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Abstract. Untangling the complex network of physical pro-
cesses driving regional precipitation regimes in the present
(1979–2014) and near-future climates (2020–2050) is fun-
damental to supporting a more robust scientific basis for
decision-making in the water–energy–food nexus. We pro-
pose a data-driven mechanistic approach to (Goal 1) identify
changes in and the variability of regional precipitation mech-
anisms and (Goal 2) reduce the ensemble spread of future
projections by weighting and filtering models that satisfac-
torily represent these drivers in the present climate. Goal 1
is achieved by applying the partial least squares (PLS) tech-
nique, a two-sided variant of principal component analysis
(PCA), on a reanalysis dataset and 30 simulations of the
future climate submitted to the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) to discover the links be-
tween global sea surface temperature (SST) and precipita-
tion in Brazil. Goal 2 is achieved by selecting and weight-
ing the future climate simulations from climate models that
better represent the dominant modes discovered by the PLS
in the present climate; with this subset of climate simula-
tions, we produce precipitation change maps following the
Intergovernmental Panel on Climate Change (IPCC) Work-
ing Group I (WGI) methodology. The main mechanistic link
discovered by the technique is that the generalised warm-
ing of the oceans promotes a suppression of precipitation in
northeastern and southeastern Brazil, possibly mediated by
the intensification of the Hadley circulation. We show that
this pattern of precipitation suppression is stronger in the
near-future precipitation change maps produced using our
methodology. This demonstrates that a reduction in epistemic
uncertainty is achieved after we select models that skilfully

represent these mechanisms in the present climate. There-
fore, the approach is capable of supporting both a quanti-
tative analysis of regional changes and the construction of
storylines supported by mechanistic evidence.

1 Introduction

Information about near-future regional precipitation change
is crucial for planning and managing critical infrastructure,
such as hydropower plants, water reservoirs and city plan-
ning. Unpreparedness for changes and variations in regional
precipitation regimes may lead to disruption in water–food–
energy supply chains, as well as avoidable deaths and dam-
ages by flooding and landslides. Although there is a degree of
certainty about global precipitation changes (Shepherd et al.,
2018), such as the intensification of the hydrological cycle, a
current major challenge in climate change science is inform-
ing planners and decision-makers about regional changes
within the critical time frame of the next 3 decades.

Within this time frame, the two main sources of uncer-
tainty in regional precipitation changes are model uncertainty
and internal variability (Hawkins and Sutton, 2011). Uncer-
tainty due to the internal variability of the climate system
is impossible to reduce and is aleatoric and related to the
chaotic nature of the system (Shepherd, 2019). Model un-
certainty, on the other hand, is epistemic in nature and stems
from our limited knowledge of Earth’s climate system and
from the challenges in translating this system into computer
models (Shepherd, 2019). Currently, there are 131 available
models on the Coupled Model Intercomparison Project Phase
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6 (CMIP6) database, each representing Earth’s climate with
a range of parameterisations and numerical modelling strate-
gies. From the full set of models, 29 are available for the
relevant experiments in this study.

In this study, we aim to reduce the epistemic uncertainty in
regional precipitation changes in Brazil through a data-driven
process-based methodology of model selection and weight-
ing. The method discovers the relationships between sea sur-
face temperature and precipitation in Brazil and evaluates the
capability of CMIP6 models to reproduce these precipitation
mechanisms in the present climate. Later, the best models are
selected and weighted to produce refined precipitation maps.
Due to the process-based nature of the method, it is also pos-
sible to isolate mechanisms and draw storylines of plausible
futures. The paper answers the following questions:

– What are the spatiotemporal links between global sea
surface temperature (SST) and regional precipitation
change and variability in Brazil? Many patterns have
been identified in the literature (Grimm et al., 2000;
Coelho et al., 2002), but here we choose to use a su-
pervised machine learning (ML) approach to systemati-
cally identify and quantify their importance.

– Can we take advantage of these mechanisms to filter
CMIP6 simulations and reduce the epistemic uncer-
tainty in regional precipitation changes?

– What are the projections for precipitation in Brazil over
the next 30 years based on a mechanistic filtering and
weighting procedure?

2 Materials and methods

2.1 Data-driven discovery of precipitation mechanisms

To discover the underlying mechanisms linking SST spa-
tiotemporal variability and regional precipitation in Brazil,
we employ a data-driven dimensionality reduction method
known as partial least squares (PLS), adapted to a latitude–
longitude grid, which has recently been shown to success-
fully identify circulation mechanisms leading to precipitation
(Perez et al., 2022).

