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Abstract. There is an observed relationship linking Arctic sea ice conditions in autumn to midlatitude weather the following

winter. Of interest in this study is a hypothesized stratospheric pathway whereby reduced sea ice in the Barents-Kara Seas

enhances upward wave activity and wave-breaking in the stratosphere, leading to a weakening of the polar vortex and a tran-

sition of the North Atlantic Oscillation (NAO) to its negative phase. The Causal Effect Networks (CEN) framework is used to

explore the stratospheric pathway between late autumn Barents-Kara sea ice and the February NAO, focusing on its seasonal5

evolution, timescale-dependence, and robustness. Results indicate that the pathway is statistically detectable and has been rela-

tively “active” over the 39-year observational period used here, explaining approximately 26% of the interannual variability in

the February NAO. However, a bootstrap-based resampling test reveals that the pathway is highly intermittent: the full strato-

spheric pathway appears in only 16% of the sample populations derived from observations, with individual causal linkages

ranging from 46 to 84% in occurrence rates. The pathway’s intermittency is consistent with the weak signal-to-noise ratio of10

the atmospheric response to Arctic sea ice variability in modelling experiments, and suggests that Arctic-midlatitude telecon-

nections might be favoured in certain background states. On shorter time scales, the CEN detects two-way interactions between

Barents-Kara sea ice and the midlatitude circulation that indicate a role for synoptic variability associated with blocking over

the Urals region and moist air intrusions from the Euro-Atlantic sector. This synoptic variability has the potential to interfere

with the stratospheric pathway, thereby contributing to its intermittency. This study helps quantify the robustness of causal15

linkages within the stratospheric pathway, and provides insight into which linkages are most subject to sampling issues within

the relatively short observational record. Overall, the results should help guide the analysis and design of ensemble modelling

experiments required to improve physical understanding of Arctic-midlatitude teleconnections.

Copyright statement. TEXT

1 Introduction20

Autumn sea ice is a potential source of skill in predicting the winter North Atlantic Oscillation (NAO), and hence, European

climate (Scaife et al., 2014; Wang et al., 2017; Hall et al., 2017). One proposed mechanism for the relationship focuses
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on the Barents-Kara Seas, a region with seasonal ice cover that has exhibited strong negative trends during the cold season

over the last decades (Cavalieri and Parkinson, 2012; Serreze and Stroeve, 2015; Onarheim and Årthun, 2017). According to

this mechanism, reduced Barents-Kara sea ice triggers a wave response that constructively interferes with the climatological25

stationary wave pattern (Peings and Magnusdottir, 2014; Kim et al., 2014; Sun et al., 2015; Nakamura et al., 2016; Wu and

Smith, 2016; Hoshi et al., 2017; Zhang et al., 2018a; De and Wu, 2018), enhancing upward propagation of planetary waves

that weakens the stratospheric polar vortex (Nishii et al., 2009; Garfinkel et al., 2010; Smith et al., 2010). Downward coupling

from the stratosphere to the troposphere subsequently produces circulation anomalies that resemble the negative phase of the

NAO or Arctic Oscillation (AO) (Baldwin and Dunkerton, 1999; Polvani and Waugh, 2004), along with its attendant climate30

effects (Hurrell, 1995).

A delayed stratospheric pathway linking sea ice and the NAO is suggested by observations, but its exact nature is somewhat

unclear. The observational evidence (e.g., García-Serrano et al., 2015; King et al., 2016; Koenigk et al., 2016) hinges on lagged

correlations such as the one shown in Fig. 1a (similar to Fig. 10c in García-Serrano et al. (2015) and Fig. 6b in King et al.

(2016)): less Barents-Kara sea ice in November is associated with higher polar cap heights in the stratosphere (i.e., polar vortex35

weakening), and a subsequent downward propagation of the height anomalies into the troposphere through the winter season,

consistent with the appearance of negative NAO conditions several months later. However, the stationarity and statistical

significance of this signal has been questioned when using longer records that extend back before the satellite era (Hopsch

et al., 2012; Kolstad and Screen, 2019). In fact, the strength and timing of the signal can change when the observational period

in Fig. 1a is extended by just several additional winters, showing a statistically insignificant autumn sea ice connection to the40

winter NAO via the stratosphere (Fig. 1b).

Evidence from modelling experiments is even more difficult to interpret because the relationship between Barents-Kara sea

ice and the NAO is not robust in simulations. Some studies find a clear stratospheric signal after removing sea ice, leading to

a weakening of the polar vortex and a negative NAO (Kim et al., 2014; Nakamura et al., 2015; Sun et al., 2015). A negative

NAO response to sea ice loss is also possible, although much weaker, if the stratospheric pathway is not well represented or45

artificially suppressed (Liptak and Strong, 2014; Sun et al., 2015; Wu and Smith, 2016; Nakamura et al., 2016; Zhang et al.,

2018a; De and Wu, 2018). However, other modelling studies show a weak or even positive NAO response when sea ice is

reduced (Singarayer et al., 2006; Strey et al., 2010; Orsolini et al., 2012; Cassano et al., 2014; Screen et al., 2014), and we

lack a comprehensive understanding of why model results are so different (Screen et al., 2018). One reason may be that the

atmospheric response depends on where and when sea ice is removed; for example, some studies have shown that sea ice loss50

in the Pacific sector leads to a strengthening of the polar vortex (Sun et al., 2015; Screen, 2017; McKenna et al., 2018), and that

winter ice loss may be more influential than autumn ice loss in weakening and shifting the jet stream (Blackport and Screen,

2019). Other possible reasons include nonlinearities with respect to the amplitude of sea ice loss (Petoukhov and Semenov,

2010; Semenov and Latif, 2015; Chen et al., 2016; Overland et al., 2016), and dependence of the atmospheric response on the

background state (Smith et al., 2017, 2019; Labe et al., 2019).55

Overall, isolating the sea ice influence on the midlatitudes remains a challenge in part because it is a search for causal drivers

in a tightly coupled system with large internal variability (Shepherd, 2016). This internal atmospheric varibility itself has
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well-known effects on Arctic climate over a range of time scales. Synoptic weather systems carry heat and moisture poleward

from the North Atlantic, and are associated with moist intrusions that have been shown to warm the Arctic and melt sea ice

