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Abstract. Extreme event attribution methodologies have
been proposed to estimate the impacts of anthropogenic
global warming on observed climatological and meteorologi-
cal extremes. The classical risk-based approach uses extreme
value theory (EVT) to derive changes in the unconditional
probabilities of yearly maxima but bears the risk of compar-
ing events with different dynamical mechanisms. The flow
analogue method is a conditional attribution method which
compares events with similar synoptic-scale dynamics. Here
we propose a procedure for estimating both the conditional
intensity change and the probability ratio of observed ex-
treme events with this method. We illustrate the procedure
on three recent extreme events in Europe and compare the
results obtained to the EVT-based approach. We show that
the conditional flow analogue method tends to give more sig-
nificant results for these events, which suggests a stronger
climate change signal than the one detected with the uncon-
ditional approach.

1 Introduction

Extreme meteorological and climatological events negatively
affect societies and ecosystems (Clarke et al., 2022). The fre-
quency and intensity of these events can change under an-
thropogenic global warming, further exacerbating their im-
pacts (Seneviratne et al., 2021). The occurrence of extreme
events with strong societal impacts has prompted the de-

velopment of so-called extreme event attribution methods,
whose aim is to assess the role of anthropogenic global
warming (AGW) in the occurrence and intensity of these
extremes. The idea of risk-based extreme event attribution
methods (National Academies of Sciences Engineering and
Medicine, 2016) is to compare the probabilities P(X > x|F)
of an observable X exceeding a certain observed level x
during an extreme event in a counterfactual world (F = 0)
and in a factual world (F = 1). The difference between the
two worlds usually lies in the anthropogenic influence on the
climate, often measured in terms of increases in the global
or regional mean temperature (GMST or RMST). GMST
or RMST indeed integrates the effects of multiple anthro-
pogenic forcings, and, at least until recently, the distributions
of extremes have mostly responded linearly to the increase in
GMST or RMST (Arnell et al., 2019; Van Loon and Thomp-
son, 2023). In extreme event attribution, the factual world
refers to the current state of the climate, which includes the
influence of human activities, such as greenhouse gas emis-
sions, land use changes, and other anthropogenic factors that
have contributed to global warming and climate change. In
contrast, the counterfactual world is a hypothetical scenario
that represents what the climate would be without these hu-
man influences, essentially reflecting a pre-industrial or “nat-
ural” climate baseline. If P(X > x|F =1) > P(X > x|F =
0), then it is more likely that an event with the intensity x in
the factual world will be observed, and it is thus inferred that
anthropogenic climate change made the observed event more
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likely. One typically reports the ratio between these probabil-
ities (called the probability ratio), which indicates how much
more (or less) likely the event is in the factual world com-
pared to the counterfactual world (Stott et al., 2016).

This framework requires the estimation of the probabili-
ties of the observable X reaching the level x in the coun-
terfactual and factual worlds, i.e., estimating low probabili-
ties, which can be problematic in practice. The classical ap-
proach (Philip et al., 2020; Naveau et al., 2020) is to make
use of results from extreme value theory (EVT) in order to
estimate a parametric probability distribution based on past
observations or outputs from climate models. EVT shows
(Coles, 2001) that the distribution of block maxima — typi-
cally yearly maxima for climate data — of a random variable
converges towards a universal distribution called the gener-
alized extreme value (GEV) distribution, which has three pa-
rameters: the location u, scale o and shape & parameters. The
existence of this mathematical result suggests fitting a GEV
distribution to yearly maxima of X, taking into account the
non-stationarity of the climate system by letting, for exam-
ple, the location parameter  depend on a measure of global
warming such as global mean surface temperature (GMST)
or regional mean surface temperature (RMST) (Naveau et al.,
2020; Robin and Ribes, 2020): w(RMST) = 1o + w1 RMST.
It is then possible to compare the probabilities of reaching
the level x of the observed event with RMST in the counter-
factual and RMST in the factual world and to compute the
associated probability ratio. The expected intensity change
of the event between the two worlds can also be estimated as
AX = pu; X (RMST(F = 1) —RMST(F = 0)), although this
expression for the intensity change has to be adapted when
other hypotheses are made regarding the GEV parameters to
take into account the non-stationarity of the climate system.

This method is unconditional in the sense that it is purely
statistical and gives absolute probabilities for the yearly max-
ima of the observable X of interest. Whatever the actual dy-
namics of the observed event, it compares its intensity with
the yearly maximum intensities of the past. It therefore bears
the risk of comparing events that were yearly maxima but
that had different dynamical mechanisms. To alleviate this
issue, several conditional methods have been proposed (Yiou
et al., 2017; Terray, 2021; de Vries et al., 2024; Leach et al.,
2024). These methods condition the attribution analysis on
the large-scale synoptic pattern C associated with the ob-
served event. As a consequence, they address the question
of the mean changes between the counterfactual and factual
worlds for events dynamically similar to the event observed:
AcX =E[X|F =1,C] —E[X|F = 0,C] where each expec-
tation is conditional on the large-scale synoptic pattern C of
the event. In this sense, these methods condition on the dy-
namics to isolate the thermodynamical signal. Conditional
methods are also useful to explore the physical causes of
changes in the extremes, one of the key elements to support
the results of attribution studies.
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This conditional attribution framework allows the follow-
ing question to be answered: how does a similar large-scale
circulation pattern in the two worlds lead to different out-
comes in an observable of interest? If the difference A¢ X is
statistically significant, then one can say that in the factual
world the event has been rendered more (or less) intense by
Ac X. The conditional attribution thus separates the thermo-
dynamical and dynamical changes due to climate change and
addresses only the former. The unconditional probability ra-
tio and intensity change can in principle be obtained (Yiou
et al., 2017) if one can estimate the probabilities P[C| F] and
P[C|X > x] in the two worlds. Estimating these two proba-
bilities is however very difficult in practice because of the
under-sampling of synoptic-scale patterns similar to C in
limited-size data sets. Moreover, the conditional probability
ratio is also not provided by these methods.

