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Abstract. The paper discusses a novel method to diagnose
and investigate Rossby wave resonance along a circumglobal
midlatitude jet with particular focus on the meridional wave
structure. As a framework, the linearized inviscid barotropic
vorticity equation is considered on a zonally periodic beta-
plane. Zonally symmetric Gaussian-shaped westerly jets of
varying amplitude and width are specified as basic states. The
system is forced by pseudo-orography with small meridional
extent, being located at jet latitude and varying sinusoidally
in the zonal direction. Stationary solutions are obtained
through straightforward numerical methods. The strength
of resonant amplification is diagnosed by systematically
varying the zonal wavenumber s, plotting the resulting wave
amplitude as a function of s, and quantifying the sharpness
of its peak (if existent). The numerical solutions for jet-
like basic states are interpreted by reference to analytical
solutions obtained for more idealized model configurations.

The analysis indicates that a jet with realistic amplitude
and width may be subject to a weak form of resonance.
Given that the zonal scale of the jet is much larger than
its meridional scale, one may expect resonance at no more
than one zonal wavenumber sres. The single resonant peak
is associated with the first meridional mode, which is
established through partial reflection of wave activity at the
periphery of the jet flanks. The leakiness of the waveguide
implies that the wave amplitude remains finite at the resonant
wavenumber even for inviscid wave dynamics. The behavior
is very similar as in the classic Charney-Eliassen model,
where the channel width must be chosen appropriately and
where damping simulates the leakiness of the jet.

1 Introduction

It has long been known that Rossby waves can be subject
to resonant amplification under specific conditions. To the
best of our knowledge, the first to mention this phenomenon
was Haurwitz (1940), who investigated normal modes of the
barotropic vorticity equation on the sphere; he noted that
some of these normal modes are close to stationary, and
that stationary forcing with suitable spatial structure would
lead to resonance. Somewhat later, Charney and Eliassen
(1949) considered a similar problem, but on a beta-plane
channel. In their model, forcing due to Northern Hemisphere
orography gave rise to stationary Rossby wave perturbations
that resembled the observed ones. An important feature of
their solution was the fact that a limited band of zonal
wavenumbers experienced enhanced amplification due to the
mechanism of resonance.

The possibility of resonance has been suggested as a
mechanism underlying a range of observed phenomena. For
instance, it was argued that sudden stratospheric warmings
may arise due to a “resonant cavity” in the stratosphere,
allowing wave energy to accumulate in specific situations
and lead to large wave amplitudes that eventually disrupt the
polar vortex (Matsuno, 1970). Later, Rossby wave resonance
was discussed as a possible candidate for the occurrence of
blocking (Tung and Lindzen, 1979), and it was hypothesized
that Rossby wave resonance facilitates the existence of
multiple flow equilibria corresponding to blocked and non-
blocked states (Charney and DeVore, 1979).

A key ingredient for the occurrence of Rossby wave
resonance is the fact that the model domain is zonally
periodic; this allows wave activity to travel around the Earth
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several times in the zonal direction such that the waves
can interfere with themselves. In the work of Haurwitz
(1940), this was possible thanks to the spherical domain with
global extent, while in the work of Charney and Eliassen
(1949) this was possible thanks to the periodic channel with
impermeable walls at the meridional boundaries. To the
extent that one focuses on the midlatitudes, the configuration
of Charney and Eliassen (1949) is arguably the more relevant
one: the channel walls in that model can be considered as an
idealized representation of strong zonal “waveguidability”,
that may occur along a circumglobal midlatitude jet (Manola
et al., 2013).

Previous work suggests that Rossby wave resonance is of
minor importance under current climatological conditions in
the extratropical troposphere (Held, 1983). The reason is that
waves are usually subject to both damping and dispersion,
and this seems to prevent any moderate or even strong form
of resonance. Moreover, even in the complete absence of
wave damping, a midlatitude jet is a rather leaky waveguide,
and the dispersion due to its leakiness has a similar effect
as wave damping (Wirth, 2020; Harnik and Wirth, 2025).
In addition, jets are usually not truly circumglobal, and it
appears likely that a non-circumglobal jet is less prone to
resonance than a truly circumglobal jet.

Nevertheless, Rossby wave resonance may be relevant
under special (possibly rare) conditions, and in these cases it
may be responsible for large wave amplitudes and associated
extreme events. Indeed, extreme events have been observed
in concurrence with circumglobal waves (Davies, 2015;
Kornhuber et al., 2019, 2020), and this has led to a renewed
interest in the topic (Coumou et al., 2014; Petoukhov et al.,
2016; Stadtherr et al., 2016; Kornhuber et al., 2017a; Mann
et al., 2017; Kornhuber et al., 2019; He et al., 2023; Li et al.,
2024, 2025). Most of these recent studies based their analysis
on a method proposed by Petoukhov et al. (2013) and
Kornhuber et al. (2017b), aiming to diagnose the occurrence
of resonance from observed data.

The Petoukhov-Kornhuber diagnostic is based on a two-
step approach within the linear barotropic model framework.
First they identify times when the zonal mean zonal wind,
for any given zonal wavenumber, has two turning latitudes,
using the refractive index diagnostic of Hoskins and Karoly
(1981). For those times which exhibit two turning latitudes,
they then calculate the wave amplitude (Eq. 3 in Petoukhov
et al., 2013, and Eq. 3 in Kornhuber et al., 2017b). In their
transition from the WKB-based turning latitude diagnostic
to the one-dimensional (in the zonal direction) amplitude
equation they do a series of crude approximations (the
discussion in Sect. A3 in the supplementary information of
Petoukhov et al., 2013, leading from Eq. S8 to Eqs. S12
and S13). Specifically, these approximations assume that the
meridional variation of the mean flow can be neglected and
that the waves can be represented by the gravest (sinusoidal)
meridional mode. Besides the arbitrariness involved in
determining the meridional wavenumber, this solution also

ignores leakage of wave activity towards the equator (Harnik
and Wirth, 2025).

The potential role of Rossby wave resonance for extreme
events motivates a thorough understanding of the underlying
mechanism. For the nature of resonance implies that small
changes in relevant characteristics of the system – such as
the basic state wind speed or the spatial structure of the
forcing – may lead to large changes in wave amplitude.
This implies that a small shift towards resonant conditions
during a specific episode may lead to a substantial increase
in the likelihood of an extreme event (with implications for
its predictability). To the extent that the forcing stems from
stationary sources such as orography, the resonant waves are
stationary, too, after reaching saturation, and this increases
the potential for extreme weather (Fragkoulidis and Wirth,
2020). For the same reason, the mechanism of Rossby wave
resonance may be important in connection with small trends
due to anthropogenic climate change (Mann et al., 2017),
as these may lead to substantial changes in Rossby wave
behavior.

The state of affairs motivates the goal of the present paper:
namely to revisit the issue of Rossby wave resonance along
a circumglobal jet with a particular eye to the meridional
structure and its implications. Most importantly, our diagnos-
tic dispenses with some of the questionable assumptions of
the Petoukhov-Kornhuber approach regarding the meridional
dimension and, at the same time, suggests and improved
understanding of the underlying physics.

We are going to work in the framework of the linearized
barotropic vorticity equation on a beta-plane. As basic states
we consider westerly Gaussian jets. These jets are subject
to various realizations of the forcing, and the corresponding
stationary solutions are obtained through straightforward
numerical methods. In addition, we compare our numerical
solutions with analytical solutions for more idealized model
configurations, because this allows us to better understand
the numerical results. In all cases we restrict attention to
zonally symmetric basic states, which is in line with the
idea that a strong circumglobal jet can be a good waveguide.
In addition, we restrict our attention to inviscid wave
dynamics, because this produces resonance in its cleanest
form. Obviously, to the extent that undamped resonance
produces very large wave amplitudes, the assumption of
linearity turns moot at some point. At the same time, one may
expect wave damping in any practical application, and this
would reduce the wave amplitudes. In any case, we follow
earlier work and consider linear Rossby wave resonance as a
potentially important mechanism for the generation of large
wave amplitudes (e.g., Tung and Lindzen, 1979).

Our strategy to diagnose Rossby wave resonance makes
use of a fundamental property of any oscillating system
that may be subject to resonance: to the extent that the
forcing is close to a normal mode of the free system, the
forced system will show a particularly strong response. The
way we realize this idea in our model framework is by

Weather Clim. Dynam., 7, 297–316, 2026 https://doi.org/10.5194/wcd-7-297-2026



V. Wirth and N. Harnik: Diagnosing Rossby wave resonance 299

using a forcing pattern with sinusoidal variation in the zonal
direction, systematically varying the zonal wavenumber, and
analysing the amplitude of the response.