The PLS method identifies pairs of latent variable vectors
ξ and ω that maximise the information present in XtY . This
means finding latent variables that represent the maximum
covariance between X and Y , where X and Y represent two
arrays of SST and precipitation, respectively; the rows of X
and Y represent the monthly averaged temporal samples; and
the columns represent the spatial lat–long grid points. The
more familiar principal component analysis (PCA) can be
seen as a special case whereX = Y . The initial set (or mode)
of latent variables is determined through the following co-
variance (Eq. 1):

Cov(ξ1,ω1)=max||u||=||v||=1Cov(Xu, Yv), (1)

where u and v are temporally invariant arrays of loadings. In
contrast to PCA, PLS yields a pair of loading matrices per
component rather than a single loading matrix; the first pair
of loading matrices is the one in which the corresponding la-
tent vectors ξ and ω are the most correlated. The following
modes are found through repeating the process on the resid-
uals of each preceding pair.

The interpretation of PLS results should always consider
scores and loadings concurrently. A positive loading correla-
tion, coupled with a positive trend in the scores, indicates an
increase in signal strength over time. Conversely, when load-
ings exhibit the same signal but are associated with a negative
trend in scores, this suggests a decrease in signal intensity.
When evaluating the relationship between two loadings, we
first observe how the loading patterns are linked through the
score time series. This connection allows us to infer the re-
sponse of the Y pattern from the X pattern. For instance, if
the SST signal is negative at a particular location while the
score is positive, this indicates a negative association with the
corresponding precipitation loading pattern; the score may
change sign with time, indicating a change in sign in the
association between the two variables. For example, in the
El Niño 3.4 region, positive SST may be positively associ-
ated with positive precipitation anomalies in southern Brazil,
while negative SST anomalies may be associated with neg-
ative precipitation anomalies. A detailed explanation of the
PLS method can be found in Wegelin (2000).

2.2 Present and future climate datasets

The PLS method was applied to two kinds of climate
datasets: first, to present climate data from AMIP experi-
ments and reanalysis and, second, to future climate simu-
lations. In the AMIP experiments, atmospheric models are
forced by prescribed sea surface temperatures, while radia-
tive forcings and land use are kept constant. This approach
helps identify model errors that arise from interactions within
the atmosphere, the land surface, or between these compo-
nents (Eyring et al., 2016). The subsections below describe
the methodologies and data behind the present and future cli-
mate results.

2.2.1 Present climate (AMIP)

The first step was to establish a transfer function linking
SST and precipitation month-to-month co-variability using
the PLS technique for the reanalysis and atmosphere-only
experiments. The goal is to identify models that accurately
represent the transfer function identified in the reanalysis in
the present climate. To achieve this, we employ precipita-
tion data derived from the ERA5 reanalysis (Hersbach and
Dee, 2016), in addition to precipitation data from 29 AMIP
models from the Coupled Model Intercomparison Project
Phase 6 (CMIP6), as outlined in Table 1. Before the PLS
technique was employed, the ERA5 precipitation data un-
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Table 1. CMIP6 simulations, their native resolutions, vertical levels and source institutions.