Here we use the conditional flow analogue attribution
methodology proposed by Faranda et al. (2022) and adapted
from Yiou et al. (2017). This method is used, for example,
by the ClimaMeter tool developed to provide rapid attribu-
tion results (Faranda et al., 2024). We propose a procedure
to compute both conditional intensity changes and probabil-
ity ratios when using analogues of the synoptic circulation.
We illustrate the procedure on three recent impactful events
in Europe: the 25 July 2019 heatwave event in northwestern
Europe, the 11 February 2020 wind event in Ireland and the
UK, and the 4 October 2021 precipitation event in the Italian
Alps. The synoptic situations and the observables considered
for the three events are presented in Fig. la—c. The 25 July
2019 event was characterized by a strongly meridional mean-
der of the mid-level jet which led to exceptional heat in north-
ern France, Belgium, western Germany and southern Eng-
land (Fig. 1a; see also Vautard et al., 2020). The 11 Febru-
ary 2020 event coincided with the presence of Storm Ciara
in western Europe and led to important wind damage in Ire-
land, the UK, France, Belgium and the Netherlands (Fig. 1b;
Galvin, 2022). Finally, the 4 October 2021 event was an ex-
treme Mediterranean episode which led to intense precipita-
tion in northern Italy and southeast France (Fig. 1c; Cassola
et al., 2023).

The paper is organized as follows. In Sect. 2 we present
the data used and the method employed. We especially detail
the hypotheses of the method and the statistical procedure
employed to test the significance of the results obtained. The
results are presented in Sect. 3. We discuss these results and
the limits of the method in Sect. 4. Finally, the conclusions
are drawn in Sect. 5.

2 Data and method
2.1 Data

For all the analyses presented here we use the ERAS reanal-
ysis data set over the period 1950-2021 (Hersbach et al.,
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Figure 1. Synoptic situation and observables considered for the three events studied and the composite of their analogues. (a) Geopotential
height at 500 hPa (m, contours) and 2 m air temperature (°C, colors) for 25 July 2019, (b) geopotential height at 500 hPa (m, contours) and
10 m wind speed (m s~1, colors) for 11 February 2020, and (c) geopotential height at 500 hPa (m, contours) and total precipitation averaged
over 5d (mmd~!, colors) for 4 October 2021. For all events the dashed black box shows the region where the analogues are computed and
the magenta cross shows the grid point taken as the example in Fig. 3. (d—f) The same for the composite of their n = 72 analogues.

2020). We consider daily mean fields for the geopotential
height at 500 hPa (z500, 2 m air temperature (t2m) and 10 m
wind speed (windg), and we use a 5 d rolling mean for total
daily precipitation (tp). Using a 5 d rolling mean for precip-
itation allows us to focus on the synoptic driving rather than
on the day-to-day variability in this variable. Note that the
ERAS reanalysis procedure does not assimilate precipitation
data and can present important biases with respect to obser-
vational data sets (Lavers et al., 2022; Xu et al., 2022). The
absolute values provided here must therefore be taken with
care. We nevertheless choose to use ERAS5 precipitation data
for consistency with the other fields and because this paper
proposes a methodological development rather than a formal
attribution study. We regrid the original 0.25° ERAS resolu-
tion to a 1° resolution for the fields studied here. The reason
for using such a lower resolution is that, with the analogue
method and using a limited-size data set, the analogues found
can be slightly shifted horizontally. This would also corre-
spond to a horizontal shift of the observables of interest, and
therefore we cannot expect to reconstruct properly their dis-
tributions at the original 0.25° resolution.

For estimating trends, we regress quantities of interest on
the regional mean surface temperature (RMST) rather than
on the global mean surface temperature (GMST). We make
this choice to encompass the local warming trend which can
result from additional mechanisms compared to the GMST,
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for example aerosols concentrations and land-cover changes
(Robin and Ribes, 2020; Schumacher et al., 2024). RMST is
computed as the area-weighted average of t2m between 35—
70°N and 15° W-30°E over both land and ocean, and we
then twice apply an 11-year rolling mean as a low-pass filter
to obtain a smoothed time series. We note that this simple
procedure tends to underestimate the actual warming of Eu-
rope for the last years of the time series because there are no
data for the years after 2023 in our data set to compute the
rolling mean. This would therefore make our results conser-
vative when drawing conclusions on the anthropogenic influ-
ence on the events studied.

2.2 Analogue attribution: computation of intensity
change and probability ratio

The flow analogue attribution methodology is based on the
idea of finding synoptic circulation patterns — called ana-
logues — in the past that are similar to the pattern observed
for the extreme event and comparing the hazards they pro-
duce. Here we look for analogues of the synoptic circula-
tion using geopotential height at 500 hPa (z509) for the three
events as it acts as an approximate streamfunction of the free-
troposphere atmospheric circulation. There is a positive trend
in the geopotential height field which reflects the thicken-
ing due to warming of the atmosphere and can lead to find-
ing inappropriate analogues. To avoid this effect, we uni-
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formly detrend the geopotential height field against RMST.
We emphasize that doing so only shifts the z59¢ patterns ver-
tically while keeping the correct latitudinal and longitudi-
nal gradients from which the winds can be derived using the
geostrophic approximation.

The analogues are found over the period 1950-2021 —
without separation into two periods as in Faranda et al.
(2022) — using the domains shown in Fig. 1 (dashed boxes):
30-68°N and 20° W-25°E for the temperature event, 35—
65° N and 25° W-20° E for the wind event, and 35-55° N and
—3°W-17°E for the precipitation event. These domains are
chosen using our own expert judgment to find the synoptic
structures associated with the events considered, as is cus-
tomary in attribution studies. We explore the sensitivity of
the results obtained in the following by shrinking and ex-
panding these domains by 3° of latitude and longitude at
each edge. For our analysis, we take the 72 best analogues
as the synoptic patterns minimizing the pointwise Euclidean
distance with respect to the synoptic pattern of the event. This
is equivalent to finding approximately one analogue per year,
although we emphasize that we do not impose the condition
that one analogue per year has to be found (there can be sev-
eral analogues per year). We only impose the condition that
the analogues should be separated by at least 5 d, and we ex-
clude the event itself as an analogue. In order to take into
account the seasonal cycle and to be close to the observed
event, we impose the condition that the analogues must be
found in certain months: June to August for the temperature
event, October to March for the wind event and September
to November for the precipitation event. We also test the sen-
sitivity of the results to the number of analogues found by
increasing and decreasing the number of analogues by 25 %
(54 and 90 analogues).

