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Abstract. The contiguous United States (CONUS) experi-
ences considerable variability in tornado activity on seasonal
timescales. The high impacts of tornadoes in the CONUS
motivate the need to better understand the link between sea-
sonal tornado activity and large-scale atmospheric circula-
tion, which may contribute to better seasonal prediction.
We employed k-means clustering analysis of low-pass-/EOF-
filtered 500 hPa geopotential height (500H) daily anoma-
lies from the ERA-5 reanalysis and identified five warm-
season weather regimes (WRs). Certain WRs are shown to
strongly affect tornado activity, especially outbreaks, due to
their relationship with environmental parameters including
convective available potential energy (CAPE) and vertical
wind shear (VWS). In particular, WR-B, which is character-
ized by a three-cell wave-like pattern with an anomalous low
over the central CONUS, is associated with enhanced CAPE
and VWS in tornado-prone regions and represents a tornado-
favorable environment. Persistent WRs, those lasting for ≥ 5
consecutive days, are associated with 75 % of all tornado out-
breaks (days with > 10 EF-1+ tornadoes) since 1960; per-
sistent WR-B, in particular, accounts for about 31 % of all
tornado outbreaks. The impacts of WR persistence on tor-
nado activity anomalies, however, are found to be asymmet-
ric: compared to non-persistent WRs, persistent WRs am-
plify positive tornado activity anomalies but may not fur-
ther enhance negative tornado activity anomalies. An em-
pirical model using WR frequency and persistence captures
the year-to-year variability of warm-season tornado days and
outbreaks reasonably well, including some years with high-
impact outbreaks. Our study highlights the potential applica-
tion of WRs for better seasonal prediction of tornado activ-
ity.

1 Introduction

The contiguous United States (CONUS) experiences more
tornadoes than anywhere else in the world, leading to signif-
icant economic and life losses (NCEI, 2024). Tornado out-
breaks (TOs) are a primary contributor to these impacts, and
the annual TO frequency has increased by 2.5 events over the
past 63 years (Brooks et al., 2014; Graber et al., 2024), par-
ticularly over the southeast US (Gensini and Brooks, 2018;
Graber et al., 2024; Moore, 2018; Moore and DeBoer, 2019).
In contrast, tornado days (TDs) have decreased in frequency
at a rate of ∼ 10 per decade since 1960 (Brooks et al., 2014;
Graber et al., 2024), especially from March to September
and over the southern Great Plains (Gensini and Brooks,
2018; Graber et al., 2024; Moore, 2018; Moore and DeBoer,
2019). Embedded within these trends is large interannual
variability, as evidenced by the percent change, with respect
to the previous year, in annual CONUS tornado reports over
5 recent years (2019–2023): +34.7 %, −28.7 %, +21.4 %,
−13.0 %, and +24.5 %, as well as by the corresponding
percent change in tornado fatalities: +320.0 %, +80.9 %,
+36.8 %,−77.9 %, and+260.9 % (Elliott, 2024). Such vari-
ability affects the situational awareness and vulnerability of
the populations, especially those that are disadvantaged. It
also complicates decision-making and resource management
by key stakeholders across multiple sectors. In addition, ex-
posure to future tornadoes is increasing with growing urban
areas (Ashley and Strader, 2016; Strader et al., 2017, 2024).
These and other impacts motivate the efforts to better under-
stand the variability of tornado activity over the seasonal and
longer timescale, which would ultimately contribute to im-
proved prediction of tornado activity.
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Some variability in tornado activity can be attributed to
low-frequency climate modes (Miller et al., 2022; Niloufar
et al., 2021; Thompson and Roundy, 1998; Vigaud et al.,
2018b). For example, Cook and Schaefer (2008) examined
winter tornado outbreaks in relation to the phase of the El
Niño–Southern Oscillation (ENSO) and found that a La Niña
phase favored tornadoes in the southeast and a neutral phase
favored tornadoes in the Great Plains. Allen et al. (2015) fur-
ther found that La Niña years typically coincide with more
tornadoes in the spring and El Niño years with fewer torna-
does across the central CONUS and that the winter ENSO
phase can be used to predict tornado frequency during the
spring. Additionally, a positive (negative) phase of the Arc-
tic Oscillation (AO) combined with a La Niña (El Niño)
phase may increase (decrease) tornado activity (Tippett et
al., 2022). Tornado activity can also be modulated by anthro-
pogenic climate change, either indirectly via changes in cli-
mate modes or directly via changes in relevant atmospheric
conditions. For example, increasing greenhouse gas concen-
trations are projected to lead to a moister atmosphere, espe-
cially in the lower troposphere, which contributes to higher
convective available potential energy (CAPE) (Trapp et al.,
2007; Del Genio et al., 2007). Diffenbaugh et al. (2013)
showed that climate models project a robust increase in the
number of days with high CAPE coinciding with high verti-
cal wind shear (VWS) in the eastern US, two important pa-
rameters for tornado-favorable environments (Brooks et al.,
2003; Mercer and Bates, 2019; Rasmussen and Blanchard,
1998; Thompson et al., 2012).