Model Horizontal resolution Vertical levels Variant label Institution

ACCESS-CM2 1.875°× 1.25° 85 r1i1p1f1 CSIRO
ACCESS-ESM1-5 1.875°× 1.25° 38 r1i1p1f1 CSIRO
BCC-CSM2-MR 2.81°× 2.81° 46 r1i1p1f1 BCC
CAMS-CSM1-0 1°× 1° 31 r1i1p1f1 CAMS
CanESM5 2.81°× 2.81° 49 r1i1p1f1 CCCma
CESM2-WACCM 0.9°× 1.25° 70 r1i1p1f1 NCAR
CIESM 1°× 1° 30 r1i1p1f1 THU
CMCC-CM2-SR5 1°× 1° 30 r1i1p1f1 CMCC
CNRM-CM6-1 1.4°× 1.4° 91 r1i1p1f2 CNRM-CERFACS
CNRM-CM6-1-HR 1.4°× 1.4° 91 r1i1p1f2 CNRM-CERFACS
CNRM-ESM2-1 1.4°× 1.4° 91 r1i1p1f2 CNRM-CERFACS
EC-Earth3-CC 0.7°× 0.7° 91 r1i1p1f1 EC-Earth-Consortium
EC-Earth3-Veg 0.7°× 0.7° 91 r1i1p1f1 EC-Earth-Consortium
EC-Earth3-Veg-LR 1.1°× 1.1° 62 r1i1p1f1 EC-Earth-Consortium
FGOALS-f3-L 1°× 1° 32 r1i1p1f1 IAP/CAS
FGOALS-g3 2°× 2° 26 r1i1p1f1 IAP/CAS
GFDL-CM4 1°× 1° 33 r1i1p1f1 NOAA-GFDL
GFDL-ESM4 1°× 1° 49 r1i1p1f1 NOAA-GFDL
IITM-ESM 2°× 2° 64 r1i1p1f1 CCCR-IITM
INM-CM4-8 2°× 1.5° 21 r1i1p1f1 INM
INM-CM5-0 2°× 1.5° 73 r1i1p1f1 INM
IPSL-CM6A-LR 2.5°× 1.3° 79 r1i1p1f1 IPSL
KACE-1-0-G 1.9°× 1.3° 85 r1i1p1f1 NIMS-KMA
MIROC6 1.4°× 1.4° 81 r1i1p1f1 MIROC
MPI-ESM1-2-HR 0.93°× 0.93° 95 r1i1p1f1 MPI-M
MPI-ESM1-2-LR 1.9°× 1.9° 47 r1i1p1f1 MPI-M
MRI-ESM2-0 1.125°× 1.125° 80 r1i1p1f1 MRI
NESM3 1.9°× 1.9° 47 r1i1p1f1 NUIST
NorESM2-LM 2°× 2° 32 r1i1p1f1 NCC
TaiESM1 1.25°× 0.9° 30 r1i1p1f1 AS-RCEC

derwent systematic error correction using observations from
the Global Precipitation Climatology Project (GPCP; Adler
et al., 2018) as a reference through the quantile-mapping
method, which adjusts probability distributions by individ-
ually matching each quantile to the respective quantile of the
reference dataset (Themeßl et al., 2011). GPCP data have a
shorter time period (from 1979) when compared to ERA5
data, which have been available since 1950. Since we aimed
to investigate interannual and interdecadal variability and cli-
mate change, we chose the longer dataset. Each precipitation
dataset was conservatively gridded to a regular 1°× 1° lat–
long grid in a monthly temporal resolution between 1979 and
2014. SST data were obtained from the COBE dataset, pro-
duced by the Japan Meteorological Agency (Hirahara et al.,
2014), which has long temporal availability and is based on
observations.

The models listed above, through their computational rep-
resentations of the atmosphere, choices of parameterisation,
vertical levels, etc., provide unique numerical representations
of the physical climate system. Each of these representations
has a distinct level of skill in simulating the mechanisms of

precipitation variability and changes in Brazil. Therefore, we
rank and select the models with higher performance to repre-
sent the SST–precipitation transfer function revealed by the
PLS analysis.

This ranking is based on the normalised root mean square
error (NRMSE), which is obtained by comparing the PLS
scores and loadings between each model and those derived
from the ERA5 reanalysis. Specifically, the RMSE is com-
puted between the scores and loadings from each model and
the corresponding scores and loading from ERA5. Then,
these RMSEs are collectively normalised, yielding the NRM-
SEs, to ensure consistent scaling across all comparisons.
Models with NRMSE values below 0.6 in at least two of the
first four PLS components are then selected. This threshold
was chosen so that a representative number of models is kept
in the ensemble: 15 models compose the selected subset. A
more strict NRMSE threshold would lead to a substantially
smaller subset and reduce the statistical robustness of the re-
sults, while a more relaxed threshold would be less effec-
tive in reducing the epistemic uncertainty by keeping models
that represent the desired mechanisms poorly. These selected
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Figure 1. First component of the PLS methodology applied using monthly precipitation data from ERA5 and SST data from COBE between
1979 and 2014. (a, b) The spatial maps represent the loading matrices, where the hatching represents areas where the statistical confidence on
the sign of the anomaly is lower than 95 %. (c, d) The time series represents the scores, and the p values indicate the statistical significance
of the results.

