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Abstract. Understanding the plausible upper bounds of ex-
treme weather events is essential for risk assessment in
a warming climate. Existing methods, based on large en-
sembles of physics-based models, are often computation-
ally expensive or lack the fidelity needed to simulate rare,
high-impact extremes. Here, we present a novel framework
that leverages a differentiable hybrid climate model, Neural-
GCM, to optimize initial conditions and generate physically
consistent worst-case heatwave trajectories. Applied to the
2021 Pacific Northwest heatwave, our method produces heat-
wave intensity up to 3.7 °C above the most extreme member
of a 75-member ensemble. These trajectories feature inten-
sified atmospheric blocking and amplified Rossby wave pat-
terns—hallmarks of severe heat events. Our results demon-
strate that differentiable climate models can efficiently ex-
plore the upper tails of event likelihoods, providing a power-
ful new approach for constructing targeted storylines of ex-
treme weather under climate change.

1 Introduction

The 2021 Pacific Northwest (PN2021) heatwave shat-
tered historical temperature records, culminating in Lyt-
ton, Canada’s unprecedented 49.6 °C observation — a 4.6 °C
increase over the country’s previous record measurement
(White et al., 2023; Mass et al., 2024). This event, virtu-
ally implausible under preindustrial conditions (Philip et al.,
2022), exemplifies a critical challenge in climate science: de-
termining the upper bounds of what is physically possible for
different weather extremes under current or future climatic
conditions.

The PN2021 heatwave emerged from persistent atmo-
spheric blocking sustained by large-scale Rossby waves that
disrupted zonal flow and stalled a high-pressure system over
the region (Mass et al., 2024; White et al., 2023). This
large-scale setup was fueled by upstream dynamics. Mo et
al. (2022) linked it to anomalous atmospheric river activ-
ity, while Neal et al. (2022) identified that diabatic heating
within the warm conveyor belt of an upstream cyclone pro-
vided the necessary Rossby wave activity to establish the
block. Once established, the block suppressed cloud forma-
tion and drove prolonged subsidence, adiabatically warm-
ing near-surface air masses (Loikith and Kalashnikov, 2023).
White et al. (2023) corroborated the importance of these
mechanisms and estimated via 4 d backward trajectory analy-
sis that diabatic processes accounted for approximately 78 %
of the net temperature change of air parcels entering the
region, with the remaining ~22 % attributed to adiabatic
warming from subsidence. Locally, dry soil conditions fur-
ther intensified these temperatures through non-linear land-
atmosphere interactions (Bartusek et al., 2022; Conrick and
Mass, 2023; Schumacher et al., 2022). By studying a 100-
member ensemble of PN2021 with varying initial land sur-
face conditions, Duan et al. (2025b) found that variations
in antecedent soil moisture led to a spread of approximately
3°C in peak temperatures, largely driven by regions shifting
into a transitional evaporation regime where latent heat flux
becomes highly sensitive to soil moisture.

To systematically explore such extremes, storylines are
increasingly used, representing physically consistent se-
quences of weather events that depict how a counterfactual
extreme event might occur (Hazeleger et al., 2015; Shepherd,
2019; Sillmann et al., 2021). This approach enables a mecha-
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nistic exploration of how minor perturbations can lead to the
amplification of extreme events. Here, we use a novel dif-
ferentiable modeling framework to demonstrate that targeted
initial-condition perturbations can further amplify these typi-
cal extreme trajectories, giving extreme heatwave storylines.

Identifying storylines for the most extreme weather events
is a needle-in-a-haystack problem due to their inherent rar-
ity. The traditional approach is the use of single-model
initial-condition large ensembles (Deser et al., 2020; Suarez-
Gutierrez et al., 2020; Mabher et al., 2021; Diffenbaugh and
Davenport, 2021), and more recently, so-called huge ensem-
bles (Mahesh et al., 2024a, b), in which vast numbers of
model runs allow the exploration of a wide range of poten-
tial outcomes. By systematically increasing ensemble size,
the chances of capturing low-probability extremes increase.
However, these ensembles are computationally demanding
and not very effective at sampling the full range of outcomes.
In addition, due to their high computational cost, it is virtu-
ally impossible to perform such ensembles using kilometer-
scale simulations, which are required to well simulate some
types of weather extreme events (e.g., extreme convective
precipitation).

In recent years, a number of approaches have been pro-
posed to generate extreme event storylines (Ragone et al.,
2018; Plotkin et al., 2019; Webber et al., 2019; Yiou and
Jézéquel, 2020; Gessner et al., 2021; Fischer et al., 2023).
These methods focus computing resources on specific ex-
treme events, instead of continuous long simulations. Some
approaches enhance the likelihood of simulating extreme
events by constructing targeted ensembles (Ragone et al.,
2018; Webber et al., 2019; Fischer et al., 2023). Fischer et
al. (2023) focus on generating an initial condition ensemble
of climate model simulations of known extreme events us-
ing a method named ensemble boosting. They applied this
approach to the PN2021 heatwave and by perturbing the
initial conditions using numerical noise for 500 members,
they found a 5d running average of daily maximum tem-
perature anomalies up to 2.9 °C larger than the unperturbed
event. Other approaches to construct storylines of extreme
events use the large deviation algorithm (Ragone et al., 2018;
Ragone and Bouchet, 2021; Noyelle et al., 2025) where an
ensemble of simulations is ran and members are periodi-
cally pruned or cloned such that an ensemble most likely
to lead to an extreme event is generated. Focusing on west-
ern European heatwaves and using the large deviation algo-
rithm, Ragone et al. (2018) generated an ensemble which has
a mean 2 °C anomaly compared to a control ensemble of
128 members. Other applications of the algorithm showed
its ability to identify even more extreme events, with en-
sembles with mean anomalies of 4 °C (Ragone and Bouchet,
2021). Meanwhile, Plotkin et al. (2019) introduced a varia-
tional data assimilation technique, optimized with a 4D-Var
inspired method to intensify past extreme tropical cyclones
with minimal perturbations. This approach is closely related
to the method presented here; however, we leverage auto-
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matic differentiation and computationally efficient ML-based
models.