The paper is organized as follows. First, in Sect. 2 we
present the model equations, sketch our numerical solution
procedure, and describe in more detail our strategy to detect
resonance. Section 3 then discusses analytical solutions in
idealized model configurations, which will be subsequently
used for the purpose of interpretation. Our key results are
contained in Sect. 4, where we present and discuss numerical
solutions for jet-like basic states. Finally, we summarize our
results and draw conclusions in Sect. 5.

2 Barotropic model framework

Following a substantial body of previous work, we consider
the linearized barotropic vorticity equation on a zonally
periodic beta-plane. The relevant parameters as well as the
basic states are chosen such that one obtains idealized rep-
resentations of midlatitude jets on planet Earth. Simplicity
of the model is considered a virtue rather than a weakness,
as it allows us to “understand” (to a considerable extent)
the resulting behavior; in particular we will interpret our
numerical solution in terms of specific analytical solutions.

2.1 Model setup

Our model domain is a rectangle of length Lx and width Ly ,
extending from x = 0 to x = Lx in the zonal direction and
from y =−Ly/2 to y = Ly/2 in the meridional direction. In
the entire paper, the length of the domain is set to

Lx = 2πa cosφ0, (1)

where a = 6371.2 km denotes the radius of the Earth and
φ0 = 45° N is a reference latitude. For terminological con-
venience we will refer to the zonal direction as “longitude”
and the meridional direction as “latitude”, although we stick
to Cartesian geometry throughout the paper. The beta-plane
approximation implies that the Coriolis parameter is given by

f (y)= f0+βy, (2)

with f0 = 2� sinφ0 and β = 2�a−1 cosφ0.

2.2 Model equations

We assume a basic state that is zonally symmetric and purely
zonal, but its zonal wind u0(y) may depend on latitude.
Linearizing the inviscid barotropic vorticity equation about
this basic state and assuming some external stationary
forcing F ′, one obtains(
∂

∂t
+ u0

∂

∂x

)
q ′+ q0yv

′
= F ′, (3)

where q ′ is perturbation absolute vorticity, v′ is the perturba-
tion meridional wind, and

q0y = β −
d2u0

dy2 (4)

is the meridional gradient of the basic state absolute vorticity.
The forcing F ′ is modelled through a dimensionless

pseudo-orography h′(x,y) as

F ′(x,y)=−f0u0
∂h′

∂x
. (5)

The term “pseudo-orography” indicates that the so-obtained
vorticity source simulates the effect of orography within the
limited framework of the barotropic model (Pedlosky, 1987).
In the entire paper we only consider pseudo-orography which
is sinusoidal in longitude, i.e.,

h′(x,y)=<
[
ĥ(y) eikx

]
, (6)

where <. . . denotes the real part and ĥ(y) characterizes the
meridional profile of the orography.

In most parts of this paper the meridional profile ĥ(y)
is assumed to be “meridionally thin”. For the analytical
treatment it is represented by a delta function like

ĥ(y)=Dδ(y), (7)

withD = 500 km, and this will be referred to as delta-forcing
in the following. Note that the delta-function has units of
m−1 such that ĥ and h′ are, indeed, dimensionless. For our
numerical solutions, Eq. (7) is replaced by

ĥ(y)=
D

D̃
cos2

(
π

2D̃
y

)
for |y| ≤ D̃, (8)

and zero otherwise. Unless stated otherwise we use D̃ =
500 km, and in all our model configurations we satisfy D̃�
Ly . This guarantees that ĥ(y) from Eq. (8) is “merdionally
thin” and can be taken as approximation to the delta function.
At the same time, D̃ is always chosen wide enough such that
the non-zero part of ĥ(y) in Eq. (8) can be represented by a
fair number of grid points and, hence, properly resolved in
our numerical treatment. Note that for both Eqs. (7) and (8)
one obtains

Ly/2∫
−Ly/2

ĥ(y)dy =D, (9)

which means that the amplitude of the orography is
equivalent in an integrated sense.

Writing q ′ and v′ in terms of the perturbation streamfunc-
tion ψ ′,

q ′ =∇2ψ ′, v′ =
∂ψ ′

∂x
, (10)
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and restricting attention to stationary solutions, one obtains

u0
∂

∂x
∇

2ψ ′+ q0y
∂ψ ′

∂x
=−f0u0

∂h′

∂x
. (11)

We look for solutions of the following form

ψ ′(x,y)=< ψ̂(y) eikx, (12)

divide by u0, and obtain

d2ψ̂

dy2 +

[
q0y

u0
− k2

]
ψ̂ =−f0ĥ. (13)

In the remainder of this paper we only consider basic states
satisfying u0 > 0 throughout the interior of the domain such
that Eq. (13) is free of singularities.

For later reference we define the square of the stationary
wavenumber

K2
s =

q0y

u0
(14)

and the dimensionless stationary wavenumber

K̂s =
Lx

2π

√
K2

s . (15)

For a constant basic state wind, bothK2
s and K̂s are constant,

but for more general profiles of u0(y) they are functions of
latitude. A typical mid-latitude jet satisfies Ks . 10 within
the jet region (Wirth, 2020).

Introducing the dimensionless zonal wavenumber

s =
Lx

2π
k, (16)

Eq. (13) can be rewritten as

d2ψ̂

dy2 +

(
2π
Lx

)2 [
K̂2

s − s
2
]
ψ̂ =−f0ĥ. (17)

Considering the value Lx as given and fixed, the above
equation indicates that the local character of the solution
ψ̂ outside the forcing region only depends on the function
K̂s(y) and the value of s. In particular, the solution has an
oscillatory character for latitudes where K̂2

s > s
2, while is

has an exponential character for latitudes where K̂2
s < s

2.
It follows that the soliution ψ̂ does not necessarily satisfy
ψ̂ = 0 where K̂2

s = s
2.

The meridional component of the linear wave activity flux
is given by

F (y) =−u′v′, (18)

where the overbar denotes the zonal average. For solutions
with a fixed zonal wavenumber, this can be reformu-
lated in terms of the perturbation streamfunction ψ ′ =

< ψ̂(y) exp(ikx) as

F (y) =
1
2
<

(
ik ψ̂

dψ̂∗

dy

)
, (19)

where the asterisk denotes the complex conjugate. Assuming
furthermore that the zonal wavenumber k is real and ψ̂(y)∝
exp(ily), the last expression turns into

F (y) =
1
2
k(< l)|ψ̂ |2; (20)

in this case the meridional flux of wave activity vanishes if
l = 0 or if l is purely imaginary.

2.3 Boundary conditions and implications for
quantization

Periodicity of the domain sets a constraint on k, namely
that the zonal wavenumber must be quantized according to

kLx
!
= 2π s or

k
!
=

2π
Lx
s. (21)

with s = 1, 2, 3, . . . . The integer s represents the number
of entire wavelengths that fit into the domain in the zonal
direction.

At both the southern and the northern boundary of the do-
main we posit that a certain fraction R of wave amplitude is
reflected, while the remaining part is transmitted. Following
Harnik and Wirth (2025, their Eq. 18), this can be achieved
by specifying(

1−R
1+R

)
dψ̂
dy
=±i

√
q0y

u0
− k2 ψ̂ at y =±Ly/2. (22)

Note that this boundary condition is singular in the limit
R→ 1, and one obtains the familiar Dirichlet condition
ψ̂ = 0 for fully reflecting conditions R = 1 (except when the
square root on the right hand side happens to be zero). In
the remainder of this paper, the special model configuration
with R = 1 will be referred to as a “reflecting periodic
channel”. The condition ψ̂ = 0 in this case represents another
quantization constraint, namely that an integer number n of
half wavelengths must fit into the meridional extent of the
channel, i.e.,

l
!
= n

π

Ly
(23)

with n= 1, 2, 3, . . . .

2.4 Numerical solution procedure

Equations (17) and (22) represent a 1D boundary value
problem, which can be solved numerically in a straightfor-
ward manner. The differential operator on the left hand side
of Eq. (17) is discretized using standard finite differences,
reducing the solution for the interior grid points to the
inversion of a square matrix. The boundary conditions
are implemented by either (in case of R = 1) setting the
boundary grid points of ψ̂ to zero, or (in case of R < 1) by
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modifying the equations for the interior grid points such as to
account for the discretized version of Eq. (22). The resulting
square matrix is inverted using a linear algebra routine from
scipy.

