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Abstract. Rising summer temperatures and more frequent
heat extremes are well-documented outcomes of anthro-
pogenic climate change. However, the extent to which at-
mospheric circulation changes contribute to these trends re-
mains contested. Regional differences across the northern
mid-latitudes suggest that circulation plays a role, yet ro-
bustly quantifying its contribution over multiple decades is
very challenging. We address this by systematically test-
ing statistical and machine learning methods that decompose
temperature signals into a thermodynamic and a dynamic
contribution against climate model simulations. Specifically,
we use unforced simulations with circulation nudged to
match a forced simulation that includes anthropogenic emis-
sions and land-use change. We apply decomposition meth-
ods to the forced simulations and compare their estimates of
circulation-induced trends with those found in nudged cir-
culation simulations. Our analysis reveals that most methods
accurately identify the sign of circulation-induced changes in
temperature, although they consistently underestimate their
magnitude. Despite this limitation, the results demonstrate
that circulation changes have made a substantial contribu-
tion to summer temperature trends across the northern mid-
latitudes. In Europe, a hotspot region, we estimate that up
to half of the observed summer warming between 1979 and
2023 can be attributed to circulation trends. Furthermore, cir-
culation trends have contributed to warmer summer temper-
atures over Western North America, Central Siberia, Mon-

golia, Central China, and northeastern Canada. Yet, circula-
tion changes have cooled summer temperatures over East-
ern and Central North America, Eastern China, and Central
Asia. Overall, our results, based on multiple methods, con-
firm a circumglobal mid-latitude pattern of considerable, yet
contrasting, contributions of circulation changes to summer
temperature trends.

1 Introduction

European summers have warmed considerably due to anthro-
pogenic climate change, driving major ecological changes
and societal impacts. This intensification of warm seasons
is attributed directly to human activity (Seneviratne et al.,
2021). The main reason for this warming is of a thermody-
namic nature: warm seasons and heat extremes occurring in
a warmer atmosphere are also warmer. However, also vari-
ous other effects can contribute to regional trends in sum-
mer heat, including changes in atmospheric circulation (Teng
et al., 2022; Rousi et al., 2022; Vautard et al., 2023; Singh
et al., 2023), or feedbacks due to land—atmosphere interac-
tions (Seneviratne et al., 2006). As a result, regional trends
in summer temperatures differ strongly across the world and
even across the northern hemispheric mid-latitude land area.

In the mid-latitudes, large-scale circulation is a cru-
cial driver for heat extremes (Rousi et al., 2022;
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Rothlisberger and Papritz, 2023) and there is great interest in
understanding to what extent atmospheric circulation con-
tributed to individual events (Cattiaux et al., 2010; Sippel
etal., 2024; Zeder and Fischer, 2023), trends in heat extremes
(Rousi et al., 2022; Singh et al., 2023) or seasonal tempera-
tures (Teng et al., 2022). Forced changes in jet stream po-
sition and strength (Dong et al., 2022; Rousi et al., 2022;
Woollings et al., 2023; Shaw and Miyawaki, 2024), changes
in storm track intensity (Coumou et al., 2015; Chemke and
Coumou, 2024) and the resulting changes in weather pattern
frequencies (Horton et al., 2015; Hanna et al., 2018; Fabi-
ano et al., 2021) are likely to affect local climate conditions
(Pfleiderer et al., 2019). Over the observational record, these
forced changes, however, are small compared to internal cli-
mate variability (Eyring et al., 2021). Estimating the contri-
bution of atmospheric circulation changes to local tempera-
ture trends and quantifying the extent to which these changes
are due to forced or internal variability is crucial for our un-
derstanding of past summer temperature trends (Merrifield
et al., 2017; Teng et al., 2022; Vautard et al., 2023) and ex-
treme events (Terray, 2021).

In some regions, the observed trends are falling outside
the range of model-simulated expected trends (e.g., Western
Europe, Teng et al., 2022; Rousi et al., 2022; Vautard et al.,
2023; Kornhuber et al., 2024). Potentially, this indicates that
model-simulated low-frequency variability in large-scale at-
mospheric circulation is too weak, or that a forced change
in circulation is missing in the models, notwithstanding the
broad uncertainty across models (Shepherd, 2014). The miss-
ing low-frequency hypothesis is also challenging to assess
because the available observations are relatively short. Un-
derstanding past circulation changes and their contribution to
temperature trends may provide an opportunity to constrain
future changes in summer temperature trends, acknowledg-
ing that future circulation changes remain a huge source of
uncertainty (Topdl and Ding, 2023; Fereday et al., 2018).

Identifying the contribution of atmospheric circulation to
temperature trends is not straightforward (Deser et al., 2016).
Two main approaches are commonly used. The first ap-
plies statistical or machine learning methods to decompose
observed or simulated temperature trends into thermody-
namic and circulation-driven components, often referred to
as dynamical adjustment (Deser et al., 2016; Smoliak et al.,
2015; Sippel et al., 2019). The second uses nudged circula-
tion simulations, in which the circulation is prescribed and
the thermodynamic component is removed (Wehrli et al.,
2018). Both options have their limitations: Nudged circula-
tion simulations are limited by the representation of phys-
ical mechanisms in the climate model used and might be
subject to inconsistencies introduced by the nudging (dis-
cussed in Sect. 4). On the other hand, most statistical de-
composition methods are designed to capture the relation-
ship between daily circulation patterns and daily tempera-
tures. They do indeed capture day-to-day variability very
well. Good skill is obtained on monthly or inter-annual time
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scales as well (Smoliak et al., 2015; Sippel et al., 2019; Car-
iou et al., 2025). Whether they can adequately capture a long-
term trend is, however, more challenging to test, because pro-
cesses determining long-term trends may be distinctly differ-
ent from those that determine short-term circulation variabil-
ity, and much fewer verification samples are available. More-
over, benchmarks for circulation-induced long-term trends
have not been available to date, and to our knowledge, no
systematic comparison of dynamical adjustment methods has
been conducted.

In this study, we present a comprehensive assessment
of circulation-induced summer temperature trends across
the northern mid-latitudes (30-60°N) using both statisti-
cal decomposition methods and nudged circulation simula-
tions. We focus on two key questions. First, can statistical-
empirical methods reliably estimate circulation-driven long-
term trends when tested against a climate model benchmark?

To address this, we use a set of CESM2 nudged circula-
tion simulations specifically designed to provide a reference
for comparing circulation-induced trends with those derived
from statistical methods. Second, we identify circulation-
induced summer temperature trends across the northern
hemispheric mid-latitudes in observations using four differ-
ent statistical methods, as well as in CESM2 simulations that
are nudged to the ERAS circulation but driven without an-
thropogenic forcing.