To check the quality of the analogues found with our pro-
cedure, as in Faranda et al. (2022), we compute the analogue
quality metric Q. For each event, its quality Q is computed
as the average Euclidean distance of its n = 72 analogues.
For each analogue k of each event, its own analogue quality
metric Q% is then computed as the average Euclidean dis-
tance from its n = 72 closest analogues computed over the
same domain and time period as for the event. These need
not a priori be the same as the n = 72 analogues of the event
itself. In other words, the fact that a pattern A is among the
n =72 closest analogues of a pattern B does not necessarily
mean that pattern B is among the n = 72 closest analogues of
pattern A. We then compare the value of the analogue quality
Q¥ for the event with the distribution of the (Qk ) of

1<k<n
its analogues. If Q'™ is a clear outlier of the distribution
of (Qk)1 ~k<p — for example if it is higher than the maxi-

mum of (Qk) I<k<n ~ this means that tl'le synoptic pattern of
the event is unique and therefore that it has bad analogues.
In this case, a conditional (and probably also unconditional)
attribution statement is likely impossible based on past data
only.
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As a result of this procedure, we have n = 72 analogue
dates for each event and therefore n observables of interest

(temperature, wind, precipitation) (X lk 7)1 at each grid
’ <k=<n

point i, j. For these n dates, we also have n values of RMST:
(RMST*), _, _ . As in the EVT-based approach, the results
obtained will crucially depend on the hypothesis made to re-

late the (X¥;) _and the (RMST)
o] 1<k=<n

low the practice of current attribution methods (Philip et al.,
2020) and assume a linear link for temperature and wind,

l<k<n® Here, we fol-

X,’F’j =aqj,j +,3i’jRMSTk+6,"j, (1
and a log-linear link for precipitation,
lnXllf’j =oti,j+ﬂi,jRMSTk+e,-,j, )

the latter expressing a Clausius—Clapeyron-like relationship
between global/regional temperatures and precipitation. The
€;,j terms are random terms with a hypothesized paramet-
ric distribution (see below). The «; ; and B; ; are then deter-
mined by ordinary least-squares (OLS) regression. The in-
tensity change IC; ; at grid point i, j is therefore computed
as

ICi j = Bi,j X (RMSTeyen — RMST950) 3)

for temperature and wind and as

ICi,j — X?\}ent _ Xz‘;?nteﬂi,_j (RMST;950—RMSTevent) 4)

for precipitation. Here RMSTeyen is the RMST for the event
(assumed to be the factual world) and RMST 950 is the
RMST in 1950 (assumed to be the counterfactual world). For
precipitation, X ﬁ‘f’m is the intensity of the event at grid point
i,j.
At this stage, we detrend the time series (X lk ) with
I/ 1<k<n

s

the coefficients determined above to obtain a new time series

)~(lk )’ This time series is an empirical sampling (up
7/ 1<k=n

to the detrending procedure) of the distribution X i,jIC of the
observable X i,j conditional on the synoptic situation C of the
extreme event. If we had enough data —i.e., a longer-running
data set and therefore more analogues — we could give an em-
pirical estimation of the probability of reaching level X¢vent
for this conditional distribution. Considering that X" is
likely extreme — even when conditioning on the synoptic pat-
tern C — it is usually not possible to give a precise empirical
value to this probability. We therefore need to use a para-
metric hypothesis to estimate probabilities in both worlds.
The difficulty is that, contrary to the EVT-based method, we
have no a priori choice for what distribution X i,;1C should
follow. Here, we propose to use the skew-normal distribu-
tion for temperature and wind and the gamma distribution
for precipitation (see Sects. 3 and 4 for a discussion on
the choice of these probability distributions). We fit a skew-

using the

normal or gamma distribution to the ()Nf f‘ /.)1 .
) 1<k<n
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method of moments. The choice of this method for the fits
was made to speed up computations considering the large
number of fits necessary with our bootstrap procedure (see
below and Appendix A for the detail of the method of mo-
ments for the skew-normal and gamma distributions). Once
we have access to the parameters of the distribution, we eval-
uate the probability of Xf"'f"m for these distributions in the
counterfactual world and in the factual world. For the skew-
normal distribution, this procedure means shifting the fitted
location parameter by 8; jRMST195¢ (counterfactual world)
and B; jRMSTeven (factual world). For the gamma distribu-
tion, this is equivalent to multiplying the scale parameter by
ePiiBRMSTios0 (counterfactual world) and ePiiRMSTevent (fac-
tual world).
The full procedure can be summarized as follows:

1. Find n analogues over the period 1950-2021.

2. Extract the n values of the observable X at grid point
b (Xi’j) lgkgn.

3. Extract the n values of RMST: (RMSTk)

1<k<n’

4. Detrend the time series (Xlk ) with respect to
J ) 1<k<n

(RMST¥), _, _, . linearly for temperature and wind and
. — —n . . .
log-linearly for precipitation.

5. Compute the intensity change as the difference between
the event and the projection of the event in 1950 based
on the detrending hypothesis.

6. Fit a parametric distribution to the detrended time series

<)~( k ) , a skew-normal distribution for tempera-
L 1<k=<n

ture and wind and a gamma distribution for precipita-
tion.

7. Compute the probabilities for the present event and
1950 using the fitted distribution and evaluate the prob-
ability ratio P(X > x|F = 1)/P(X > x|F =0).

We assess the sensitivity of the results obtained using
a bootstrap procedure: at each grid point i, j we resample

103 x n values of the analogue observables (Xf‘ j)l . with
’ <k=n

replacement and execute the procedure described above. We
report the median value of the 103 resamplings. This result
is said to be significant if the critical value (O for the inten-
sity change and 1 for the probability ratio) is either above the
97.5th quantile or below the 2.5th quantile of the 10° resam-
plings. The same procedure is applied to each grid point i, j,
all grid points being treated independently.

