are not.

Figure 10. Euro-Atlantic jet property interannual trends, computed independently for each day of the year, and the result smoothed by a 60 d
rolling window. Trends significant at the 95th percentile are marked with a thick dot. Significance is assessed prior to smoothing.

the trend is negative, and September to December, where
the trend is positive (Fig. 10b). No strong trends appear in
our results for the COM speed, except a negative trend in
COM speed in July and August for the EDJ and in Septem-
ber and October for the STJ (Fig. 10c). DC16 waviness in-
creases significantly, for both jets and consistently over the
whole year, with a stronger increase between January and
June (Fig. 10d), which is mostly consistent with, e.g., Catti-
aux et al. (2016) and Di Capua and Coumou (2016), albeit in
different regions. The width does not show strong trends ex-
cept a negative trend in April and May for the STJ (Fig. 10e).
Finally, the double-jet index increases significantly in March,
April, and May and decreases significantly in July and Au-
gust (Fig. 10f), although the trends in JJA averages were not
significant (Fig. 9).

3.3 Jet properties on the SOM

In this section, we make use of the detected jets and their
properties to assess the capabilities of the SOM to capture
jet stream variability as opposed to random noise. First, we
composite jet core detection probability, separated by jet cat-
egory, and overlay the jet cores found in the SOM wind speed
composites, i.e., Fig. 5. The results, visible in Fig. 11, show
clear agreement on the position of the detected jet cores as
well as on their categorization.

As a way to compare and validate the results of both meth-
ods, a selection of jet properties are projected onto the SOM
clusters, shown in Fig. 12.

The latitude of the EDJ is, as in the composites, higher in
the extremal columns than in the central columns of the SOM
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Figure 11. Jet core detection probability composites (blue shading for EDJ, pink shading for STJ) and jet cores found in wind speed
composites, Fig. 5, as colored lines (purple for EDJ, pink for STJ).

(panel a), and the clusters with the highest mean EDJ lati-
tude also correspond to clusters with high relative occurrence
of the Scandinavian blocking weather regime (see Fig. 6b).
The maximum speed of the EDJ is highest in clusters 10, 14,
and 23. These three clusters have the highest population dur-
ing the first (10 and 23) or the last (14) week of JJA (see
Fig. 7), when the EDJ has the highest max speed in JJA (see
Fig. 8). Similarly, the EDJ max speed is lowest in clusters
populated in the middle of JJA (clusters 1, 7, 12, 19, 20).
The EDJ waviness is highest in most clusters associated with
the Scandinavian blocking or Atlantic Low regimes and low-
est for clusters associated with the NAO− or Atlantic Ridge
regimes, with the notable exception of cluster 8, weakly as-
sociated with NAO− but very wavy (see Fig. 6b, relative oc-
currence not shown).

The double-jet index, as well as the max speed, mean lati-
tude, and width of the subtropical jet, follows the very clear
seasonal signals presented in the previous section (Fig. 8)
when matched with the weekly cluster populations (Fig. 7).
The observations are also very consistent with what can be
seen in the jet core probability composites (Fig. 11).

The observations made, qualitatively, from the wind speed
composites (Fig. 5), can all be matched with the jets’ mean
properties on the clusters (Fig. 12). This result is not entirely
trivial. It means that, for most clusters, the jets found in the
cluster mean wind speed composites have properties corre-
sponding to the mean of the properties of the jets found in
each individual time step belonging to that cluster. In other
words, the wind composites and the jets found therein are
representative of the wind speed snapshots, as well as their
jets, belonging to each cluster and not merely artifacts of av-
eraging noisy fields. These observations are quantified in Ap-
pendix C.

3.4 Jet persistence

We characterize persistence using three metrics extracted
from the residence times for each SOM cluster and two met-

rics for each jet category, the jet lifetime and the speed of the
center of mass. To compare all of these metrics, we aggre-
gate their results for each SOM cluster and plot the results in
a hexagonal plot as in Sect. 3.3.

Our definition of residence times allow for departures one
cluster away from the origin cluster (see Sect. 2.2.3). We first
count the number of stays that last more than 4 d on each
SOM cluster (Fig. 13a). The lengths of stays of any length
are aggregated as JJA averages (panel b) and 95th percentiles
(panel c). The summer averages give an approximation of the
state persistence (Tuel and Martius, 2023), i.e., an estimate of
how much time the large-scale circulation pattern typically
needs to move from one state into the next, while the num-
ber of long stays and the 95th percentile of residence times
capture more episodic persistence, i.e., the most persistent
events of each flow configuration.