Recent advances in machine learning (ML) have led to
the development of transformative tools for weather and cli-
mate modeling. Neural network architectures like Graph-
Cast (Lam et al., 2023), Pangu-Weather (Bi et al., 2023),
FourCastNet (Pathak et al., 2022; Kurth et al., 2023), and
FuXi (Chen et al., 2023) have demonstrated forecasting skill
comparable to that of traditional numerical weather pre-
diction systems, but at significantly reduced computational
costs (Rasp et al., 2024; Pasche et al., 2025; Ennis et al.,
2025; Zhang et al., 2025). In addition to their reduced com-
putational costs, these models by construction allow us to
define optimization problems on them that can be solved
through gradient-based optimizers. Rasp et al. (2024) in-
troduced a standardized benchmark to compare the vari-
ous ML models against ERAS and the European Centre for
Medium-Range Weather Forecasts’s (ECMWF) integrated
forecast system (IFS). Using this benchmark, it is shown that
deterministic, data-driven methods such as Pangu-Weather,
GraphCast, and FuXi result in similar root-mean-square er-
ror (RMSE) in forecasting near-surface temperature, wind,
and pressure up to 10d ahead. However, their forecast skill
deteriorates rapidly for longer lead times, resulting in overly
smoothed predictions. Using three case studies, Pasche et
al. (2025) evaluated GraphCast, Pangu-Weather and Four-
CastNet against ERAS reanalysis and ECMWF’s IFS for
the PN2021 heatwave, the 2023 South Asian humid heat-
wave and a 2021 North American winter storm. They find
that all data-driven models systematically underestimate the
peak 2m temperature during the PN2021 heatwave, with root
mean square error (RMSE) values at grid points near Van-
couver, Seattle, and Portland exceeding twice the 10d IFS
error and reaching up to four times that value in Portland.
During the South Asian humid heatwave, data-driven fore-
casts of heat index computed from 2 m air temperature and
1000 hPa relative humidity underpredicted observed peaks
more strongly than IFS, particularly over Bangladesh. For the
North American winter storm, data-driven forecasts of wind
chill at College Station, Texas, achieved lower peak errors
than IFS, with Pangu-Weather and GraphCast outperforming
the operational model.

An alternative to purely data-driven approaches is the
use of hybrid models, such as NeuralGCM (Kochkov et al.,
2024), which combines a traditional dynamical core with ML
components. (Duan et al., 2025a) have shown NeuralGCM’s
ability to hindcast the PN2021 heatwave, though due to the
lack of processes (such as land-atmosphere feedbacks), the
intensity of the heatwaves tends to be underestimated. Simi-
larly to the purely data-driven models, NeuralGCM produces
surface variables forecasts with skill comparable to that of
the ECMWF IFS system Rasp et al. (2024). Moreover, the
use of the dynamical core both prevents the evolved fields
from being overly smoothed and enhances numerical sta-
bility. These benefits allow for longer time integrations and

https://doi.org/10.5194/wcd-7-393-2026



T. Whittaker and A. Di Luca: Constructing extreme heatwaves 395

make the model suitable for climate studies (Kochkov et al.,
2024).

These new types of models are by construction differ-
entiable through automatic differentiation (Gelbrecht et al.,
2023). The automatic differentiation property enables effi-
cient optimization, allowing gradient-based exploration sto-
rylines in high-dimensional climate models. This is in line
with many new extreme event opportunities enabled by ML
models (Materia et al., 2024; Camps-Valls et al., 2025).
Leveraging automatic differentiation, recent studies have
implemented variational data assimilation techniques using
neural networks, with applications ranging from toy models,
such as the Lorenz 96 system (Lorenz, 2006), to reduced-
order physical representations of the atmosphere (Solvik et
al., 2025; Manshausen et al., 2024). Additionally, Vonich
and Hakim (2024) demonstrated that the differentiability of
GraphCast allows for a more accurate reconstruction of the
initial conditions that led to the PN2021 heatwave compared
to using ERAS reanalysis data. Bafio-Medina et al. (2025)
explores the use of ML models and automatic differentia-
tion to perform sensitivity analysis of the initial conditions
leading to the development of cyclone Xynthia. Their find-
ings suggest that gradients computed from the data-driven
weather model at a 36-hour lead time exhibit sensitivity
structures that closely resemble those generated by the ad-
joint of a dynamical model. In other words, the evolved per-
turbations from both approaches lead to similar impacts on
the cyclone’s evolution.