Variability of synoptic-scale circulations provides another
means of explaining tornado activity. Conducive synoptic-
scale circulation anomalies for TOs in the United States show
a trough–ridge pattern over the central to eastern CONUS,
while non-TOs usually feature more zonal flow (Mercer et
al., 2012). In particular, Cwik et al. (2022) performed ro-
tated EOF analysis of 500 hPa geopotential height associated
with historic May TOs and identified three circulation pat-
terns. The three circulation patterns are all characterized by
a trough feature over the central to eastern US. While their
study concludes that the synoptic patterns associated with
TOs remain the same from 1950 to 2019, there is partial
variability in the locations of TOs on multidecadal scales.
Additionally, mesoscale processes without strong links to
synoptic-scale circulations also affect tornadoes, especially
weak or isolated tornado events (e.g., tornadogenesis in non-
supercellular storm modes associated with mesoscale bound-
aries; see Wakimoto and Wilson, 1989).

In this study, we will investigate the link between the
synoptic-scale circulation and tornado activity using the con-
cept of weather regimes (WRs). Previous studies suggest that
WRs represent a finite number of equilibrium states of the
climate system (Charney and DeVore, 1979; Hannachi et
al., 2017; Michelangeli et al., 1995). Their spatial patterns
are determined by the internal dynamics of the atmosphere,
while their frequencies and persistence may be modulated by

climate modes or external forcings (Corti et al., 1999). The
WR framework thus has a strong dynamic basis. Different
from the EOF analysis, WRs are not required to be orthogo-
nal to each other and can thus more flexibly represent various
recurrent synoptic-scale circulation patterns.

WRs have been used to detect changes in regional tem-
perature, wind, and precipitation (Grams et al., 2017, 2020;
Robertson and Ghil, 1999; Schaller et al., 2018; Vigaud et
al., 2018a). In particular, WRs have been used to investi-
gate subseasonal variability in tornado activity, and a skillful
WR-based, hybrid model was developed for the subseasonal
prediction of tornado activity in the month of May (Miller
et al., 2020). Lee et al. (2023) applied the year-round WR
method (Grams et al., 2017) over North America and defined
four year-round WRs. Tippett et al. (2024) identified sta-
tistically significant relationships between these year-round
WRs and tornado activity in all months except June through
August, but Tippett et al. (2024) made no consideration of
WR persistency. This helps motivate our focus herein on the
warm-season tornado activity and its interannual variability.
Additionally, unlike Cwik et al.’s (2022) study, which focuses
on circulation patterns conditioned on major TOs, our iden-
tification of WRs is independent of TOs. This approach al-
lows us to examine WRs that facilitate or hinder tornado ac-
tivity, providing more comprehensive information for poten-
tial forecasting applications. Furthermore, we will examine
environmental conditions relevant to tornado development,
such as CAPE and VWS (Brooks et al., 2003; Mercer and
Bates, 2019; Rasmussen and Blanchard, 1998; Thompson et
al., 2012), which will help us better understand the link be-
tween WRs and tornado activity.

The remainder of the paper is organized as follows. First,
a detailed overview of the methodology for WR identifica-
tion and empirical model development is presented. The links
between WRs and tornado activity are then shown through
composite anomalies of CAPE and VWS, as well as through
anomalies of precipitation and TD probability. Next, WR
persistence is analyzed to test the hypothesis that persis-
tent WRs are more likely to produce TDs and TOs. Finally,
the WR components, frequency and persistence, are incor-
porated into an empirical model to evaluate the potential of
WRs to improve seasonal tornado prediction. The paper cul-
minates in a discussion of the possible applications of our
results.