(Woods et al., 2013; Park et al., 2015a, b; Gong and Luo, 2017; Kim et al., 2017; Lee et al., 2017). Feedbacks between sea ice60

and the NAO acting on intraseasonal time scales can yield oppsite-signed relationships depending on the time lag considered:

anomalously low Barents-Kara sea ice concentrations are favoured by positive NAO conditions (Fang and Wallace, 1994;

Deser et al., 2000), but are also part of an ice perturbation pattern that has been found to produce negative NAO conditions

(Magnusdottir et al., 2004; Deser et al., 2004; Kvamstø et al., 2004; Strong et al., 2009; Deser et al., 2010; Wu and Zhang,

2010). The causality problem with respect to sea ice extends beyond the NAO to other midlatitude phenomena such as Eurasian65

cooling, for which one finds numerous studies arguing both for (Outten and Esau, 2012; Mori et al., 2014, 2019) and against

(McCusker et al., 2016; Sorokina et al., 2016; Ogawa et al., 2018; Blackport et al., 2019) sea ice loss being responsible for the

recent spate of extreme winters.

In the present study, we revisit the observed relationship between autumn Barents-Kara sea ice and the winter NAO with

the goal of quantifying the robustness of the stratospheric linkage. In other words, we ask how systematically the stratospheric70

linkage has appeared during the satellite period. While sampling issues are unavoidable when using a short observational

record with large internal variability, our analysis attempts to account for this by exploring the idea that weak but statistically

significant signals may arise from a teleconnection pathway that is only intermittently active.

We begin with a description of data and methods (section 2), including a Causal Effect Networks (CEN) approach that

provides a statistical framework for assessing causality (applied to climate problems by studies such as Ebert-Uphoff and Deng,75

2012; Runge et al., 2014; Kretschmer et al., 2016, 2018). Results showing that the pathway is indeed detectable but exhibits

a high level of intermittency are presented in section 3, and the implications for understanding present day Arctic-midlatitude

teleconnections are discussed in section 4. We end with some concluding remarks in section 5.

2 Data and Methods

2.1 Reanalysis data80

The Causal Effect Networks (CEN) approach requires indices (time series) of variables representing key processes in the

dynamical mechanism being studied. In our study, we use sea ice area fraction, surface sensible heat flux, surface latent heat

flux, sea level pressure, meridional wind, temperature, geopotential height, and downard thermal radiation at the surface. Raw

daily data for the period 1979 to 2018 are from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-

Interim reanalysis (Dee et al., 2011). The seasonal cycle is removed at each grid point by subtracting the climatological daily85

mean to obtain anomalies of each variable, and the data are detrended. The trend is removed through all the days of the year (1

January, 2 January, etc.). The following indices are then calculated from the reanalysis data from September to March:

– Barents-Kara sea ice (ICE): sea ice area fraction averaged over 70◦-80◦ N, 30◦-105◦ E (Fig. 2a)
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– Barents-Kara turbulent heat flux (THF): sum of surface sensible and latent heat flux averaged over 70◦-80◦ N, 30◦-105◦ E

(Fig. 2b), with positive defined as heat flux from the ocean to the atmosphere90

– stratospheric polar vortex strength (SPV): negative of geopotential height poleward of 60◦ N (Fig. 2c) averaged between

10-100 hPa, as defined by Kretschmer et al. (2016), such that positive values of the index indicate a stronger polar vortex

– Urals sea level pressure (URALS): sea level pressure averaged over 45◦-70◦ N, 40◦-85◦ E (Fig. 2d)

– downward longwave radiation (IR): downward thermal radiation at the surface averaged over 70◦-90◦ N (Fig. 2e)

– poleward eddy heat flux (V*T*): product of V* and T* at 100 hPa averaged over 45◦-75◦ N (Fig. 2f), where V and T95

denote the meridional wind velocity and air temperature respectively, and the superscript * indicates deviations from the

zonal mean

– North Atlantic Oscillation index (NAO): from the Climate Prediction Center, based on Rotated Principal Component

Analysis of 500 hPa geopotential height, see details at

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml100

Finally, the daily indices are averaged up to monthly, half-monthly and pentad means for the different analyses carried out

in this study.

2.2 Causal Effect Networks (CEN)

The CEN algorithm is a causal inference framework (Runge et al., 2014, 2019) aimed at identifying causal relationships

between variables of interest. It was previously used to study Arctic-midlatitude teleconnections by Kretschmer et al. (2016,105

2018). Essentially, given a set of indices such as the ones described above, a CEN is constructed following three steps: 1)

identify potential causal drivers of each index (condition selection), 2) identify the true causal drivers using these potential

causal drivers as a “conditioning set”, and 3) quantify the strength of the causal relationship. We will illustrate the algorithm

using January stratospheric polar vortex strength (SPVJan) as an example. Readers are refered to Kretschmer et al. (2016) and

Runge et al. (2019) for a full description of the CEN algorithm.110

In the first step, we find all possible drivers for SPVJan. A preliminary list of drivers is generated by calculating the Pearson

correlation r between SPVJan and all other indices (including SPV itself) in the preceding months, up to a maximum lag

of 2 months (i.e., November and December for this example). Indices with significant correlations are retained, where an

optimal significance level is determined using the Akaike information criterion (AIC). The AIC results in the selection of a

20% significance level for the case of SPVJan (note that the AIC allows for these rather liberal significance levels in the first115

step, but more stringent levels are used later in the second step). This leaves us with the following possible drivers: V*T*Dec,

URALSDec, SPVDec and URALSNov. This list is sorted in descending order according to the absolute value of the Pearson

correlation coefficient. Next, we test for the conditional independence of all four possible drivers with SPVJan by calculating

partial correlations, controlling for the effect of each driver one at a time starting from the top of the sorted list. If a driver
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passes the partial correlation test, it is retained in the list of possible drivers; if it does not pass, it is removed from the list,120

meaning it is no longer in the conditioning set. For example, the partial correlation between URALSNov and SPVJan controlling

for V*T*Dec is, following the notation of Kretschmer et al. (2016):

ρ(URALSNov, SPVJan | V*T*Dec) =−0.274, (1)

where

ρ(x, y | z) = rxy − rxzryz√
1− r2xz

√
1− r2yz

(2)125

The partial correlation is significant at the 20% level (p-value = 0.105), therefore, URALSNov is retained as a possible driver of

SPVJan. After going through the entire list, SPVDec is eliminated, leaving us with three possible drivers of SPVJan: URALSNov,

URALSDec and V*T*Dec.