2 Data and Methods

We use simulations of the fully coupled Community Earth
System Climate Model, Version 2 (CESM2) (Danabasoglu
et al., 2020a), including simulations from the CESM?2 large
ensemble (Rodgers et al., 2021). Decomposition methods
are first tested on nudged circulation CESM2 simulations.
In Sect. 3.2 we then apply decomposition methods to
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis v5 (ERAS) (Hersbach et al., 2020) for
the period 1979-2023.

2.1 CESM2 nudged circulation simulations driven with
CESM2 horizontal winds

To derive a benchmark for evaluating the decomposition
methods, we use nudged circulation simulations conducted
with the fully coupled CESM2 (Danabasoglu et al., 2020a).
First, three standard simulations following historical green-
house gas emissions, aerosol emissions, and land use changes
from 1850 to 2014, and anthropogenic forcings following
the scenario SSP3-70 (O’Neill et al., 2016) from then on-
ward (referred to as “hist+SSP370) are created. These sim-
ulations follow the protocol of the CESM2 large ensem-
ble (Rodgers et al., 2021). The initial conditions for these
runs are taken from a long piControl (e.g., no anthropogenic
greenhouse gas and aerosol emissions, as well as no land
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use change) simulation and they are separated by 100 years
(namely year 1300, 1400 and 1500) to guarantee independent
ocean states.

In a second step, for each of these simulations, a nudged
circulation simulation is created for piControl forcing. Each
of these simulations starts with the same initial conditions
as its corresponding hist+ssp370 simulation. 6 hourly global
meridional and horizontal winds are nudged globally and
throughout the atmosphere (at all vertical levels) to their cor-
responding hist+ssp370 simulation. The nudging is achieved
via a regular relaxation procedure described in the handbook
of the Community Atmosphere Model version 6 (CAM6)
(camdoc, 2025). The nudging procedure has been used in
previous studies (Topdl and Ding, 2023). These simulations
are referred to as “piControl-nudged”, as they lack direct
anthropogenic forcing. Still, through the nudging of atmo-
spheric circulation, any potential anthropogenic forcing on
horizontal wind fields is present alongside the internal cir-
culation variability of the atmosphere from the hist+ssp370
simulation. Because land—atmosphere coupling influences
near-surface circulation differently under varying climate
forcings, it is recommended to apply nudging only at higher
altitudes, allowing surface winds to evolve freely when ex-
treme events are to be studied (Wehrli et al., 2018; Merrifield
et al., 2019). Although these effects may influence individ-
ual events, the spatial patterns of long-term circulation trends
remain robust regardless of whether near-surface winds are
nudged (Singh et al., 2025).

2.1.1 Conceptual interpretation of CESM2 nudged
circulation simulations as a benchmark for
dynamical adjustment

In a free-running, fully coupled climate simulation, local and
regional temperatures are shaped by both thermodynamic
forcing, here represented by global mean surface temperature
(GMST) as a proxy for the large-scale thermodynamic back-
ground conditions, and atmospheric circulation variability, as
well as their interactions (e.g., Deser et al., 2016, Fig. 1). Sta-
tistical dynamical adjustment methods seek to separate these
influences, but their skill is challenging to evaluate within a
coupled system. To address this, we use “piControl-nudged”
simulations as benchmarks in which circulation varies while
thermodynamic forcing is fixed at pre-industrial levels. This
design allows us to isolate and evaluate the circulation con-
tribution independently of thermodynamic trends. Concep-
tually (Fig. 1), circulation variability is “inherited” from the
parent simulation and is expected to dominate local and re-
gional temperature responses. This inherited variability in-
cludes both internal fluctuations and possible forced circula-
tion changes. Atmospheric circulation can affect GMST (ar-
row a in Fig. 1). Additionally, some internal variability unre-
lated to atmospheric circulation may remain, such as ocean-
driven GMST fluctuations (arrow b in Fig. 1). Note that
the decomposition into “thermodynamic” and “circulation-
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Figure 1. Conceptual illustration of causal relationships influencing
local temperatures in a freely running climate simulation (left) and
in a piControl-nudged simulation (right). The arrow width indicates
the assumed importance of links. The blue rectangle highlights the
processes studied here.

induced” changes is a simplification that overlooks important
mechanisms for local temperatures. In Sect. 4, we discuss the
implications of this simplification in more detail.

2.1.2 TIllustration of CESM2 nudged circulation
simulations

As expected, day-to-day variability in the nudged circula-
tion run is closely related to its freely running counterpart
from which the wind fields originated. As shown in Fig. A1,
in the early period (left column of Fig. Al), geopotential
height at 500 hPa and surface air temperature are nearly iden-
tical in the hist+ssp370 and the piControl-nudged run. In a
warmer climate, day-to-day variability remains highly cor-
related, but geopotential height and surface air temperatures
are uniformly shifted to higher values.

Interpreting the GMST signal in the piControl-nudged
runs is not straightforward. Even without external forcing,
small GMST trends emerge over 40 year periods (Fig. 2b
and c). These trends likely reflect the combined influence
of atmospheric circulation and internal ocean variability (see
Fig. 1).

A comparison of 1979-2023 GMST trends in the
piControl-nudged simulations with their corresponding
freely running hist-ssp370 simulations indicates that both
thermodynamic and dynamic contributions are relevant
(Fig. 2b). Run 1 is the simulation with the highest GMST
trend in the freely running configuration (0.25 K per decade)
and near zero trend in the piControl-nudged configuration.
Runs 2 and 3 have weaker GMST trends than Run 1 in the
freely running hist-ssp370 scenario, and both show a cooling
trend in the piControl-nudged scenario. The differences be-
tween freely running hist-ssp370 simulations and their cor-
responding piControl-nudged simulations are not constant,
indicating that there is indeed an influence of low frequency
internal variability that is not controlled by atmospheric cir-
culation. Therefore, we do not expect the circulation compo-
nent estimated from the freely running forced simulation to
match the trend found in the piControl-nudged simulation ex-
actly. In some decomposition methods (ridge regression and
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Figure 2. (a) Global mean surface temperature in hist+ssp370 runs (orange) and in piControl-nudged runs (green). Thick lines are smoothed
with a 50 year rolling mean. (b) GMT trend over the period 1979-2023 (gray bar in a). (¢) GMT trend over the period 2025-2075 (blue bar
in a). The cooler histogram displays 500 trends of the same length from piControl, while the warmer histogram displays 100 trends from the

CESM2 large ensemble.

DEA), we can account for the effect of these GMST trends
in the piControl-nudged simulations. In general, we assume
that the impact of GMST on local temperatures is relatively
homogeneous around the mid-latitudes of the northern hemi-
sphere. Thus we expect that the spatial pattern relative to the
mid-latitudinal mean is well captured.