Clusters 1, 2, 3, and 20 are characterized by a large num-
ber of long stays and a high state and episodic persistence.
These clusters all represent a roughly similar synoptic situa-
tion of a zonal EDJ extending over the British Isles and with
slightly positive tilt but with minute differences in the ap-
parent EDJ waviness and length of the STJ. These are very
well defined clusters (low RMSE) but with the lowest sepa-
rateness in the SOM, which confirms our observations from
their composites. In the rest of the SOM, the state persistence
and episodic persistence seem to be correlated, and the pre-
viously highlighted region of clusters representing the first
week of June (10, 11, 16, 17, and 23) does not stand out as
more or less persistent than the clusters representing the rest
of JJA.

Results from the projection of jet-wise persistence metrics
onto the SOM show mixed agreement with the SOM persis-
tence metrics, at least in this presentation of temporal aggre-
gates, as well as mixed agreement among each other. High
COM speeds of either jet, which indicate low instantaneous
persistence, can be associated with either low or high state
persistence and with either a low or a high jet lifetime, for
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Figure 12. Jet properties, separated by jet category when applicable, projected onto the SOM clusters. Shades of purple correspond to EDJ
properties and shades of pink to STJ.

jets of the same or a different nature. It is worth remember-
ing that, while all of these numbers characterize persistence
in some sense, they are very different in nature. Jet lifetime
and SOM average residence time are both nonlocal, which
means they can only be determined when a jet has weak-
ened below the jet integral threshold or left the domain and
when a stay on a SOM cluster has ended. Additionally, the
two jet-related metrics only assess the persistence of one jet
at a time, which can be very different. This can make these
metrics unfit to qualify a time step or a period concisely.

4 Discussion and summary

We use two complementary methods, self-organizing-maps
(SOM) and jet core detection, to characterize the upper-level
tropospheric jets and apply them to the Euro-Atlantic sec-
tor in the less studied Northern Hemisphere summer season,
along with some year-round results. The SOM method spe-
cializes in finding dynamical properties of the overall flow,
including persistence, while the jet core detection method
finds properties of individual jet cores at individual time
steps, and we present for each the ERA5 interannual trend
and intra-seasonal variability. These methods have overlap:
for example the SOM shows a clear intra-seasonal variation
in cluster population, and some of the jet properties are prox-
ies for persistence. These overlaps allow us to verify the re-
sults between methods, increasing our confidence in our re-
sults.

The SOM, a clustering method with distance-preserving
properties, allows us to study the circulation time series as a
sequence of stays on a cluster and jumps between clusters,

where the magnitude of the jumps is meaningful. A group
of clusters with a low population, high mean cluster error,
high cluster separateness, and a south-shifted STJ compared
to the other clusters is shown to be comprised almost entirely
of time steps in the first 1 or 2 weeks of June every year.
This time of the year is therefore identified as having a very
different mean synoptic situation to the rest of JJA, but its
relatively low weight in the data compels the training algo-
rithm to only assign a few clusters to it, too few to correctly
capture the variability of this period.

The SOM is related to weather regimes using relative oc-
currence frequencies. With strict conditions for regime oc-
currence, a high proportion of JJA days is not assigned to
any regime, and only a few SOM clusters can be strongly
associated with weather regimes, typically to the blocking
regime which is accompanied by a poleward shift of the EDJ
above Europe, easily captured by our wind-based clustering
approach.

Long stays on a SOM node is a natural way to evalu-
ate state persistence. The most persistent clusters correspond
to long EDJs that extend over the British Isles, and north-
shifted, short, and weak STJs over the Mediterranean. Aside
from those rough similarities, they present differences in EDJ
waviness and maximum speed according to the mean jet
properties projected onto the SOM. These clusters, which
have high occurrence probability and persistence, typically
do not project well onto any weather regime. There is a
strong incentive to consider using more clusters than four,
irrespective of the clustering method employed, when it is
compatible with the research question. In this study, the
larger number of clusters has allowed us to describe the ma-
jority of JJA time steps as cluster visits with low projec-
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Figure 13. Persistence properties of the SOM clusters. (a) Number of long stays on each SOM cluster. (b) Mean residence time on each
SOM cluster. (c) The 95th percentile of residence times on each SOM cluster. The definition of residence time here is loosened to allow
for a stay to be unbroken as long as the jumps are to a cluster similar enough to the starting cluster (below the 10th percentile of pairwise
distances between cluster weight matrices). (d–g) Jet persistence properties, separated by jet category when applicable, projected onto the
SOM. Shades of purple correspond to EDJ properties and shades of pink to STJ.

tion error and has all but guaranteed that all the persistent
episodes can be extracted as long stays on SOM nodes, with
our definition.