Figure 2. Second component of the PLS methodology applied using monthly precipitation data from ERA5 and SST data from COBE
between 1979 and 2014. (a, b) The spatial maps represent the loading matrices, where the hatching represents areas where the statistical
confidence on the sign of the anomaly is lower than 95 %. (c, d) The time series represents the scores, and the p values indicate the statistical
significance of the results.

models are singled out as more reliably representing mech-
anisms that cause precipitation in Brazil, while the rest are
discarded for the remaining analysis.

After the model ranking and selection step, we provide a
set of weights that is used later for model averaging. This set

of weights is found by multiplying the inverse of the NRMSE
by the importance of each PLS component; this is done so
that models that perform well in representing more relevant
mechanisms are favoured during the model-pooling step. The
importance of each PLS component is quantified by the co-
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Table 2. List of selected models and their weights represented as a
percentage of their contribution to the ensemble mean.

Model Components Weight (%)

CAMS-CSM1-0 1, 2, 4 7.76
CNRM-ESM2-1 1, 3, 4 7.73
GFDL-ESM4 2, 4 7.59
BCC-CSM2-MR 1, 2, 4 7.37
EC-Earth3-CC 1, 2 7.11
EC-Earth3-Veg-LR 1, 2 7.08
EC-Earth3-Veg 2, 4 6.83
IPSL-CM6A-LR 2, 3, 4 6.69
KACE-1-0-G 1, 2 6.61
CNRM-CM6-1-HR 2, 3, 4 6.56
MPI-ESM1-2-HR 1, 4 6.28
CMCC-CM2-SR5 1, 2 6.19
FGOALS-f3-L 2, 3 6.18
MIROC6 1, 4 5.94
CESM2-WACCM 1, 4 4.08

efficient of determination (r2) of the reconstructed precipita-
tion using only that component and the original ERA5 pre-
cipitation.

2.2.2 Future climate

We employ the same PLS methodology on future climate
simulations under the SSP2-2.45 scenario between 2020 and
2050; in this near-future temporal range, we do not expect the
choice of scenario to influence the results because scenario
uncertainty in regional precipitation changes only becomes
relevant in later decades (Hawkins and Sutton, 2011).

Finally, the effectiveness of this methodology in reducing
the uncertainty in near-future precipitation changes in the
CMIP6 ensemble is assessed by comparing the uncertainty
in all CMIP6 models listed in Table 1 with the uncertainty in
the subset of models selected by our methodology. The cli-
mate change signal was computed for each grid cell by cal-
culating the ratio (in percentage) between the anomaly of the
ensemble mean climatologies of the SSP2-4.5 scenario for
the years 2020–2050 and the historical period of 1979–2014,
divided by the historical period. To assess the robustness of
the models, we apply the procedure adopted by the Intergov-
ernmental Panel on Climate Change (IPCC), as outlined in its
Sixth Assessment Report, made available through the Inter-
active Atlas developed by Working Group I (WGI) (Gutiér-
rez et al., 2021). This approach determines the robustness of
climate change signals based on a strong model consensus,
highlighting where at least 80 % of the models agree on the
sign of the predicted changes.

3 Results and discussion

In this section, we present the results of the analysis for the
present and future climates, discussing the underlying pre-
cipitation mechanisms in reanalysis and model data. We also
discuss the reduction in epistemic uncertainty in regional pre-
cipitation changes obtained through the selection of mod-
els that skilfully represent precipitation mechanisms in the
present climate. In all PLS analyses, the Legal Amazon area
was cropped out; this is because precipitation in the Amazon
region presents significantly higher variability in magnitude,
dominating the results and obscuring patterns in other areas
that are also socioeconomically relevant.

3.1 Precipitation mechanisms in the present climate
(1979–2014)

In the present climate, the first PLS loading matrix of the
SST reveals a prominent positive pattern in the central Pa-
cific Ocean that aligns with the region dominated by the El
Niño–Southern Oscillation (ENSO) phenomenon (Fig. 1a).
This ENSO-like pattern with high statistical significance (un-
hatched area) extends from the west coast of South Amer-
ica to the Maritime Continent in the equatorial region, sur-
rounded by a pattern of opposite signal. There is a negative
trend in Fig. 1c scores, indicating a change in sign in the
patterns of Fig. 1a. This suggests that in the first half of the
time series, El Niño conditions were dominant, while in the
second half of the time series, La Niña conditions were dom-
inant. The associated PLS loading matrix for precipitation
shows a significant positive correlation in southern Brazil
and a negative correlation in northeastern Brazil (Fig. 1b).
The time series of the associated scores do not show a strong
linear trend, reinforcing that this PLS mode is more closely
associated with a natural variability mechanism like ENSO
than with climate change (Fig. 1d).