2.2 CESM2 nudged circulation simulations driven with
ERAS winds

To evaluate the use of the decomposition methods on ob-
served circulation patterns, we created an additional bench-
mark simulation by nudging CESM2 to the horizontal wind
fields from the reanalysis data ERA5 (Hersbach et al., 2020).
This method relies on the same relaxation procedure and
anthropogenic greenhouse gas and aerosol forcing as de-
scribed before, with some modifications to the setup. Here,
not only the piControl, but also the “hist+SSP370” sim-
ulations are nudged to ERAS horizontal wind fields be-
tween 1940 and 2024. There are two further differences in
the simulation setup as opposed to the already described
nudged circulation simulations. First, to account for forcing-
induced variability at the boundary layer, the atmosphere is
only nudged above 700 hPa, similar to Wehrli et al. (2018).
Second, the model is run in an atmosphere only configu-
ration (AMIP) with prescribed ocean conditions from the
Met Office Hadley Centre’s sea ice and sea surface tem-
perature dataset (HadISST; Rayner et al., 2003). For the pi-
Control simulation, the forced component was removed from
HadISST using low-frequency pattern filtering (Wills et al.,
2020). Sea ice concentration (SIC) was then estimated with
a random forest model trained on the SST-SIC relationship
in HadISST. To capture seasonal hysteresis, separate mod-
els were trained for the freezing season (September—January)
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and the melting season (February—August), and applied to pi-
Control SSTs to generate corresponding SIC values. This ap-
proach reproduces daily temperature anomalies in the north-
ern hemisphere well. However, nudging to observed winds
and SSTs also introduces a temperature bias by displacing
the model from its own climatology.

2.3 Dynamical adjustment methods

We test four methods designed to disentangle the dynamic
effect from the thermodynamic effect: (1) ridge regression,
(2) constructed circulation analogues, (3) direct effect analy-
sis (DEA), and a neural network UNET (4).

Note that we apply the methods exactly as they were de-
signed and used in other publications, and therefore differ-
ent proxies for atmospheric circulation are used by differ-
ent methods. We do not expect that the choice of variable
to represent atmospheric circulation significantly affects the
results. In Fig. G1, we show a sensitivity analysis for the
ridge regression. In Sect. 4, we discuss differences between
the methods and how they might affect the decomposition in
more detail.

2.3.1 Ridge regression

Ridge regression is a regularized linear method that can deal
with high-dimensional predictors (in our case, many corre-
lated spatial locations with streamfunction values, ® ;). For
each grid cell, we train a ridge regression model to pre-
dict daily mean temperatures in summer (June—July—August,
hereafter referred to as JJA), Y, using GMST (yearly aver-
aged) and the streamfunction & at 500 hPa in all grid cells G
within a 40° x 40° rectangular area centered on that grid cell:

https://doi.org/10.5194/wcd-7-89-2026
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G+1
Y =0+ yGMST+ ) y;®; +e, (1)
j=2

where the streamfunction (®) is related to horizontal east-
P

ward (#) and northward (v) wind speeds as u = Fn and
v=12
X

Ridge regression mitigates overfitting by introducing a
penalty for model complexity, achieved through the shrink-
age of regression coefficients related to the streamfunction
covariates. Shrinkage is determined by the sum of squared re-
gression coefficients (known as L2 regularization) and a reg-
ularization parameter A, which controls the degree of shrink-
age. The shrinkage term is added to the residual sum of
squares (RSS) for the minimization:

G+1
% =argmin:RSS+AZyJ»2}. 2)
Y j=2

As aresult, ridge regression solves a joint minimization prob-
lem, producing small but nonzero regression coefficients that
are relatively evenly distributed among correlated predictors.
The regularization parameter A dictates the extent of shrink-
age and is selected via cross-validation or knowledge about
the noise variance. Notably, the intercept of the linear model
as well as the GMST covariate remain excluded from the
shrinkage.

2.3.2 Constructed atmospheric circulation analogues
technique

The atmospheric circulation analogue technique, introduced
in Deser et al. (2016), is a linear dynamical adjustment
method. It is designed to provide empirically derived esti-
mates of climate trends induced by “dynamics” or atmo-
spheric circulation patterns. It achieves this through the re-
construction of monthly mean climate fields by linear re-
gression with coefficients derived from a field representa-
tive of atmospheric circulation (here, sea-level pressure). The
method has been used for a variety of applications, including
trend assessments, variability analysis, performance weight-
ing, and extreme event attribution (Deser et al., 2016; Lehner
et al., 2017; Merrifield et al., 2017; Guo et al., 2019; Terray,
2021).

The method is based on the construction of a target
monthly mean sea level pressure (SLP) field (e.g., January
1980) using analogues. In the January 1980 example, ana-
logues are SLP fields from other Januaries between 1850 and
2014 that resemble the target SLP pattern. The method is ap-
plied to every month in the record and proceeds as follows.
First, the Euclidean distance between all SLP fields from
the period of 1850-2014 and the target SLP field is com-
puted. Euclidean distance is calculated at each grid point and
averaged over the Northern hemisphere domain (20-90° N,
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0-360°E). The N, = 80 closest SLP fields to the target are
considered analogues. From the 80 analogue choices, the tar-
get month is reconstructed using randomly selected subsets
of Ny =50 analogues. The process of choosing 50 out of
80 analogues and reconstructing the target SLP is repeated
N; =100 times to obtain an average best estimate result.
Na,, N, and N; values are consistent with those used for the
method’s application to observations in Deser et al. (2016).

The target SLP field X}, is reconstructed through multi-
variate linear regression. The weight assigned to each SLP
analogue, f3, is computed through a singular value decom-
position of a column vector matrix X containing the 50 se-
lected analogues and can also be estimated using a Moore—
Penrose pseudoinverse:

B =[(XIx.)"'X! ] xy 3

where B weights are applied to the corresponding monthly
mean temperature fields, i.e., those from the same month as
the SLP analogue. The weighted linear combination of these
fields defines the dynamic component of temperature for the
target month. Before weighting, a quadratic trend is removed
from the full temperature record at each grid point to approx-
imate the anthropogenic warming signal (Deser et al., 2016;
Lehner et al., 2017). This is done to approximate the un-
forced relationship between SLP and temperature one would
expect to find in a preindustrial control simulation. The dy-
namic component of temperature is also computed Ny = 100
times for each month. Results are averaged, and once every
month, the record is dynamically adjusted as described; we
obtain a dynamic monthly mean temperature timeseries.