2 Data and methodology

2.1 ERA-5 reanalysis data

Data from the ERA-5 reanalysis (Hersbach et al., 2020)
were analyzed over the CONUS (24–55° N, 130–60° W) at
the native 0.25° latitude × 0.25° longitude resolution. This
includes daily mean 500 hPa geopotential heights (500H).
Daily maximum values of most unstable CAPE (MUCAPE)
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and convective precipitation (CP) were used to represent the
daily peak instability. The 0–6 km bulk wind shear (S06), or
deep-layer shear, was estimated at 3 h intervals as the magni-
tude of the vector difference between the 500 hPa and 10 m
winds. The daily mean S06 was then calculated at each ERA-
5 grid point. Daily anomalies of a variable were defined with
respect to the daily climatology on every calendar day, fol-
lowing

H ′ (d,y)=H (d,y)−H (d), (1)

where y is year, d is calendar day, H is the variable or param-
eter of consideration, and the overbar denotes the long-term
mean. A 2° (latitude)× 2° (longitude) uniform filter was ap-
plied to MUCAPE, CP, and S06 anomalies to coarsen the
data, which were tested for significance using a one-sample,
two-sided t test.

Following Graber et al. (2024), all analyses were con-
ducted over the period 1960–2022 and focused specifically
on the warm season, defined as April to July (AMJJ), which
is the peak season of tornado activity in the United States.

2.2 Weather regimes

To identify weather regimes, daily anomalies of 500H at each
grid point were first detrended by removing the linear trend
of the seasonal mean (AMJJ) 500H averaged over the entire
Northern Hemisphere (Fig. S1 in the Supplement). The de-
trending approach removed the positive trend of hemispheric
mean 500H while preserving the spatial patterns and po-
tential changes in WR frequency or persistence. Although
geopotential height anomalies were normalized prior to the
k-means clustering in the year-round WR analysis by Tip-
pett et al. (2024) and Lee et al. (2023), 500H anomalies are
not normalized in this study because we focus on one sea-
son, which is consistent with many previous studies (Miller
et al., 2020; Robertson and Ghil, 1999; Vigaud et al., 2018a;
Zhang et al., 2024). A 5 d low-pass filter was applied to 500H
anomalies, and the leading 8 EOFs, accounting for∼ 90 % of
the variance, were retained in the EOF dimension reduction;
such preprocessing does not qualitatively affect the regime
patterns or the regime frequencies (Figs. S2–S4) but does fa-
cilitate comparison with previous studies. K-means cluster-
ing analysis was applied to the 500H daily anomalies over
the CONUS, and the number of clusters was determined as
five (Figs. S5–S6) using the elbow method and, more clearly,
the Davies–Bouldin index (Davies and Bouldin, 1979; Ko-
dinariya and Makwana, 2013; Miller et al., 2020), which is
consistent with Zhang et al. (2024). A persistent WR was de-
fined as a WR lasting for ≥ 5 consecutive days.

2.3 Tornado reports

Tornado reports for the period 1960–2022 were obtained
from the NOAA Storm Prediction Center Severe Weather
Database. These reports are georeferenced with time, date,

and EF/F rating. TDs were defined as any day with≥ 1 EF/F-
1+ tornadoes, and TOs were defined as any day with > 10
EF/F-1+ tornadoes. The > 10 threshold provides a larger
sample size than higher thresholds, but there is a similar trend
for > 20 or > 30 thresholds (Graber et al., 2024). EF/F-0 re-
ports were not included due to their reporting uncertainty
(Brooks et al., 2014; Trapp, 2013). Nevertheless, there are
remaining and well-known biases in this dataset, which we
attempt to manage with a focus on days with tornadoes rather
than tornado counts (e.g., Brooks et al., 2014; Graber et al.,
2024; Trapp, 2014).

