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Abstract. In the last decades, extremely hot summers (hereafter extreme summers) have challenged societies worldwide 

through their adverse ecological, economic and public health effects. In this study, extreme summers are identified at all grid 

points in the Northern Hemisphere in the upper tail of the July–August (JJA) seasonal mean 2-meter temperature (T2m) 

distribution, separately in ERA-Interim reanalyses and in 700 simulated years with the Community Earth System Model 10 

(CESM) large ensemble for present-day climate conditions. A novel approach is introduced to characterize the substructure of 

extreme summers, i.e., to elucidate whether an extreme summer is mainly the result of the warmest days being anomalously 

hot, or of the coldest days being anomalously mild, or of a general shift towards warmer temperatures on all days of the season. 

Such a statistical characterization can be obtained from considering so-called rank day anomalies for each extreme summer, 

that is, by sorting the 92 daily mean T2m values of an extreme summer and by calculating, for every rank, the deviation from 15 

the climatological mean rank value of T2m.    

 

Applying this method in the entire Northern Hemisphere reveals spatially strongly varying extreme summer substructures, 

which agree remarkably well in the reanalysis and climate model data sets. For example, in eastern India the hottest 30 days 

of an extreme summer contribute more than 65% to the total extreme summer T2m anomaly, while the colder days are close 20 

to climatology. In the high Arctic, however, extreme summers occur when the coldest 30 days are substantially warmer than 

climatology. Furthermore, in roughly half of the Northern Hemisphere land area, the coldest third of summer days contribute 

more to extreme summers than the hottest third, which highlights that milder than normal coldest summer days are a key 

ingredient of many extreme summers. In certain regions, e.g., over western Europe and western Russia, the substructure of 

different extreme summers shows large variability and no common characteristic substructure emerges. Furthermore, we show 25 

that the typical extreme summer substructure in a certain region is directly related to the region’s overall T2m rank day 

variability pattern. This indicates that in regions where the warmest summer days vary particularly strongly from one year to 

the other, these warmest days are also particularly anomalous in extreme summers (and analogously for regions where 

variability is largest for the coldest days). Finally, for three selected regions, thermodynamic and dynamical causes of extreme 

summer substructures are briefly discussed, indicating that, for instance, the onset of monsoons, physical boundaries like the 30 

sea ice edge, or the frequency of occurrence of Rossby wave breaking, strongly determine the substructure of extreme summers 

in certain regions. 
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1 Introduction 

During the last decades, numerous high-impact hot temperature extremes occurred on approximately seasonal time scales, 

including the extremely hot European summer in 2003 (Fink et al., 2004; Schär and Jendritzky, 2004), the 2010 Russian heat 35 

wave (Barriopedro et al., 2011), the hot and dry summer 2015 in Europe (Dong et al., 2016; Hoy et al., 2017; Orth et al., 2016), 

the hot and humid summer 2015 in western India and Pakistan (Wehner et al., 2016), and the concurrent heat waves across the 

Northern Hemisphere in the summer 2018 (Vogel et al., 2019). It is well known that individual heat waves on time scales of 

up to a few weeks cause societal challenges, for example serious public health issues (e.g., Fouillet et al., 2006). However, the 

large socio-economic and ecological impacts of the seasonal events listed above (e.g., Ciais et al., 2005; Buras et al., 2019) 40 

illustrated that many economic sectors such as agriculture, tourism and re-insurance are particularly susceptible to temperature 

extremes on seasonal (as opposed to synoptic) time scales. Therefore, understanding the statistical properties of entire 

extremely hot summers (hereafter referred to as “extreme summers”) as well as their physical causes is a research topic of high 

societal relevance.  

 45 

The concept of an extreme summer is closely related to the concept of a heat wave, even though there are important differences. 

An individual heat wave is commonly understood to be a single, quasi-continuous episode of abnormally hot surface weather 

with a duration ranging from days to weeks (Russo et al., 2015; Zschenderlein et al., 2019). Heat waves are thus strongly 

influenced by individual synoptic flow features such as atmospheric blocks (Brunner et al., 2017; Pfahl and Wernli, 2012; 

Röthlisberger and Martius, 2019; Zschenderlein et al., 2019), stationary ridges (Sousa et al., 2018) or recurrent Rossby wave 50 

patterns (Röthlisberger et al., 2019). In contrast, extreme summers have a fixed duration (of three months), which is beyond 

the time scale of these synoptic flow features. Consequently, extreme summers require a temporal organization of the relevant 

synoptic flow features, which can occur either “by chance” (internal atmospheric variability) or favored by more slowly 

varying processes. Possible candidates for the latter are soil moisture fluctuations (Fischer et al., 2007; Lorenz et al., 2010; 

Seneviratne et al., 2010), sea ice dynamics (Cohen et al., 2014) or large-scale modes of variability in the ocean and atmosphere 55 

(e.g., Schneidereit et al., 2012). Understanding how this temporal organization of weather within seasons occurs is challenging 

as it requires a seamless approach (Hoskins, 2013), which couples weather system dynamics to these more slower varying 

processes. 