Note that the Moore—Penrose pseudoinverse implicitly de-
ploys a “hard” regularization (i.e., kills directions with sin-
gular value exactly zero). In contrast, the previous ridge
(Tikhonov) regularization imposes an explicit “soft” regular-
ization (i.e., damps unstable directions even if singular values
are just small, not zero).

We use the term “analogue” to refer to a month with an
SLP field close to the SLP target. The Euclidean distance se-
lection metric does not require an analogue to match the tar-
get month spatially over the whole domain. This step is nec-
essary because, with fewer than 200 available analogues, it is
improbable to find a perfect match for any target month. Van
Den Dool (1994) estimated that it would take on the order
of 10°° years to find two Northern Hemisphere circulation
patterns similar within observational uncertainty. As a result,
the method relies on imperfect analogues, which can intro-
duce spurious features or bias the amplitude of the estimated
dynamic temperature trends.

In this study, analogues are selected from the free-running
hist+SSP370 simulations to dynamically adjust (1) each
hist+SSP370 simulation and (2) ERAS. Each hist+SSP370
simulation is dynamically adjusted using the “leave-one-out”
approach (Deser et al., 2016; Lehner et al., 2017). In the
leave-one-out approach, for each month, e.g., June 1900,
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analogues are selected from all other Junes in the simula-
tion’s 1850-2014 period except 1900. The leave-one-out ap-
proach is used for the comparison between the hist+SSP370
and piControl-nudged simulations. In the second approach,
analogues are selected from the entire 1850-2014 period of
each of the hist+SSP370 simulations and used to dynami-
cally adjust ERAS. The resulting three dynamical compo-
nents of ERAS are shown in Fig. F1 and are averaged to
produce the circulation-induced trend estimates in Fig. 4.

2.3.3 DEA

We employ Direct Effect Analysis (DEA), a recently de-
veloped causal representation learning method, to separate
the dynamical influence of atmospheric circulation (repre-
sented by Z500 EOFs) from the thermodynamical influence
of GMST on temperature. The approach aims at disentan-
gling an outcome variable Y into a direct effect component,
Y4ir, which represents the part of Y directly caused by some
causal factor Z, and an orthogonal component, Yo, which
corresponds to the part of Y unaffected by Z. Both Z and Y
may be influenced by other variables X, which act as con-
founders, and it is thus necessary to control for these covari-
ates to get a correct estimate of the direct effect of Z on Y.
This learned representation of Y can be seen as the result
of encouraging conditional independence between Z and Y
while controlling for X (Durand et al., 2025).

In this context, the outcome Y represents the temperature
field — Yo being its dynamical component — which is a ran-
dom vector with one dimension per grid cell. The predictor
Z is the monthly mean GMST, used as a proxy for thermo-
dynamic temperature changes. As covariates X, we include
the leading Empirical Orthogonal Functions (EOFs) of at-
mospheric circulation (Z500), denoted {p j}]J,=1 where J is

selected through 5-fold cross-validation to maximize the R>
score.

Similar to the ridge regression approach described above,
we assume the following linear model:

J+1
Y =0o+bGMST+ Y bjp; +e. )
j=2

and get the optimal regression parameter matrix using a least
squares algorithm. We obtain a matrix B whose columns
b; encode how GMST and each EOF influence temperature
across grid cells. We emphasize that this is a multivariate re-
gression problem, where Y is a mutlivariate random vector —
not a single variable — representing temperature values across
multiple grid cells. Each dimension of Y corresponds to one
spatial location.

To isolate the dynamical component Y, of Y, we re-
move the part aligned with the GMST-related direction, as
captured by b. This is achieved using the linear transforma-

>
tion Yorn = PTY, where P=1— bib,

TR This transformation
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ensures that Yn remains unaffected by any interventions on
GMST, and thus represents the dynamical component of Y.

2.34 UNET

The final method used in this paper is a convolutional neu-
ral network, a UNET structure, recently proposed by Cariou
et al. (2025) to link temperature variations to atmospheric
circulation. The UNET architecture was initially introduced
by Ronneberger et al. (2015) for biomedical image segmen-
tation. It consists of two main components: an encoder and
a decoder. The encoder extracts global features from the in-
put (in this case, circulation maps) by progressively reducing
spatial resolution while increasing feature depth through con-
volution and max-pooling layers. The decoder then recon-
structs the image using transposed convolutions. Symmetry
between the two parts, combined with skip connections, al-
lows the network to preserve and effectively reuse encoded
information.

We use this architecture (see Fig. E1) to estimate the part
of daily temperature variations (T’, the output) which can be
explained by the large-scale circulation, described by the sea
level pressure (SLP, the input). Thus, we can write the UNET
model as

T = F(SLP). )

We follow the methodology described in Cariou et al. (2025).
Still, we extend the analysis to a larger spatial domain and
train the UNET on daily data from 1850 to 2100 from 8
CESM2 transient simulations (80 % of the data are randomly
selected for training, and the remaining 20 % are used for val-
idation). These simulations belong to the CESM2 ensemble,
but differ from the three members used to build the nudging
experiment (referred to as run 1, run 2 and run 3) in order to
prevent overfitting by the UNET. Since the UNET is trained
on transient runs (historical and SSP), we must consider cli-
mate change in the relationship Eq. (5). The SLP is not de-
trended, assuming that in the CESM2 model, the forced re-
sponses in the SLP is small compared to the daily variability.
This assumption is supported by Figs. 2 and 3, which show
that the three piControl-nudged simulations do not exhibit
significant common trends. However, the forced response is
substantial in terms of temperature. Thus, the detrending is
made following Rigal et al. (2019): temperature anomalies
(T") are obtained by removing an estimate of the daily non-
stationary normal containing both the mean seasonal cycle,
which is not circulation-explained, and the climate change
signal. The trained model is then tested on three CESM?2 piC-
nudged runs, with SLP maps standardized using the same
values as in the training process.

For ERAS, we use the UNET that was previously trained
on CESM2 and retrain it on ERAS data from 1940 to 1978.
This process is known as a fine-tuning method. This two-step
approach is motivated by the limited amount of ERAS data
available for training. Pre-training on CESM2 simulations
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Figure 3. Trend in JJA temperatures over the period 1979-2023 in
piControl-nudged (a, f, k) and predicted trends from different de-
composition methods. For runs 1 (a-e), 2 (f=j), and 3 (k—o0). Esti-
mates from the ridge regression (b, g, 1), the analogues (c, h, m),
DEA (d, i, n), and UNET (e, j, 0). Areas where the predicted trend
differs in sign from the piControl-nudged run are highlighted by
black hatching.

allows the network to learn robust large-scale circulation-
temperature relationships from a wide range of situations.
The subsequent fine-tuning on ERAS then adjusts these
learned features to the characteristics of ERAS5 data studied.
SLP maps are standardized with mean and standard devia-
tion calculated on this training period, and the non-stationary
normal is computed thanks to an estimate of the forced re-
sponse obtained with Qasmi and Ribes (2022) method. The
inference is then done over the 1979-2023 period.
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3 Results

We evaluate each statistical method’s estimate of circulation-
induced mid-latitude JJA temperature trends. Estimated
trends y are derived from CESM2 free-running hist+ssp370
simulations and compared against trends in CESM2
piControl-nudged simulations y, which serve as the bench-
mark. Method performance is assessed using four skill met-
rics:

1. The percentage of grid-cells for which the trend sign
is correctly identified. This metric provides a general
sense of whether the method can correctly capture the
sign of the trend, which may be sufficient in specific
contexts — for example, in climate change detection.