In the second step, we retest all possible links (for all indices in the preceding two months, including those rejected in the

first step) with SPVJan, controlling for the combined effect of the possible drivers (conditioning set) identified in the first step.130

This step helps account for false positives when working with highly interdependent time series (as is often the case with

climate indices), and enhances detection power (Runge et al., 2019). Specifically, the test for SPVJan is:

ρ(X, SPVJan | URALSNov, URALSDec, V*T*Dec), (3)

where X represents all indices of ICE, THF, URALS, V*T*, SPV and NAO in both November and December. Any X producing

a significant partial correlation in Eq. 3 is regarded as a causal driver of SPVJan. The conditioning set excludes X when X is135

being tested, for example:

ρ(V*T*Dec, SPVJan | URALSNov, URALSDec) =−0.453 (4)

which is significant at the 5% level (p-value=0.00629). Testing all X leaves us with three causal drivers of SPVJan : URALSNov,

URALSDec and V*T*Dec. Note that these are the same causal drivers identified in the first step, meaning that no new drivers are

reintroduced in the second step in this case. As an additional refinement, the Hochberg-Benjamini false discovery rate (FDR)140

control may be used to account for the multiple testing problem (Kretschmer et al., 2018; Runge et al., 2019).

In the third step, we use a multiple regression equation to quantify the influence of causal drivers and simultaneous influences

on SPVJan:

SPVs
Jan = β0 +β1 ∗URALSs

Nov +β2 ∗URALSs
Dec +β3 ∗V*T*s

Dec +β4 ∗Ys
Jan (5)

where the β values are regression coefficients for the standardized regressors URALSs
Nov, URALSs

Dec, V*T*s
Dec, Ys

Jan, and the145

superscript s indicates a standardized index. The inclusion of Y allows us to check for significant simultaneous relationships

between all indices. By standardizing, the interpretation is that changing a certain regressor by one standard deviation changes

SPVJan by β standard deviations, provided that all other variables are held fixed.
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A two-tailed t-test is used for significance testing. For the AIC in step one, a significance set of (5%, 10%, 20%) is used.

There are no substantial changes to the main messages when using other significance sets (Fig. S4). A significance level of 5%150

is used in the second and third steps.

The above example illustrates how the CEN algorithm identifies and evaluates causal drivers of SPVJan. In order to construct

the complete monthly and half-monthly CENs, we identify causal drivers for all our chosen indices (ICE, THF, URALS, V*T*,

SPV and NAO) during the extended winter season (NDJFM). September to December (January to March) indices are taken

over the period of 1979 to 2017 (1980 to 2018). All Pearson correlations and partial correlations (first and second steps) and155

the multiple regressions (third step) are thus based on indices with a sample size of 39 winter seasons. A similar procedure is

used for the pentad CEN, but with a maximum lag of two pentads to capture processes occurring on synoptic time scales.

3 Results

This section describes results from our exploration of the ICE-NAO stratospheric pathway using the CEN framework (sec-

tion 3.1), including an assessment of its strength (section 3.2) and intermittency (section 3.3) in the observational record. We160

also explore processes occurring on shorter timescales, and discuss how these effects may reinforce or interrupt the strato-

spheric pathway (section 3.4).

3.1 Seasonally evolving ICE-NAO pathway

We begin by examining pathways from Barents-Kara sea ice to the NAO proposed by previous studies. The CEN analysis

follows the approach of Kretschmer et al. (2016), but keeps individual months separate rather than considering the DJF period165

as a whole. This allows us to capture the seasonal evolution of pathways through the cold season.

The CEN (Fig. 3) shows evidence for a stratospheric pathway leading from autumn sea ice perturbations in the Barents-Kara

Seas to a late winter NAO response. This pathway appears using both monthly (Fig. 3a) and half-monthly (Fig. 3b) averages

as input to the CEN, albeit with slight differences in timing. The half-monthly CEN in Fig. 3b is displayed such that individual

half-monthly linkages (shown in Fig. S2) are aggregated into full months to allow for direct comparison to Fig. 3a.170

Coloured arrows in the network diagrams highlight the ICE-NAO stratospheric pathway, where red indicates positive rela-

tionships and blue indicates negative relationships (the exact values correspond to the beta coefficients in the multiple regression

equation, e.g., Eq. 5). Grey arrows show other linkages that are statistically significant, including some tropospheric pathways

that also contribute to the ICE-NAO relationship. A figure including all the identified causal linkages and autocorrelations

appears in the supplementary material (Fig. S1). For the monthly CEN, the stratospheric pathway is175

↓ ICEOct⇒↑ URALSDec⇒↑ V*T*Dec/Jan⇒↓ SPVJan/Feb⇒↓ NAOFeb/Mar

where we use the notation A⇒ B to indicate index A as a “driver” of index B, and ↓ and ↑ to represent a decrease or increase,

respectively, of the indices. The pathway is described for the case of a negative sea ice perturbation leading to a negative NAO.
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For the half-monthly CEN, the pathway may be summarized as:

↓ ICEOct/Nov⇒↑ THFNov⇒↑ URALSDec⇒↑ V*T*Dec/Jan⇒↓ SPVDec/Jan/Feb⇒↓ NAOFeb/Mar180

Using the finer half-monthly resolution in the CEN prevents shorter timescale processes (such as linkages through THF) from

being averaged out.

