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Figure S1. (a) Mediterranean monthly SST anomalies from 1979 to 2023 clustered into three SOM patterns; (b) Lagged correlation of the
loading of each monthly SST SOM pattern during the months July-November with mean Levant winter (DJF) land precipitation; (c) Spatial
correlations between the SOM patterns (below diagonal) and temporal correlations between the loading time series of the SOM patterns
(above diagonal). Pearson correlation coefficients significant at the 5% level are bolded. The variance explained by each SOM pattern refers
to the temporal variance explained by each pattern. The total variance explained by the three patterns, which takes into account the pattern

frequency, is 37%. Data taken from ERAS for 1979-2023.

S1 SOM analysis

To ensure the robustness of our results, in addition to the EOF analysis, we also analyzed the dominant spatiotemporal patterns
of variability in Mediterranean SST and ocean heat uptake () ) using Self-Organizing Maps (SOM) analysis. The sea surface
fields (both SST and ocean heat uptake) were masked to exclude land areas, ensuring that our analysis focuses solely on the
Mediterranean ocean. Then, the anomaly from climatology is calculated, and the fields are detrended to exclude the effect of
climate change from our analysis.

The SOM algorithm is used for projecting high-dimensional input data onto a lower-dimensional grid (typically two-
dimensional). As the input data is presented to the SOM network, the algorithm identifies the Best Matching Unit (BMU),
which is the node (or neuron) on the grid whose weight vector most closely resembles the input data. The SOM network then
adjusts the weight vectors of the BMU and its neighboring nodes to better match the input data. This iterative process of com-
petitive learning continues until the SOM stabilizes after the training epochs are over, clustering similar data points together

and preserving the topological relationships of the input space.
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Figure S2. (a) Mediterranean monthly @y anomalies from 1979 to 2023 clustered into three SOM patterns. Red rectangle indicates region
used to calculate the Aegean ()5 Anomaly index (AQA, defined in section ??). (b) Lagged correlation of the loading of each monthly Qs
SOM pattern during the months July—-November with mean Levant winter (DJF) land precipitation; (c) Spatial correlations between the
SOM patterns (below diagonal) and temporal correlations between the loading time series of the SOM patterns (above diagonal). Pearson
correlation coefficients significant at the 5% level are in bold. The variance explained by each SOM pattern refers to the temporal variance
explained by each pattern. The total variance explained by the three patterns, which takes into account the pattern frequency, is 35% (see

Supplementary Materials Figure S1). Data taken from ERAS for 1979-2023.

We select the parameters and structure used in the SOM analysis to minimize the mean total topographic error (Figure S4),
and to maximize the amount of variance explained by the SOM structure as a whole and by each individual SOM pattern
(Figures S3 and S5). We note that the SOM analysis does not aim to necessarily maximize the amount of variance explained
by the SOM structure, and take that into account in our selection process. Additionally, we try to minimize the overall number
number of patterns to identify the most dominant modes, and also aim to minimize the repetitions of very similar spatial patterns
when choosing our SOM configuration. Specifically, we experiment with different network configurations and parameters
looking for patterns identified by SOM that are statistically robust. The results proved insensitive to the parameters used in the
analysis (such as the Neighborhood function, the initialization scheme, and the number of iterations). Furthermore, increasing
the number of SOM patterns does not increase their lagged predictive skill, and leads to repetition redundancy in the patterns.
The final parameters used in our SOM analysis are detailed in Table S1. The resulting SOM patterns are analyzed to discern

their spatial characteristics and temporal frequency, as well as the temporal variance they explain (Figures S1 and S2).
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Figure S3. The calculated total variance explained by different SOM structures

The resulting optimal SOM structure is of 1 row and 3 columns (Table S1), explaining 35% of the variance of the data

25 (Figures S3 and S5) with minimal pattern redundancy.

Parameter description Value
Number of rows 1

Number of columns 3
Neighborhood function Epanechnikov (ep)
Number of rough training iterations 5
Number of fine-tune training iterations 30
Neighborhood function initial radius 3
Neighborhood function final radius 1

Weight during mapping 2
Initialization scheme Linear

Table S1. Parameters used in the SOM analysis.

The SOM patterns for SST and () are highly similar, allowing their joint analysis. SOM pattern 1 explains 14% of SST
temporal variance and 13% of @)y temporal variance, and can be described as generally capturing a gradient between the
central Mediterranean and its eastern and western parts. Using the loading time-series for each SOM pattern, measuring the
association of each timestep in our data with the specific pattern, we can analyze their correlations to winter precipitation in the

30 Levant and their temporal characteristics. Accordingly, the first SOM pattern of both SST and ) ; does not show a significant

lagged correlation to Levant precipitation (Figures S1b and S2b), and is therefore not further analyzed.
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Figure S4. The average topographic error for different SOM structures.
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Figure S5. The maximum variance explained by a specific SOM pattern in different SOM structures.
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Figure S6. The spatial significance of the three () ; SOM patterns, calculated by using Student’s #-test. The maps plot the p-values for the

patterns in each location, meaning low values (<< 1) indicate statistically significant regions.