A variation of the jet core detection algorithm presented
by Spensberger et al. (2017) is used to identify instantaneous
jets and extract properties for each of them separately. The
jets are classified into the two canonical jet categories (sub-
tropical and eddy-driven jet – STJ and EDJ, respectively) and
tracked over time to obtain metrics that offer another view of
persistence. Once more, past trends and seasonal signals are
extracted.

In JJA, the only significant trends are an increase in the
DC16 waviness of both jets and a slowdown of the STJ. The
poleward shift of the EDJ projected in, e.g., Held (1993) is
not significant in our analyses in JJA, nor is the equatorward
trend of the STJ reported by Totz et al. (2018). The absence
of a trend in STJ latitude, seemingly at odds with the mea-
sured tropical expansion (e.g., Davis and Rosenlof, 2012), is
consistent with findings in the recent literature (Davis and
Birner, 2017; Maher et al., 2020).

Year-to-year trends, computed independently for every
calendar day, vary a lot over the year at subseasonal
timescales. The trends in 3-monthly averages that are often
presented in literature can therefore sometimes be mislead-
ing, as they can average out strong trends of opposite signs.
As an example, the double-jet index has a strong positive
trend before and up to June and a strong negative trend in
July, August, and September, so its trend in JJA average is
weakly positive. Still, it is useful to continue discussing these
trends in seasonal averages to create points of comparison
with the past literature and because they allow us to illustrate
the different amounts of interannual variability between jet
properties.

Comparing results from the two methods, SOM and prop-
erties of the detected jet cores, helps to validate them. The
SOM is shown to capture jets and not random noise because
the jet cores detected in the composited wind fields match the
probabilities of jet core detection, composited for every clus-
ter, very well. The expert-defined jet properties succeed in
characterizing features which dominate the leading patterns
in the more statistical SOM approach. Computing properties
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of the jets at every time step before averaging them based
on cluster membership gives very qualitatively similar re-
sults to computing jet properties on the jet cores extracted
from each cluster wind speed composite, but the match is not
perfect. Furthermore, the strong regime shift that happens in
June, characterized most clearly by a weakening and pole-
ward shift of the STJ, is distinctly picked up by both meth-
ods. Trends in waviness can be matched to positive trends
in clusters with wavy or tilted jets. As a more subtle point,
clusters that represent early June and have the highest mean
double-jet index within this subset get more frequent, albeit
weakly, than the rest of this early-June subset, while the op-
posite is true for the July–August subset of SOM clusters,
which matches the opposite-sign trends in the double-jet in-
dex between early and late Northern Hemisphere summer
well. This indicates that both methods are mostly coherent
with one another.

The persistence metrics developed around the jet detec-
tion method show another facet of persistence in addition to
the one expressed by the SOM cluster residence time, and
the results of both methods often disagree. This is partly ex-
plained by their many differences in nature. Only the jets’
COM speeds can be assessed locally in time, and the jet-
related metrics only refer to persistence of a single object at
a time, different from the state or episodic persistence quan-
tified by SOM residence times.

The jet detection algorithm is directly applicable to global
data, as are the jet property computation and the jet track-
ing. Global jet categorization would, however, have to use
an adapted set of jet properties to distinguish the EDJ from
the STJ, as longitude and latitude are only good discrimi-
nants in the Atlantic basin. A different set of jet properties
might have to be used for each season or even each month,
as the seasonal signals suggest. The SOM, like all cluster-
ing metrics, is not well suited for a global application and
works best when restricted to a single basin. The steep in-
crease in dimensionality and variability that accompanies an
expansion to a larger region, combined with the same pro-
portionally small number of time steps, creates a much more
ill-defined clustering problem. Since both methods are rel-
atively cheap computationally, they can be applied to large
ensembles and higher-resolution model data to evaluate fu-
ture trends and shifts in seasonal signal or persistence and
predictability properties.

In future work, we will use these diagnostic tools to study
the circulation before and during extreme weather events in
Europe. Potential applications currently explored include as-
sessing atmospheric persistence and predictability properties
in the days leading up heatwaves, finding SOM clusters most
likely to see the onset of a damaging hail storm, and discov-
ering which jet properties can be used as good predictors for
extreme surface winds in a statistical model.