The global warming trend can explain the mostly positive
SST loading matrix and the increasingly positive score time
series of the second PLS component (Fig. 2a, c). This warm-
ing oceanic pattern is linked to a precipitation reduction in
most of southeastern and northeastern Brazil (Fig. 2b, d). A
possible explanation for this precipitation suppression is the
expansion of the Hadley cell under climate change (Lu et
al., 2007; Grise and Davis, 2020) and, consequently, the re-
striction of the equatorward motion of extratropical cyclones
and their fronts, which are important precipitation mecha-
nisms in southeastern Brazil (Perez et al., 2021). Perez et
al. (2022) have shown that a temporary intensification of the
Hadley circulation during positive North Atlantic Oscillation
(NAO) events leads to precipitation suppression in southeast-
ern Brazil.

For the third and fourth components (Figs. S1 and S2 in
the Supplement), we observe more divergence in the results.
Despite this, we consider these components in our evaluation
due to their assigned weights and the potential for provid-
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Figure 3. First component of the PLS methodology applied using monthly precipitation data from CMIP6 models under the SSP2-4.5
scenario, listed in Table 2, between 2020 and 2050. The spatial maps represent the loading matrices, and the time series represent the scores.
The regions with hatching indicate areas of uncertainty with < 80 % agreement in the sign change among the models. The p values indicate
the statistical significance of the results.

Figure 4. Second component of the PLS methodology applied using monthly precipitation data from CMIP6 models under the SSP2-4.5
scenario, listed in Table 2, between 2020 and 2050. The spatial maps represent the loading matrices, and the time series represent the scores.
The regions with hatching indicate areas of uncertainty with < 80 % agreement in the sign change among the models. The p values indicate
the statistical significance of the results.
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Figure 5. Percentage precipitation changes in 2020–2050 relative
to 1979–2014 based on all assessed models, as listed in Table 1,
(a) and the percentage changes based on the selected models listed
in Table 2 (b) from CMIP6 under the SSP2-4.5 scenario. The
regions with hatching indicate areas of uncertainty with < 80 %
agreement in the sign change among the models.

ing additional representation of driving mechanisms beyond
the first and second components. Moreover, these third and
fourth components might reveal important patterns that affect
precipitation in Brazil, especially the Atlantic SST variabil-
ity (Hastenrath and Greischar, 1993; Yoon and Zeng, 2010;
Perez et al., 2022).

Through the analysis of the PLS components in the present
climate datasets, we are able to select and rank the mod-
els based on their performance in reproducing these com-
ponents. The model selection is based on a threshold of
NRMSE< 0.6, and the individual model weights are based
on the inverse of the average NRMSE among the PLS com-
ponents scaled by the importance of each component, as de-
scribed in the “Materials and methods” section. Table 2 lists
the selected models and their respective weights along with
the components these models skilfully represent, later em-
ployed to construct the weighted ensemble mean in the future
climate section. These models selected through our approach
are those that showed better performance in the task of sim-
ulating the impacts of precipitation in Brazil. This way, for
example, the high weight of GFDL-ESM4 indicates that this
model performs well in representing the overall components
more accurately when compared to other models. While it
is true that component 1 relates to the ENSO dynamics, the
overall evaluation takes into account components that repre-
sent other important forcings of the Brazilian precipitation
regime. For instance, the Atlantic SST variability drives the
Brazilian precipitation variability in the Amazon (Yoon and
Zeng, 2010), northeastern Brazil (Hastenrath and Greischar,
1993) and subtropical regions (Perez et al., 2022). Further-

more, by including multiple components in the analysis, we
acknowledge that climate dynamics are multifaceted, and a
comprehensive evaluation should account for more than just
the primary modes of variability like ENSO. This approach
rests on the importance of a holistic evaluation of model
performance across various components rather than focusing
solely on the primary modes. The first and second PLS com-
ponents of all models used are presented in the Supplement
(Figs. S3–S62).