The TD probability anomalies (Pa,i) were calculated at
each grid point for each WR as follows:

Pa,i =
Pi −Pc

Pc
× 100, (2)

where Pc is the climatological mean TD probability and was
calculated as the total number of TDs divided by the total
number of days in the warm season from 1960–2022, and
Pi represents the TD probability for WR-i (i.e., the num-
ber of TDs for WR-i divided by the total WR-i days). WRs
that are (are not as) conducive for TDs would have probabili-
ties above (below) the climatological mean and thus positive
(negative) probability anomalies. The probability anomalies
of TOs and the probability anomalies associated with per-
sistent and non-persistent WRs were calculated similarly. A
Monte Carlo simulation test with 10 000 resamples was used
to test for significance of the anomalies. The number of WR-i
days was multiplied by the climatological mean TD probabil-
ity to get an expected number of tornado days. The p value
was calculated based on the proportion of simulations that
were more extreme than the observations.

2.4 Empirical model for tornado activity

Using WR frequency and tornado probabilities for both per-
sistent (subscript “p”) and non-persistent (subscript “np”)
WRs, we developed an empirical model to assess the rela-
tionship between the variability of seasonal tornado activity
and WRs:

TI(t)=
5∑

i=1
f (i, t)p×Pi,p+

5∑
i=1

f (i, t)np×Pi,np, (3)

where TI(t) denotes a tornado index for year t . The model
takes the count of WR-i days (f (i, t)) for year t and mul-
tiplies it by the tornado probability corresponding to WR-i
(Pi). The WR count is a function of regime (i) and year (t).
The WR tornado probability is only a function of regime (i)
and represents the likelihood that a TD will occur. Proba-
bilities are assessed for persistent and non-persistent WRs
separately, under the hypothesis that persistent WRs con-
tribute to stronger TD or TO anomalies (Miller et al., 2020;
Trapp, 2014). Spearman rank correlation is used to compare
the modeled and observed tornado indices.
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3 Weather regimes and tornado activity

The composite mean 500H anomalies for each WR are
shown in Fig. 1, ordered with decreasing frequency of oc-
currence. WR-A is the most frequent regime and is charac-
terized by an anomalous high over the west-central CONUS
and a weak anomalous low over the southeast. WR-B and
WR-C are both characterized by a three-cell wave pattern,
with negative and positive 500H anomalies over the cen-
tral CONUS, respectively. WR-D and WR-E are west–east
dipole patterns that nearly mirror each other. The WR spatial
structures closely resemble the WRs in Zhang et al. (2024)
and Miller et al. (2020). WR-A is also similar to the Alaskan
ridge pattern in Lee et al. (2023) and Tippett et al. (2024),
and WR-D is similar to their Pacific Ridge pattern. How-
ever, since our study focuses on a different region and a spe-
cific season and is based on a different number of clusters,
there are noticeable differences. In particular, the WRs in
Lee et al. (2023) have a stronger loading in higher latitudes,
probably partly because they normalized geopotential height
anomalies by the area-averaged standard deviations with a
cosine-latitude weighting, a procedure we choose to exclude.

The potential links between these WRs and tornado activ-
ity are indicated by MUCAPE and S06 (Fig. 1a–e). Com-
posite anomalies of these parameters were calculated by
subtracting the corresponding climatological mean (Fig. 1f)
from the composite mean associated with each WR. The high
values of the climatological MUCAPE across the central and
southeastern CONUS are connected to the physical geogra-
phy of North America (Brooks et al., 2003; Trapp, 2013)
and the warm-season climatological mean 850 hPa circula-
tion, with southerly winds transporting heat and moisture
into the central CONUS (Mercer and Bates, 2019). The cli-
matological S06 is characterized by high values over the east-
ern CONUS, which are tied to the midlatitude jet stream.
With an anomalous 500H high over the west-central CONUS
and an anomalous 500H low over the southeast, WR-A fa-
vors anomalously low MUCAPE and S06 relative to clima-
tological means. In contrast, the anomalous 500H low over
central North America and the anomalous 500H high over
the southeastern US in WR-B imply enhanced westerly flow
and increased moisture and warm-air transport from the Gulf
of Mexico, leading to positive S06 and MUCAPE anomalies
in the southeastern US. The favorable anomalies presented
in WR-B agree with the Pacific Ridge findings in Tippett et
al. (2024). In WR-C, the anomalous 500H low over western
North America and the anomalous 500H high over central
North America imply enhanced southerly flow and increased
moisture and heat transport leading to positive MUCAPE
anomalies in the central US, which overlap with reduced
S06 south of the anomalous high. For WR-D, the anomalous
500H high over the eastern CONUS and the anomalous 500H
low over the western CONUS imply enhanced southerly flow
and increased moisture and heat transport, consistent with
positive MUCAPE anomalies in the central US, while S06