2.3 EVT-based attribution

We additionally compare our procedure to the unconditional
EVT approach. To do so, at each grid point i, j we compute
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the yearly maxima of the observable of interest, restricting
the time span to the same months as the ones over which
the analogues are computed (June to August for the temper-
ature event, October to March for the wind event, Septem-
ber to November for the precipitation event). We then de-
trend this time series of yearly maxima and compute the in-
tensity change similarly to the method presented above for
the analogue procedure. We emphasize however that there is
no a priori reason that the intensity change computed on the
yearly maxima should be similar to the one for the analogue
distribution because the yearly maxima may not correspond
to analogues of the event. We then fit a GEV distribution to
the detrended time series using the method of L-moments
(Hosking, 1990). The probabilities in the counterfactual and
factual worlds are recovered as above by shifting the location
parameter by B; jRMST 950 and B;, jRMSTeyen for tempera-
ture and wind and multiplying the location and scale parame-
ters by efi.iRMST1950 and ¢hi.jRMSTevent for precipitation. From
these probabilities we recover the probability ratio. To esti-
mate the sensitivity of these results, we also use a bootstrap
procedure with 10° resamplings, and we report the median
result when it is significant.

We note that this procedure is not exactly the same as the
one of the World Weather Attribution (Philip et al., 2020),
which directly fits a non-stationary GEV with the maximum
likelihood method. We made this choice here in order to be
more similar to our procedure for the analogue-based attribu-
tion. Nonetheless, this procedure can be adapted straightfor-
wardly if one wants to use the maximum likelihood method
with non-stationary skew-normal, gamma and GEV distribu-
tions.

3 Results
3.1 [Illustration of the method with three grid points

To investigate the relevance of the analogues found for the
three events, in Fig. 1d—f we show the composite fields of
z500 and of the observables of interest (temperature, wind and
precipitation). The n = 72 analogues found for each event are
shown in Figs. B1, B2 and B3. For the temperature and wind
events, the synoptic situation is qualitatively similar to the
event itself, and so are the observable fields, although with
an intensity that is less than that of the events as can be ex-
pected because we are investigating extreme situations. For
the temperature event, the mid-tropospheric flow is nonethe-
less less meridional than for the event. The synoptic situa-
tion for the precipitation events is not as satisfying insofar as
the composite does not show the secondary trough that can
be seen over the eastern Pyrenees in Fig. 1c and the down-
stream ridge is less intense than for the event. Despite this
discrepancy, the structure of the precipitation field is qualita-
tively similar to the one of the event itself, with precipitation
in southeast France and northern Italy.

Weather Clim. Dynam., 6, 817-839, 2025
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Figure 2. Analogue quality and trend in the number of analogues per decade. First row: distribution of the analogue quality over the 72
analogues for (a) the 25 July 2019 event, (b) the 11 February 2020 event and (c) the 4 October 2021 event. The boxplots show the 25th
and 75th quantiles and the median of the distribution. For each plot, the red dot shows the analogue quality for the event itself. Second row:
number of analogues per decade for (d) the 25 July 2019 event, (e) the 11 February 2020 event and (f) the 4 October 2021 event.

In Fig. 2a—c, we show the distributions of Qk for the ana-
logues found (boxplots) and the analogue quality Q for the
event itself (red dot). The analogue quality metrics Q of all
events are in the upper tail of the distribution of Q¥ — which
may be expected insofar as they are all rare events — but
are not outliers of the distributions. There are 4 analogues
with worse analogue quality for the temperature event, 3 for
the wind event and 8 for the precipitation event. Figure 2d—f
show the number of analogues per decade for each event. We
compute the linear trend over this number of analogues to ex-
plore whether they have become more likely with time. The
significance of the trend is computed using a bootstrap proce-
dure: we resample 103 x 72 analogues and compute the trend.
If the value O is outside the 95 % interval centered around the
median of these trends, then the trend is said to be signif-
icant. Note that because we have only 2 years in the 2020
decade, these years are not taken into account for comput-
ing the trend. For none of the events is this trend significant,
which shows that the analogues are well distributed over the
period 1950-2021.

In order to give probability ratios measuring the increas-
ing/decreasing likelihood of the extreme events considered,
we need to rely on a parametric hypothesis for the distri-
bution of the observable conditional on the synoptic pattern
of the event. If we had a much larger sample size than the
one ERAS reanalysis provides, we could compute empirical
probabilities, and this could for example be done with ei-
ther a long run or a large ensemble of a climate model. Con-

Weather Clim. Dynam., 6, 817-839, 2025

trary to the EVT approach to attribution, which is based on
a theoretical result that provides which parametric distribu-
tions should be used for computing probability ratios, here
we have no a priori theoretical basis for which distribution to
use. Figure B4 shows the empirical skewness (first row) and
excess kurtosis (second row) for the analogue distributions
of the observables for the three events considered (after the
detrending procedure). We assess the statistical significance
of these quantities using the same bootstrap procedure as the
one described for the analogue attribution (see Sect. 2) and
show in white grid points those which are not statistically sig-
nificant. These results should nevertheless be taken with care
as the precise estimation of the third and fourth moment with
n =72 is difficult. For temperature and wind (Fig. B4a, b,
d and e), most of the grid points do not show a significant
departure from O, i.e., from the third and fourth moments
of a Gaussian distribution. Temperature tends to be nega-
tively skewed over sea surfaces (Fig. B4a), and wind tends
to be negatively skewed over sea surfaces in northern Europe
and positively skewed over the Mediterranean land surfaces
(Fig. B4b), but for both observables, the departure from 0
is small over the regions of interest for both events, except
over the North Sea for the wind event. Similarly, the excess
kurtosis is not different from 0, and, if anything, it tends
to be slightly negative — although this may arise as the re-
sult of under-sampling the very extremes. As a consequence,
we propose to use the skew-normal distribution — which is a
modification of the Gaussian distribution to take into account

https://doi.org/10.5194/wcd-6-817-2025



R. Noyelle et al.: Attribution with the flow analogue method

the skewness of the distribution (see Appendix A) — to rep-
resent the analogue distribution of these observables at each
grid point.