3.2 Precipitation mechanisms in the future climate
(2020–2050)

The oceanic mechanisms driving precipitation in Brazil in
the future climate (2020–2050) are discovered by applying
the PLS methodology in CMIP6 future climate simulations
(Figs. 3 and 4). Figure 3 shows the first PLS component and
Fig. 4 the second PLS component; for each component, only
models that performed well (NRMSE< 0.6) in the present
climate are considered. The spatial maps show the average
loading matrices of the model ensemble, where each model
is weighed by its skill in the present climate (Table 2); the
hatched areas represent regions where at least 80 % of the
models disagree on the sign of the loading matrix.

The first component shows a strong El Niño-like pattern in
the Central Pacific, similarly to what is found in the present
climate (Fig. 3a). However, unlike the present climate analy-
sis, this El Niño-like component shows a strong linear trend
in the time series of scores (Fig. 3c), suggesting that the cli-
mate models mix the natural variability of the ENSO phe-
nomenon and anthropogenic global warming; this warming
trend can also be seen in the increasingly positive patterns
in the tropical Atlantic and Indian oceans. The impact of this
warming trend in Brazilian regional precipitation is a wetting
pattern in southern Brazil and a drying pattern in northeastern
Brazil, interfaced by a large region of uncertainty (Fig. 3b).

The second component illustrates a generalised warming
trend in most regions of model agreement (Fig. 4a, c). This
component impacts precipitation in Brazil through a drying
trend in the southernmost border of the country and a wetting
trend in the southeastern area. Some coastal areas in north-
eastern Brazil are significantly affected by a drying trend
(Fig. 4b, d). Although the linear trend was observed in most
models (Figs. 3c, d and 4c, d), it becomes clearer and more
robust in the model subset; this reflects how sifting models
in a mechanistic approach helps reduce the epistemic uncer-
tainties.

3.3 Future climate precipitation changes and
uncertainty reduction

While the analysis of individual PLS components may sup-
port storyline approaches and mechanistic understanding, a
quantitative precipitation change map is often required by
decision-making bodies. With that in mind, we provide an
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Figure 6. Seasonal percentage precipitation changes in 2020–2050 relative to 1979–2014 based on all assessed models, as listed in Table 1
(top row), and the percentage changes based on the selected models listed in Table 2 (bottom row) from CMIP6 under the SSP2-4.5 scenario.
The regions with hatching indicate areas of uncertainty with < 80 % agreement in the sign change among the models.

uncertainty map based on the methodology employed by the
IPCC in its Sixth Assessment Report (Fig. 5). Here, we focus
on the percentage of projected changes in 2020–2050 relative
to 1979–2014. The hatching highlights regions where there is
a significant lack of consensus, with at least 80 % of the mod-
els analysed showing non-concordance, similar to the PLS
uncertainty maps shown in the previous section.

Figure 5a shows the ensemble mean of the future precip-
itation changes using all CMIP6 models, listed in Table 1,
while Fig. 5b uses the mean of the subset of models in
Table 2 weighted by their skill in simulating precipitation
mechanisms in the present climate (Fig. 5b). First, we notice
that the reduction in epistemic uncertainty by the proposed
methodology is revealed by stronger anomalies and fewer
hatched areas. This is further supported by the computed
standard deviation values, which show a reduction from 0.24
for the full ensemble set to 0.21 for the reduced subset – a de-
crease of 12.5 %. Particularly, the South Atlantic Subtropical
High (SASH) shows stronger negative anomalies, suggesting
a trend towards drier conditions in the region via an inten-
sification of the Hadley cell descending branch. Moreover,
the positive changes in southern Brazil have increased after
the application of the methodology; this enhanced dipole be-
tween the SASH and southern Brazil is consistent with the
mechanism of restriction of cold fronts revealed by the PLS
in the present climate and is discussed in Sect. 3a. In other
words, selecting and weighting models that reproduce im-
portant precipitation mechanisms in the present climate have
increased the clarity of what may happen in the region in

the near-future climate. Additional uncertainty maps based
on alternative model selections are provided in the Supple-
ment (Figs. S63–S64).

Figure 6 shows the future precipitation changes broken
down by season based on all models listed in Table 1 and
only using the models selected by the methodology (Table 2).
A noticeable reduction in uncertainty across all seasons is
evident when comparing the hatched areas using all mod-
els versus only using the selected models, underscoring the
success of our process-based model selection methodology
in enhancing our confidence in regional climate projections.
The period from December to May corresponds to the rainy
season, characterised by a prevalence of uncertainties; this
is in agreement with Bazzanela et al. (2023) and Firpo et
al. (2022), who also indicate that CMIP6 models perform
better in the dry season than in the wet season.