Figure 1. (a–e) Composite anomalies of 500H (black contours,
±10 m) for each warm-season WR and corresponding 2°× 2°
uniform-filtered anomalies of daily maximum MUCAPE (units:
J Kg−1; color fill) and daily mean S06 (units: m s−1; yellow con-
tours). Significance (p < 0.05) was tested at each grid point using a
one-sample, two-sided t test to mask out non-significant anomalies.
(f) Warm-season climatology of 500H (black contours, labeled),
daily maximum MUCAPE (color fill), and daily mean S06 (yellow
contours).

decreases in the south of the anomalous high and increases
in the north. WR-E, in contrast to WR-D, implies reduced
southerly flow and decreased moisture and warm-air trans-
port and is associated with negative MUCAPE anomalies in
the central US, but S06 increases substantially over the south-
east.

The WR–tornado activity link is illustrated by the com-
posite anomalies of TD probability and CP for each WR
(Fig. 2a–e). The climatological TD probability and CP are
also shown (Fig. 2f) for reference. Here TD probability
anomalies are evaluated following Eq. (2) with respect to Pc
at each grid point and then smoothed using a SciPy Gaus-
sian filter with sigma 6. Such smoothing has removed some
small-scale anomalies but retained the large-scale patterns.
Convective-storm occurrences can be approximated using
CP. Convective storms are a necessary but insufficient con-
dition for tornadoes, so more CP does not necessarily lead
to more tornadoes, but less CP likely means reduced tornado
activity (Tippett et al., 2014). CP anomalies collocate well
with the MUCAPE anomalies (Fig. 1) since non-zero CAPE
is generally necessary for deep convection, but CP also in-
cludes information about convection initiation. WR-A has
negative TD anomalies in the central CONUS, where neg-
ative anomalies in CP and MUCAPE/S06 are also present.
Positive TD anomalies in the southeast and midwest of WR-
B are collocated with positive anomalies in CP, MUCAPE,
and S06. Despite the negative S06 anomalies, positive TD
anomalies occur in the central Great Plains in a region of
positive MUCAPE and CP anomalies for WR-C. Weak, neg-
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Figure 2. (a–e) The 2°× 2° uniform-filtered, significant compos-
ite anomalies of daily maximum CP rate (units: mm h−1; shad-
ing) at each grid point (red/blue filled contours) for each WR
with Gaussian-smoothed TD probability anomalies (contour inter-
vals: ±20 %; orange and cyan colors represent positive and nega-
tive values, respectively) and 500H for each WR (black contours:
±10 m). Significance (p < 0.05) is tested at each grid point using
a one-sample, two-sided t test to mask out non-significant anoma-
lies. (f) Climatology of daily maximum CP (shading), 500H (black
contours), and tornado day probability (orange contours). Clima-
tological probabilities are shown at each grid point with contour
intervals of +0.01.

ative TD anomalies in association with WR-C are found
in the southeast where negative CP anomalies are present.
Positive (negative) TD anomalies in WR-D over the central
CONUS are collocated with positive (negative) CP and MU-
CAPE anomalies, and reduced S06 (Fig. 1d) also contributes
to the negative TD anomalies in the southeast. Finally, nega-
tive TD anomalies occur in the central CONUS, collocated
with negative anomalies of MUCAPE and CP associated
with WR-E, while positive TD anomalies occur in the south-
east despite reduced MUCAPE. The latter can probably be
attributed to the strong positive anomalies in S06 (Figs. 1e
and 2e). However, given the low climatological TD probabil-
ity in the southeast (Fig. 2f), the absolute changes in TD days
may not be high. Overall, the distribution of TD anomalies
shows a good agreement with CP and MUCAPE anomalies
of the same sign, and S06 seems to play a secondary role in
most regions.