The previous paragraph pertains to the jet stream as a po-
tential driver of weather predictability, even if the causality
can go in both directions. Another use for the methods is the

investigation of the drivers of jet stream variability, for ex-
ample, large-scale teleconnections like ENSO or local mech-
anisms like diabatic heating, as has been studied recently by
Auestad et al. (2024). Another avenue is the exploration of
the jets’ tight relationship to Rossby waves, for example by
assessing the ability of the detected jets to carry and guide
Rossby waves (Martius et al., 2010; Wirth, 2020; Wirth and
Polster, 2021; Bukenberger et al., 2023; White and Mareshet
Admasu, 2025). Similarly, it is now easier to examine their
relationship to Rossby wave breaking, for instance as trig-
gers of large jumps in SOM clusters (Michel and Rivière,
2011) or as drivers of abrupt changes in jet strength, latitude,
or center-of-mass speed (Martius and Rivière, 2016). Adapt-
ing the jet width method to instead find wave-breaking events
around the jet core is showing promising early results.

Appendix A: Further exploration in jet categorization

In Fig. A1, we explore the effects of changing the catego-
rization method on the seasonal variabilities of the catego-
rized jet properties. First, in the first three rows of the figure,
we vary the cutoff between STJ and EDJ. The effects on the
mean position (in latitude and pressure level) are barely dis-
tinguishable, but the effects on the number of jets of each cat-
egory per time step can be markedly altered by this choice,
especially for the STJ when changing the cutoff from 0.1 to
0.5.

Then, we allow jets whose categorization score is between
0.1 and 0.9 to be assigned to the hybrid category. The ag-
gregated properties for the three jets can be seen in the fourth
row of Fig. A1. As many jets belong to the hybrid category as
to the STJ in winter, while in JJA there are more hybrid jets
than there are for the STJ, according to this cutoff. However,
this hybrid jet has an almost identical seasonal cycle to that
of the STJ, not only in its spatial distribution but also in its
other properties (not shown). We therefore decided against
introducing this third category in the paper, since it seems to
behave like an STJ. This is also why we choose a cutoff of
0.9 in the main text. This way the STJ corresponds to well-
defined STJs as well as to hybrid jets which we identify as
worse-defined STJs.

We would interpret these findings as follows. In JJA, the
subtropical jet is shifted north with the Hadley cell and in-
teracts with extratropical eddies more, making it lose more
momentum (Martius, 2014) and potentially making it more
baroclinic. This makes the distinction more fuzzy, so there
are more jets that do not fall cleanly onto either Gaussian,
i.e., more jets with a score very different from either 0 or 1.
These jets still seem to behave more like STJs than EDJs, po-
tentially because most of their momentum still comes from
the (sub)tropics and is conserved.

For comparison with our earlier categorization method that
used only spatial information (longitude, latitude, and pres-
sure level of the jet point), we perform the categorization one
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Figure A1. Seasonal variabilities of categorized jet properties with variations in the categorization method.

last time with this choice of discriminant variables. The re-
sults can be seen in the fifth and last row of Fig. A1 and
are again similar. This previous method worked well in the
North Atlantic basin but was not based on physical bases and
did not generalize well to other basins. Both of those con-
cerns are solved with the new method, which can be applied
to hemisphere-spanning jets without modification.
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Appendix B: Extended jet properties

In the main text, we highlight how many jet properties un-
dergo a transition around the month of June, setting this
month apart from the rest of JJA in terms of absolute values
of these jet properties.

In order to give a more complete overview of the jet prop-
erties, we show the seasonal cycle of the complete set in
Fig. B1.

Comparing the jet core’s mean and max speeds shows lit-
tle difference between the two in their seasonal cycles. The
max speed trends are stronger as expected, but they also seem
statistically more robust than mean core speed trends. The
waviness metrics all show a different seasonal cycle, and
they even disagree on which jet category is wavier than the
other. Apart from the differences in the original metrics, this
discrepancy can also come from how they were adapted to
function on jets and more specifically the normalization fac-
tor used in several waviness metrics (1/1λ) that favors high
values for the STJ, which is typically much shorter in this do-
main. Another issue is that most of these metrics, from their
definition, fail to distinguish small-synoptic-scale waviness
and tilt. Only our linear waviness is designed to fully sep-

Figure B1. Reproduction of Fig. 8 with a larger selection of jet properties.

arate the two, but proposing another waviness metric is not
our goal with this study. FV15 waviness is very close to our
definition of tilt, and the seasonal signals of these two met-
rics are very similar. R16 waviness and linear waviness show
an almost identical seasonal cycle too, despite the fact that,
from their definitions, one could predict a very different be-
havior. Following on from our previous comments, it is not
surprising that all of the waviness metrics show vastly differ-
ent trends throughout the year (Fig. B2).
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Figure B2. The 1959–2022 day-of-year interannual trends, smoothed using 60 d rolling-window averaging. Colored points indicate a signif-
icant trend at the 95th percentile.