The CEN results illustrate how the stratospheric pathway unfolds through the winter season. The timing is in general agree-

ment with previous observational studies, suggesting that the involvement of the stratosphere introduces a few months’ delay

in the NAO response to Barents-Kara sea ice variability (Kim et al., 2014; García-Serrano et al., 2015; Jaiser et al., 2016; King185

et al., 2016; Kretschmer et al., 2016; Yang et al., 2016). The causal linkages are consistent with the idea that Arctic sea ice

reduction enhances upward wave activity through constructive interference between forced Rossby waves and the climatolog-

ical stationary waves (Garfinkel et al., 2010; Smith et al., 2010). The resulting increase in wave-breaking in the stratosphere

decelerates the polar vortex (Charney and Drazin, 1961), which in turn leads to tropospheric circulation anomalies and surface

impacts via downward coupling (Baldwin and Dunkerton, 1999). Some features of the pathway, such as the relatively long190

lagged relationship of autumn sea ice to December Urals sea level pressure, are not well understood, an issue that will be

further discussed in section 4.

We will focus on the stratospheric pathway from ICEOct to NAOFeb in the monthly CEN, as this timing yields the strongest

negative ICE-NAO correlation (Fig. S5). The correlation between ICENov and NAOJan is equally strong, but the causal pathway

goes through the troposphere only (Fig. S1b) and is not a focus of this study. Results from the half-monthly CEN yield195

consistent messages, and will be brought into the discussion where relevant.

3.2 Strength of the pathway

An interesting question is how to assess the strength of the ICE-NAO stratospheric pathway as a whole, and what insights may

be gained by such an assessment.

The CEN analysis yields a set of beta coefficients (colours of the arrows in Fig. 3) that describe the strength of individual200

causal linkages in our network. Following Runge et al. (2015), the total causal effect of the stratospheric pathway from ICEOct

to NAOFeb may be calculated by summing over the product of beta coefficients along the two relevant chains of linkages from

Fig. 3a:

↓ ICEOct
−0.326
====⇒↑ URALSDec

0.390
===⇒↑ V*T*Dec

−0.368
====⇒↓ SPVJan

0.426
===⇒↓ NAOFeb (0.0199)

205

↓ ICEOct
−0.326
====⇒↑ URALSDec

−0.449
====⇒↓ SPVJan

0.426
===⇒↓ NAOFeb (0.0624)

The total causal effect (0.0199 + 0.0624 = 0.0823) tells us that a one-standard deviation perturbation in ICEOct yields a like-

signed response of 8% of one-standard deviation in February NAO (Runge et al., 2015).

A comparison between the stratospheric and tropospheric ICE-NAO pathways shows that the latter are generally stronger

in the CEN framework. Table 1 summarizes the causal effect of the three full pathways (Fig. S6). Our main stratospheric210

pathway of interest from ICEOct to NAOFeb is comparable in strength to the pathway from ICEOct to NAOMar (0.0823 and
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0.0872). The latter has both stratospheric and tropospheric chains, accounting for 30% (0.0258/(0.0614+0.0258)) and 70%

(0.0614/(0.0614+0.0258)) of the total causal effect, respectively. The ↓ ICEJan⇒↓ NAOMar tropospheric pathway is the strongest

in terms of the total causal effect (0.137), primarily because it involves fewer linkages. Overall, the larger causal effect of the

tropospheric pathways is perhaps unsurprising, given that the stratospheric pathway may be disrupted by internal variability215

(noise) from both the troposphere and the stratosphere.

An alternative view of the pathway strength comes from considering the amount of February NAO variance explained by the

various linkages along the pathway using a multiple linear regression framework. This gives a sense of the relative importance

of each linkage, and how information passes through the pathway. The full pathway can be represented by the following

regression equation:220

NAOFeb = κ0 +κ1 · ICEOct +κ2 ·URALSDec +κ3 ·V*T*Dec +κ4 ·SPVJan (6)

where κ0 is a constant and κ1, κ2, κ3, κ4 are the regression coefficients for the standardized regressors ICEOct, URALSDec,

V*T*Dec and SPVJan, respectively. The importance of the regressors may be quantified in different ways, for example:

a) cumulative NAOFeb variance explained as regressors are included, calculated by successively adding terms in Eq. 6 from

left to right (orange bars in Fig. 4), e.g. for V*T*Dec:225

NAOFeb = κa0 +κa1 · ICEOct +κa2 ·URALSDec +κa3 ·V*T*Dec (7)

b) NAOFeb variance explained by individual regressors, calculated via a simple bivariate regression between each regressor

and NAOFeb (blue bars), e.g., for V*T*Dec:

NAOFeb = κb0 +κb3 ·V*T*Dec (8)

c) reduction in NAOFeb variance explained when individual regressors are removed, calculated by removing the term from230

the regression equation (green bars), e.g., for V*T*Dec:

NAOFeb = κc0 +κc1 · ICEOct +κc2 ·URALSDec +κc4 ·SPVJan (9)

Both the blue and green bars in Fig. 4 provide a measure of the contribution of individual regressors, while comparison of these

with the orange bars gives some indication of whether information from a given regressor is redundant.

The stratospheric pathway explains 26% of the variance in the February NAO (Fig. 4). The cumulative variance explained235

(orange bars) increases from 11% to 26% as regressors are added (moving from left to right), indicating that each linkage in the

pathway adds some useful information. This result is consistent with other estimates from observations, but likely represents

an upper limit as the Barents-Kara sea ice and NAO relationship is shown to be particularly strong during the current reanalysis

period compared to the rest of the twentieth century (Kolstad and Screen, 2019).