The link between WRs and geospatially aggregated tor-
nado activity is summarized in Fig. 3 for different regions.
There are a total of 4348 warm-season TDs from 1960–
2022, therefore Pc ≈ 56.5 %. TD probability is enhanced for
WR-B and WR-D, with probability anomalies of +19.2 %
and +9.8 %, respectively (corresponding to TD probabili-
ties of 67.6 % and 62.3 %; Fig. 3). For reference, these are
associated with large positive TD probability anomalies in
the southeast and central CONUS, respectively (Fig. 2). TD

Figure 3. Tornado probability anomalies for days with > 0, > 10,
> 20, and > 30 tornadoes for each WR in the CONUS (see Eq. 2
and the related discussion). Anomalies above the 95 % confidence
level based on the Monte Carlo testing (with 10 000 resampling)
are regarded as significantly different from zero and marked with
an asterisk.

probability is reduced for WR-A and WR-E, associated with
negative TD anomalies across the central CONUS (Fig. 2).
The TD probability anomaly associated with WR-C is close
to zero (Fig. 3), which can be attributed to the near cancel-
lation between the opposite anomalies in the southeast and
central CONUS (Fig. 2).

There are 415 warm-season TOs from 1960–2022, there-
fore Pc = 5.4 %. In general, the TO probabilities have a
stronger signal than TDs (yellow bars in Fig. 3). For TOs,
WR-A has the strongest negative signal with a −60.77 %
anomaly, while WR-B has the strongest positive signal with
a +76.39 % anomaly (Fig. 3). The TO anomalies are consis-
tent with the analysis in Figs. 1–2, in which WR-A (WR-B)
showed reduced (enhanced) MUCAPE, S06, and CP over the
central and southeast CONUS. WR-D has a positive, signif-
icant anomaly of TO probability (+37.4 %; Fig. 3), which is
consistent with enhanced MUCAPE and CP over the central
CONUS (Figs. 1d, 2d). WR-E is associated with a negative
TO probability anomaly, which can be linked to the reduced
tornado activity over the central CONUS (Fig. 2). Further
analysis reveals that roughly 64 % of all TOs occur during a
WR-B or WR-D.

We also checked TOs using > 20 and > 30 tornado thresh-
olds (red and purple bars in Fig. 3). The analysis based on the
> 20 threshold yields similar results as that defined based on
the > 10 threshold. Although WR-A and WR-B demonstrate
significant and consistent signals for days with > 30 torna-
does, the other WRs exhibit contrasting signals for the > 10
and > 30 thresholds. This could be due to the small sample
size of TOs when using the > 30 threshold, and those anoma-
lies are not significant.

Next we compare persistent and non-persistent WRs to test
the hypothesis that persistent regimes amplify the TD/TO
probability anomalies. Persistent WRs are defined as those
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Figure 4. (a) TD and (b) TO (days with > 10 EF-1+ tornadoes)
probability anomalies for each WR for persistent and non-persistent
days. Anomalies above the 95 % confidence level based on the
Monte Carlo testing are marked with an asterisk. Anomalies above
the 95 % confidence level based on the Monte Carlo testing (with
10 000 resampling) are regarded as significant and marked with an
asterisk.

lasting for at least 5 d. The comparison of the TD proba-
bility anomalies between persistent and non-persistent WRs
(Fig. 4a) does not fully support our hypothesis. Although
persistent WR-B and WR-D are associated with a stronger
positive anomaly in TD probability than their non-persistent
counterparts, the negative TD probability anomalies are
about the same for persistent and non-persistent WR-A, and
persistent WR-E shows an even weaker decrease in TD
probability than non-persistent WR-E. Persistent and non-
persistent WR-C shows TD probability anomalies of oppo-
site signs, both with a small magnitude. Compared to TD
probability, the anomalies of TO probability are generally
stronger for both persistent WRs and non-persistent WRs. A
persistent WR-B is associated with a TO probability anomaly
of ∼ 90 % and accounts for ∼ 30 % of all TOs, while per-
sistent WR-A is associated with a negative TO probability
anomaly of ∼ 70 %. However, a consistent picture emerges:
persistent WRs amplify the positive anomalies but do not
necessarily enhance the negative anomalies in comparison to
the corresponding non-persistent WRs.

