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Figure S1. (a) Mediterranean monthly SST anomalies from 1979 to 2023 clustered into three SOM patterns; (b) Lagged correlation of the

loading of each monthly SST SOM pattern during the months July–November with mean Levant winter (DJF) land precipitation; (c) Spatial

correlations between the SOM patterns (below diagonal) and temporal correlations between the loading time series of the SOM patterns

(above diagonal). Pearson correlation coefficients significant at the 5% level are bolded. The variance explained by each SOM pattern refers

to the temporal variance explained by each pattern. The total variance explained by the three patterns, which takes into account the pattern

frequency, is 37%. Data taken from ERA5 for 1979–2023.

S1 SOM analysis

To ensure the robustness of our results, in addition to the EOF analysis, we also analyzed the dominant spatiotemporal patterns

of variability in Mediterranean SST and ocean heat uptake (Qf ) using Self-Organizing Maps (SOM) analysis. The sea surface

fields (both SST and ocean heat uptake) were masked to exclude land areas, ensuring that our analysis focuses solely on the

Mediterranean ocean. Then, the anomaly from climatology is calculated, and the fields are detrended to exclude the effect of5

climate change from our analysis.

The SOM algorithm is used for projecting high-dimensional input data onto a lower-dimensional grid (typically two-

dimensional). As the input data is presented to the SOM network, the algorithm identifies the Best Matching Unit (BMU),

which is the node (or neuron) on the grid whose weight vector most closely resembles the input data. The SOM network then

adjusts the weight vectors of the BMU and its neighboring nodes to better match the input data. This iterative process of com-10

petitive learning continues until the SOM stabilizes after the training epochs are over, clustering similar data points together

and preserving the topological relationships of the input space.
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Figure S2. (a) Mediterranean monthly Qf anomalies from 1979 to 2023 clustered into three SOM patterns. Red rectangle indicates region

used to calculate the Aegean Qf Anomaly index (AQA, defined in section ??). (b) Lagged correlation of the loading of each monthly Qf

SOM pattern during the months July–November with mean Levant winter (DJF) land precipitation; (c) Spatial correlations between the

SOM patterns (below diagonal) and temporal correlations between the loading time series of the SOM patterns (above diagonal). Pearson

correlation coefficients significant at the 5% level are in bold. The variance explained by each SOM pattern refers to the temporal variance

explained by each pattern. The total variance explained by the three patterns, which takes into account the pattern frequency, is 35% (see

Supplementary Materials Figure S1). Data taken from ERA5 for 1979–2023.

We select the parameters and structure used in the SOM analysis to minimize the mean total topographic error (Figure S4),

and to maximize the amount of variance explained by the SOM structure as a whole and by each individual SOM pattern

(Figures S3 and S5). We note that the SOM analysis does not aim to necessarily maximize the amount of variance explained15

by the SOM structure, and take that into account in our selection process. Additionally, we try to minimize the overall number

number of patterns to identify the most dominant modes, and also aim to minimize the repetitions of very similar spatial patterns

when choosing our SOM configuration. Specifically, we experiment with different network configurations and parameters

looking for patterns identified by SOM that are statistically robust. The results proved insensitive to the parameters used in the

analysis (such as the Neighborhood function, the initialization scheme, and the number of iterations). Furthermore, increasing20

the number of SOM patterns does not increase their lagged predictive skill, and leads to repetition redundancy in the patterns.

The final parameters used in our SOM analysis are detailed in Table S1. The resulting SOM patterns are analyzed to discern

their spatial characteristics and temporal frequency, as well as the temporal variance they explain (Figures S1 and S2).
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Total Variance Explained
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Figure S3. The calculated total variance explained by different SOM structures

The resulting optimal SOM structure is of 1 row and 3 columns (Table S1), explaining 35% of the variance of the data

(Figures S3 and S5) with minimal pattern redundancy.25

Parameter description Value

Number of rows 1

Number of columns 3

Neighborhood function Epanechnikov (ep)

Number of rough training iterations 5

Number of fine-tune training iterations 30

Neighborhood function initial radius 3

Neighborhood function final radius 1

Weight during mapping 2

Initialization scheme Linear
Table S1. Parameters used in the SOM analysis.

The SOM patterns for SST and Qf are highly similar, allowing their joint analysis. SOM pattern 1 explains 14% of SST

temporal variance and 13% of Qf temporal variance, and can be described as generally capturing a gradient between the

central Mediterranean and its eastern and western parts. Using the loading time-series for each SOM pattern, measuring the

association of each timestep in our data with the specific pattern, we can analyze their correlations to winter precipitation in the

Levant and their temporal characteristics. Accordingly, the first SOM pattern of both SST and Qf does not show a significant30

lagged correlation to Levant precipitation (Figures S1b and S2b), and is therefore not further analyzed.
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Average Topographic Error
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Figure S4. The average topographic error for different SOM structures.

Maximum Variance Explained by SOM Pattern
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Figure S5. The maximum variance explained by a specific SOM pattern in different SOM structures.
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Figure S6. The spatial significance of the three Qf SOM patterns, calculated by using Student’s t-test. The maps plot the p-values for the

patterns in each location, meaning low values (<< 1) indicate statistically significant regions.