2. Pearson correlation (pattern correlation across the mid-
latitudes). Pearson correlation reflects how well the
method captures the spatial pattern of the trend. Some
methods may systematically over- or underestimate the
magnitude of trends, yet still accurately reproduce their
spatial distribution.

3. The coefficient of determination (RZ=1— Y (y—
$)2/ S(y— ¥)?). R? is a widely used metric for spatial
comparisons, as it accounts for the variance at each lo-
cation and indicates how much of the observed variabil-
ity is explained by the prediction. Yet, it is, in contrast
to Pearson correlation, sensitive to any bias in the esti-
mated average (Kvalseth, 1985); and hence, a statistical
method may show a good spatial Pearson’s correlation
in its estimates but a poor R-squared score.

4. The regression slope between predicted and benchmark
trend estimates. The regression slope indicates whether
the method tends to overestimate or underestimate the
magnitude of trends.

Note that all metrics are directly applied to the gridded
data without any area weighting.

3.1 Evaluation of circulation-induced trends in the
historical period (1979-2023) in CESM2
nudged-circulation simulations

Over the period 1979-2023, JJA temperature trends in
the piControl-nudged simulations range from —0.35 to
0.35K per decade (Fig. 3a, d and g). These trends are or-
ganized in large regional clusters of alternating signs. Fur-
thermore, the trend patterns differ considerably between
the three piControl-nudged runs, indicating that in CESM2,
circulation-induced trends are dominated by internal vari-
ability and that in CESM2, forced circulation changes are
minor. Overall, JJA temperature trends are slightly stronger
in run 1, which is likely due to the positive GMT trends in
the piControl-nudged runs during this period (see Fig. 2).
Note that most of these trends are not statistically signifi-
cant (see Fig. B1). Since these trends mostly reflect internal
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Table 1. Evaluation metrics comparing trends in piControl-nudged
simulations to estimates of circulation induced trends from statis-
tical decomposition methods for land grid-cells between 30-60° N
and the period 1979-2023. First block: percentage of grid-cells with
correctly predicted signs. Second block: Pearson correlation coeffi-
cient. Third block: Coefficient of determination. Fourth block: re-
gression slope (as shown in Fig. C1). See Table D1 for the same
evaluation over the period 2025-2075.

ridge analogues DEA UNET
run
correct sign
allruns  75% 65 % 76 % 84 %
run 1 75 % 77 % 73 % 86 %
run 2 74 % 56 % 82 % 84 %
run 3 77 % 63 % 74 % 83 %

Pearson correlation ()

allruns  0.75 0.52 0.64 0.86

run 1 0.79 0.57 0.61 0.91
run 2 0.67 0.36 0.74 0.83
run 3 0.75 0.41 0.58 0.89

coefficient of determination (R2)

allruns  0.53 0.07 0.08 0.66
run 1 0.54 0.18 —0.19 0.50
run 2 0.39 —0.28 0.22 0.67
run 3 0.48 —-0.07 —0.08 0.73

regression slope

all runs 0.66 0.43 0.74 0.51
run 1 0.59 0.47 0.71 0.47
run 2 0.54 0.26 0.97 0.57

run 3 0.55 0.36 0.68 0.58

climate variability, it is expected that, from a statistical point
of view, the circulation-induced temperature changes at one
location are not differentiable from noise. The spatially con-
sistent trend patterns indicate that, although lacking statis-
tical significance, these trends contain valuable information
and are worth evaluating.

Using the ridge regression trained on a forced simula-
tion to predict the trends based on the streamfunction of the
forced simulation and the GMT of the piControl-nudged run,
we get a similar trend pattern as in the piControl-nudged run
(Fig. 3b, e and h). Over the mid-latitudinal land area, half of
the variability in local temperature trends in the piControl-
nudged run is explained by the ridge regression model (com-
pare R? score in Table 1). For three-quarters of the grid-
cells, the sign of the predicted trend is correct, and grid-cells
for which the sign of the trend is not indicated correctly are
mostly grid-cells with small trends in the piControl-nudged
simulation (and the prediction).

The analogue method reveals a positive correlation be-
tween predicted and simulated mid-latitude land trends, with
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a similar percentage of correctly identified signs in Run 1
and slightly lower skill in Runs 2 and 3. Importantly, the
analogue method only captures the circulation-driven com-
ponent of the trend and does not account for GMST contri-
butions in the piControl-nudged simulations. Consequently,
performance is lower in runs 2 and 3, where substantial neg-
ative GMST trends were simulated. It is important to note,
however, that an offset largely influences the relatively poor
R? score in the mean circulation trend (overestimated warm-
ing), while the spatial pattern itself shows a rather good re-
semblance and Pearson correlation compared to the bench-
mark simulation (Fig. 3).

The DEA method performs well in estimating the sign of
circulation-induced trends with 76 % accuracy (see Table 1).
Despite the relatively strong correlation between the trend
maps (r =0.64), the coefficient of determination is close
to zero. Estimates of circulation-induced trends from DEA
cover the full range of simulated piControl-nudged trends,
including very high and very low trends. This is reflected by
arelatively high regression slope between predicted and sim-
ulated trends (Fig. C1 and last block in Table 1).

The UNET is performing the best of all tested methods
here. With UNET, 84 % of trend signs are predicted cor-
rectly; it has the highest Pearson correlation coefficient (0.86)
and the highest coefficient of determination (0.66). In com-
parison to the DEA and ridge regression, UNET tends to
predict weaker circulation-induced trends and rarely exceeds
magnitudes of 0.2K per decade. As shown in Fig. C1, this
leads to a systematic underestimation of the trend magnitude
compared to the piControl-nudged simulation.

The evaluation over a different period (2025-2075) yields
similar skill metrics and confirms the above-discussed results
(see Figs. D1, D2 and Table D1).