2.5 Diagonostic strategy

In case of the forced harmonic oscillator from theoretical
physics, there is a straightforward recipe to diagnose
resonant behavior: try many different values for the forcing
frequency (using identical forcing amplitude) and determine
whether and to what extent the stationary reponse shows
a pronounced peak in amplitude in the neighborhood of a
specific forcing frequency.

Our strategy to diagnose Rossby wave resonance closely
follows this idea: we compute the stationary solution ψ ′

for an entire range of zonal wavenumbers s (with the same
forcing amplitude, i.e., the same value ofD for each value of
s) and evaluate how different aspects of the solution change
as a function of s. One particular “aspect” of the solution
is, obviously, its amplitude: to the extent that the amplitude
shows a pronounced peak at one or several specific values of
s, we associate the basic state with resonant behavior at these
values of s. In fact, for the current purpose we can consider s
to be a positive real number (rather than an positive integer),
because the solution for the meridional structure problem is
effectively ignorant of the boundary conditions in the zonal
direction. In addition, we analyze the solution’s phase as a
function of s, because the phase behavior serves as another
hallmark of resonance (Harnik and Wirth, 2025).

In the following two section we are going to consider
various model configurations that differ in the basic state
zonal wind u0(y) and in the choice of the boundary
conditions. For illustration the reader is refered to Fig. 1. The
configurations depicted in Fig. 1a, b, and c allow analytical
solutions (Sect. 3), while the configuration in Fig. 1d requires
one to resort to the numerical solution procedure (Sect. 4).

3 Analytical solutions

We start with model configurations allowing analytical so-
lutions, because these will facilitate the interpretation of the
numerical solutions later in Sect. 4. Throughout this section
we assume that the basic state zonal wind is independent
of latitude, i.e., u0 = U = const, and this implies that the
stationary wavenumber squared from Eq. (14) reduces to a
constant, too, given by K2

s = β/U .

3.1 Free modes and higher meridional wavenumbers

The search for free modes (or normal modes) of a linear
system is motivated by the recognition that resonance occurs
if the forcing projects onto a stationary free mode. Free
modes are solutions of Eq. (3) with F ′ set to zero. We
restrict attention to perfectly reflecting channel walls in

this subsection. The model configuration corresponds to the
situation depicted in Fig. 1a, except that there is no forcing.
With these assumptions, there is a discrete but infinite set of
solutions, namely

ψ ′n,s(x,y, t)=< ψ0 e
ik(x−ct) sin

[
l

(
y+

Ly

2

)]
, (24)

where the wavenumbers k and l are limited to discrete values
given by Eqs. (21) and (23), respectively, and where the
phase speed c satisfies the well-known dispersion relation

c = U −
β

k2+ l2
. (25)

Apparently, the free modes are quantized not only in the
zonal direction (due to the requirement of periodicity, non-
dimensional wavenumber s), but also in the meridional
direction (due to the finite width of the reflecting channel,
non-dimensional wavenumber n). For illustration, we show
two examples in Fig. 2, namely ψ ′(4,3) (associated with c =
2.0 m s−1) and ψ ′(2,4) (associated with c =−3.7 m s−1). The
corresponding modes on the sphere are the so-called Rossby-
Haurwitz waves (Haurwitz, 1940).

The discrete set of normal modes can be represented as
points on the (k, l)-plane. This is done in Fig. 3 (blue points)
for three different values of the channel width Ly . The
horizontal rows of points in this diagram represent modes
with the same value of n but varying value of s, and the
value of n increases from the bottom row to the top row.
Since we assume that Lx is given and fixed, the distance
between the horizontal rows of points depends on the value
of Ly according to 1l = π/Ly .

Most of the modes displayed in Fig. 3 are associated with
a nonzero phase speed c according to (25). The solid red line
in this plot depicts the location in wavenumer-space where
c = 0, which is equivalent to

k2
+ l2 =

β

U
≡K2

s . (26)

All modes that lie to the bottom-left of the red circle have c <
0, while all modes that lie to the top-rigtht of the red circle
have c > 0. Particularly interesting are those few modes that
happen to lie on (or are very close to) the red circle, because
they are (almost) stationary. These modes are associated with
resonance if an appropriate stationary forcing is switched
on. With “appropriate” we mean that the forcing has a non-
vanishing projection onto the respective mode.

As was mentioned before, a westerly jet can act as
a waveguide, although its waveguidability is likely to be
less than 1. Leakage across the jet flanks can, to some
approximation, be considered as similar to damping, and
even in a leaky channel one may obtain a peak in amplitude
as one moves across the resonant wavenumber (Harnik and
Wirth, 2025). Hence, a reflecting channel can be informative.
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Figure 1. Four schematics representing the different model configurations used in this paper. The red arrows and the red line depict the
basic state zonal wind u0(y), the brown color represents the forcing, the green arrows represent the wave activity flux (illustrating wave
propagation, reflection, transmission, or partial reflection, respectively), the blue double arrow represents the periodic boundary conditions
in the zonal direction, and the two horizontal dashed lines in panel (d) depict the approximate location of partial reflection at the periphery
of the jet flanks.

Figure 2. Two examples for a normal mode in a reflecting periodic channel with wavenumbers n and s in the meridional and zonal direction,
respectively. The other parameters are Lx from Eq. (1), Ly = 10 000 km, and U = 10 m s−1. Both modes have a non-zero phase velocity c
as provided in the header of the respective panel.

The important point here is that out of the three options
for Ly displayed in Fig. 3, only the choice in Fig. 3a can
be taken as representative for a midlatitude jet. By contrast,
the channel widths in Fig. 3b and c are much larger than the
width of a typical jet. After all, the defining characteristic of
a midlatitude jet is that its zonal scale is much larger than its
meridional scale. As a consequence of this anisotropy, the red
circle in Fig. 3a has only one intersection with the light blue
line, suggesting the existence of just one resonant peak. Note
that for an even smaller value of Ly (not shown) there may in

fact be no intersection at all between the red circle and any of
the blue lines. It transpires that for a jet-typical scenario, only
the first meridional mode (n= 1) is likely to contribute to
resonant behavior. In other words, higher meridional modes
(n > 1) can contribute to resonance only in channels with
unrealistically large width (Fig. 3b and c). This suggests that
our strategy with varying s and checking the result should
yield in no more than one resonant peak for any realistic
jet width – and (as we will see) this is what we obtain in
most cases. The location of the peak should correspond to
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Figure 3. Schematic representation of the normal modes in a reflecting periodic channel with length Lx from Eq. (1) and with a constant
basic state wind U = 10 m s−1: (a) for Ly = 3×103 km, (b) for Ly = 10×103 km, and (c) for Ly = 50×103 km. Each blue dot represents
a free modes ψn,s as given in Eq. (24). The red circle with radius

√
β/U represents the combination of wavenumbers k and l for which the

phase speed is zero according to Eq. (25). The horizontal light-blue lines depict the hypothetical situation without the discretization constraint
due to the zonal boundary condition (see explanation in the main text).

the intersection of the red circle with the light-blue line in
Fig. 3a, which in our example is at s = 3.25.

More formally, the condition for resonance is Eq. (26).
Accounting for the quantizition (23) in the meridional
direction, but considering s as continuous, one obtains the
following expression for the resonant wavenumber

sres =
Lx

2π

√
K2

s − l
2 ≡

√
K̂2

s −

(
nLx

2Ly

)2

, (27)

with n= 1, 2, 3, . . . . Of course, the resulting values sres
would be integers only by chance. Yet, to the extent that
sres is close to an integer for one or several values of n, the
free mode is close to resonance and one may expect that
the corresponding forced solution has a large amplitude. In
addition, the requirement that sres must not be imaginary
restricts the set of allowed values of n in the above relation.
Given that a jet is characterized by Lx � Ly and that
typically K̂s < 10, it transpires that the meridional mode
n= 1 is likely to be the only one that is associated with a
physical (i.e., non-imaginary) value for sres.