While successive linkages in the pathway add explanatory power, they are not independent. Comparing the orange and240

blue bars, we see that the increase of cumulative explained variance moving from left to right is much less than the explained
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variance from each individual regressor. For example, while SPVJan explains the most NAO variance of any individual regressor

(18%), its removal from the full regression does not have much effect (3% reduction in explained variance), However, we know

that variability in upward wave activity and variability in the polar vortex are closely related, so in a sense, it is not physically

meaningful to consider one in isolation of the other. Removing both V*T*Dec and SPVJan from the regression equation results245

in a 8% reduction (not shown) in explained variance, which is perhaps a more representative estimate of the stratosphere’s

contribution. Sea ice appears to impart information that cannot be explained by the other three regressors (6% reduction in

explained NAO variance when removed), but this may also be a result of atmosphere-ice feedbacks explored in section 3.4.

Overall, these analyses show a role for the stratosphere in connecting autumn ICE to late winter NAO, but one that accounts

for a modest fraction of the total NAO variance. In the next section, we will further explore reasons for this relatively weak250

ICE-NAO covariability.

3.3 Intermittency of the pathway

The ICE-NAO stratospheric pathway identified by the CEN comprises statistical relationships inferred from a relatively short

observational record of only 39 winters. It is meaningful to ask how robust the pathway is, that is, how systematically the

relevant statistical relationships occur in the record. To assess the robustness, we perform a bootstrapping test, where bootstrap255

samples are created by randomly selecting 39 winters with replacement from the entire reanalysis period. The CEN of each

sample is then constructed. This procedure is repeated 10,000 times.

The bootstrapping results (Fig. 5) indicate that the stratospheric pathway is intermittent. Percentages show the occurrence

rate of individual segments in the pathway within the bootstrap sample population (see Fig. S7 for occurrence rates of other

statistically significant linkages). By this measure, it is clear that individual segments have varying levels of intermittency,260

ranging from 46% for the segment ↓ SPVJan⇒↓ NAOFeb to 84% for the segment ↑ V*T*Dec⇒↓ SPVJan. The full stratospheric

pathway (the sequence of all four segments) is detected in only 16% of the samples, suggesting that it does not occur system-

atically during every winter season. An alternative three-segment pathway ↓ ICEOct⇒↑ URALSDec⇒↓ SPVJan⇒↓ NAOFeb is

slightly less intermittent (22% occurrence rate), but its physical interpretation is unclear given that there is no linkage through

V*T* to the polar vortex. These intermittency results are a likely reason why detection of the pathway is sensitive to the choice265

of observational period (Fig. 1), and suggests that it may be favoured in certain background states (Overland et al., 2016; Smith

et al., 2017).

The existence of intermittency in the stratospheric pathway is consistent with previous suggestions that internal variability

modulates the influence of Arctic sea ice on the midlatitude circulation (Screen et al., 2014; Overland et al., 2016; Shepherd,

2016). An examination of where in the pathway the intermittency is strongest provides clues to its origins. For example,270

the upward coupling from sea ice to the stratosphere includes the segments ↓ ICEOct⇒↑ URALSDec and ↑ URALSDec⇒↑
V*T*Dec, whose occurrence rates are 50% and 74%, respectively. The occurrence of these two linkages together is seen in about

41% out of 10,000 bootstrap samples, meaning that most of the time when the ↓ ICEOct⇒↑ URALSDec linkage is detected,

the subsequent linkage to V*T*Dec follows. Conversely, when the ↑ URALSDec⇒↑ V*T*Dec linkage is detected, it is preceded

by the ↓ ICEOct⇒↑ URALSDec linkage in only about half the cases. An obvious source of the intermittency in both segments275
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(individually and in terms of their "combined" occurrence rate) is regional SLP variability over the Urals related to atmospheric

internal variability. Similarly, the downward coupling from SPV to NAO is vulnerable to both stratospheric and tropospheric

internal variability, leading to a relatively low occurrence rate of 46%. This is consistent with the idea that not all polar vortex

weakening events affect the tropospheric circulation (Karpechko et al., 2017). Most robust is the ↑ V*T*Dec⇒↓ SPVJan linkage

(84%), which arises from well-known physical processes related to upward planetary wave flux and polar vortex weakening.280

Sea ice variability can also contribute to intermittency in the pathway through higher frequency synoptic processes, a topic we

will explore in section 3.4.

The strength of the segments in the pathway also exhibits large variability among the bootstrap samples. This can be seen in

histograms of the beta coefficients for all segments in the pathway (Fig. 5). While the beta coefficients exhibit ranges of up to

0.5 for any given segment, the sign is always the same, indicating that the sign of the relationship between variables is robust.285

The observed beta coefficients (black lines) for the reanalysis period itself fall within the spread of the distributions. Note that

the distributions are composed only of samples in which the linkage of interest is detected by the CEN algorithm (i.e., a beta

coefficient can be calculated from Eq. 5), which is why some of the distributions appear skewed. This is particularly true for

the linkages that are least robust (the first and last segments, for which the observed beta coefficients are towards the weaker

end of the distributions). Overall, these results indicate that even when the stratospheric pathway is active, there is substantial290

interannual variability in how it manifests.

3.4 Synoptic linkages and interactions across times scales

In the monthly CEN analysis, there are simultaneous relationships between Barents-Kara sea ice, Urals sea level pressure and

the NAO (Fig. 6) that point to linkages through shorter timescale synoptic processes. For example, the NAO shows significant

negative simultaneous relationships with Barents-Kara sea ice (positive NAO with reduced ice) in December and March,295

reflecting a well-known pattern of atmospheric forcing on sea ice via anomalies in surface heat fluxes driven by wind and

temperature variability (Fang and Wallace, 1994; Deser et al., 2000). Additional simultaneous relationships between sea ice,

turbulent heat flux, and Urals sea level pressure are consistent with synoptic features related to cyclones (Boisvert et al., 2016;

Wickström et al., 2019) and moist intrusions (Woods et al., 2013; Park et al., 2015b) entering the Arctic. Moist intrusions in

particular appear to occur preferentially during the positive phase of the NAO (Luo et al., 2017) and have been shown to lead to300

enhanced downward longwave radiation, surface warming, and sea ice reductions (Gong and Luo, 2017; Chen et al., 2018). We

explore the possible influences of such events within the CEN framework by using higher frequency data to capture the relevant

synoptic processes. The input data are pentad (5-day) means of Barents-Kara sea ice (ICE), Urals sea level pressure (URALS)

and downward longwave radiation (IR). The maximum lag is set to two pentads (10 days) to isolate the synoptic timescale. The

results are summarized in Fig. 7 by summing the number of times a linkage appears in each month from Fig. S8. The maximum305

count for a given linkage in a month is 12 (six pentads in a month and up to 2-pentad lag considered). Autocorrelation is strong

on these short time scales, and thus is not used to reject causal linkages in the partial correlation tests.