In this study, we focus on the PN2021 heatwave event due
to its well-documented synoptic drivers, and its prevalence
in extreme event studies (Lucarini et al., 2023; Fischer et al.,
2023; White et al., 2023; Philip et al., 2022). We use the auto-
matic differentiation feature of the NeuralGCM model to op-
timize perturbed initial conditions, and we identify trajecto-
ries where enhanced geopotential height anomalies intensify
downstream near-surface temperature extremes. These story-
lines reveal heatwave intensity increases of 3.7 °C beyond the
extreme temperatures obtained from a 75-member ensemble
run using Neural GCM for the event, analogous to the en-
semble boosting approach (Fischer et al., 2023). Our results
demonstrate the potential of differentiable hybrid models for
investigating worst-case scenarios, offering a computation-
ally efficient alternative to traditional, computationally ex-
pensive, large ensembles.

This paper is organized as follows. Section 2 introduces
an optimization problem whose minimization yields extreme
heatwaves and describes how Neural GCM is used to solve it.
Section 3 presents the optimized heatwave storylines in com-
parison with an ensemble run. Section 4 discusses the impli-
cation of the method and future directions. Finally, Sect. 5
concludes the paper.
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2 Methods
2.1 Initial Conditions Optimization Problem

Our goal is to find the worst-case physically plausible heat-
wave trajectory our model can produce. To achieve this, we
must find the specific, small perturbations to a known initial
state that will evolve into the most extreme event. This search
is formulated as an optimization problem, where we define a
loss function that the model will automatically minimize in
an iterative way to find these optimal initial-state perturba-
tions. Formally, a suitable loss function for our problem is
one that

1. maximizes a target extreme event, and
2. minimizes the introduced perturbation.

The optimization process is framed through a continuous-
time dynamical system. For conceptual clarity, we describe
the problem using an ordinary differential equation system:

x =b(x(t,x9)), (D

with b representing some nonlinear operator, ¢ the time and
xo some initial state 7. The solution is given by X (¢) = S;xo
where S; is the evolution operator up to time ¢. The core aim
of the optimization problem is to identify the initial condi-
tions x¢ that drive the dynamical system toward an extreme
desired state, represented by a target observable O(X (1)).
Given a basehne initial state xo, we define a perturbation
Ax _xo — x0. The optimization problem is formulated in
terms of minimizing the following loss function:

L(X(1), Axg) = F (O(X (1)) + X - Ax}, )

where the first term is designed to favor more extreme val-
ues of the observable by applying a cost function F to the
outcome O(X (¢)), and the second term, scaled by the regu-
larization parameter A, penalizes the magnitude of the initial
perturbation Axf). This formulation balances the competing
objectives of inducing a rare event and keeping the initial
perturbation sufficiently small.

In particular, we pick our observable (O(X(t))) to be
the temperature over a domain D and over a period
of time 7 at the 1000hPa pressure level of the model
(fo JpTi000(¢,0,1)dpdo dr). Multiple functions F(O(X)
can be considered, but our main results use F'(X) = 5 which
gives us the loss:

Tref
1 T
mfo fDT1000(¢7 0,1) d¢ do dr
Temperature objective term

(Ax01
(Axref 1)2

2

Perturbation penalty term

L(T1000, Axg) =P

3)
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where D corresponds to the region shown in Fig. 4, and t
is set to 5d. This 5d period was chosen to fully encompass
the 3 peak days of the PN2021 event, with a 2d buffer at
the end, which we found aided in optimization. The terms
in the loss function are normalized by their initial means,
with Tier representing a characteristic temperature scale and
Axrer,; denoting a reference perturbation scale for each per-
turbed variable i = {Temperature, Surface Pressure, Vortic-
ity, Divergence, Specific Humidity, Specific Cloud Ice Wa-
ter Content, Specific Cloud Liquid Water Content.}. The nor-
malization scale for each perturbed variable, Axrer,;, is de-
fined as the absolute mean of each respective initial field.
This ensures that each term is of similar magnitude.

Once the simulations are optimized, we evaluate their suc-
cess through an intensity metric for the heatwaves. We define
a heatwave event as a period during which the daily temper-
ature exceeds the 99th percentile threshold for consecutive
days (Comeau et al., 2025). This definition relies on the per-
sistence of temperature extremes (see also heatwave inten-
sity definition); if the temperature drops below the thresh-
old for even a single day, the event is considered terminated,
and any subsequent exceedances are treated as distinct, sepa-
rate events. The intensity of the heatwave is measured by the
average exceedance of the temperature above the threshold
over the duration of the event. Specifically, if L denotes the
length of the event, 7; the mean temperature time series over
a region, and Tipresh the 99th percentile threshold, then the
intensity / is defined as

1 L
=172 (Ti = Tien) €
i=1

In our analysis, we compare the intensity, /, of the heatwaves
from the optimized runs with those from the ensemble runs
over the targeted 5 d of the optimization process.