The second and third SOM patterns of SST and Qf , which account for most of the temporal variance (45% and 42% for

SST and 46% and 35% for Qf , respectively), generally capture east-west gradients across the Mediterranean basin (Figures

S1a and S2a). Specifically, Pattern 2 features a surface anomaly located between the Ionian and Tyrrhenian Seas (i.e., east and

west of Sicily); Pattern 3 exhibits a pronounced gradient between the western Mediterranean and the Aegean Sea. For both35

SST and Qf , Patterns 2 and 3 have significant lagged correlations with Levant winter precipitation (peaking during November,

September, and July for SST, and during October and August for Qf ), showing potential for sub-seasonal to seasonal prediction

(Figures S1b and S2b). Consistent with Eq. (1) in the main text, since Qf drives variations in SST, the peak correlation of Qf

is observed to lag that of SST by an additional month. Moreover, despite this extended lag, the highest correlation with Levant

precipitation is found for Pattern 2 of Qf in August (R = 0.53).40

The spatial correlations across the SOM patterns and the temporal correlations across the loading time series of the SOM

patterns are shown in Figures S1c and S2c. For both Qf and SST, Patterns 2 and 3 are strongly spatially correlated (|R| ≥0.78)

but relatively weakly temporally correlated (|R| ≤0.36), indicating that despite their topographical similarities, these patterns

vary on different timescales.

To ensure the robustness of the SOM patterns, we also calculated the statistical significance of the SOM Patterns in relation45

to the data, using Student’s t-test (Figure S6). We find that all 3 Qf SOM patterns are significant over the majority of the

Mediterranean, with the second pattern showing insignificant values in the central Mediterranean, and the third pattern showing

slightly less significant values in the eastern Mediterranean (S6).
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S2 Aegean Sea SST anomaly

Since SST is easier to measure than ocean heat uptake, we also assessed the connection between Aegean Sea SST anomaly and50

Levant winter precipitation. Figure S7a depicts the mean spatial pattern of SST for positive Aegean Sea SST anomaly months

minus negative SST anomaly months, showing warmer sea surface conditions in the eastern Mediterranean highlighted in the

Aegean and the Black Seas. Using the detrended monthly SST anomaly from seasonality in the Aegean Sea, we find that the

anomaly is significantly correlated to the first and second SST SOM patterns (Figure S7b). Using the Aegean Sea SST anomaly

index shown in Figure S8 we can calculate the correlation between the SST anomaly in the Aegean Sea and winter precipitation55

in the Levant. In Figure S7c, we show that the correlations are significant for July SST anomalies and ERA5 Levant winter

precipitation, but not significant for precipitation measurements over Israel. Also, the correlations are weaker than those found

for AQA, suggesting ocean heat uptake has a higher predictive power in the region. Following these findings, we chose to focus

our analysis on Aegean Sea ocean heat uptake anomalies and their predictive abilities for winter precipitation in the Levant.
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Figure S7. Aegean Sea SST anomaly; (a) depicts the SST anomaly for positive minus negative Aegean SST anomaly; (b) Correlation of the

Aegean Sea SST anomaly Index to the SST EOF patterns; (c) Correlations between Aegean Sea SST anomaly and Levant winter precipitation.

S3 Extended AQA correlations to Levant winter precipitation60
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Aegean Sea SST anomaly
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Figure S8. Aegean Sea detrended SST anomaly timeseries.

AQA lagged correlation to Levant land precipitation
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Figure S9. Correlations of AQA with Levant winter land precipitation for the months November–March, extending the lagged correlations

shown in Figure 5b of the main text.
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Figure S10. Lagged correlation of AQA and the North Atlantic Oscillation index (NAO), Southern Oscillation index (SOI), and

SST anomaly in the NINO 3.4 region (NINO 3.4 index). NAO, SOI, and SST anomalies at NINO 3.4 were downloaded from

https://www.ncei.noaa.gov/access/monitoring/products/. Based on index data availability, monthly NAO and SOI correlations are calculated

for the period 1979–2023; and NINO 3.4 correlations calculated for the period 1982–2023.
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Figure S11. Calculating the robustness of the correlations of AQA and Levant winter precipitation by shifting the region used to define the

Aegean Sea in the calculation of AQA to the North-South and East-West by 0.25◦.
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Figure S12. The statistics of the lagged correlations between AQA and winter precipitation in the Levant. (a) The R correlation coefficient

between AQA and Levant winter precipitation; (b) P value of the correlation coefficient; (c) 95 percentile lower boundary for the R correlation

coefficient; (d) 95 percentile upper boundary for the R correlation coefficient.
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S4 Synoptic analysis
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Figure S13. (a) Difference in monthly mean sea-level pressure during winter (Dec–Feb) between negative and positive AQA composites

(i.e., AQA negative and positive values during the August preceding winter months). (b) The climatological mean winter mean sea-level

pressure. Data taken from ERA5 for the years 1979–2023. Stippling indicates 95% confidence estimated using bootstrap.
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Figure S14. Wind divergence at the 250 hPa level. (a) Difference in 250 hPa wind divergence during winter (Dec–Feb) between negative and

positive AQA composites (i.e., AQA negative and positive values during the August preceding winter months). (b) The climatological mean

250 hPa wind divergence during winter. Data taken from ERA5 for the years 1979–2023. Stippling indicates 95% confidence estimated using

bootstrap.
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