Appendix C: Properties of the jets detected on SOM
composites

In this appendix, we validate observations made in the main
text about the capacity of SOMs to correctly capture the
jet properties. We do so by measuring the properties of the
jets detected in the wind field composites of Fig. 5. The re-
sults, shown in Fig. C1, point towards overall agreement with
some caveats. First, the STJ is not detected in the composite
for cluster 2, even though it is present in some time steps
belonging to this cluster. Wind speed composites also have
lower wind speeds than instantaneous fields overall, so the
maximum speeds of both jet categories are reduced by about
10 m s−1. If the absolute values cannot always be meaning-
fully compared between Figs. 12 and C1, the distribution of
lower and higher values on the SOM can, and in this view
there is large agreement.
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Figure C1. Jet properties, separated by jet category when applicable, computed from the jets detected on the SOM cluster centers. Shades of
purple correspond to EDJ properties and shades of pink to STJ.

Appendix D: Overview of previously tried methods for
jet core extraction

During the development of the jet core extraction algorithm,
several different avenues were explored to improve its robust-
ness or the execution speed and later abandoned in favor of
the final version of the algorithm presented in the main text.
We believe it is valuable to present negative results, both be-
cause these methods could be improved and used again in
other relate applications and simply for future researchers in
this field not to repeat methods that were explored but ulti-
mately failed at improving the algorithm.

The first-version algorithm was an adaptation of the Koch
et al. (2006) algorithm, also used in Pena-Ortiz et al. (2013).
This algorithm uses a peak-finding algorithm on each lati-
tude band before connecting the points longitudinally based
on a distance criterion. The peak-finding algorithm requires
several thresholds, and their tuning is challenging without an
objective quality metric to grade the performance of the algo-
rithm. More fundamental problems appear with forked jets,
seen in SOM cluster 17 for instance.

The second version divides the task in two. First, poten-
tial jet regions are found using a relatively low wind speed
threshold that can be made to be seasonally varying or even a
quantile threshold to work well in all seasons. The regions are
separated from each other using spatial agglomerative clus-
tering. The second step of the algorithm is heavily inspired
by Molnos et al. (2017). Each potential jet region is turned
into a graph, with each grid point a node and edges connect-
ing all of the nodes. The edges are assigned a weight based

on the wind speed of the nodes/grid points they connect and
on their alignment with the directional wind field (similarly
to the current algorithm). From potential jets, the jet cores
are found using a weighted shortest-path algorithm.

The difficulty of this second method comes from jet re-
gions connecting to each other if they are too close and from
the problem of determining start and end points of jet cores
within the jet, with potentially several starts and ends within
each potential jet region because of the first problem. Several
avenues were explored to mitigate the first problem, which
in turn made the second problem easier to solve, most no-
tably, the use of computed vision techniques like thinning,
skeletonization, and Sato filtering (Sato et al., 1998). This lat-
ter technique is used in medical imaging to highlight vessel-
like structures in black-and-white images like blood vessels
in biological tissue, and it seems very promising to help in
jet detection. However, it also requires careful setting of its
parameters, most crucially its filtering scales, which loosely
correspond to the expected width of the jet in pixels. Solv-
ing these problems made the algorithm grow in complexity
and computing requirements for few added benefits. This ap-
proach as well as other related ones was finally abandoned in
favor of the simpler, more robust one presented in the main
text.

Code and data availability. The ERA5 reanalysis data (Hersbach
et al., 2020) are publicly available at https://doi.org/10.24381/cds.
bd0915c6 (Hersbach et al., 2023). The dataset of detected and cat-
egorized jets, as well as the trained SOM, can be found under
https://doi.org/10.5281/zenodo.15129845 (Banderier, 2025a). The
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code used to perform the analysis is part of a Python package under
https://doi.org/10.5281/zenodo.15129982 (Banderier, 2025c). The
Jupyter notebooks used to create the figures of this paper can be
founds under https://doi.org/10.5281/zenodo.15129979 (Banderier,
2025b).
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