For precipitation (Fig. B4c and f) the results are differ-
ent. The conditional distribution is significantly positively
skewed for most grid points, as expected for an observable
which is bounded downwards by 0, and the excess kurto-
sis is not significantly different from O for most land grid
points. For grid points where the excess kurtosis is signifi-
cant, it is strongly positive, which would be likely to be the
same for most grid points if we had more analogues inso-
far as precipitation distributions are usually long tailed. As
a consequence, we treat the precipitation observable differ-
ently and use a gamma distribution to fit its distribution. The
gamma distribution is commonly used to fit precipitation data
(Stagge et al., 2015; Gudmundsson and Seneviratne, 2016;
Martinez-Villalobos and Neelin, 2019). We come back to the
question of the choice of these distributions in the Discussion
section.

Figure 3 shows an illustration of our method on three ex-
ample grid points marked by a magenta cross in Fig. 1. For
the 25 July 2019 temperature event, the intensity reached is
so extreme that it is never reached by its analogues, even af-
ter detrending the analogue observables of the past (Fig. 3a).
As a consequence, it is in the far tail of the fitted distribu-
tions for both the past (1950) and the present (2019, Fig. 3d)
and the probability ratios are largely higher than 1, with a
median value around 10°. Accordingly, the median inten-
sity change is around 4.5 °C. For the 11 February 2020 wind
event, the event itself was intense but four analogues in the
past show higher values than the event. The trend of the ana-
logue observables with respect to RMST is weak, and as
a consequence, the conditional distributions in the past and
the present are close. The median probability ratio is around
0.7 and the median intensity change around —0.5ms™!, but
none of these values are statistically significant according to
the bootstrap procedure. For the 4 October 2021 precipita-
tion event, the event itself was also intense but exceeded by
13 analogues in the past. The logarithmic regression points
towards a small decrease in the intensity of these events,
which slightly decreases the intensity of the analogue events
as projected in 2021 (Fig. 3c). The event therefore becomes
slightly more unlikely in the present (Fig. 3f), and the me-
dian probability ratio is around 0.7 with an intensity change
of around —5mmd~!, but these changes are not statisti-
cally significant. To test the parametric hypothesis made for
computing the probability ratios, we employ the two-sided
Kolmogorov—Smirnov test on each resampled time series to
test the hypothesis that the distribution of the resampled time
series is different from the fitted distribution, i.e., a skew-
normal distribution for temperature and wind and a gamma
distribution for precipitation. Using the 5 % confidence level,
99.9 % of the resampled time series are not distinguishable
from the target distribution for the temperature and wind
events and around 99 % are not for the precipitation event.
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This shows that the chosen distributions are compatible with
the data.

3.2 Results in Europe

We apply the same procedure to every grid point in Europe.
The results for the median probability ratios and intensity
changes are shown in Fig. 4. For the intensity changes, in
addition to the observable considered, we also show the sig-
nificant changes in the synoptic field (geopotential height at
500 hPa). The temperature event is associated with signifi-
cant increases in probability ratios over western Europe, es-
pecially in northern France, Belgium, the Netherlands and
southern England, where they are higher than 10° (Fig. 4a).
The intensity changes show a similar pattern (Fig. 4d), al-
though with interesting differences: whereas the intensity
changes are similar in northeast Spain to the ones in north-
ern France, Belgium and southern England, the probability
ratios of the former are smaller. This likely reflects different
scales and shapes of the fitted distributions of the observ-
ables. The wind event presents no changes in the probabil-
ity ratios. In the main zone of interest for the event (Ireland,
the UK and the North Sea), no grid points show a signifi-
cant change (Fig. 4b), which is also reflected in the inten-
sity changes (Fig. 4e). For the precipitation event, except for
some grid points in southeast France, most grid points do not
show significant values in the probability ratio and the in-
tensity change (Fig. 4c). Finally, we note that the changes in
the synoptic fields for all events are minimal or nonexistent:
there is a small increase in the intensity of the anticyclone
over the ocean west of Brittany for the temperature event and
no changes for the wind and precipitation events. Figure B5
in the Appendix shows at each grid point the proportion of
resampled time series which pass the Kolmogorov—Smirnov
test at the 5 % level, i.e., the proportion of the resampled time
series for which the proposed distribution is a correct repre-
sentation of the empirical distribution. For all events, over
the regions of interest this proportion is higher than 90 % and
close to 100 % for most grid points.

To test the sensitivity of these results, we present similar
figures to Fig. 4 in the Appendix, where we change the num-
ber of analogues by +25 % (54 and 90 analogues over 1950—
2021, Figs. B6 and B7) and the size of the domain to find ana-
logues within +3° of longitude and latitude at the edge of the
domains defined in Fig. 1 (Figs. B8 and B9). For the temper-
ature event, the results presented above are stable regardless
of a change in the number of analogues and in the size of the
domain. This likely reflects the strong warming in extreme
temperatures observed in western Europe and already dis-
cussed by several previous works (Vautard et al., 2023; Pat-
terson, 2023; Noyelle et al., 2023). For the wind event, the re-
sults obtained tend to be similar, with no detectable changes.
Finally, for the precipitation event in southeast France and
the Italian Alps, the changes are mostly insignificant even

Weather Clim. Dynam., 6, 817-839, 2025
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Figure 3. [llustration of the analogue attribution method for the three example grid points of Fig. 1. First row (a—c): raw values of the
analogue observables (black dots) and detrended values of the analogue observables (red dots) vs. RMST. The detrended values are shifted
to the 2020 RMST value. The observables are detrended to correspond to the RMST of the event. The solid black line and the black shading
show the median regression line and the 95 % uncertainties interval for the regression of the raw values of the analogue observables against
RMST. The horizontal dashed black line shows the intensity of the event. Note that for panel (c) the regression is logarithmic with respect
to RMST (see Sect. 2). Second row: fitted (d, e) skew-normal and (f) gamma distributions for RMST in 1950 and in the present (i.e., for
the event). The solid line shows the median fit and the shading the 95 % uncertainty interval obtained after bootstrapping (see Sect. 2). The
empirical histogram corresponds to the detrended values of the analogue observables. The vertical dashed black line shows the intensity of
the event. Third row (g—i): bootstrap distribution of probability ratios and intensity changes for the events. For the probability ratios, the
horizontal black line shows the value 1 (no probability change). For the intensity changes, the horizontal black line shows the value 0 (no

intensity change).

though some grid points see a significant decrease between 5
and 10mmd~".