2.2 Numerical Implementation using NeuralGCM

To simulate the dynamics and evaluate the loss function, we
use the NeuralGCM model (Kochkov et al., 2024). Most of
the experiments are performed with a horizontal grid spacing
of 2.8° (denoted as Neural GCM2.8) because it is more com-
putationally tractable and because a 40-year climate simula-
tion is readily available at this resolution. For sensitivity anal-
ysis, we also consider a horizontal grid spacing of 1.4° (de-
noted as NeuralGCM 1.4). NeuralGCM employs a dynamical
core to solve the primitive equations using a semi-implicit
time-integration scheme and a spectral method. Physical pro-
cesses on the other hand are emulated by learned physics
through a neural network.

Neural GCM has been implemented in JAX (Bradbury et
al., 2018) and supports automatic differentiation. This en-
ables the computation of gradients with respect to both initial
conditions and internal system parameters, facilitating back-
propagation through the physical dynamics and neural net-
work components. In this work, we compute gradients only
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with respect to the initial variables involved in the dynamical
core of NeuralGCM, keeping all other parameters fixed. The
loss function, as defined in Eq. (3), is minimized using gradi-
ent descent, specifically with the Adam optimizer from Op-
tax (DeepMind et al., 2020). The optimal perturbations are
applied to the spherical harmonic coefficients representation
of the variables. We choose Neural GCM over other possi-
ble models because it has demonstrated competitive forecast
skill for temperatures up to 10d lead times, contains a dy-
namical core, and relies on a single initial condition.

Although the model runs efficiently on a single GPU with
relatively low memory requirements, gradient computation
demands substantial memory, scaling rapidly with the num-
ber of time steps. To address this, we employ gradient check-
pointing and chunking strategies to manage memory us-
age. These techniques store only essential intermediate val-
ues during the forward pass, recomputing them during the
backward pass to reduce memory overhead (Kochkov et al.,
2024). The optimization scheme on the 2.8° model runs on a
16 GB A4000 NVIDIA GPU, whereas the 1.4° model neces-
sitates a 40 GB A100 NVIDIA GPU.

We investigate extreme events by perturbing the initial
conditions primarily around the PN2021 event using data
from the ERAS reanalysis (Hersbach et al., 2020). We con-
ducted two independent optimization experiments, hereafter
referred to as “EXP50” and “EXP75”. Their configurations
— including the learning rate («), loss-function weights (8,
A;), forecast lead times, initialization dates, and number of
gradient descent steps (N) — are detailed in Table 1. These
parameters were selected via an experimental approach anal-
ogous to machine learning hyperparameter tuning, as an ex-
haustive automated search would be computationally pro-
hibitive. We initially selected N =75 to establish a baseline
comparable in computational cost to a 75-member ensem-
ble. Subsequently, we performed the N =50 experiment to
assess whether similar results could be achieved with fewer
resources. This required retuning the A; parameters; gener-
ally, a larger N implies a longer search time, allowing per-
turbations to grow larger, which in turn necessitates a higher
A to constrain their size. Finally, forecast lead times were
chosen to strike a balance: sufficiently close to the event to
ensure forecastability, yet distant enough to allow the intro-
duced perturbations adequate time to evolve.

The optimized simulations are compared to an ensem-
ble run of the event using the stochastic version of Neural-
GCM. This ensemble consists of 75 members. Unlike our
approach, which perturbs the initial conditions (inputs to the
model), the stochastic model introduces perturbations within
the learned physics module. As a result, the perturbations are
effectively introduced one time step apart. Additionally, our
method perturbs surface pressure, which is not perturbed in
the stochastic model. More details about the stochastic model
can be found in Kochkov et al. (2024).
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Table 1. Parameters used during the optimization process. Each row corresponds to one experiment. The coefficients A7, Asp, As, Az, ASH,
Ascrwe, and Ascpwc control the relative weight of the temperature term, the surface pressure term, the divergence term, the vorticity term,
the specific humidity term, and the ice and liquid cloud water terms in the loss function. The parameter 8 sets the strength of the temperature
objective term. The number of iteration steps N differs between the two experiments in order to explore the effect of longer and shorter
optimization procedures while all other settings are kept fixed. The quantity v denotes the forecast lead time used when computing the loss.

Experiment name o B Ar  Asp As A¢ ASH Asciwe  Asciwce  Initial Date T Total N
integration
time
EXP50 1079 20 200 20 2000 2000 200 20 20 21 June 2021 5d 11d 50
EXP75 10°° 10 100 10 1000 1000 100 10 10 21 June 2021 5d 11d 75

2.3 Initial Condition Perturbations

Table 2 presents the maximum perturbations applied to the
initial conditions, alongside the range of values sampled in
the 75-member ensemble simulation. The range is computed
by finding the maximum perturbation of all the ensemble
members with respect to the ensemble mean. Overall, the
applied perturbations during optimization remain within or
below the range represented in the stochastic ensemble. Al-
though direct visualization of the perturbations is challenging
due to their high dimensionality, their spatial spectra provide
useful insight and are presented in Sect. 3.5.

3 Results
3.1 NeuralGCM temperature evaluation

We first evaluate the ability of the NeuralGCM2.8 model
to simulate summer (June, July, August) temperatures com-
pared to ERAS. Figure 1a) presents the 6-hourly temperature
distribution for a NeuralGCM2.8 simulation and the ERAS
data over the 1981-2020 40-year period, averaged within the
domain of interest (highlighted in the blue box in Fig. 4). The
NeuralGCM2.8 simulation closely approximates the ERAS
distribution, demonstrating its ability to reproduce key sta-
tistical characteristics of the temperature distribution in this
region. We highlight the 95th and 99th percentile values
for both the model and ERAS. We note that the model has
slightly colder hot extremes than ERAS.