3.2 Charney-Eliassen forced solution

We now keep the same configuration as in the previous
subsection except that we switch on forcing of the following
form

ĥ(y)= h0 cos ly, with l = π/Ly . (28)

This type of forcing was used a long time ago by Charney
and Eliassen (1949) and will, hence, be referred to as
Charney-Eliassen forcing. The resulting model configuration
is illustrated in Fig. 1b. Note that the Charney-Eliassen
forcing is less general than the delta-forcing in the sense
that it contains only one specific meridional wavenumber.
By contrast, the Fourier-decomposition of the delta-funcion

contains all possible wavenumbers, and the solution is freer
to “choose” its meridional wavenumber.

We are looking for stationary solutions with sinusoidal
shape in the zonal direction. The relevant equation to be
solved is Eq. (17). Using the Ansatz ψ̂ = ψ0 cos ly (which
satisfies the fully reflecting meridional boundary condition),
one obtains

ψ̂(y)=
f0h0

K2−K2
s

cos ly (29)

and, hence,

ψ ′(x,y)=
f0

K2−K2
s
h′(x,y), (30)

where K =
√
k2+ l2 denotes the total wavenumber. Appar-

ently, the amplitude of the response ψ ′ is proportional to
the strength of the forcing h′, which is a generic property
of any linear forced system. What’s more interesting is the
denominator on the right hand side. The latter turns zero and,
hence, the response turns infinite when the total wavenumber
equals the stationary wavenumber,K2

=K2
s , or equivalently

k2
+ l2 =

β

U
. (31)

This singularity is arguably a hallmark of linear resonance.
Obviously, Eq. (31) is equivalent to the condition (26) for
the corresponding normal mode to be stationary. In addition,
the sign of ψ ′ switches discontinuously for increasing k or s
as one moves across the singularity, and this corresponds to a
phase change by π . Such a phase change between the forcing
and the response is another hallmark of linear resonance.

According to Eq. (28), the meridional wavenumber l in
the Charney-Eliassen configuration is determined by the
meridional channel width. Correspondingly, the condition for
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resonance becomes

s
!
= sres =

Lx

2π

√
β

U
−

(
π

Ly

)2

. (32)

It follows that there is either one resonant wavenumber or
none, depending on whether the expression under the square
root is positive or negative. Regarding the existence of free
modes as illustrated in Fig. 3, one obtains only one row of
blue points corresponding to n= 1, allowing either one or
no intersection between the light blue line and the red circle.
Basically, the specific meridional shape of the Charney-
Eliassen forcing (28) excludes the higher meridional modes
from the solution.

If one chose to include damping by adding −αq ′ (with
α > 0) to the right hand side of Eq. (3), one would obtain an
additional, purely imaginary term in the denominator on the
right hand side of Eqs. (29) and (30). It follows that damping
prevents the singularity; yet, for small enough values of α
the functional dependence of |ψ̂ | on k or s still shows a
pronounced peak close to the resonant wavenumber.

3.3 More general forced solutions for partly reflecting
channel walls

At first sight it seems that the Charney-Eliassen model
configuration is not well suited to investigate Rossby wave
resonance along a jet, because it makes two rather strong
assumptions. First, the forcing has a very specific structure
in the meridional direction, necessitating the same specific
structure for the solution ψ ′; this may be considered as
dangerous, because more general forcing may project onto
higher meridional modes, and it is not entirely clear at
this point how this would affect the solution. Second,
the Charney-Eliassen solution assumes perfectly reflecting
channel walls; as was shown by Harnik and Wirth (2025),
this assumption must be considered as unrealistic, because
Rossby wave resonance on a jet is more akin to resonance
in a channel with some leakage of wave activity across
the channel walls. These two issues motivate the following
modified model configuration as a better alternative: instead
of Charney-Eliassen forcing we now use our delta-forcing
as defined in Eq. (7), and we furthermore allow some
leakage by specifying R < 1 at the channel walls. The model
configuration for this set of experiments is illustrated in
Fig. 1c.

Analytical progress can still be made by sticking to a
constant wind U . In this case, the solution for either y > 0 or
y < 0 is a superposition of plane waves like ψ ′ ∝ exp i(kx+
ly) with k and l satisfying Eq. (31). The coefficients must
be determined through a matching condition at y = 0, which
effectively accounts for the forcing. Using very similar
methods as in Harnik and Wirth (2025), we obtain

ψ̂(y)=

{
Aeily +B e−ily, y ≥ 0
B eily +Ae−ily, y < 0

(33)

with

A=
if0D

2l
(
1+ReilLy

) , (34)

B =
−iRf0De

ilLy

2l
(
1+ReilLy

) =−ReilLyA, (35)

and with D as defined in Sect. 2.2. For a fixed value of k, the
meridional wavenumber is given by virtue of Eq. (31) as

l =

√
β

U
− k2. (36)

Hence, for any given U , the value of l depends on k or s,
respectively, and the solution ψ̂(y) depends on k or s in a
nonlinear fashion through Eqs. (34) and (35). Considering
the zonal wavenumber as continuous, the relation (36) does
not represent a quantization constraint for l, in contrast to
Eq. (23).

The above solution suggests resonant behavior when the
denominator in the expressions for A and B vanishes, i.e.,
when

l
(

1+ReilLy
)
= 0. (37)

For fully reflecting boundaries (R = 1) this condition can be
satisfied through the second factor on the left hand side. It
requires l to be real and to satisfy the following quanitzation
rule

l
!
= n

π

Ly
, n= 1,3,5, . . . (38)

By means of Eq. (31), the above translates to a condition for
s, namely

s
!
= sres ≡

Lx

2π

√
β

U
−

(
n
π

Ly

)2

(39)

with n= 1, 3, 5, . . . , where the choice of admissible values
for n is limited through the condition that s must be real.
By contrast, for partial reflection (R < 1), there is no true
singularity, although the solution still may have a pronounced
peak at the values of l given in Eq. (38) to the extent that R
is close to 1.

Comparison of Eq. (39) with the corresponding condition
(32) for the Charney-Eliassen configuration indicates that the
latter is a special case of the former: Charney-Eliassen only
accounts for n= 1, while the current relation possibly allows
higher meridional modes with n > 1.

Interestingly, condition (38) resembles, yet is different
from, the condition (23) for the existence of normal modes.
More specifically, the resonant modes of our current problem
correspond to only the odd meridional normal modes. The
reason lies in the fact that all even modes have a node at mid-
channel latitude, and this is exactly where our delta-forcing
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is located. It follows that the special form of our forcing in
Eq. (7) allows a non-zero projection only onto the odd modes
and can, therefore, trigger resonance only for this reduced set
of modes.

In addition, condition (37) is satisfied when l = 0, and
formally this corresponds to n= 0 in Eqs. (38) and (39).
In this case, the meridional flux of wave activity vanishes
owing to Eq. (20), which means that wave activity is ducted
in the zonal direction. Again, this should result in resonant
behaviour thanks to the zonal periodicity as soon as s is an
integer. We will refer to this solution as the n= 0 meridional
mode.

The two options allowing resonance are distinctly dif-
ferent, because the first option includes meridional wave
propagation while the second does not. However, the only
aspect that is relevant for resonance is the fact that wave
activity is channeled in the zonal direction without leakage
in the meridional direction, and this is guaranteed for both
options. In the first option it is achieved through the existence
of perfectly reflecting meridional boundaries, while in the
second option it is achieved through the flux of wave activity
being purely zonal.

We now follow our general strategy and test for resonant
behavior by varying s and analysing both the amplitude and
the phase of the stationary solution. The result is shown
in Fig. 4 for various values of R and with U and Ly
fixed at U = 10 m s−1 and Ly = 3000 km, respectively. The
amplitude of the response is measured as maxy |ψ̂(y)| and its
phase as the phase of ψ̂ at the jet latitude. For the current
choice of parameters, condition (39) predicts two resonant
peaks, one at s = 3.25 corresponding to the first meridional
mode n= 1, and one at s = 5.73 corresponding to n= 0.
We first consider the behavior at s = 3.25. Apparently, the
amplitude for R = 1 in Fig. 4a indicates a singularity at
this value of s, while for smaller values of R the peak gets
less pronounced and vanishes completely for values R .
0.25. The singularity in amplitude at s = 3.25 in Fig. 4a is
mirrored by the behavior of the phase in Fig. 4b; in particular,
the phase is discontinuous at s = 3.25 for fully reflecting
conditions (R = 1), giving way to a more gradual transition
for R < 1. This general behavior in terms of amplitude and
phase is very similar to the damped linear oscillator from
classical mechanics; furthermore, it is consistent with Harnik
and Wirth (2025), who showed that partial transmission at
the channel boundaries has a similar effect on resonance as
damping.