The CEN detects synoptic-scale influences from the Arctic to the midlatitudes that reinforce linkages found in the monthly

analysis. A linkage from ICE to URALS appears regularly throughout the winter season (Fig. 7a), both indirectly through
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IR and as a direct connection, and in the correct sense to contribute to the ↓ ICEOct/Nov⇒ ↑ URALSDec linkage shown in the310

monthly and half-monthly CENs (Fig. 3). The ↓ ICE⇒ ↑ IR linkage (blue bars, first histogram in Fig. 7a) follows from the

idea that sea ice retreat exposes open ocean, which is a local evaporative source for water vapour, leading to a moister, optically

thicker atmosphere (Kim and Kim, 2017; Zhong et al., 2018). The linkage ↑ IR⇒ ↑ URALS (red bars, second histogram in

Fig. 7a) is consistent with a suggested mechanism whereby the resulting surface warming weakens zonal wind locally and

promotes blocking over the Urals (Luo et al., 2016). These synoptic processes, if habitually occurring, can imprint onto longer315

timescales, but may also produce interference effects, as seen by the appearance of opposite-signed causal relationships from

those described above from time to time through the winter season.

At the same time, causal effects from the midlatitudes to the Arctic are also detected, consistent with an influence from

moisture transport by cyclones or synoptic moist intrusions (Fig. 7b). This is represented by the ↑ URALS⇒↑ IR linkage

(most frequently observed in October, January and February) and the ↑ IR⇒ ↓ ICE linkage (most frequently observed in320

November, January and February), which reflect the transport of moist air into the dry Arctic atmosphere by the large-scale

flow or by cyclones tracking into the Barents. These midlatitude-to-Arctic linkages have a uniform sign (all red bars in first

histogram, all blue bars in second histogram), suggesting that the effect of the relevant processes is rather systematic despite

exhibiting month-to-month variability. We also detect a direct linkage from the Urals to Barents-Kara sea ice that can be of

either sign. In the slightly more frequent negative sense (↑ URALS⇒↓ ICE), it can be interpreted as a direct effect of warm325

air advection and mechanical forcing of the ice cover from enhanced southerlies over the Barents-Kara region (Sorokina et al.,

2016; McCusker et al., 2016). Together, these synoptic linkages show how Urals SLP variability, which has a large internally

generated component, can reinforce or interrupt the ICE-NAO stratospheric pathway.

Given that our understanding of Arctic-midlatitude teleconnections must account for the combined influences of such link-

ages across regions and time scales, it is no surprise that we have yet to identify a definitive set of mechanisms. Implications330

of such scale interactions and how they relate to viewpoints presented in previous studies are further discussed in section 4.

4 Discussion

This study quantifies the robustness of atmospheric teleconnections between the Arctic and midlatitudes, documenting their

high level of intermittency in the observational record. In a bootstrapping test, the full stratospheric pathway emerges in only

16% of the sample populations derived from the observations (Fig. 5). The existence of intermittency is likely why studies335

using various analytical approaches and time periods find teleconnections that differ in pattern, timing, robustness and apparent

mechanisms (Overland et al., 2016; Francis, 2017; Cohen et al., 2018; Overland and Wang, 2018; Cohen et al., 2019). In this

section we discuss some of the factors that may contribute to the intermittency. Of course, anything that influences polar vortex

strength is a potential source of intermittency (including internal variability, anthropogenic forcing, tropical variability, etc.),

but we focus the discussion on factors that are most directly related to our CEN results.340
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To be more concrete, the intermittency of the stratospheric pathway stems from the fact that it can be reinforced or interrupted

by other processes. For example, reinforcement can come from tropospheric pathways also detected by the CEN algorithm (see

Fig. S1a and S1b):

1) ↓ ICEOct⇒↑ THFNov⇒↑ URALSJan⇒↑ URALSFeb⇒↓ NAOMar

2) ↓ ICEJan⇒↑ URALSFeb⇒↓ NAOMar345

3) ↓ ICENov⇒↓ NAOJan

4) ↓ ICEJan⇒↓ NAOMar

All these tropospheric and stratospheric pathways lead from the reduction of sea ice to a negative NAO, although they differ

slightly in timing. The existence of the tropospheric pathway is supported by sea ice and surface heating perturbation experi-

ments, where negative NAO/AO responses are simulated even when the stratospheric pathway is suppressed (Wu and Smith,350

2016) or not well represented (Sun et al., 2015). However, the NAO/AO response is stronger when the stratospheric pathway

is active than when it emerges through the tropospheric pathway alone (Nakamura et al., 2016; Zhang et al., 2018a, b).

Another example of a factor that may contribute to intermittency is the El Niño Southern Oscillation (ENSO). El Niño

winters are associated with a deepened Aleutian low, which enhances upward propagating waves, weakens the polar vortex,

and favours negative NAO conditions (Domeisen et al., 2019). As such, the stratospheric pathway may be reinforced if an El355

Niño develops following a low autumn ice season (both are associated with a weakened polar vortex, e.g., winter 1986/87 or

2009/10, Fig. 8); if a La Niña develops instead, the stratospheric pathway may be weakened (e.g., winter 2007/08 or 2010/11,

Fig. 8). However, the relationship between wintertime ENSO and the NAO is rather weak (Brönnimann, 2007; Domeisen et al.,

2019), consistent with Fig. 8, which shows high and low Nino3.4 values in both the lower (negative NAO) and upper (positive

NAO) quadrants of the scatterplot. Given that we find no systematic phasing of ENSO with Barents-Kara sea ice variability360

during the reanalysis period, it is likely that ENSO contributes to intermittency in the ICE-NAO pathway.