Next, the ability of the NeuralGCM2.8 and Neural-
GCM1.4 model to forecast the PN2021 heatwave against the
ERADS reanalysis data is evaluated. Figure 1b) shows Neural-
GCM2.8 forecasted surface temperatures during the PN2021
heatwave for five lead times ranging from 10 to 2d. Ata 10d
lead time, the NeuralGCM2.8 predictions follow closely the
ERAS data until about day 8, where they deviate leading to
a lack of heatwave and extreme temperatures. At an 8 d lead
time, the simulation substantially enhances temperature dur-
ing the heatwave period but still shows large underestima-
tions of peaks intensities, with differences of about 6 °C. At
2, 4, and 6d lead times, the NeuralGCM2.8 model captures
well the general pattern of temperature variations shown by
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ERAS, including the occurrence of very high temperatures
during the heatwave event. However, most forecasts under-
estimate the peak magnitude compared to ERAS by a few
degrees Celsius, particularly during the days after the peak
of the event.

This underestimation of the extreme heat is to our knowl-
edge, two folds: (1) there seems to be a dependence on cap-
turing the extreme with the coarseness of the model, when
we increase the resolution to the 1.4° model, the prediction
quality improves (see Fig. 1c) and (2) other studies have
evaluated the ability of simulating extreme heatwave story-
lines and found that the model lacking processes, such land-
surface feedbacks led to under representation of extreme
(Duan et al., 2025a).

3.2 Optimizing extreme temperatures

We optimize the initial conditions of the NeuralGCM2.8
model starting from 21 June 2021 (corresponding to a lead
time of 8d to the peak of PN2021; see Sect. 2 for details)
and run the simulation forward for 11d. An 8d lead time
strikes a balance between two requirements: keeping the
event within the model’s predictable window and allowing
enough time for small perturbations to develop. The opti-
mization is performed using gradient descent over 75 steps
to solve Eq. (3), targeting the last 5d of the event (see the
gray shaded area in Fig. 1). The full set of parameters used in
the optimization is provided in Table 1. Figure 2 shows the
differences in 500 hPa geopotential height (Zsog; top row)
and the 1000 hPa temperature (770pp; bottom row) between
the optimized (OPT) and control (CTL) trajectories. In ad-
dition, the Zs09 and Tigoo of the optimized simulation are
shown in dark contour lines. The early day conditions (T-6
days) show minimal differences, with anomalies amplifying
progressively as we get closer to the peak day. Positive and
negative differences in Z5q are generally observed in associ-
ation with ridges and troughs, respectively, indicating that the
optimized simulation amplifies the hemispheric wave ampli-
tudes. Specifically, over the targeted region, there is a clear
increase in Zsgg and T1o0, with the largest increases centered
over the targeted region.

Weather Clim. Dynam., 7, 393-410, 2026
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Table 2. Maximum perturbations over the full 3D fields for different run sizes compared to the range of perturbations applied on the ensemble

run by the stochastic model.

Quantity/Experiment EXP50 EXP75 75-member ensemble
No. of steps 50 75 -
Surface Pressure (Pa) 0.69 0.47 0.0
Specific Humidity 234%x 1073 1.11x 1073 3.20x 1073
Specific Cloud Ice Water Content (kgkg™1) 7.61x107%  5.19x107° 435%x 107
Specific Cloud Liquid Water Content (kgkg™!) 1.50x 1075 2.42x 107 7.61 x 1073
Temperature (K) 4.83 4.99 7.60
U component of windspeed (m s7h 8.37 5.59 12.70
V component of windspeed (m ) 4.77 4.12 7.94
a) b)
[ NeuralGCM2.8 19 21 23
0.08 ERAS5 40 "
'L oo __ 35
20.06 ey < 30/
- - =] - = f
18 250 A\AR
2 0.04- o K00 ARTA
151
0.02 10 -8 -6 -4 -2 0 2 4
Days from peak
0.00—! 20 = NeuralGCM2.8 ERA5S
T1000 [ C]
c)
Dag of month
19 21 23 5 29 1 3
401
G 351
. f
2 ) f\f
A8 25 v \77\
20 d
15 : ‘ : : ; -
-10 -8 -6 -4 -2 0 2 4
Days from peak
= NeuralGCM1.4 ERAS5

Figure 1. (a) Histograms of 6-hourly JJA temperature values from a 40-year NeuralGCM2.8 simulation (green) and from ERAS (orange)
reanalysis over the study domain outlined in Fig. 4. Dashed line indicates the 95th and 99th percentiles. (b) Time series of temperature fore-
casts at 1000 hPa from NeuralGCM2.8 with 10, 8, 6, 4, and 2 d lead times (green colored lines) compared with ERAS reanalysis data (orange
line) for the PN2021 heatwave. Grey area highlights the targeted time range for the optimization process. (¢) Time series of temperature

forecasts at 1000 hPa from Neural GCM 1.4 with 8 d lead times.

