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S1 : Choosing the optimal number of weather regimes

Building on the methodology proposed by [Lee et al., 2023], we use four metrics to determine the optimal
number of weather regimes. These four metrics are chosen according to the following criteria:

e Limiting the number of weather regimes for the sake of simplicity and robustness

e Minimizing the distance of each point of a given cluster to the centroid of this cluster

e Maximizing the distance between each centroid

Inter-cluster correlation

b)

Davies-Bouldin Index
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Fig. S1: (a) Intercluster correlation: arithmetic distance between the centroids of each cluster, calculated in
the PCs space. (b) Davies—Bouldin index, expressing the ratio of a point from a cluster to the centroid of
this cluster over the distance of this centroid to other centroids. This metric is averaged for all clusters. (c)
Intercluster spatial correlation: anomaly correlation coefficient between all centroids, calculated in the EOF
space. (d) Calinski-Harabasz index: ratio between intercluster variance and intracluster variance.

For each number of clusters, we compute the following indices:

e Intercluster correlation: we compute the Pearson correlation coefficient between the centroid co-
ordinates in PC space for each pair of centroids. We aim to get the maximal number of clusters such



that the Pearson correlation coefficient is negative, hence all clusters are anticorrelated. This method

leads to k = T7.
e Davies—Bouldin index: proposed by [Davies and Bouldin, 1979], the Davies—Bouldin index is com-
puted as
k
1 Si+ 85
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0= max (") sy

where s; is the average distance between members of cluster 7 and the centroid of that cluster, and
di; is the distance between the centroids of clusters ¢ and j. This metric is to be minimized. The
computation of this metric does not lead to a clear choice of the number of clusters, but using the
elbow method, the optimal number appears to be around 7.

e Intercluster spatial correlation: the Pearson correlation coefficient computed above does not take
into account the spatial patterns of the weather regimes. We compute the anomaly correlation coef-
ficient (ACC) between each pair of weather regimes for each number of clusters. We require negative
ACC values to ensure anticorrelated patterns. This metric suggests an optimal number closer to k = 4.

e Calinski—Harabasz index: expressed as the ratio of intercluster variance over intracluster variance,
this index should be maximized. No clear optimum appears here, as the index decreases monotonically
with increasing k.

In conclusion, the optimal number of weather regimes is less clear than for seasonal regimes (k = 4).
The metrics used here do not rule out the k£ = 7 option, which represents the best compromise between the
number of clusters and the criteria defined above.



S2

1
0.9
0.8
0.7
0.61
0.5]
0.4
0.3
0.2
0.1

0

Jan  Feb Mar Ap May Jun Jul Aug Sep  Oc No  Dec

B WRO0 GBL AR AT
s 70 EuBL MTr BN ScBL

Fig. S2: For each day of the year, average frequency of weather regimes computed over the period 1960-2022.
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Fig. S3: Frequency anomalies of weather regimes for droughts that cannot be explained by the WR, approach

(columns I and IIT) and those that can be explained (columns II and IV).
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Fig. S4: Evolution of the number of days between two successive droughts for each region. Linear trends

obtained by regression are shown in red.



S5 : Representativeness of precipitation and Z500 anomalies by
WRs
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Fig. S5: For each WR: scatterplots (dots) and distributions (bars) of daily anomaly correlation coefficients
(ACCs) between observed fields and the centroids of their assigned weather regimes, for precipitation (y-axis)
and Z500 (x-axis), in DJF (light blue) and JJA (orange). Days assigned to WRO are excluded. Dotted lines
show the distributions for all days.



S6 : Role of persistence and intensity of individual WR life cycles

We distinguish between the size and the number of sequences for each regime (Fig. S6). In most cases,
frequency anomalies cannot be explained by changes in persistence alone or in the number of sequences
alone, but rather by a combination of both.
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Fig. S6: [LEFT] Mean duration of WR sequences (in days) for droughts explained by WRs (blue), droughts
not explained by WRs (red), and the full ERA5 period (black). [RIGHT] Mean number of WR sequences.
WRs with non-significant frequency anomalies are marked by a vertical red line.

We also present Z500 composites for each regime under drought conditions in the WMed region, distin-
guishing between situations well explained by the WR approach and those that are not (Fig. S7).
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Fig. S7: Z500 patterns for situations well explained by the WR approach (first two rows) and poorly explained
(rows three and four).
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