3.3 Comparison with the climatological and
EVT-based approaches

The intensity changes presented in Fig. 4 are computed con-
ditionally on the analogues, i.e., on the synoptic pattern of
the extreme events observed. To investigate the difference
with respect to conditioning on the analogues compared to
other methods, in Fig. 5a—c we present the intensity changes

Weather Clim. Dynam., 6, 817-839, 2025

deduced from the climatological trends computed on the
months when the analogues are found. At each grid point,
we compute the intensity change as previously, but this time
the trend is computed by considering all days of the months
when the analogues are searched (June to August for the tem-
perature event, October to March for the wind event, Septem-
ber to November for the precipitation event). Figure 5d—
f show the difference with the analogue intensity changes
when they are statistically significant according to the boot-
strap procedure, as previously. For the temperature and pre-
cipitation events, the intensity changes conditional on the
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Figure 4. Probability ratios and intensity changes with the analogue method. First row (a—c): median probability ratios obtained at each
grid point for (a) the temperature event, (b) the wind event and (c¢) the precipitation event. The grid points are colored in white when the
probability ratios are not statistically different than 1 (see Sect. 2). Second row (d-f): median intensity changes for the observable (colors) and
the synoptic field (z50¢ in m, contours). For the observable, the grid points are colored in white when the intensity change is not statistically
different than O (see Sect. 2). For the synoptic field, the intensity change is not shown when it is not statistically different than 0.

analogues over the regions of interest for the extremes are
stronger than the climatological trends, and they are even
the reverse for the precipitation events. This demonstrates the
contribution of conditioning on the analogues. For the wind
events there are weak or no trends in the region of interest for
both the climatology and the analogues. We could in princi-
ple do the same analysis for probability ratios, but we would
need to make a parametric assumption about the full distribu-
tion of the observable over the months considered, which is
likely more difficult than for the distribution conditional on
the analogues.

Finally, we compare our results with the classical EVT-
based approach for extreme events. The EVT approach is un-
conditional and compares the intensity of the event observed
to a non-stationary GEV distribution fitted to the yearly max-
ima over the period 1950-2021. Figure 6 shows the results
with this approach for the three grid points studied in Fig. 3.
For the temperature event, both approaches conclude that
there is an increasing probability and intensity of this event
but the EVT approach provides lower probability ratios and
intensity changes (Fig. 3g vs. Fig. 6g). For the wind event,
both approaches give similar non-significant results for the
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grid point selected (Fig. 3h vs. Fig. 6h). Lastly, for the pre-
cipitation event, the EVT approach gives a non-significant
result but points towards an increase in the probability and
intensity of this event, which is contrary to the analogue ap-
proach (Fig. 3i vs. Fig. 61).

Figure 7 shows the equivalent of Fig. 4 with the EVT ap-
proach. It displays the median probability ratios and intensity
changes found with the EVT approach after 103 resamplings
when they are statistically significant at each grid point. The
results obtained are rather different from the analogue ap-
proach. For the temperature event, the significant probabil-
ity ratios tend to be confined to western Europe (especially
France) and the intensity changes are smaller than the ones
observed with the analogue method. For the wind event, only
few and sparse grid points show a significant change. The
precipitation event also does not show significant changes
over most of Europe and especially in the Italian Alps. This
result is mostly similar to the one obtained with the analogue
method, despite some grid points showing a significant de-
crease, especially in southeast France. We come back to this
discrepancy in the Discussion section. Note that for precipi-
tation, it is not clear that yearly maxima have converged to-

Weather Clim. Dynam., 6, 817-839, 2025
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Figure 5. Climatological intensity changes and comparison with analogue intensity changes. First row (a—c): median climatological intensity
changes based on the trend over the months where the analogues are searched for. Second row (d-f): difference between climatological
intensity changes and analogue intensity changes of Fig. 4. The grid points are colored in white when the difference is not statistically

significant according to the bootstrap procedure (see Sect. 2).

wards a GEV distribution and it may be more suitable to use
larger block sizes (Alaya et al., 2020), although this would
reduce the sample sizes for the fits.

4 Discussion

In this paper we propose to estimate intensity changes and
probability ratios for the flow analogue extreme event attribu-
tion method. The main improvement compared to the method
proposed by Faranda et al. (2022) is to avoid the arbitrary
split of the analogues into two periods. Doing so increases
the number of analogues found and therefore gives more sta-
tistical strength to the results obtained, even though we have
to make some additional statistical assumptions.

Our procedure estimates intensity changes by regressing
the observables of interest on a metric measuring anthro-
pogenic global warming — regional mean surface tempera-
ture (RMST) here. We applied this method grid point by grid
point, but it could be applied, for example, over a spatial av-
erage to study a particular region of interest. The hypotheses
made to estimate intensity changes are minimal and unrelated
to the parametric assumption for the computation of the prob-
ability ratios. The results obtained can thus be considered a
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good approximation of the response to increasing RMST of
the mean of the observables of interest conditional on the
synoptic pattern of the event of interest (as soon as they are
stable with respect to small changes in the number of ana-
logues and the domain to compute analogues). The intensity
changes thus give an estimate of the mean observed thermo-
dynamical response for a particular synoptic-scale pattern.
The hypotheses made to estimate probability ratios on the
other hand are more problematic because they rely on a para-
metric approximation. If the fitted distributions for the condi-
tional distribution of the observable are incorrect, this could
lead to large errors in the estimated probability ratios, espe-
cially when the extreme event studied is largely outside the
distribution of its analogues (such as for the 25 July 2019
temperature event). Here we presented arguments based on
the third and fourth moments of the conditional distributions
to justify the use of skew-normal distributions for tempera-
ture and wind and gamma distributions for precipitation. We
nevertheless acknowledge that these arguments are based on
empirical results and have to be tested case by case. As a con-
sequence, it is likely that the choice of the fitted distributions
can be questioned and could be adapted to find more suitable
distributions for the estimation of probability ratios for other

https://doi.org/10.5194/wcd-6-817-2025
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Figure 6. The same as Fig. 3 with the EVT approach.