We examine the 500 hPa geopotential height along a fixed
latitude (latitude =57.2°) in Fig. 3. The wave patterns pro-
duced by the optimized simulation are compared to those
from the control simulation, along with their respective spec-
tral characteristics during the last 3 d of the event. Notably,
the geopotential height near the heatwave region is signif-
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icantly higher in the optimized simulation compared to the
control one. Both the control and optimized simulations
show signs of a persistent wavenumber three wave. In the
spectral amplitude, the largest differences in spectral am-
plitude occur for wavenumbers 2-5, which are typically as-
sociated with heatwave events. Specifically, the largest dif-
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Figure 2. Top row: evolution of the difference in 500 hPa geopotential height (A Z5q, in km) between the optimized simulation and the
control run for EXP75. Black contours (optimized run) outline the amplified Rossby wave pattern, with deeper troughs and higher ridges
compared to the control. Middle row: The difference in 1000 hPa temperature (A T7gg, in °C) between the optimized and control run. Bottom
row: the difference between the 500 hPa geopotential height and 1000 hPa temperature averaged over the target domain.

ferences are observed at wavenumber 3, followed by 2 and
4, where the optimized simulation exhibits greater power
than the control simulation. While some differences are also
present at higher wavenumbers, their magnitude is substan-
tially smaller.

The optimization process relies on gradient descent (see
Sect. 2 for details), which requires choosing the number of
gradient descent steps. Figure 4 shows hourly time series of
T1000 (Fig. 4a) and Zso (Fig. 4c) for two optimized trajec-
tories with N =50 (EXP50; solid green line) and N =75
(EXP75; dashed green line) steps, alongside a 75-member
ensemble (grey lines) and its mean (black thick line), all ini-
tialized 8 d before the peak of the event. Notably, the T1po0
time series (Fig. 4a) reveals that both optimized trajectories
attain values beyond the range exhibited by any individual
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ensemble member. In other words, the proposed method al-
lows us to find extreme temperature values that are more ex-
treme than those found using a 75-member ensemble using
only 50 iterations (a 33 % reduction in computational cost
relative to generating the 75-member ensemble, calculated
as (75 —50)/75). Notably, this more efficient 50-step opti-
mization run produces a trajectory more extreme than any
member of the 75-member ensemble. Specifically, the tra-
jectory from 50 steps reaches a peak temperature of 37.0 °C,
while the trajectory after 75 steps attains 38.9 °C. Compared
to the mean of the ensemble, we reach anomalies of 14.0 °C.
For the 500 hPa geopotential height (Fig. 4c), both optimized
trajectories show similarly elevated values, once again ex-
ceeding the range spanned by the 75-member ensemble. Im-
portantly, the trajectory from the 75-step optimized run main-
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Figure 3. Top row: cross section of 500 hPa geopotential along a fixed latitude for EXP75. Bottom row: the amplitude difference of the
Fourier spectrum, including wavenumbers 1-5 highlighted in gray. Red dots highlight wavenumbers 2-5.

tains a more sustained increase of the 500 hPa geopoten-
tial height compared to that from the 50-step run. The mea-
sured intensity (Fig. 4e) and length of the event (Fig. 4f) are
increased in both optimized runs compared to the ensem-
ble mean. Both optimized runs produce a 6 d-long heatwave
event, differing only in intensity, with the 75-step run having
a 1.0°C higher intensity than the 50-step run. Notably, both
optimized solutions exceed the intensities spanned within the
75-members ensemble. Figure 4b, d present the temperature
and geopotential fields from the 75-iteration run. The temper-
ature pattern features a maximum over the targeted region,
albeit slightly to the south, while the 500 hPa geopotential
height field exhibits an anticyclone directly overhead.

As shown in Fig. 5, both optimized solution yields fields
that are consistent with the ERAS depiction of the PN2021
event. The ERAS data shows a maximum temperature of
nearly 40 °C on 29 June, similar to the temperature attained
by the optimized trajectory of nearly 40 °C for EXP75. The
geopotential height of the optimized trajectory, on the other
hand, reaches a higher value than ERAS, exceeding 5.9 km
by 1 July for EXP75 compared to ERAS’s peak of approxi-
mately 5.85 km on 29 June which then declines. While ERA5
shows a clear decline in both temperature and geopoten-
tial height after the 29 June peak, the optimized trajectories
maintain elevated values through 1 July. This sustained be-
havior is a direct consequence of the loss function, which
maximizes the integrated temperature over the 5 d target win-
dow (r =5d) rather than targeting a single peak day. Con-
sequently, the optimizer identifies initial conditions that not

Weather Clim. Dynam., 7, 393—410, 2026

only amplify the intensity of the event but also extend the
duration of the blocking pattern that maintains it. This con-
trasts with the natural evolution seen in ERAS, where the
ridge weakens and temperatures decline within 1-2d after
the peak.