The other option for resonance implies n= 0, which
for the current choice of parameters occurs at s = 5.73
according to Eq. (39). Indeed, there is a pronounced (but
very narrow) peak in Fig. 4a at this location, at least for
R < 1. Interestingly, this peak is absent for R = 1. Further
investigation (see Appendix) reveals that the limit R→
1 for the n= 0 resonance is singular: although each of
the coefficients A and B in Eqs. (34) and (35) blow up

individually for l→ 0, the sum of both terms on the right
hand side of Eq. (33) remains finite. The singularity in
amplitude is reflected by a special behavior of the phase,
which shows a jump by π/2 across s = 5.73 for R = 0
and a more complicated behavior for 0<R < 1 (Fig. 4b).
Interestingly, the value π/2 differs from the value π that
one obtains in case of the harmonic oscillator from classical
mechanics. We speculate that this is related to the fact that
there is an asymmetry as one moves across s = 5.73: the
system supports free Rossby waves for s < 5.73, while it
does not support free Rossby waves for s > 5.73.

We further illustrate the analytical solution for a number
of parameter choices in Fig. 5. This figure shows the patterns
of the perturbation streamfunction on the longitude-latitude
plane for three different values ofR and three different values
of s. First we note that fully reflecting channel boundaries
(top row) always imply ψ ′ = 0 at the channel walls – by
design. There is no phase tilt with latitude, because the
northward and the southward traveling wave have equal
amplitude. In all other cases withR < 1, the solution features
non-zero values at the channel walls. There is a meridional
phase tilt in Fig. 5d and g close to the channel walls
consistent with outward wave propagation. However, this
phase tilt vanishes for s ≥ K̂s (second and third column),
because in this case the meridional wavenumber l is either
zero (second column) or imaginary (third column) owing to
Eq. (36); this situation is equivalent to no meridional wave
propagation according to Eq. (20).

The three panels in the left column of Fig. 5 are
particularly relevant for our further analysis. They represent
situations which do allow meridional wave propagation.
Proceeding from the top to the bottom of this column, one
can identify a noteworthy transition from modal behavior for
fully reflecting conditions (Fig. 5a) to plane-wave behavior
for fully transparent condition (Fig. 5g). Unsurprisingly,
“modal behavior” is qualitatively reminiscent to the normal
modes of Fig. 2. The intermediate situation for R = 0.5
(Fig. 5d) looks like a superposition of the two extreme
cases and, thereby, contains aspects from both. We anticipate
that the intermediate case will help to understand more
realistic jet profiles u0(y), because (as we will see) these are
associated with partial reflection and partial transmission of
wave activity at the periphery of the jet flanks.

We emphasize, again, the different nature of the two
resonant peaks in Fig. 4a. While the n= 1 resonance (at
s = 3.25) produces a sharp peak for R→ 1, the n= 0
resonance (at s = 5.73) produces a peak for any value of R
except R = 1. As mentioned earlier, for the n= 1 resonance
the waves travel both northward and southward and keep
superimposing if the meridional wavelength happens to be
just right. By contrast, for the n= 0 resonance the meridional
flux of wave activity is zero such that wave activity that is
generated at y = 0 cannot escape in the meridional direction
and, hence, keeps accumulating within the domain. In both

https://doi.org/10.5194/wcd-7-297-2026 Weather Clim. Dynam., 7, 297–316, 2026



306 V. Wirth and N. Harnik: Diagnosing Rossby wave resonance

Figure 4. Resonant behavior of the analytic solution for delta-like forcing with U = 10 m s−1 and Ly = 3000 km. (a) Maximum value of
|ψ̂ | throughout the channel, (b) phase of ψ̂ at y = 0, both ploted as a function of zonal wavenumber s. The different colors refer to different
values of the reflection parameter R (see legend); the horizontal dashed lines in panel (b) indicate the values 0, π/2, and π .

Figure 5. Patterns of the normalized streamfunction of the analytic solution (Eq. 33) for delta-like forcing with U = 10 m s−1 and Ly =
3000 km. The different panels represent different combinations of s and R (see panel caption). The range of ploted values extends from −1
to +1, with red denoting positive and blue negative values. Note that the non-normalized amplitudes in panels (a), (e) and (h) would be very
large to the extent that s is close to resonance.
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cases there is a physical mechanism that prevents leakage in
the meridional direction and, hence, allows resonance.

We also show results for other choices of the channel
width (Fig. 6). First consider Ly = 1500 km in Fig. 6a.
Apparently, for such a narrow channel we only obtain the
peak corresponding to n= 0. By contrast, increasing the
value of Ly to 10 000 km (Fig. 6b) makes the resonant
peaks for n= 0 (at s = 5.73) and n= 1 (at s = 5.55)
almost coalesce, and one obtains a third peak at s = 3.85
corresponding to n= 3.

Let us briefly restrict attention to the perfectly reflecting
channel (black line in Fig. 6b) and further illuminate these
results by connection with the idea of resonant normal modes
as illustrated in Fig 3. In the latter figure, the spacing
between the horizontal light-blue lines increases as the
channel width decreases. It follows that the possibility for
resonance completely vanishes when the channel becomes
too narrow. On the other hand, for Ly = 10 000 km (Fig. 3b),
there are multiple intersections between the red circle and the
horizontal light-blue lines; the intersections with the first and
the third light-blue line from below correspond to the peaks
n= 1 and n= 3 in Fig. 6b. If one chooses an even larger
(and clearly unrealistic) channel width (Fig. 3c), one obtains
a very large number of intersections between the red circle
and the different light-blue lines. Translated to our strategy
of diagnosing the amplitude as a function of continuous s,
this would produce considerably more (and more densely
spaced) peaks compared to those in Fig. 6b. In the limit
Ly→∞, literally every real value for s would be associated
with resonance.

4 Numerical solutions

In the light of our goal to investigate jet-like basic states, we
now turn attention to numerical solutions. The strategy for
resonance detection will remain the same as in the previous
section.

4.1 Constant basic state

We start with validating our numerics by considering a
constant basic state u0 = U = const and comparing the nu-
merical solution with the corresponding analytical solution.
Using Ly = 3000 km, we obtain the result shown in Fig. 7.
Comparison with Fig. 4 indicates that the overall behavior
is very similar. In particular, the location of the resonant
peaks in Fig. 7a is exactly where expected from Eq. (39)
with n= 0, 1, 3, 5, . . . , and the dependence on R in both
panels of Fig. 7 is qualitatively similar as in the analytical
solution from Fig. 4. Admittedly, the numerical solution does
not quite reproduce the exact behavior in the neighborhood
of the n= 0 resonance. A closer examination indicates that
this is presumably due to the finite meridional width of
the forcing in the numerical model configuration. Overall,

however, we consider the agreement between the analytical
and the numerical solution as very satisfying, thus providing
credibility to our numerics.

4.2 Transition from constant to jet-like wind profiles

We now turn to the core of our analysis and consider
more realistic jet-like wind profiles u0(y). The model
configuration for this set of experiments in illustrated in
Fig. 1d. The latitudinal variation of u0(y) precludes a general
analytical solution, but the numerical solution remains
straightforward.

In contrast to earlier, we now restrict our attention to
fully transparent boundary conditions at the meridional
boundaries. Basically, we aim to learn whether and to what
extent the flanks of the jet themselves have partly reflecting
properties, and this would be confounded if we included
reflection at the meridional boundaries. We posit that any
amount of wave activity that manages to escape the jet
region can freely propagate away towards infinity in the
meridional direction. Hence, we set R = 0 at the meridional
boundaries as a natural choice for this set of experiments.
We also make sure that the entire jet is contained in our
computational domain, which means that u0 transitions to
a practically constant wind profile close the meridional
boundaries. Incidentally, for any such wind profile our results
should not depend on the meridional width of the domain
owing to the fully transparent boundaries. We checked this
prediction and found that, indeed, the numerical solutions are
practically independent of the choice of Ly .