The asymmetric impacts of WR persistence on positive
and negative tornado activity anomalies are also illustrated
in Fig. S7. One possible interpretation is that tornado activ-
ity indices are positively defined metrics, so they cannot be
reduced much further when already close to zero. However,
the results should also be interpreted with caution given the
limited sample sizes for certain groups (Table S1).

4 Variability of WRs and tornado activity

In this section, we further quantify the link between WRs
and tornado activity. WR frequencies demonstrate strong in-
terannual and decadal variability (Fig. S8a–e). In particular,
WR-A exhibits a frequency increase during the 1980s coin-
ciding with the steepest decrease in TDs (Brooks et al., 2014;
Graber et al., 2024). The increase in seasonal frequency in

WR-A is consistent with the spatially similar ridge–trough–
ridge WR in Zhang et al. (2024). The frequencies of persis-
tent WRs also show changes across different multidecadal
time periods (Fig. S8f).

To examine whether WRs can help explain the interan-
nual and decadal variability of tornado activity over the pe-
riod 1960–2022, an empirical model was developed follow-
ing Eq. (3). Figure 5a shows the empirically modeled TDs
along with the observed TDs. Despite the decadal variability
in WR and persistent WR frequencies (Fig. S8), the empirical
model fails to capture the observed decreasing trend or the
decadal shift in the 1980s. After detrending the observations
using the least-squares fit, the model reasonably represents
the interannual variability of TDs (Fig. 5b), with a rank cor-
relation of 0.31 (p value ∼ 0.01). An empirical framework
for EF-3+ TDs was also tested, yielding a rank correlation of
0.41 (Fig. S9). It is interesting to note that the modeled TDs
are nearly out of phase with observations in the 1960s, when
tornado reports are less reliable (Trapp, 2013). After exclud-
ing these years, we reconstructed the empirical model using
updated TD probabilities during 1970–2022, and the correla-
tion increases to 0.42 (Fig. S10a). The empirical framework
was also tested for EF-3+ TDs during 1970–2022, and the
correlation is 0.53 (Fig. S10b).

We also examined TOs. The TO time series from the em-
pirical model has a significant rank correlation (above the
95 % confidence level) with the observations, but it underes-
timates the observed variance. Since the observed TOs do not
have a strong trend, detrending the data does not affect the re-
sults appreciably. Similar to the TD model results (Fig. 5a, b),
the TO model is nearly out of phase with the observations in
the 1960s. After excluding the data in the 1960s, the correla-
tion between the empirical model and observation increases
to 0.38 from 1970–2022 (Fig. S10c).

It is worth noting that although the empirical model cap-
tures the interannual variability of TDs reasonably well, it
misses the negative trend or decadal variability of TDs. The
empirical model is constructed under the assumption that
probability anomalies of tornado activity associated with the
WRs do not change during the period of analysis. This as-
sumption, however, may not be strictly valid. For exam-
ple, significant increases in MUCAPE from P1 to P3 are
found for all five WRs, although S06 undergoes smaller
changes (Fig. S11). Additionally, convective inhibition (CIN)
increases in the southeast and midwest for WR-B (Fig. S11h)
and in the central CONUS for WR-C (Fig. S11i) from P1
to P3. Further analysis reveals a lower TD probability for
all WRs in P3 than in P1 (not shown), consistent with the
negative trend of TDs (Graber et al., 2024). A better un-
derstanding of dynamic and thermodynamic anomalies as-
sociated with WRs and the role of internal climate variabil-
ity and anthropogenic forcing in modulating WRs will help
us better understand tornado activity on decadal and longer
timescales.
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Figure 5. Empirically modeled TDs (blue with circles) per year
overlaid with (a) observed TDs (red with crosses) and (b) detrended
observed TDs (red with crosses) with Spearman rank correlation
coefficient (cc) and p value; (c) empirically modeled (blue with cir-
cles) and observed (red with crosses) TOs per year with the Spear-
man rank correlation coefficient and p value.