Overall, UNET is the most accurate method for explain-
ing the variance in mid-latitude boreal summer temperature
trends. The ridge regression and UNET tend to decompose
temperature trends into a regionally smoothed pattern of
circulation-induced temperature trends, with a lower likeli-
hood of predicting a strong trend of the wrong sign. DEA
and the analogue method project strong trends of the wrong
sign in some regions. DEA appears to be more helpful in esti-
mating the potential magnitude of circulation-induced trends,
whereas UNET is relatively conservative, estimating trends
that are generally too weak. The analogue method also shows
skill in predicting the sign of trend, but appears typically less
trustworthy then other decomposition methods.

3.2 Identification of the circulation-induced boreal
summer temperature trend (1979-2023) in
reanalysis

Across both the ERAS reanalysis and the CESM2 simula-
tions nudged to ERAS winds, all decomposition methods
reveal similar circulation-induced trend patterns for 1979—
2023. Over Eurasia, a wave-like structure emerges: strong
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warming over Central and Eastern Europe (around 30°E),
cooling over Kazakhstan and western Siberia (60-90° E), and
warming again over Mongolia, eastern Siberia, and Central
China (90-120° E), extending toward the Kamchatka Penin-
sula (Fig. 4).

Across North America, we observe a dipole pattern with
positive trends in the western part and negative trends in
the central and eastern parts, with positive trends again in
the outermost northeastern parts. All decomposition methods
as well as the CESM2 simulations nudged to ERAS winds
(Fig. 4j) agree on this broad trend pattern with only little re-
gional deviations. The trend pattern identified with the statis-
tical method is in good agreement with the pattern found in
Teng et al. (2022).

Based on our evaluation of decomposition methods against
dedicated nudged simulations in the CESM2 setup, we would
suggest giving more weight to the results from UNET regard-
ing the sign of circulation-induced trends. For example, this
would imply that the positive circulation induced trends over
northern North America in the ridge regression are probably
wrong (compare low skill of ridge regression in this region,
Fig. 3).

Moreover, there remains ambiguity on the magnitude
of the above-described trend pattern. The ridge regression,
DEA, and UNET suggest a circulation-induced trend of up
to 0.3 K per decade over eastern Europe. At the same time,
the piControl simulations from CESM2, which were nudged
to ERAS winds, show stronger circulation-induced trends of
up to 0.6 K per decade. In other regions, the nudged simula-
tions and DEA exhibit stronger trends, followed by the ridge
regression and analogues, while UNET suggests somewhat
weaker trends. From the evaluation of the decomposition
methods, we know that all methods have indeed a tendency
to underestimate the magnitude of circulation-induced trends
somewhat, suggesting that the circulation-induced trend over
eastern Europe could be around 0.5 K per decade as indicated
by the nudged simulations.

In summary, our study confirms the highly variable mid-
latitude boreal summer trend pattern found in Singh et al.
(2023), Teng et al. (2022), and Vautard et al. (2023) with
five independent methods (four statistical methods and a
nudged circulation simulation driven by ERAS horizontal
wind fields). The trend pattern highlights several regional
warming hotspots where circulation has made a major pos-
itive contribution (Teng et al., 2022). While total boreal
summer temperature trends are positive across the NH mid-
latitudes, circulation has driven cooling in large areas — most
notably Central and Eastern North America, Central Eura-
sia, and, to a lesser extent, coastal eastern China. In these
regions, the moderately positive total trends reflect a com-
pensation between circulation-induced cooling and thermo-
dynamic warming.
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4 Discussion

Many studies have sought to isolate circulation-induced com-
ponents in climate time series, often referred to as dynami-
cal adjustment (Smoliak et al., 2015; Deser et al., 2016; Guo
et al., 2019; Cariou et al., 2025; Singh et al., 2023; Saffi-
oti et al., 2017; Lehner et al., 2017). The core assumption is
that circulation variability, primarily driven by internal pro-
cesses, dominates temperature variability in many regions,
while thermodynamic contributions can be derived as the
residual (e.g. Deser et al., 2016). This separation of dynamic
and thermodynamic components provides a powerful frame-
work for climate attribution (e.g. Shepherd, 2014).

However, while different statistical methods for obtaining
circulation-induced components in climate time series are
routinely evaluated on short time scales, the estimation of
circulation-induced decadal trends has remained a challenge
for the climate community and will likely continue to do so.
This is because of five main reasons.

First, statistical methods have been found to perform
very well on short time scales of day-to-day, month-to-
month, or inter-annual variability (Cariou et al., 2025; Smo-
liak et al., 2015; Sippel et al., 2019). Yet, the difference in
the performance on long (that is, trend) time scales versus
short time scales has not been quantified so far. Neverthe-
less, dynamical adjustment has been widely applied on the
time scales of trends. A reduced performance on long time
scales is expected, and indeed found in this study, because
shorter time scales are dominated to the largest extent by
circulation-induced variability, whereas on longer time scales
other processes are becoming more dominant, such as land—
atmosphere interactions (e.g. Merrifield et al., 2017) or long-
term warming, both of which may not be straightforward to
account for.

Second, and partly related to the previous point, design-
ing a method comparison for the identification of circulation-
induced time series is challenging. This is because it is not
immediately apparent what the components are that the sig-
nal is decomposed into, and which relevant mechanisms can
be attributed to these components. In this study, we de-
compose a trend in local temperatures into a “circulation-
induced” component and a ‘“‘thermodynamic” component
without specifying to which of these components changes
in other important factors, such as soil moisture or aerosol
concentrations, are attributed (see Fig. 5 for the example of
land—atmosphere feedbacks). Therefore, the different meth-
ods also estimate different trends for the “thermodynamic”
component as shown in Fig. 4. The different statistical meth-
ods evaluated here were initially developed for similar but
slightly different research questions: The analogue method,
for instance, was designed to separate the “thermodynamic
signal” from “circulation-induced variability.” Yet, it has
been shown that summer land—atmosphere interactions re-
main largely in the residual, thermodynamic component due
to the method’s setup (Merrifield et al., 2017). On the other
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Figure 4. JJA mean temperature trends in ERAS over the period 1979-2023 (a) decomposed in the circulation-induced (left) and thermody-
namic (right) contribution for the ridge regression (d, e), DEA (f, g), analogues (h, i), UNET (j, k) and estimates from CESM2 simulation

with horizontal winds nudged to ERAS winds (b, ¢).
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Figure 5. Conceptual illustration of causal relationships influencing
local temperatures in a forced climate as in Fig. 1 but with an addi-
tional driver of local temperature. In this study we aim at decompos-
ing the influence on local temperature into thermodynamic (GMST)
and circulation induced contributions (in blue). Land—atmosphere
interactions is a driver we do not explicitly model (in orange).

hand, machine learning methods such as the UNETs may
implicitly identify land—atmosphere interactions as part of
circulation variability, if circulation carries an imprint of
land—atmosphere variability. In Table 2 we summarize our
thoughts on the treatment of land—atmosphere feedbacks in
the different approaches.