In all considered cases, our background wind is specified
to be a Gaussian westerly jet superimposed on a constant
U > 0,

u0(y)= U + (umax−U) e
−y2/(2σ 2

J ), (40)

withU > 0 and umax ≥ U , and where σJ represents the width
of the jet. This choice implies u0 > 0 everywhere and, thus
eliminates any possible singularity in Eq. (13). In addition,
it implies that barotropically unstable modes must have a
positive phase velocity according to Howard’s semicircle
theorem (e.g. Kundu, 1990); our focus on forced stationary
solutions thus excludes barotropically unstable modes.1

1Of course, instability may be another important mechanisms
for wave growth – be it barotropic instability in the barotropic
model, or baroclinic instability in a more realistic framework.
However, in connection with Rossby wave resonance in observed
episodes the focus is often on stationary modes, since these are more
likely to be associated with extreme weather than traveling modes
(Fragkoulidis and Wirth, 2020). In the past, this focus was achieved
through time averaging, like, e.g., by analysing monthly means
(Petoukhov et al., 2013) or by preprocessing the data with a 15 d
running mean (Kornhuber et al., 2017b). The focus on stationary
modes is straightforward in our linear framework, because modes
of different phase velocity are independent.
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Figure 6. Same as Fig. 4a, except for (a) Ly = 1500 km, (b) Ly = 10 000 km.

Figure 7. Same as Fig. 4, except for the numerical (instead of the analytical) solution.

In our attempt to understand the transition between a
constant basic state and a jet-like basic state, we change
the amplitude of the jet but keep its width constant at σJ =
500 km. The three wind profiles used are shown in the top
row of Fig. 8. The first one in Fig. 8a is a constant wind
u0 = U = 10 m s−1 (as before, i.e., no jet at all), the second
one in Fig. 8b is a weak jet with umax = 16 m s−1, and the
third one in Fig. 8c is a strong jet with umax = 30 m s−1.

The resulting resonant behavior is presented in the third
row of Fig. 8. In all three cases there is only one single peak.
The interpretation of the peak in Fig. 8g is straightforward
thanks to our previous analysis of the analytical solution:
the sharp peak represents the n= 0 resonance (see the
blue line in Fig. 4a), and there cannot be any further
peak representing n > 0 because of our fully transparent
meridional boundaries. Interestingly, both the location and
the character of the peak changes as one proceeds from the
constant U to the strong jet (Fig. 8g, h, and i). Based on
the experience from the previous section, the somewhat more
gradual shape of the peak in Fig 8i is reminiscent of a n= 1
resonance in a partly reflecting channel. This interpretation
is supported by the phase behavior in the second-to-last row

(Fig 8l versus Fig 8j). At the same time, the weak jet in
the middle column of Fig. 8 represents a situation which is
intermediate between the constant wind and the strong jet.

We designed a metric Q which is meant to measure the
“quality” or “strength” of the resonance. This is achieved
by quantifying the sharpness of the peak in the functional
dependence of f (s)= (maxy |ψ̂ |)(s) as shown in the third
row of Fig. 8. We first determine sres as the wavenumber at
which the function f (s) maximizes, and then we define

Q=
2f (sres)

f (sres− 1)+ f (sres+ 1)
− 1. (41)

The diagnostic is designed such that Q= 0 if f (s) is a
constant function, and Q increases to the extent that the
maximum represents an increasingly narrow peak. The value
Q= 1 is reached when (for a symmetric peak) the maximum
value is twice as large as the ambient values at a distance
1s =±1. This value (Q= 1) can be taken as a meaningful
threshold for the occurrence of resonance in meteorological
applications. The Q-values for the three basic states in
Fig. 8 are provided in the respective panels in the third
row. Apparently, the n= 0 peak in the left column is very
sharp resulting in a very high value Q� 1. By contrast, the
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Figure 8. Numerical analysis for different basic states with increasing jet-like meridional variation of u0(y) in a zonally periodic domain
with fully transparent meridional boundaries. The top row shows the zonal wind u0(y); the second row shows the stationary wavenumber
K̂s(y), where the negative values (shading) represent minus the imaginary part of K̂s; the third shows the maximum amplitude maxy |ψ̂ | as
a function of s; the fourth row shows the phase of ψ̂ at y = 0 as a function of s; and the bottom row shows the pattern of the normalized
perturbation streamfunction at the value of s that corresponds to the peak in the amplitude plot (third row). The plot conventions in the bottom
row are the same as in Fig. 5. Key characteristics sres and Q of the solution are provided in the panels of the middle row.
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weak jet is associated with a value Q< 1, while the strong
jet has Q> 1. The latter behavior is consistent with the
conventional wisdom that stronger jets are better waveguides,
implying a stronger tendency for resonant behavior.

Can we “understand” the transition between the solutions
shown in the three columns in Fig. 8? The n= 0 resonance
visible in the left column gets weaker to the extent that
the wind profile has an increasing amount of latitudinal
variation, and this happens presumably for two reasons. First,
the value of sres in Eq. (39) for n= 0 turns less well defined
to the extent that the basic state wind is not a constant
any longer. At the same time, the latitudinal variation of u0
prevents a unique value of l in Eq. (36). As a consequence,
the condition l = 0 can be satisfied only at one specific
latitude rather than within a whole range of latitudes. Second,
we posit that the flanks of a jet are associated with at least
partial reflection R > 0, with increasing values of R for
increasing jet strengths (Manola et al., 2013; Wirth, 2020;
Harnik and Wirth, 2025). Figure 6a suggests that the width
of the n= 0 resonant peak decreases as the value of R
increases, and this means that the n= 0 resonant peak gets
less dominant. At the same time, as one starts to build a jet,
this jet is associated with an increasing amount of reflection,
and one starts to obtain an n= 1 resonant peak; the strength
of this peak should increase for stronger values of R (Fig. 4a)
and, hence, for stronger jets. This interpretation is supported
by the fact that the peak in Fig. 8i is rather wide, while the
peak in Fig. 8g is very sharp – consistent with the different
shapes of the peaks for n > 0 versus n= 0 in our analytical
solutions from the previous section. In summary, we suggest
that there is a gradual “blend-out” of the n= 0 peak and a
gradual “blend-in” of an n= 1 peak as one proceeds from the
constant wind to the strong jet. Apparently, the solution for
the weak jet in the middle column of Fig. 8 lies somewhere
in between these two extremes.

The interpretation offered above is consistent with the
patterns of the perturbation streamfunction for the three
solutions (bottom row in Fig. 8). The constant basic state
(Fig. 8m) shows – by design – the behavior from the
corresponding analytical solution (Fig. 5h). The other two
scenarios (Fig. 8n and o) show an increasing amount of
confinement of wave activity to the jet-region, with outgoing
plane waves beyond the jet region. In particular, the pattern
in Fig. 8o is reminiscent of the pattern of the analytical
solution for a partly reflecting (or partly leaking) channel
from Fig. 5d. Note also, that the wave pattern in Fig. 8o
resembles the jet pattern in Fig. 8c regarding its meridional
structure.

4.3 Interpretation in terms of partial reflection at the
periphery of the jet flanks

We now aim to corroborate the interpretation of the resonant
behavior for the strong jet case (right column of Fig. 8)
in terms of approximate partial reflection at an internal

interface at the periphery of the jet flanks. As mentioned
earlier in connection with Eq. (17), the two key variables in
this equation are K̂s and s, determining whether the local
character of the solution is wavelike or exponential. Let us
apply this diagnostic concept with the help of Fig. 8e and f.
For those values of s2 that lie between the relative maximum
of K̂2

s at the jet core and the relative minimum of K̂2
s at

the jet’s flank, the character of the solution switches from
wavelike in the jet core to exponential at the jet periphery.
The stronger the jet, the larger is the corresponding range of
wavenumbers. We hypothesize that the “exponential regions”
at the jet’s periphery act as partial reflectors and, hence,
generate a certain amount of waveguidability.

Let us shed more light on this hypothesis. We assume that
for both subdomains y > 0 and y < 0 the total perturbation
streamfunction consists of two parts: the transmitted part
ψ ′trans which is able to leave the domain, and the remainder
ψ ′refl which participates in the reflection, i.e.,

ψ ′ = ψ ′refl+ψ
′
trans. (42)

Close to northern meridional boundary, the transmitted part
has the form of an outgoing plane wave, i.e.,

ψ ′trans = ψ̂trans e
i(kx+ly). (43)

This part of the solution is obtained by, first, computing l
from Eq. (36) with u0(±Ly/2) substituted for U , and then
inferring ψ̂trans from the known full solution at the domain
boundaries. The reflected part ψ ′refl is then obtained from
Eq. (42). This procedure is carried through separately for the
two subdomains y > 0 and y < 0.