events and other observables. Moreover, even with our para-
metric choice, as illustrated here in Figs. 3 and 6, the range of
uncertainties in the probability ratios can be several orders of
magnitude large according to the bootstrap procedure. This
is a known problem for risk-based extreme event attribution
method which arises as a result of the estimation of a ratio of
low or very low probabilities. It is however not even clear that
the mean value of this ratio is well defined statistically — for
example if the mean probability of the event in the counter-
factual world is equal to 0. For these reasons, it is probably
more meaningful to be cautious and use intensity changes
rather than probability ratios for reporting attribution results.
As a consequence, the parametric hypotheses made to repre-
sent the probabilities conditional on the synoptic pattern may
not be that important to establishing an attribution statement
for extreme events, as soon as the intensity change is signifi-
cantly different from O.

Similarly to the EVT-based attribution method, the flow
analogue method may suffer from an under-sampling of
extremes due to the use of a limited-size reanalysis data
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set only. In other words, good analogues need to be found
for the conditional attribution to make sense, and therefore
the strongest unprecedented extreme events may not be at-
tributable with this method if they have no past analogues.
This method can straightforwardly be used with climate
models outputs to strengthen the analysis, especially with
large ensembles to find more analogues. Conditioning on a
measure of global warming as done here could also allow
the comparison of results for models with different climate
sensitivities. However, models have known deficiencies, in-
cluding biases (Maraun, 2016; Vrac et al., 2023; Frangois
et al., 2020) and incorrect dynamics of extremes under forc-
ing over western Europe (Van Oldenborgh et al., 2022; Pat-
terson, 2023; Vautard et al., 2023; D’Andrea et al., 2024),
which may not counterbalance the sampling issue of the re-
analysis. Another sampling issue concerns the natural vari-
ability in the climate system. If a long-term physical phe-
nomenon has covaried over a long period of time with RMST
and can influence the intensity of the events studied, then
this would lead to an incorrect estimation of the impact of

Weather Clim. Dynam., 6, 817-839, 2025
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Figure 7. The same as Fig. 4 with the EVT approach.

global warming per se. Using analogues over 72 years, as
done here, partially alleviates this risk compared to separat-
ing them into two periods as in Faranda et al. (2022), es-
pecially when they are well distributed over time with little
increasing or decreasing trend (Fig. 2). Another way to cir-
cumvent this issue could be to include measures of natural
variability on the regressions of the observable, for example
the Atlantic Meridional Variability (AMV) for extremes in
Europe (Suarez-Gutierrez et al., 2023).

We nevertheless want to note that the main drawbacks of
the method presented here are also common to the classi-
cal EVT method, namely under-sampling, representation of
natural variability, and use of past observations vs. model
outputs. The interpretation of the results is also different be-
tween the two approaches. The EVT-based approach gives
the probability that the yearly maximum of an observable is
above a given level, and therefore the probability ratio indi-
cates how this probability has changed between the factual
and counterfactual worlds. It thus encompasses both the dy-
namical changes — increasing frequency of certain weather
patterns caused by anthropogenic global warming (Vautard
etal., 2023; Faranda et al., 2023; Dong et al., 2024; D’ Andrea
et al., 2024) — and the thermodynamical changes for the
strongest extremes. As a consequence, its analysis may be
far from the actual extreme event observed and in particular
can always make an attribution statement even though the dy-
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namics of the event has never been observed in the past at the
place considered (Faranda et al., 2024). The flow analogue
method on the other hand gives the change in the probability
of a certain level given the synoptic pattern as soon as the
synoptic pattern has good analogues in the past. This method
separates the dynamical contribution from the thermodynam-
ical contribution. It does not address the unconditional prob-
ability of reaching an extreme — which may be the most inter-
esting aspect for the general public — but it tends to give a bet-
ter attribution signal because thermodynamical changes are
likely more easily detectable than dynamical changes (Shep-
herd, 2014; Vautard et al., 2023). Our results suggest that the
EVT-based approach may tend to be too conservative in its
attribution statements by considering only the strongest ex-
tremes for which rare or very rare dynamical mechanisms
may overrun the climate change thermodynamical signal.
As illustrated, the two methods do not give the same ab-
solute results in general and may also give opposing results,
as is suggested for the precipitation event here. For this event
in particular, contrary to the previous literature (Min et al.,
2011; Fischer and Knutti, 2015; Donat et al., 2016; Pfahl
et al., 2017; Tramblay and Somot, 2018; Zittis et al., 2021),
we tend to see no change or a small decrease in the intensity
of precipitation conditional on the analogues. This result is
surprising and goes against the Clausius—Clapeyron scaling
for the strongest precipitation events. However, when look-
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ing at the trend in the 2 m air temperature for the analogues
of this event, we found no significant trend in the region in-
vestigated (not shown), which does not come from a change
in the seasonality of the analogues found over 1950-2021.
This may explain why we observe no significant change and
may arise from the fact that analogues of this particular syn-
optic pattern do not show a significant warming response.
This however may also be due to the fact that no or few good
analogues of this event exist in the reanalysis. The intensity
of precipitation events is forced both by synoptic-scale and
mesoscale structures: while there may be good analogues of
the latter, the former are likely not well sampled in the ERAS
reanalysis. This leads us to advocate for a cautious use of
the flow analogue attribution method for intense precipita-
tion events, especially when most precipitation is convective.