3.3 Sensitivity of other variables

Figure 6 shows optimized trajectories for near-surface winds
(zonal, U and meridional, V, components), specific humid-
ity, and surface pressure. In the optimized run, the zonal wind
consistently lies at the lower end of the ensemble spread dur-
ing the event, and specific humidity likewise tracks near the
lower end. Such concurrent reductions in near-surface wind
speeds and humidity are consistent with the physical mecha-
nisms that underlie heatwave intensification. In contrast, the
meridional wind and surface pressure exhibit only a slight
positive anomaly above the ensemble mean. All optimized
trajectories remain entirely within the bounds defined by the
non-optimized ensemble members. While the variables are
within the range of the ensemble envelope (i.e., they are not
extreme), there might be a confluence of factors that lead to
the extreme. For comparison, the equivalent figure using the
ERAS data for the PN2021 event is presented in Fig. 7. The
specific humidity, and winds are within the envelop of the
Neural GCM2.8 ensemble. The surface pressure, on the other
hand, has a positive bias in NeuralGCM likely due to the
representation of the surface in the coarse NeuralGCM2.8
model.
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Figure 5. Same as panels (a)—(d) in Fig. 4 but using the ERAS reanalysis data. (a) Time series of 1000 hPa temperature for ERAS for the
PN2021. (b) Spatial map of average temperature anomalies from the ERAS data. (¢) Time series of 500 hPa geopotential height for ERAS.
(d) Spatial map of 500 hPa geopotential height anomalies during the event period.

3.4 Sensitivity to NeuralGCM resolution

To test how resolution affects our optimization, we reran the
optimization problem on NeuralGCM at a finer 1.4° resolu-
tion (Fig. 8). The same parameters as in Table 1 are used for
this set of experiments. In the unperturbed control, the high-
resolution ensemble mean reduces the warm bias against
ERAS and more accurately captures the peak and decay of
the PN2021 heatwave. Once optimized, the 1.4° run again
produces peak surface-temperature anomalies that exceed the
75-member ensemble maximum, and 500 hPa geopotential-
height anomalies that surpass the control even more than
the 2.8° case. These enhanced temperature and geopoten-
tial height anomalies persist through the extended target pe-
riod, demonstrating that the optimization delivers sustained
extremes even at higher resolution.

3.5 Initial condition perturbations spectra

The perturbations introduced in the optimized runs are fully
three-dimensional and span all horizontal and vertical levels.
Due to this high dimensionality, it is challenging to visual-
ize their full structure directly. To provide some insight into
their characteristics, we show in Fig. 9 the spatial spectrum
of the perturbations at selected vertical levels (1000, 850, 500

Weather Clim. Dynam., 7, 393—410, 2026

and 200 hPa) for four variables: geopotential height, kinetic
energy, specific humidity, and temperature. This represen-
tation highlights the dominant spatial scales of the pertur-
bations across the domain. The perturbations seem to have
some spatial structure. In particular, geopotential, kinetic en-
ergy, and temperature exhibit comparable energy magnitudes
across all model levels, with large-scale perturbations domi-
nating the spectrum. Specific humidity, conversely, displays
significantly lower energy levels at lower altitudes, though it
remains dominated by low-wavenumber perturbations. This
structured distribution stands in contrast to a white-noise sce-
nario where the resulting spectrum would be flat across all
scales. A detailed analysis of their full spatial structure is
beyond the scope of this work. The maps of the associated
spectrums are available in the Supplement.

4 Discussion

Our findings demonstrate that differentiable climate mod-
els, exemplified by NeuralGCM, offer a powerful tool for
constructing extreme heatwave storylines through gradient-
based optimization of initial conditions. By perturbing initial
conditions, we identified alternative trajectories with slightly
different synoptic-scale conditions that amplify the PN2021

https://doi.org/10.5194/wcd-7-393-2026
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heatwave intensity by 3.7°C according to NeuralGCM. These
results align with prior studies linking extreme heat to per-
sistent blocking patterns (Screen and Simmonds, 2014; Mass
et al., 2024). Specifically, the optimized geopotential height
anomalies and spectrum reflect enhanced blocking dynamics
with an amplification of wavenumbers 1-5. The resulting in-
crease in near-surface temperature and 500 hPa geopotential
heights has realistic features when compared to the ERAS
data, as can be seen in Fig. 5.

While NeuralGCM resolves large-scale dynamics, its
omission of land-atmosphere feedbacks (e.g., soil moisture
(Duan et al., 2025a)) likely results in a conservative esti-
mate of heatwave amplification. For instance, soil moisture—
temperature coupling is known to cause stronger heatwave
persistence (e.g., (Suarez-Gutierrez et al., 2020; White et
al., 2023)), implying that the model might underestimate ex-
tremes when such feedbacks are neglected. Additionally, the
model’s coarse horizontal resolution (2.8°) introduces biases
in capturing localized extreme conditions associated with the
PN2021 event. As shown by the higher resolution simula-
tion, the use of finer grids (1.4°) allows for more accurate
estimates of the extreme temperatures of the PN2021 event
although the main dynamical changes introduced by the opti-
mized solution remain similar to the coarse resolution simu-
lation. In addition, while we have chosen to use NeuralGCM
for this study, the method could be applied to any climate
model that supports automatic differentiation. This includes

Weather Clim. Dynam., 7, 393—410, 2026

series of (a) surface pressure (b) near-surface specific humidity

all existing purely data-driven models, such as GraphCast,
Pangu-Weather, FourCastNet, and FuXi. While data-driven
models could provide faster simulations at higher horizon-
tal resolutions, their dual-initial-condition requirement intro-
duces ambiguity about finding optimal initial conditions. For
instance, Vonich and Hakim (2024) optimized both inputs
for GraphCast to reconstruct the 2021 heatwave, but this ap-
proach demands simultaneous perturbation of two distinct
states. Validation against models like Pangu-Weather demon-
strated that results remained consistent despite this added
complexity, suggesting robustness in the dual-input frame-
work. However, NeuralGCM’s hybrid design simplifies the
workflow by requiring only a single initial condition. In ad-
dition, Selz and Craig (2023) showed that data-driven fore-
cast models represent poorly small-scale perturbations, often
filtering them out, which could limit the applicability of the
method. The extent to which this could affect hybrid models
such as Neural GCM, which make use of a traditional dynam-
ical core, remains unclear.