From June to November the central and northeastern re-
gions exhibit a clear drying pattern. In JJA, in particular, pre-
cipitation in most of Brazil is largely driven by cold fronts,
which, as previously discussed, can be restrained in higher
latitudes if the SASH is intensified. In SON, we expect an in-
tensified SASH to also contribute to a later onset of the rainy
season. This drying pattern in JJA and SON is intensified in
the subset of selected models. This is unsurprising, since the
SASH subsidence associated with an intensification of the
Hadley circulation is one of the mechanisms discovered by
the PLS analysis in the present climate and is used to select
the best-performing models.

Weather Clim. Dynam., 6, 757–767, 2025 https://doi.org/10.5194/wcd-6-757-2025



M. T. A. Marques et al.: Present and near-future precipitation changes and variability in Brazil 765

4 Summary and conclusions

This study aims to reduce the epistemic uncertainty in re-
gional precipitation changes in Brazil through a data-driven
process-based methodology of model selection and weight-
ing. To achieve this, we first employ the methodology to dis-
cover the main precipitation drivers in the present climate
(1979–2014) in a reanalysis dataset (Sect. 3a), revealing that
the El Niño and the generalised warming of the oceans are
linked to significant precipitation impacts in Brazil (Figs. 1
and 2). A distinct positive linear trend in the global warming
component is linked to drying across most of northeastern
and southeastern Brazil. We propose that the linking mech-
anism between these SST and precipitation patterns is the
intensification of the Hadley circulation (Hu and Fu, 2007)
and, consequently, of the subsidence at the South Atlantic
Subtropical High (Carvalho et al., 2011).

The same methodology is then applied to CMIP6 present
climate simulations (Table 1) to evaluate the capability of
CMIP6 models to simulate these precipitation drivers, thus
creating a process-based model selection and weighting ap-
proach to underpin the future climate analysis. From a total
of 30 models, we select 15 models that are capable of simu-
lating at least two (Table 2) of the main regional precipitation
drivers.

The mechanism discovery methodology is then applied to
the near-future (2020–2050) climate simulations of the se-
lected models. We find that an ENSO-like pattern, tied to a
generalised warming of the tropical oceans, is linked to an
increase in precipitation in southern Brazil and a decrease
in northeastern Brazil (Figs. 3 and 4), consistent with the
present climate indication of an intensification of the Hadley
circulation. This mechanistic view of regional precipitation
changes can underpin the development of storylines in fu-
ture studies to support decision-making bodies in the water–
energy–food nexus.

We go further to provide a quantitative view of regional
precipitation changes based on the IPCC WG1 approach,
contrasting the uncertainty in precipitation changes using
30 CMIP6 models versus using the 15 selected models. We
show that the approach increased model agreement, partic-
ularly in southern Brazil and the SASH region. In the next
30 years (Fig. 6), a noticeable reduction in uncertainty across
all seasons is evident mostly from June to November. This
period is characterised by a clear drying pattern due to the
strengthening of SASH, intensified within the subset of se-
lected models, which leads to a suppression of precipitation
in northeastern and southeastern Brazil, possibly delaying
the rainy season in these regions.

Our methodology of model selection and weighting con-
siders precipitation drivers rather than simply comparing
CMIP6 model precipitation with observations. By selecting
and weighting models mechanistically, we achieve a reduc-
tion in the epistemic uncertainty in precipitation changes in
Brazil in the CMIP6 ensemble. The method is based on the

discovery of statistical relationships between SST patterns
and precipitation through the PLS and the assumption that
models with an accurate representation of these statistical re-
lationships better represent atmospheric processes leading to
precipitation. Considering that the atmospheric flow is the
medium connecting SST and precipitation and the statistical
significance of the PLS loadings, we believe this assumption
to be robust. However, as with any data-driven methodology,
there could be instances where confounding factors may in-
fluence the results; this highlights the need for other mech-
anistic approaches capable of isolating rainfall mechanisms
individually, such as atmospheric rivers, convergence zones,
hurricanes and fronts (Catto et al., 2015; Franco-Díaz et al.,
2019; Perez et al., 2024). Moreover, studies addressing the
sensitivity of the results to the thresholds of model selection
could potentially increase the robustness of future precipita-
tion change predictions (Figs. 5 and 6).
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