In terms of reinforcing the stratospheric pathway, blocking over the Urals region seems to play a particularly important, but

not fully understood, role. Enhanced Urals sea level pressure is closely linked to the Scandinavian pattern in Euro-Atlantic

climate variability and is related, but not directly equivalent, to the occurrence of atmospheric blocking. The Urals linkage

appears in the monthly CEN (↓ ICEOct⇒↑ URALSDec⇒↑ V*T*Dec/Jan in Fig. 3a). The latter segment from Urals sea level365

pressure to poleward eddy heat flux is fairly systematic (appears in 74% of the bootstrap samples in Fig. 5) and is grounded

in the idea that tropospheric precursors over the Urals lead polar vortex weakening (Cohen and Jones, 2011; Cohen et al.,

2014a). However, the first segment from Barents-Kara sea ice to Urals blocking is more intermittent (appears in 50% of the

bootstrap samples), and whether it is in fact a causal linkage has been questioned by a recent modelling study using ensemble

nudging experiments (Peings, 2019). Interestingly, not only Barents-Kara sea ice (Fig. 5e in King et al. (2016)) but also ENSO370

(Figs 5e and 5f in King et al. (2018)) has been linked to the Scandinavian pattern, which suggests another avenue for ENSO to

contribute to intermittency.
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The ICE-URALS relationship highlights the complexity of interactions between atmospheric internal variability and Barents-

Kara sea ice over a range of time scales. On synoptic scales, the pentad CEN (Fig. 7) shows linkages from reduced sea ice to

enhanced Urals sea level pressure, but also linkages in the opposite direction (↑ URALS⇒↑ IR⇒↓ ICE), with Urals sea level375

pressure altering ice cover via changes in poleward moisture transport that have been tied to synoptic moist intrusions (Woods

et al., 2013; Luo et al., 2016; Gong and Luo, 2017; Lee et al., 2017). This chain of linkages can act as a positive feedback

on sea ice perturbations, but also provides a pathway by which blocking variability (internal to the atmosphere) may interrupt

the expected troposphere-stratosphere coupling in response to autumn sea ice (for example, imagine a case where atmospheric

conditions inhibit Urals blocking after a low-ice autumn). Furthermore, enhanced Urals blocking and moist intrusions can380

lead to highly transient perturbations in turbulent heat flux over the Barents-Kara Seas. Initially, turbulent heat loss from the

ocean is suppressed near the sea ice edge where moist intrusions act to weaken temperature and moisture contrasts between the

atmosphere and ocean (Woods et al., 2013; Gong and Luo, 2017). But the heat flux anomaly can become positive (enhanced

heat loss from the ocean) after the sea ice melts back in response to the moist intrusion, one to two weeks later (Woods and

Caballero, 2016; Lee et al., 2017). On longer (monthly to seasonal) time scales, there is evidence that atmospheric variability385

is the main driver of heat flux variability over the Barents-Kara Seas both in observations and models (Sorokina et al., 2016;

Blackport et al., 2019). This perhaps explains why turbulent heat flux does not show up in the monthly CEN (Fig. 3a), but

does in the half-monthly CEN (Fig. 3b). Across synoptic to seasonal timescales, it appears that sea ice is best thought of as an

intermediary rather than a true boundary forcing, as is implied by prescribed sea ice (e.g., AGCM) experiments.

One outstanding issue involves the mechanisms that have been proposed to explain the ↓ ICEOct⇒↑ URALSDec linkage,390

which act on time scales that are inconsistent with the 2-month delay found in observations. For example, reduced sea ice may

allow more heating of the atmosphere by the ocean to produce a Rossby wave train with an anomalous high over the Urals

region (Honda et al., 2009), but this would be expected to manifest within a matter of days to a week. Alternatively, reduced

ice may reduce local baroclinicity, which discourages cyclones from tracking into the Barents-Kara Seas and produces an

anomalous high due to the relative absence of low-pressure systems (Inoue et al., 2012). This mechanism could introduce some395

delay between the ice perturbation and sea level pressure perturbation, but two months persistence of such a pattern is unlikely.

Finally, reduced ice may increase atmospheric moisture content, leading to increased Eurasian snow cover, diabatic cooling and

anomalously high sea level pressure over the continent (Liu et al., 2012; Cohen et al., 2014a; Garcia-Serrano and Frankignoul,

2014). Though this would plausibly lead to persistence on the required time scale, recent observational and modelling studies

do not support a role for Eurasian snow in this teleconnection pathway (Kretschmer et al., 2016; Peings et al., 2017; Henderson400

et al., 2018), and we chose not to include it in our main analyses. Note that these mechanisms may still be responsible for

contemporaneous forcing of the winter atmospheric circulation by winter sea ice variability, which has been suggested to be a

stronger influence than the forcing by autumn sea ice variability (Blackport and Screen, 2019).

Lastly, our experience with the CEN offers some cautionary notes about its application to climate problems. The CEN

approach was designed for hypothesis testing - that is, to test causal pathways that are thought or known to exist, either from405

theory or existing evidence. It should not be used as an exploratory data analysis tool to search for causal pathways because the

statistics behind the CEN do not know whether relationships are physically meaningful. One specific problem we encountered
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is that the algorithm may drop an existing causal linkage if a new variable is added because of changes in the results of the

partial correlations tests (see section 2.2). For example, when we introduce downward longwave radiation into the monthly

CEN, its strong correlation with sea ice overrides the ↓ ICEJan⇒↑ URALSFeb linkage (see Fig. S9 compared to Fig. S1a).410

Since many climate variables are highly correlated, but not necessarily directly related via specific processes, the CEN’s ability

to identify physically meaningful linkages depends critically on the careful selection of input variables.