The optimization process involves making several de-
cisions and setting specific parameters. While we do not
present the results here, we have explored a limited sub-
set of the broader hyperparameter space — specifically, the
learning rate («) and the loss function parameters (8, A).
We found that, for the loss function parameters defined in
Sect. 2, a large learning rate induces instability, causing sub-
stantial perturbations without a corresponding increase in
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temperature and, in some cases, triggering numerical insta-
bilities that cause the simulations to fail. To ensure stabil-
ity, our tests showed that @ must be on the order of 10™°
or smaller. This stability condition varies in a nonlinear and
nontrivial manner with changes in A. Furthermore, the con-
sistency of the results across the EXP50 and EXP75 exper-
iments and the simulations at two different resolutions — all
of which yield trajectories more extreme than the 75-member
stochastic ensemble — suggests that the optimized perturba-
tions are not simply initialization artifacts. However, a sys-
tematic quantification of the sensitivity to the initial state
and a thorough exploration of the hyperparameter space lie
beyond the scope of this study. Fine-tuning the parameters
might allow for improved efficiency in computational cost,
where a more extreme solution is found with a reduced num-
ber of optimization steps. In addition, we note that we have
chosen to optimize the temperature field at the 1000 hPa

Weather Clim. Dynam., 7, 393—410, 2026

pressure level, as the NeuralGCM converts from o coordi-
nate levels to standard ERAS5 pressure levels (Kochkov et
al., 2024). Over regions with significant elevation, such as
the Canadian Rockies, the 1000 hPa pressure level is often
below the surface. Using the 1000 hPa temperature (71000)
can therefore yield physically inconsistent values when op-
timizing for near-surface extreme events. To ensure the op-
timized initial conditions lead to physically meaningful and
surface-relevant extreme temperatures across the entire do-
main, we included the time series and the spatial distribution
of 850 hPa temperature (7g50) in the Supplementary Informa-
tion. The results for T1gp0 and 7350 appear to be consistent.
To evaluate the robustness and physical realism of the
Neural GCM-optimized initial conditions, these perturbations
should be tested in a conventional numerical weather predic-
tion model (e.g., Environment and Climate Change Canada’s
model; Buehner et al., 2015). Such cross-model validation
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T. Whittaker and A. Di Luca: Constructing extreme heatwaves 407

would reveal the universality of the results and help isolate
Neural GCM-specific biases. Additionally, running these sce-
narios in a fully physical model would explicitly account
for land—atmosphere interactions and feedbacks, and assess
whether the extreme trajectories persist under more detailed
dynamics and physics.

Our method focuses on optimizing initial conditions, as-
suming the underlying model physics (whether learned or
explicit) are fixed and skillful. An alternative approach could
involve optimizing model parameters themselves (as done,
for example, by Alet et al., 2025 to generate ensembles),
though this would require careful regularization to ensure the
resulting model remains physically plausible.

The computational efficiency of the ML and hybrid mod-
els coupled with their differentiable properties, opens av-
enues for exploring extreme events — from heatwaves to pre-
cipitation extremes and compound disasters. For example, a
similar optimization problem could be formulated for Storm-
Cast (Pathak et al., 2024) to allow us to search for extreme
precipitation events in an emulated regional climate model.
One could also formulate the loss function such that the large
deviation theory rate function is minimized, leading to “typ-
ical” trajectories of extremes (Grafke and Vanden-Eijnden,
2019; Zakine and Vanden-Eijnden, 2023). We could also en-
vision loss functions with hard constraints on the perturba-
tion which impose conservation laws as opposed to simply
imposing small perturbations.

5 Conclusions

We introduce a differentiable-storyline framework that lever-
ages automatic differentiation in hybrid climate models to
directly optimize initial conditions and generate physically
coherent extreme-heatwave trajectories at a fraction of the
computational cost of traditional ensemble methods. For ex-
ample, our 50-step optimization run produced a more ex-
treme event than any member of a 75-member ensemble,
while using 33 % less computational resources than it took to
generate that ensemble. When applied to the PN2021 heat-
wave, our approach produces an intensification of nearly
3.7°C by isolating high-impact circulation patterns, specif-
ically enhanced blocking and Rossby-wave, demonstrating
both its dynamical fidelity and efficiency. While this proof-
of-concept focuses on NeuralGCM and a single case study,
the optimization paradigm is agnostic to model architec-
ture and event type, offering a transformative tool for rapid,
process-based risk assessment of diverse climate extremes in
a warming world.

Code availability. The data generated and experi-
ments can be reproduced wusing the following code:
https://doi.org/10.5281/zenodo.15649393 (Whittaker, 2025).
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