The pattern of the resulting ψ ′refl is shown in Fig. 9 for the
two jet-like wind profiles from the middle and right column
in Fig. 8. Apparently, there is very little phase tilt with
latitude in ψ ′refl. The behavior is consistent with the notion
that this part of the solution is associated with reflection
at a latitude somewhere between the middle of the domain
and the domain boundaries, resulting in a modal pattern
of streamfunction (cf. Fig. 2). In fact, one may associate
the reflected part ψ ′refl with an effective channel width by
estimating the latitudes at which the amplitude goes to zero.
In Fig. 9b, this happens at y ≈±1200 km; thus the effective
channel width associated with this jet is Ly ≈ 2400 km. Note
that this value is considerably larger than the meridional
extent of the “jet cavity” where K̂2

s ≥ s
2
res, and that this

is expected according to what we mentioned in the text
behind Eq. (17). Furthermore, the stronger jet (Fig. 9b) is
associated with a considerably stronger ψ ′refl than the weaker
jet (Fig. 9a), and this is consistent with the accepted wisdom
that stronger jets are a better waveguides.

To the extent that our strong jet produces partial reflection
and a mode-like behavior in the core of the jet, we should be
able to relate this interpretation to the analytical solution in a
reflecting channel with constantU . More specifically, we aim
to predict the resonant wavenumber from Eq. (27). Using the
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Figure 9. Normalized streamfunction from the two jet-like basic states of Fig. 8, but with the outgoing plane-wave parts of the solution
subtracted. (a) Weak jet from the middle column of Fig. 8, (b) strong jet from the right column of Fig. 8. The solid and dashed black contours
depict the values ±0.03. The numerical factor used for normalization is the same as in Fig. 8n and o, respectively.

above estimate of the effective channel width Ly ≈ 2400 km
and the value of K̂s ≈ 7 close to the jet core (Fig. 8f), we
obtain a single resonant wavenumber for n= 1 at sres ≈ 3.8,
which happens to be identical to the diagnosed value of
sres = 3.8 in Fig. 8i. To be sure, the estimated value of sres
sensitively depends on the chosen values for Ly and K̂s,
none of which are well-defined in the jet-scenario. Yet, we
consider this result as a “sanity-check”, adding confidence to
our interpretation in terms of partial reflection at a latitude
close to the periphery of the jet’s flanks.

It is also illuminating to shift the orography in the
meridional direction away from the jet. More specifically,
we extend the southern part of the domain to y =−5000 km
and shift the pseudo-orography to y = 3000 km. The forcing
thus lies outside of the jet, in a region with constant wind
u0 = 10 m s−1. For any s < 5.7 we expect that locally there
must be two plane waves emanating from the new forcing
location similar as in Fig. 5g. However, the wave that
travels northward is going to encounter the jet. Based on
the earlier results from this subsection, one may expect
multiple reflection between internal interfaces located at the
periphery of the jet flanks such that only part of the wave
activity is able to escape the jet region and leave the domain
through the northern boundary. If the zonal wavenumber of
the forcing happens to be s = 3.8, these multiply reflected
waves should interfere constructively resulting in increased
wave amplitudes at the jet latitude. Indeed, this is exactly
what our numerical solution shows (Fig. 10). Apparently, the
presence of the jet is able to generate a modal structure within
the jet region; this effectively channels wave activity in the
zonal direction and, thus, leads to increased wave amplitudes
owing to repeated superposition thanks to the periodic
boundaries. Note that the magnitude of this maximum
response in the jet core turns out to be considerably smaller
(viz., only one third) compared to the value obtained in
Fig. 8i; however, this is qualitatively to be expected, because

Figure 10. Normalized streamfunction for the strong jet similar
as in the right column of Fig. 8, except that the latitude of the
forcing was shifted southward by 3000 km. The zonal wavenumber
was chosen to be s = 3.8 and, thus, to correspond to the resonant
wavenumber for this jet (see Fig. 8i).

the shifted forcing has a smaller projection on the resonant
mode (cf. Fig. 8o).

4.4 Varying the jet width

Finally, we consider the resonant behavior for jet-like wind
profiles as the width σJ of the jet varies while its amplitude
umax is kept constant (Fig. 11). In this set of experiments,
both the domain width Ly and the value of D̃ in Eq. (8) are
varied in the same proportion as σJ ; this device guarantees
that the meridional extent of the orography is always
considerably smaller than the jet width and, at the same
time, the orography is numerically well resolved in each
experiment.

There is a wide range of behavior of the refractive
index across the three experiments depicted in Fig. 11.
The function K̂s(y) shows a relative maximum at the jet
latitude for the narrow and the intermediate jet, but a
relative minimum for the wide jet (note that the our wide
jet is unrealistic in the sense that it would not fit into the
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Figure 11. Numerical analysis in a domain with fully transparent meridional boundaries for different basic state profiles with a Gaussian jet
of varying width: σJ = 250 km (left column), σJ = 750 km (middle column), and σJ = 2500 km (right column). Plot conventions are like in
Fig. 8.

Weather Clim. Dynam., 7, 297–316, 2026 https://doi.org/10.5194/wcd-7-297-2026



V. Wirth and N. Harnik: Diagnosing Rossby wave resonance 313

midlatitudes on planet Earth). The relative minimum in this
case can be explained by noting that in the wide-jet limit
the second derivative of the wind profile can be neglected
in Eq. (4); the stationary wavenumber squared becomes

K2
s (y)≈

β

u0(y)
, (44)

from which one obtains a local minimum of K̂s(y) at the
jet core. By contrast, in the narrow jet limit the stationary
wavenumber squared scales like

K2
s ≈−

1
u0

d2u0

dy2 ∼
1
12

jet
. (45)

In this case one expects a sharp relative maximum of K̂s(y)

at the jet latitude that scales like 1−1
jet .

In case of the wide jet, K̂s = 3.5 in the jet core (Fig. 11f),
and this value is identical to the location of the resonance
(sres = 3.5, Fig. 11i). In other words, sres = K̂s(0), and this
implies n= 0 according to Eq. (27). Indeed, this result is
broadly consistent with the qualitative behavior of the phase
(fourth row), which suggests a transition from an n= 1
resonance for the intermediate jet to an n= 0 resonance
for the wide jet. Moreover, as we increase the width of
the jet even further (not shown), the quality-measure Q of
the resonant peak increases substantially, consistent with the
very sharp peak of our analytical solution in the constant
wind case with R = 0 (blue line in Fig. 4). As we will argue
below, the scenario of our wide jet is unlikely to be relevant
in practice, but the consistent interpretation is nevertheless
satisfying.

By contrast, the solution for the intermediate jet in the
middle column of Fig. 11 has the flavor of a first (n= 1)
meridional mode. As discussed in the previous section, this
mode is established through reflection of wave activity at the
periphery of the jet flanks. The fact that the resonant peak
is located at a very similar wavenumber for the intermediate
and for the wide jet (Fig. 11h and i) must be considered as
fortuitous: apparently, the change of K̂s(y) and the change of
the “effective channel width” nearly compensate each other.

Let us finally turn to the narrow jet in the left column
of Fig. 11. Figure 11g shows a single resonant peak at
roughly the same wavenumber as for the intermediate jet
(Fig. 11h), but the sharpness (i.e., the Q-value) of the
peak is considerably lower. The weakness of the resonance
appears plausible in view of Fig. 3: given that the width
of an “equivalent reflecting channel” would be only about
1000 km, this should actually prevent the existence of a
stationary normal mode and, hence, the occurrence of a well-
defined resonant peak. Of course, this argument has to be
taken with a grain of salt, since the narrow jet cannot possibly
be modelled through a constant wind in a quantitative
manner.

5 Summary and conclusions

In the current paper, we discussed a novel method to
diagnose Rossby wave resonance for idealized jets on a
beta-plane in order to deepen our understanding for this
phenomenon and to pave the way towards the application
in observed episodes. Regarding our framework we follow
earlier work and consider the barotropic model, linearized
about a zonally symmetric basic state. The system is subject
to forcing with a fixed zonal wavenumber s, with a narrow
extent in the meridional direction, and with a maximum
at the jet latitude. For our jet experiments we use fully
transparent meridional boundaries corresponding to a radi-
ation condition. The stationary solution is obtained through
straightforward numerical methods. We then systematically
vary the value of s while keeping the amplitude of the forcing
fixed, and analyse how the solution changes as a function
of s. Whenever the solution features a pronounced peak in
amplitude at some value of s and the phase crosses the value
π/2 with a steep slope, we associate the underlying basic
state with a considerable potential for resonance. Finally we
quantify the strength of resonance by the sharpness of the
peak in amplitude. In addition to the numerical solutions for
jet profiles, we considered a number of analytical solutions
for special cases, helping us to interpret our numerical
solutions.