Third, designing a benchmark for the circulation-induced
component of climate time series, such as summer temper-
atures, is a challenging task. In this study, we use a piCon-
trol nudged-circulation approach, where a climate model is
nudged to the horizontal winds of a forced transient simula-
tion. This setup provides circulation-induced changes within
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an otherwise unforced climate simulation. This might lead to
inconsistencies between wind fields and their drivers. For ex-
ample, Arctic amplification and the resulting reduced equator
to pole temperature gradient in the hist+ssp370 simulations
might lead to weaker westerlies in the northern hemispheric
mid-latitudes that would be imposed on the pre-industrial cli-
mate. There may also be factors of residual climate variabil-
ity (such as ocean variability) or feedbacks between circu-
lation and other factors, such as land—atmosphere coupling,
that could still affect thermodynamical processes on climate
over land (see Table 2). Additionally, summer temperatures
in the nudged circulation simulations might be affected by
nudging in other seasons. For example, circulation changes
can influence soil moisture in late spring which would then
have an impact on summer temperatures. Statistical decom-
position methods do not use this information. Consequently,
we have to admit that the nudged simulations are not a perfect
benchmark. Further analysis is required to understand how
these limitations affect our estimates of circulation-induced
trends and whether a better-suited benchmark test could be
designed.

Regarding land—atmosphere interactions, we conclude that
the effect on our estimates of circulation-induced trends
varies between methods. This increases our confidence in
the signals all methods agree on (e.g., circulation-induced
warming over Europe). At the same time, there is no system-
atic (and consistent) difference in how statistical decompo-
sition methods might be affected by land—atmosphere inter-
actions in comparison to how land—atmosphere interactions
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Table 2. Expectations on how land—atmosphere interactions might influence the decomposition into “circulation-induced” and “thermody-

namic” contributions.

method

what is variability in land—atmosphere interactions attributed to?

ridge In multiple linear regression, attribution depends on the collinearity of covariates (e.g., circulation) with the
second-order effect (land—atmosphere interaction), determining whether it is assigned to GMST or circulation
changes. This partitioning may vary by region. If there is no strong collinearity between the prevailing
atmospheric circulation at the daily time scale and land—atmosphere interactions, which typically change at
longer time scales (Merrifield et al., 2017), we expect the effects due to land—atmosphere interactions to

remain in the residuals.

analogues

It is presumed that circulation analogues occur over a range of land surface states. The circulation-induced

component of temperature is defined as an average across this range, which leaves the influence of the land
surface on the atmosphere predominantly in the residual thermodynamic component (Merrifield et al., 2017).
The land surface can induce a temperature anomaly and associated circulation pattern (e.g., a thermal low),
and the analogue method could interpret this situation as circulation-induced rather than thermodynamic.
Nudging all vertical levels of the atmosphere suppresses influence from the land surface to the atmosphere, so
land—atmosphere interactions are likely to remain in the thermodynamic component of the piControl-nudged
runs used as a benchmark in this study (Merrifield et al., 2019).

DEA Because the approach removes the total effect of GMST without conditioning on land—atmosphere
interactions, it may also eliminate the mediating effect of GMST operating through this pathway (but this
effect is likely small and confined to trends that are colinear with GMST), whereas the mediating effect of
atmospheric circulation is expected to be retained, given that the linear model has sufficient expressive
capacity to capture these complex relationships.

UNET

The SLP is used as a predictor of the circulation. However, this variable may contain surface imprints which

might affect the “circulation-induced” component. Therefore, land—atmosphere interactions may be partly

predicted by the UNET architecture used here.

nudged simulations

Nudging is expected to separate the land—atmosphere interactions into a thermodynamically-driven, and a

circulation-driven component (i.e., atmospheric imprints of land—atmosphere interactions are expected to be
captured through nudging). However, the circulation patterns that are extracted from the forced transient
simulations, contain thermodynamic component due to land—atmosphere coupling at the planetary boundary

layer.

might influence the nudged simulations. Therefore, the effect
of land—atmosphere interactions cannot explain the system-
atic underestimation of the magnitude of circulation-induced
trends in statistical decomposition methods (as compared to
the nudged simulations).

Fourth, we present an evaluation of decomposition meth-
ods based on one set of nudged simulations from one Earth
system model (CESM2). Despite the well-documented per-
formance of CESM2, this is a flaw, as the strength of the
links between atmospheric circulation patterns, GMST, and
local temperatures might be misrepresented in the model.
A follow-up study using multiple ESMs to create a bench-
marking dataset would be crucial to constrain our estimates
of circulation-induced temperature trends further. The use
of such a multi-model ensemble would require adapting the
different reconstruction methods slightly. In particular, the
UNET would need to be pre-trained on a collection of multi-
model data, rather than just CESM2. Preliminary tests con-
ducted on Western Europe suggest that this does not degrade
the quality of the reconstruction, especially when the fine-
tuning step is applied to early ERAS data.

https://doi.org/10.5194/wcd-7-89-2026

Finally, in addition to combining multiple lines of evi-
dence, our study emphasizes the importance of benchmark-
ing efforts for statistical and machine learning approaches.
Without evaluating the results against nudged circulation
simulations, one would conclude that different decomposi-
tion methods project similar trend patterns, with some esti-
mates exhibiting a stronger version of the trend pattern than
others. Evaluating which magnitude of the trend pattern is
the most likely/plausible is challenging from the statistical
analysis alone. Concluding that all decomposition methods
applied to observations might be underestimating the magni-
tude of the trend pattern would be impossible.

Overall, our study demonstrates that statistical methods
can effectively identify and separate circulation-induced tem-
perature trends from residual thermodynamic trends. How-
ever, their performance declines on climatic timescales com-
pared to shorter timescales. This uncertainty should be care-
fully considered in future studies that use such estimates for
attribution or to constrain projections.