When two attribution methods differ in their results, as
shown here, it is not clear which one should be preferred. The
unconditional attribution method likely gives a more general
and useful answer for the general change in the intensity of
extremes, which is the most relevant to adaptation purposes.
However, conditional attribution methods, such as the one
presented here or others (Yiou et al., 2017; Terray, 2021;
de Vries et al., 2024; Leach et al., 2024), are more focused on
the very dynamics of the event observed and may provide a
more detectable (thermodynamical) signal. The main advan-
tage of our method is to use only past data and therefore to
avoid common pitfalls of modeling studies. But, as explained
above, the method also has its own issues. As argued recently
by Coumou et al. (2024), using a range of methods to provide
multiple lines of evidence for an attribution statement useful
for practitioners is therefore absolutely necessary.

5 Conclusions

In this paper we proposed a way to compute intensity
changes and probability ratios for the flow analogue extreme
event methodology proposed by Faranda et al. (2022) and
adapted from Yiou et al. (2017). Contrary to Faranda et al.
(2022), we do not separate the data sets into two periods but
search for analogues of the synoptic pattern of the extreme
event in the full data set (1950-2021). We then fit a linear
model to the analogue observable of interest to estimate in-
tensity changes with increasing regional mean surface tem-
perature (RMST). We compute probability ratios by making
a parametric hypothesis about the distribution of the observ-
ables conditional on the synoptic-scale pattern. We finally es-
timate the sensitivity of the results with a bootstrap procedure
and report the median values when they are statistically sig-
nificant. The method proposed here can be applied to other
observables of interest and using outputs of climate models,
especially to check the consistency of their thermodynamical
evolution for observed weather patterns leading to extremes.
One advantage of the method proposed here is that we per-
form conditioning on a measure of global warming, which,
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when applied with model outputs, would allow us to com-
pare models with different climate sensitivities. The method
nevertheless requires the existence of past good analogues,
which may not exist in reanalysis data sets for the most in-
tense and unprecedented extremes.

We illustrate the method using three recent events in Eu-
rope: the 25 July 2019 temperature event, the 11 February
2020 wind event and the 4 October 2021 precipitation event.
We find that the intensity changes for the temperature event
over western Europe are around 4.5°C and the probability
ratios above 10°. These results are stable with a change in
the parameters of the method, which makes it possible to say
that this event was made more likely and more intense under
climate change. The intensity changes and probability ratios
over Ireland, the UK and the North Sea for the wind event do
not detect any change, and this result seems robust to spec-
ifications, which suggests that this event was not impacted
by AGW. Lastly, the precipitation event in the Italian Alps
and southeast France tends to be slightly less likely and in-
tense under climate change, but the results are sensitive to the
specification of the method. For the precipitation event, our
results with the analogue method tend to be different from the
results obtained with the EVT-based method, which suggests
a small, insignificant increase in intense precipitation for the
region and the period studied. All our attribution statements
are conditional on the synoptic-scale pattern observed during
the events.

Appendix A: Method of moments for the skew-normal
and gamma distributions

Al Skew-normal distribution
The skew-normal distribution is an adaptation of the Gaus-

sian distribution to account for non-zero skewness. Its prob-
ability density function (PDF) can be expressed as

X —N X—/U
f(X)=¢<—>¢<S ) (A1)
o o
where ¢ (x) = \/#ane_%xz is the PDF of the standard normal;

d(x) = f f oo® (#)dt is the cumulative density function (CDF)
of the standard normal; and , o and & are the location, scale
and shape parameters of the distribution.

The method of moments take a simple analytic form for
this distribution. Let us note 1, the empirical skewness (cen-
tered and normalized third-order moment) of the samples
(Xk)lfkfn. We define

~ 12/3
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From this value, we can derive an estimation of the three
parameters of the distribution:

§= 1-52
. s
0= —-——
- , A3
J1—28%/7 (&3)
P )
L=m-068,/—
T

where i and § are the empirical mean and standard deviation
of the samples (X k )1<k<n. Note that for the skew-normal dis-
tribution, the skewness has a maximum absolute value close
to 0.99. Therefore, when applying the method of moments
here, we take

n Xk
|71 = min { 0.99, < B ) (A4)
k=1

and 8 has the same sign as py.

A2 Gamma distribution

Here we use the gamma distribution defined on [0, 4+00),
i.e., with a null location parameter. The PDF of the distri-
bution is

f) = xE e/, (A5)

F(§)os
where I' is the gamma function, £ is the shape parameter and
o is the scale parameter.

The method of moments also takes a simple analytic form
for this distribution:

{azi
o (A6)
E—i/6

where 1 and § are the empirical mean and standard deviation
of the samples (Xk)lsks,,.
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Appendix B: Additional figures
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Figure B1. Analogues of the temperature event.
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Figure B2. Analogues of the wind event.
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Figure B3. Analogues of the precipitation event.
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{(a) Analogues of 25-07-2019 (b) Analogues of 11-02- 2020 (c) Analogues of 04-10-2021
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Figure B4. Empirical skewness (a—c) and excess kurtosis (d—f) of the analogue distribution of observables for the three events considered.
Only the grid points where the skewness and excess kurtosis are significantly different than O are shown (see text for details).

(b)

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
KS tests passed [%] KS tests passed [%] KS tests passed [%]

Figure B5. Kolmogorov—Smirnov tests. Proportion of Kolmogorov—Smirnov tests passed at the 5 % level over the 103 resamplings at each
grid point of the analogue distribution of (a) the 25 July 2019 temperature event, (b) the 11 February 2020 wind event and (¢) the 4 October
2021 precipitation event.
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(a) 25-07-2019 (b) 11-02-2020 (c) 04-10-2021
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Figure B6. The same as Fig. 4 with 54 analogues.
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Figure B7. The same as Fig. 4 with 90 analogues.
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(a) 25-07-2019 (b) 11-02-2020 (c) 04-10-2021
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Figure B8. The same as Fig. 4 with an analogue domain larger by 3° of latitude and longitude at each edge.
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Figure B9. The same as Fig. 4 with an analogue domain smaller by 3° of latitude and longitude at each edge.
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