Our main results are as follows:

– We did obtain weakly resonant behavior for various
model configurations and basic states considered as
representative for a circumglobal midlatitude jet. It
follows that the waveguiding properties of such jets are
strong enough to allow a weak form of resonance to the
extent that the waves are not subject to other forms of
damping.

– Even a good zonal waveguide in the form of a strong
jet is not associated with a true singularity in wave
amplitude at the resonant wavenumber; rather, the wave
amplitude remains finite instead of going to infinity,
despite our focus on inviscid wave dynamics. This
behavior is consistent with the findings of Harnik
and Wirth (2025), who showed that a jet behaves
qualitatively like a leaky channel. It follows that the
question of Rossby wave resonance should not be
framed as a binary question (resonance: yes or no?);
rather it is more appropriate to talk about the “strength
of resonance” or the “propensity to resonance”. The
situation is similar as with the concept of a waveguide,
which more appropriately is framed in terms of a
“waveguidability” (Manola et al., 2013; Wirth, 2020).

– For all jets with Earth-like dimensions we obtained
one single resonant peak, occurring at one specific
wavenumber sres. In most cases, the resulting stream-
function was characterized by enhanced values in the
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jet region and outgoing plane wave behavior away from
the jet region. These solutions could be interpreted
as an approximate realization of the first meridional
mode arising from partial reflection off a region at the
jet’s periphery. The dominance of the first meridional
mode in our results and the similarity in meridional
structure between the wave and the jet are consistent
with anecdotal evidence from observations, which show
large amplitude wave trains following the jet (e.g.,
Fig. 1 in White et al., 2022). However, according
to our experience there may be other large-amplitude
wave episodes that show a more complex meridional
structure, pointing to open questions to be addressed in
the future.

– The absence of higher meridional modes is fundamen-
tally related to the anisotropy of a jet, i.e., to the fact that
its zonal scale is much larger than its meridional scale.
It can be understood with reference to resonance in a
narrow reflecting channel on a constant basic state wind.
In that case, the condition for resonance represents
a constraint which only allows specific combinations
of the zonal and the meridional wavenumbers. Both
wavenumbers are quantized, and the narrowness of the
channel implies that only the first meridional mode can
be associated with resonance (if at all) for realistic
scales.

– In the light of the previous two items, it appears that
the notion of internal interfaces with partial reflection
is a better approximation to describe the meridional
propagation of Rossby waves along a jet than the
framework of gradual variation of the basic state.

– Even for the extreme case of a constant basic state wind
with partly or fully transparent meridional boundaries,
our solutions showed a sharp resonant peak. These
solutions corresponds to the meridional mode with n=
0. The resonant peak in this case is not generated
through reflection of wave activity in the meridional
direction; rather, it is due to the fact that a constant
basic state allows a plane wave solution with purely
zonal wave activity propagation – at least for that part
of the solution that is not reflected off the meridional
boundaries. Purely zonal propagation has the same
effect as a perfect zonal waveguide, which explains the
occurrence of a resonant peak. However, this scenario is
unlikely to be important in practice, because a latitude-
independent wind profile is a poor representation of
typical midlatitude conditions. Moreover, this effect
does probably not have a straightforward equivalent in
spherical geometry.

– Despite its strong idealizations, the Charney-Eliassen
model turns out to be a surprisingly good guide to
estimate resonant behavior. Assuming that the channel

width in this model is chosen to correspond to the
meridional scale of the jet, the Charney-Eliassen
solution yields either one resonant peak, or none (when
the jet width is too small). These predictions correspond
well to the results from our numerical solutions, which
show generally one resonant peak, but for which the
sharpness of the peak becomes very small for very
narrow jets.

Obviously, this study comes with caveats and limitations
that need to be kept in mind:

– We restricted our analysis to inviscid Rossby waves on
a circumglobal jet, representing favorable conditions
for resonance. In reality, Rossby waves are subject
to various forms of damping (in addition to the
dispersion through jet leakiness), implying that the
resonant response would be considerably weaker than
documented in our analysis (cf. Harnik and Wirth,
2025). Similarly, we expect the resonant behavior to be
considerably less pronounced than one might conclude
from our analysis to the extent that the jet is not
circumglobal.

– We used Cartesian geometry, which implies a symmetry
between the northward and the southward direction.
By contrast, in spherical geometry there is a natural
tendency for equatorward wave propagation, which has
no equivalent in Cartesian geometry.

– We only considered stationary solutions. This means
that we did not address the question how long it takes
until the steady state has been established. To the extent
that the stationary solution is characterized by a sharp
resonant peak, a sudden change in the basic state may
lead to a substantial change in the wave amplitude
during the subsequent transient adjustment, and it would
be important to further investigate such a transient
scenario.

– We focused on the jet region proper and assumed that
any wave activity that leaves the jet region propagates
further away and does not return towards the jet. In other
words, we neglected reflection from any region outside
of the jet region. In particular, we did not address
the question of whether and to what extent a critical
level located in the subtropics may effectively act as a
reflecting surface (Held, 1983).

One may question the whole idea of using a linear
barotropic model to obtain information about the real
atmosphere. Baroclinicity and nonlinear effects may be
relevant and have an impact, such that any results from
our study must be taken with a grain of salt. On the other
hand, the claim of Rossby wave resonance being a major
mechanism for large-amplitude waves as put forth in recent
years is based on barotropic linear theory (Petoukhov et al.,
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2013; Kornhuber et al., 2017b). In our eyes, this makes
it worthwhile to understand linear barotropic Rossby wave
resonance to its fullest extent. In fact, mapping out the
points of linear resonance may help to understand nonlinear
behavior including multiple equilibria. To be sure, “it is the
nonlinearity that produces the locking to a near resonant
state” (Charney and DeVore, 1979) – but the knowledge
of the linear resonances may still be useful towards a
comprehensive understanding of the nonlinear system.

In our future work we plan to add realism by moving to
spherical geometry, including wave damping, and using basic
states derived from observations. This will allow us to asses
the relevance and applicability of resonance analyses based
on barotropic channel models, as have been used in the recent
literature.

Overall we conclude that Rossby waves on a midlatitude
jet may be subject to a weak form of resonance, provided
that the jet is truly circumglobal and that wave damping is
small. Given that the zonal scale of the jet is much larger than
its meridional scale, one may expect resonance at no more
than one zonal wavenumber sres. This single resonant peak
is associated with the first meridional mode; it is established
through partial reflection of wave activity at the periphery of
the jet flanks, and this implies that the meridional structure
of the wave broadly resembles the meridional structure of
the jet.

Appendix A: Singular limit of the analytical solution for
l → 0

For any R < 1, the term (1+ReilLy ) in the denominator
of Eqs. (34) and (35) is nonzero, and both A and B blow
up individually in the limit l→ 0. In addition, the two
coefficients satisfy

|B| = R|A|, (A1)

which implies that there cannot be a systematic cancellation
between the two terms on the right hand side of Eq. (33).
It follows that the solution for R < 0 tends to infinity in the
limit l→ 0.

The situation is distinctly different for R = 1. In this case,
the coefficients can be rewritten as

A=
if0De

−ilL

4l cos(lL)
, (A2)

B =
−if0De

ilL

4l cos(lL)
, (A3)

with L= Ly/2. This implies |A| = |B|, which opens the
possibility that the two terms on the right hand side of
Eq. (33) cancel each other. Indeed, substitution of these
expressions for A and B into Eq. (33) yields

ψ̂(y)=
if0D

4l cos(lL)

[
e−il(L−y)− eil(L−y)

]
=

f0D

2l cos(lL)
sin l(L− y) (A4)

for y ≥ 0 (and a similar expression for y < 0). Thus, in the
limit l→ 0, one obtains

ψ̂(y)→

{
(f0/2)D (L− y), y ≥ 0,
(f0/2)D (y+L), y < 0. (A5)

The latter expression does not contain the parameter l any
longer, so it is well-behaved and remains finite in the limit
l→ 0. Note that this solution satisfies the correct boundary
condition ψ ′ = 0 at y =±Ly/2 (see Fig. 5b).
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