5 Concluding remarks

This study uses the Causal Effect Networks (CEN) framework to quantify the robustness of the stratospheric pathway between

late autumn Barents-Kara sea ice and the February NAO, documenting its high level of intermittency in the observational415

record. The pathway has been relatively “active” over the satellite period, explaining approximately 26% of the interannual

variability in the February NAO. However, this result is highly sensitive to which winters are included in the analysis. Results

from a bootstrapping test show that the full stratospheric pathway appears in only 16% of the sample populations derived from

the observations. The result reflects the strong internal variability of the midlatitude atmosphere and the likelihood that Arctic-

midlatitude teleconnections may require certain background flow conditions. On synoptic time scales, we identify two-way420

interactions between Barents-Kara sea ice and the midlatitude circulation suggesting a role for atmospheric blocking over the

Urals region and moist intrusions, both of which can reduce Barents-Kara sea ice. These synoptic processes can reinforce or

interrupt the stratospheric pathway, contributing to intermittency. Finally, we cannot rule out that the causal linkages found on

longer time scales may be artefacts of averaging over the synoptic processes, or even the result of entirely different mechanisms

(Smith et al., 2017; Hell et al., 2019).425

Coupled interactions between sea ice and the midlatitude circulation involve complicated lead-lag feedbacks over a range of

time scales. Applying causal inference frameworks such as the CEN can help clarify some of the important physical processes

at play, but in the end, models are required to improve our understanding. A complication is that the fidelity of climate models

in representing the relevant processes is difficult to ascertain (King et al., 2016; Smith et al., 2017; Mori et al., 2019), especially

those processes at fine spatial and temporal scales and their interactions across scales. But ways forward are indicated by this430

study, along with others (McCusker et al., 2016; Sun et al., 2016; Peings, 2019), that provide insight into which linkages are

most robust, and which are subject to sampling issues within the relatively short observational record.

Code availability. The codes to construct the CEN and figures in this study are available online at: https://github.com/petersiew/CEN

Data availability. ERA-Interim data are provided by European Centre for Medium-Range Weather Forecasts (ECMWF) online at :https:

//www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim435
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Figure 1. Lead-lag correlations (shading) between November Barents-Kara sea ice index (sign reversed) and polar cap height (70◦N pole-

ward) over the October-to-February cold season using ERA-Interim reanalysis for two periods: (a) 1979/80-2010/11 and (b) 1979/80-

2017/18. Hatching indicates non-significant values at the 5% level using a two-tailed t-test. Linear trends and the seasonal cycle have been

removed.
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Figure 2. ERA-Interim (1979-2018) DJF climatologies (shading) of key variables and regions (black boxes) for computing area-averaged

indices: (a) Sea ice area fraction, 70◦-80◦ N, 30◦-105◦ E, (b) Turbulent heat flux, 70◦-80◦ N, 30◦-105◦ E, (c) Stratospheric polar vortex,

which is defined by 10-100 hPa geopotential height, 65◦-90◦ N, (d) Urals sea level pressure, 45◦-70◦ N, 40◦-85◦ E, (e) Downward longwave

radiation, 70◦-90◦ N, (f) 100 hPa poleward eddy heat flux, 45◦-75◦ N. For (b), turbulent heat flux from the ocean to the atmosphere is defined

as positive. See section 2.1 for details.
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Figure 3. Seasonal evolution of the stratospheric pathway (indicated by coloured arrows) detected by the (a) monthly and (b) half-monthly

CENs. Arrows indicate causal linkages; vertical lines indicate auto-correlation; horizontal bars indicate simultaneous relationships; colours

show the sign and strength of the linkages as given by the CEN beta coefficients (see section 2.2). The grey background shows other

significant linkages (arrows) and autocorrelations (vertical lines), but does not include simultaneous relationships. The half-monthly CEN in

(b) has been aggregated into full months for ease of comparison with (a). See Fig. S2 for unaggregated version.
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Figure 4. Explanatory power of the stratospheric pathway for the February NAO assessed via multiple linear regression. Orange bars show

the cumulative variance explained when including each regressor in succession from left to right; blue bars show variance explained by the

individual regressor; green bars show the reduction in total variance explained when removing that regressor. See section 3.2 for details.
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Figure 5. Results of a bootstrapping test to assess the robustness of causal linkages within the stratospheric pathway. Percentages above

arrows show the occurrence rate of each linkage out of 10,000 bootstrap samples. Colours of the arrows (identical to Fig. 3) and the black

lines show observed beta coefficients for each linkage for the reanalysis period. Histograms above show the corresponding distribution of

beta coefficients (absolute value) in the bootstrap samples. The histogram for the ↑ URALSDec ⇒↓ SPVJan linkage is not shown. Note that

the distributions are composed only of samples in which the linkage is detected.
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Figure 6. Simultaneous relationships between monthly indices in November (N), December (D), January (J), February (F) and March (M).

Colours indicate the sign and strength of the relationship as given by the CEN beta coefficients (see section 2.2).
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Figure 7. Results of the pentad CEN analysis assessing relationships between downward longwave radiation (IR), Barents-Kara sea ice (ICE)

and Urals sea level pressure (URALS) aggregated into months (October, November, December, January, February and March from left to

right). The height of each bar is the number of counts. (a) Linkages from the Arctic to the midlatitudes. (b) Linkages from the midlatitudes

to the Arctic. Red (blue) colours denote positive (negative) relationships. See Fig. S8 for unaggregated version.
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Figure 8. Scatter plots between February NAO and late fall (mean of October and November) Barents-Kara sea ice index for the reanalysis

period. Shading indicates the DJF Nino3.4 index. Red (blue) denotes El Niño (La Niña) events.
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Table 1. A summary of the casual effect of all ICE-NAO pathways. The ↓ ICEOct ⇒↓ NAOMar pathway consists of both tropospheric and

stratospheric branches.

Pathway Tropospehric Stratospheric Total

↓ ICEOct ⇒↓ NAOFeb N/A 0.0823 0.0823

↓ ICEOct ⇒↓ NAOMar 0.0614 (70%) 0.0258 (30%) 0.0872

↓ ICEJan ⇒↓ NAOMar 0.137 N/A 0.137

27