Weather Clim. Dynam., 7, 89-108, 2026



100

5 Conclusions and Outlook

In summary, our analysis targeted two specific research ob-
jectives and revealed two distinct findings: First, we eval-
uated whether statistical-empirical methods can accurately
estimate circulation-induced long-term trends in the NH
mid-latitudes during boreal summer (and a residual domi-
nated by thermodynamic trends) against a specifically de-
signed climate model benchmark of nudged circulation sim-
ulations. Four different statistical methods were tested, and
we demonstrated that each of these methods can generally
identify the large-scale pattern of circulation variability and
changes, even though they are typically trained and validated
on short time scales (daily to seasonal). However, the meth-
ods showed differences in their ability to reproduce the spa-
tial trend pattern from the nudged circulation benchmark.
With three-quarters of correctly estimated signs of trends and
coefficients of determination above 50 %, the ridge regres-
sion and the UNET methods are performing sufficiently well
for the purpose. The UNET has the overall highest scores
in most tested skill metrics. However, the UNET method
tends to produce underdispersive results, that is, the magni-
tude of particularly strong circulation trends is often underes-
timated (irrespective of the sign). DEA and circulation ana-
logues have similar skill in predicting the sign of circulation-
induced trends. Still, due to the low coefficient of determi-
nation, we would refrain from interpreting the magnitude of
regional trends estimated from these methods. Overall, iden-
tifying circulation-induced trends on climate time scales in
the context of dynamical adjustment studies is possible. Still,
it does imply larger uncertainties than for the application on
shorter time scales, which needs to be considered in future
applications of the techniques.

Our second objective was to identify circulation-induced
boreal summer temperature trends across the northern mid-
latitudes using four statistical methods and CESM2 simu-
lations nudged to ERAS circulation without anthropogenic
forcing. Large-scale summer circulation trends and their tem-
perature impacts have been widely debated (Teng et al.,
2022; Chemke and Coumou, 2024; Rousi et al., 2022; Vau-
tard et al., 2023). Analyzing ERAS for 1979-2023, we find
positive circulation contributions to summer warming over
Europe, western North America, and Mongolia. In contrast,
a wave-like pattern of circulation-induced cooling appears
over Central Eurasia (west Siberia and Kazakhstan) and Cen-
tral to Eastern North America.

Beyond strengthening confidence in circulation-induced
temperature changes, our evaluation also highlights system-
atic limitations of statistical decomposition methods. Im-
proving understanding of their performance will enhance our
ability to attribute regional climate trends. Isolating indi-
vidual components of historical change is likely to yield a
stronger attribution signal, particularly for regional climate
change. Focusing on dynamical and thermodynamic changes
separately is advantageous, as there are significant differ-
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ences in the uncertainties of forced changes in these com-
ponents (Shepherd, 2014). While several attribution studies
of circulation changes have been published (Coumou et al.,
2015; Chemke and Coumou, 2024; Dong et al., 2022), un-
certainties remain large, especially when it comes to at-
tributing the downstream impacts of atmospheric circulation
changes. Being able to more robustly decompose a trend
into a circulation-induced and a thermodynamic component
should also help attribute circulation-induced temperature
trends more effectively.

Finally, separating dynamical and thermodynamic compo-
nents offers a pathway to constrain near-term climate pro-
jections using observation-based constraints. The thermody-
namic constraint should be straightforward to identify, as it
is mainly forced. There are different possibilities to constrain
based on the dynamical component. With the assumption
that circulation-induced trends over the past decades were
primarily due to internal climate variability, one would ex-
pect a reversal of the observed trend pattern over the coming
decades. If circulation-induced temperature change is forced,
both circulation-induced and thermodynamic trends would
continue. Due to the considerable uncertainty in the forced
circulation-induced changes, a storyline approach would be
appropriate, explicitly treating different assumptions about
forced atmospheric circulation changes and evaluating the
potential outcomes of these scenarios (Shepherd, 2019; Liné
et al., 2024).
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Appendix A: Nudged circulation plots

run 1 hist-ssp370

—— run 1 piControl-nudged
run 2 hist-ssp370

----- run 2 piControl-nudged
run 3 hist-ssp370

—-= run 3 piControl-nudged

Figure Al. Differences in temperature, precipitation and geopotential height at S00hPa at one grid-cell (next to Leipzig). Orange lines
represent hist+ssp370 simulations, green lines represent the corresponding piControl-nudged simulations.

Appendix B: Significance of circulation induced trends

piControl-nudge

- —
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trend in TREFHT per decade

Figure B1. JJA trends in piControl-nudged simulations for the period 1979-2023. The Stippling indicates that we cannot reject the Null-
hypothesis of no trend at a 95 % level.
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Appendix C: More evaluation plots
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Figure C1. Predicted trends against trends from piControl-nudged for the period 1979-2023 over land grid-cells between 30° N and 60° N
from all runs (1,2,3) for the ridge regression (a), DEA (b), analogues (c), and UNET (d). The bulk of the data is represented by a Gaussian
kernel density estimate (shadings) while extreme trends are shown as scatter points.

Appendix D: Period 2025-2075
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Figure D1. Same as Fig. 3 but for the period 2025-2075.
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Figure D2. Same as Fig. C1 but for the period 2025-2075.

Table D1. Same as Table 1 but for the period 2025-2075.
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Pearson correlation (r)
all runs 0.71 0.37 0.70 0.86
run 1 0.64 0.44 0.56 0.82
run 2 0.72 0.31 0.73 0.83
run 3 0.73 0.29 0.79 0.91
coefficient of determination (R2)
allruns  0.44 —0.00 0.22 0.66
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run 3 0.47 0.00 0.52 0.73
regression slope
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Appendix E: UNET architecture
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Figure E1. UNET architecture.

Appendix F: Analogues stochastic
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Figure F1. Circulation-induced contribution to JJA mean temperature trends in ERAS over the period 1979-2023 estimated by the analogue
method. ERAS is dynamically adjusted using analogues selected from (a) run 1, (b) run 2, and (c) run 3.
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Appendix G: Ridge regression with geopotential heigt at
500 hPa
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Figure G1. Estimates of the circulation induced trends from the
ridge regression over the period 1979-2023 in the freely running
forced CESM2 simulations. Estimates from the ridge regression us-
ing streamfunction at 500 hPa as a covariate for circulation (a, c, €).
The same, but with geopotential height at 500 hPa as anomalies to
the global mean geopotential height at 500 hPa (b, d, f).

Code availability. The code required to reproduce this
study is available at https://github.com/peterpeterp/circ_
contribution_to_JJA_trends.git (last access: 1 December 2025;
https://doi.org/10.5281/zenodo.17857756, Pfleiderer, 2025).

Data availability. The nudged CESM2 simulations used for the
evaluation of statistical decomposition methods is available
on https://doi.org/10.5281/zenodo.18172330 (Beyerle and Sippel,
2026). Data from the CESM2 large ensemble can be accessed
through https://doi.org/10.26024/kgmp-c556 (Danabasoglu et al.,
2020b). The CESM2 piControl simulation can be accessed through
the Earth System Grid Federation (ESGF) CMIP6 archive at
https://doi.org/10.26050/WDCC/AR6.C6CMNRCES2pc (Danaba-
soglu et al., 2023). ERAS data can be accessed through Copernicus
Climate Data Store https://cds.climate.copernicus.eu/datasets (last
access: 18 November 2024; Hersbach et al., 2020).
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