5 Summary

The weather regime concept was used to investigate the link
between synoptic-scale circulation patterns during the warm
season and the variability of corresponding tornado activity
over the US on the interannual timescale. Five WRs were
identified over North America using the k-means clustering
analysis of daily mean 500H anomalies from the ERA-5 re-
analysis. WR-A is a three-cell wave pattern and is associ-
ated with negative anomalies of tornado activity in the cen-

tral CONUS, which is consistent with negative anomalies of
MUCAPE and S06 over that region. WR-B is a three-cell
wave pattern that contributes to increased tornado activity
in the southeast as evidenced by positive anomalies in MU-
CAPE and S06 there. WR-C is a three-cell wave pattern with
negative 500H anomalies over both coasts. It is associated
with positive MUCAPE anomalies over the central CONUS
and negative S06 anomalies. It exhibits climatologically av-
erage tornado activity, but it does make a positive, spatially
small contribution to tornado activity in the Great Plains.
WR-D and WR-E are both dipole patterns with positive and
negative 500H anomalies over the east coast, respectively.
WR-D contributes to anomalously positive tornado activity
in the Great Plains, while WR-E contributes to anomalously
negative tornado activity in the Great Plains. WR-E also con-
tributes to positive anomalies of tornado activity in the south-
east. A year that includes a high number of WR-B days is
likely to have an above average number of TDs and TOs. In
contrast, a year with a high number of WR-A days would
likely have a below average number of TDs and TOs.

We tested the hypothesis that WR persistence amplifies the
tornado activity anomalies, regardless of positive or negative
anomalies. However, the impacts of WR persistence on pos-
itive and negative tornado activity anomalies are found to be
asymmetric: persistent WRs amplify the positive anomalies
but may not further enhance the negative anomalies. This
can probably be attributed to the positive-definite nature of
tornado activity indices. While persistent WRs with favor-
able environmental conditions (such as WRs B and D) may
further increase tornado activity, TD or TO probability can-
not be reduced much further by the persistence of a tornado-
unfavorable WR (such as WR-A) when they are already close
to zero.

Using WR frequency and persistence, an empirical model
was developed to quantify the relationship between tornado
activity and warm-season WRs. The empirical model skill-
fully estimates the interannual variability of TDs and TOs,
and the model performance was better after excluding the
data in the 1960s. Since the empirical model used WR fre-
quency derived from the ERA reanalysis, its predictive skill
can be considered an upper bound for this empirical predic-
tion framework, assuming the perfect knowledge of WR fre-
quencies. The atmospheric general circulation model simula-
tions by Straus et al. (2007), which were forced by observed
sea surface temperature (SST) and sea ice, suggested the pre-
dictability of WRs, thus indicating the potential value of this
approach.

The empirical model, however, misses the trend or the
multidecadal variability of TDs. This model deficiency could
be attributed to the non-stationary relationship between WRs
and tornado activity on the multidecadal timescale, which
is illustrated by the increase in CAPE for all WRs in the
more recent decades. The roles of internal variability and an-
thropogenic forcing, however, are outside the scope of the
present study and merit further investigation. Furthermore,
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although not explored in this study, WRs and tornado ac-
tivity may both be modulated by large-scale, low-frequency
climate modes (Cook and Schaefer, 2008; Lee et al., 2023;
Niloufar et al., 2021; Tippett et al., 2024; Vigaud et al.,
2018a). Given the potential predictability of WRs (Straus et
al., 2007), they may act as an intermediary between large-
scale climate modes and tornado activity, while the low-
frequency modes may be important sources of predictabil-
ity for the interannual variability of tornado activity. Over-
all, weather regimes offer a promising path for developing
skillful seasonal tornado prediction models. Such efforts are
ongoing and will be reported in due course.

Code availability. Weather regime identification code
and WR structures and labels are available at https:
//github.com/Matt0604/Kmeans (last access: 18 July 2025;
https://doi.org/10.5281/zenodo.16043868, Graber, 2025).

Data availability. The ERA5 data are available at the NCAR re-
search data archive (RDA) (d633000) and Copernicus Climate Data
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Killer Tornado Statistics in this study for 2019 are available through
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txt (Marsh and Guyer, 2020). The U.S. Killer Tornado Statistics
in this study for 2020 are available through the NOAA Storm
Prediction Center Annual U.S. Killer Tornado Statistics portal:
https://www.spc.noaa.gov/climo/torn/STATIJ20.txt (Marsh, 2021).
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