The second and third SOM patterns of SST and (s, which account for most of the temporal variance (45% and 42% for
SST and 46% and 35% for Q) ¢, respectively), generally capture east-west gradients across the Mediterranean basin (Figures
Sla and S2a). Specifically, Pattern 2 features a surface anomaly located between the Ionian and Tyrrhenian Seas (i.e., east and
west of Sicily); Pattern 3 exhibits a pronounced gradient between the western Mediterranean and the Aegean Sea. For both
SST and @, Patterns 2 and 3 have significant lagged correlations with Levant winter precipitation (peaking during November,
September, and July for SST, and during October and August for () ), showing potential for sub-seasonal to seasonal prediction
(Figures S1b and S2b). Consistent with Eq. (1) in the main text, since )¢ drives variations in SST, the peak correlation of @ ¢
is observed to lag that of SST by an additional month. Moreover, despite this extended lag, the highest correlation with Levant
precipitation is found for Pattern 2 of @y in August (12 = 0.53).

The spatial correlations across the SOM patterns and the temporal correlations across the loading time series of the SOM
patterns are shown in Figures S1c and S2c¢. For both @)y and SST, Patterns 2 and 3 are strongly spatially correlated (| R| >0.78)
but relatively weakly temporally correlated (| R| <0.36), indicating that despite their topographical similarities, these patterns
vary on different timescales.

To ensure the robustness of the SOM patterns, we also calculated the statistical significance of the SOM Patterns in relation
to the data, using Student’s t-test (Figure S6). We find that all 3 )y SOM patterns are significant over the majority of the
Mediterranean, with the second pattern showing insignificant values in the central Mediterranean, and the third pattern showing

slightly less significant values in the eastern Mediterranean (S6).
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S2 Aegean Sea SST anomaly

Since SST is easier to measure than ocean heat uptake, we also assessed the connection between Aegean Sea SST anomaly and
Levant winter precipitation. Figure S7a depicts the mean spatial pattern of SST for positive Aegean Sea SST anomaly months
minus negative SST anomaly months, showing warmer sea surface conditions in the eastern Mediterranean highlighted in the
Aegean and the Black Seas. Using the detrended monthly SST anomaly from seasonality in the Aegean Sea, we find that the
anomaly is significantly correlated to the first and second SST SOM patterns (Figure S7b). Using the Aegean Sea SST anomaly
index shown in Figure S8 we can calculate the correlation between the SST anomaly in the Aegean Sea and winter precipitation
in the Levant. In Figure S7c, we show that the correlations are significant for July SST anomalies and ERAS Levant winter
precipitation, but not significant for precipitation measurements over Israel. Also, the correlations are weaker than those found
for AQA, suggesting ocean heat uptake has a higher predictive power in the region. Following these findings, we chose to focus

our analysis on Aegean Sea ocean heat uptake anomalies and their predictive abilities for winter precipitation in the Levant.
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Figure S7. Aegean Sea SST anomaly; (a) depicts the SST anomaly for positive minus negative Aegean SST anomaly; (b) Correlation of the

Aegean Sea SST anomaly Index to the SST EOF patterns; (c) Correlations between Aegean Sea SST anomaly and Levant winter precipitation.

60 S3 Extended AQA correlations to Levant winter precipitation
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Figure S8. Aegean Sea detrended SST anomaly timeseries.
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Figure S9. Correlations of AQA with Levant winter land precipitation for the months November—March, extending the lagged correlations

shown in Figure 5b of the main text.
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Figure S10. Lagged correlation of AQA and the North Atlantic Oscillation index (NAO), Southern Oscillation index (SOI), and
SST anomaly in the NINO 3.4 region (NINO 3.4 index). NAO, SOI, and SST anomalies at NINO 3.4 were downloaded from
https://www.ncei.noaa.gov/access/monitoring/products/. Based on index data availability, monthly NAO and SOI correlations are calculated

for the period 1979-2023; and NINO 3.4 correlations calculated for the period 1982-2023.
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Figure S11. Calculating the robustness of the correlations of AQA and Levant winter precipitation by shifting the region used to define the

Aegean Sea in the calculation of AQA to the North-South and East-West by 0.25°.
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AQA correlation statistics
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Figure S12. The statistics of the lagged correlations between AQA and winter precipitation in the Levant. (a) The R correlation coefficient
between AQA and Levant winter precipitation; (b) P value of the correlation coefficient; (c) 95 percentile lower boundary for the R correlation

coefficient; (d) 95 percentile upper boundary for the R correlation coefficient.
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Figure S13. (a) Difference in monthly mean sea-level pressure during winter (Dec—Feb) between negative and positive AQA composites
(i.e., AQA negative and positive values during the August preceding winter months). (b) The climatological mean winter mean sea-level

pressure. Data taken from ERAS for the years 1979-2023. Stippling indicates 95% confidence estimated using bootstrap.
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Figure S14. Wind divergence at the 250 hPa level. (a) Difference in 250 hPa wind divergence during winter (Dec—Feb) between negative and
positive AQA composites (i.e., AQA negative and positive values during the August preceding winter months). (b) The climatological mean
250 hPa wind divergence during winter. Data taken from ERAS for the years 1979-2023. Stippling indicates 95% confidence estimated using

bootstrap.

12