 

Like any other summer, an extreme summer will inevitably contain cooler and hotter days, which constitute the upper and 60 

lower parts of the T2m distribution during that summer. However it is currently not known which part of the T2m distribution 

is particularly anomalous during an extreme summer. Thus, extreme summers with distinct “substructures” might occur, some 

of which are schematically illustrated in Fig. 1. For example, a summer might be an extreme summer because the hottest days 

of the season are particularly anomalous, with the remainder of the summer days being only moderately warmer than or even 

close to climatology. Such an extreme summer substructure was observed in large parts of Europe in the summer 2015, when 65 
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the anomalies of the seasonal hottest days exceeded those of the seasonal mean by almost a factor of two (Dong et al., 2016). 

Hence the hottest days of the 2015 summer contributed over proportionally to the seasonal mean anomaly. However, also other 

substructures are plausible: a suppression of cool summer days, a uniform shift in the entire summer temperature distribution 

or any combination of these three options.  

 70 

Knowledge about the extreme summer substructure is relevant for at least two reasons. Firstly, the societal impact of an extreme 

summer featuring one (or several) periods of extremely hot temperatures (i.e., hottest summer days being hotter than normally) 

will likely differ from the societal impact of an extreme summer resulting primarily from a suppression of cool summer days 

(i.e., coldest summer days being milder than normally), or from an extreme summer characterized by a uniform shift in the 

entire temperature distribution (i.e., all summer days warmer than normally). Secondly, also the physical and meteorological 75 

causes of extreme summers with such distinct substructures conceivably differ. Thus, identifying the substructure of extreme 

summers is likely a starting point for understanding also their physical causes. 

 

The purpose of this study is to characterize extreme summers statistically by quantifying their substructure. To do so, we define 

extreme summers in the upper tail of the June–August (JJA) mean two-meter temperature (T2m) distribution. Thereafter, the 80 

extreme summer substructure is assessed by decomposing the seasonal mean T2m anomaly of a particular extreme summer 

into the contributions from all rank days of that season (i.e., the contribution from the coldest day, the second coldest day etc.). 

This decomposition thus allows to quantify the contributions from all parts of the T2m distribution (e.g., the coldest, middle 

and hottest thirds of summer days) to the seasonal T2m anomaly of an extreme summer.  

 85 

Here we use the ERA-Interim re-analysis data set to study the substructure of past extreme summers. However, extreme 

summers are by definition extremely rare events. Thus, in order to yield robust results, a climatological investigation of the 

extreme summer substructure requires much longer data records than provided by ERA-Interim or any other currently available 

high-quality re-analysis data set. We therefore complement ERA-Interim with a 700-year present day climate simulation (for 

details, see Sect. 2.2) to address the following research goals: 90 

1. Propose and illustrate a simple method for decomposing at each grid point the seasonal mean temperature anomaly 

into its contributions from each rank day. 

2. Use this decomposition to analyze the substructure of extreme summers separately at selected grid points. 

3. Quantify and compare the spatial variability in extreme summer substructures in the Northern Hemisphere in both re-

analysis and climate model data. 95 

4. Illustrate physical causes of the observed (and simulated) extreme summer substructures in selected regions. 
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2 Data and Methods 

2.1 ERA-Interim 

We use ERA-Interim re-analysis data (Dee et al., 2011) covering the period 1979-2018. ERA-Interim is originally produced 

with a T255 spectral horizontal resolution and 60 hybrid s-p levels in the vertical. We interpolated the data horizontally to a 100 

1° by 1° grid and vertically to pressure and isentropic levels. The ERA-Interim data is provided at 6-hourly time intervals, in 

this study however, we aggregated all data to a daily temporal resolution. Besides the T2m fields, we also use potential vorticity 

(PV), total precipitation, 250 hPa meridional winds and sea ice concentration. Furthermore, we remove a (40-year) linear trend 

from all JJA T2m data at each grid point. Our analyses hereafter are based on the detrended data except for Figs. 2, 8 and 9, 

which are more easily understood based on the non-detrended data (Figs. 2 and 8) or where the absolute T2m values are 105 

important (Fig. 9). 

2.2 CESM 

Besides ERA-Interim, the Community Earth System Model version 1 (CESM, Hurrell et al., 2013) is used to perform present-

day climate simulations using restart files from the CESM large ensemble project (CESM-LE, Kay et al., 2015). We use 

atmospheric fields at daily temporal resolution, with a horizontal resolution of approximately 1° and 30 vertical levels. The 110 

original CESM-LE data contains a 35-member ensemble of simulations started on 1 January 1920 and integrated forward in 

time until 2100. These 35 “macro ensemble” members were rerun for the period from 1 January 1990 to 31 December 1999 

in order to obtain temporally high-resolution three-dimensional model output. To further increase the number of simulated JJA 

seasons, a “micro ensemble” with additional 35 members was branched off from member one of the macro ensemble, on 1 

January 1980, by adding an 𝒪(10%&') perturbation to the initial atmospheric temperature field of each micro ensemble. These 115 

additional micro ensemble runs are then integrated forward in time until 31 December 1999. Fischer et al. (2013) have shown 

that at the latest after a decade, the micro ensemble members exhibit a similar spread in atmospheric variables compared to 

members of the macro ensemble. Thus, for the period 1990–1999, the micro ensemble members can be regarded as additional 

independent members, yielding a total of 70 ensemble members covering the 10-year period from 1990–1999, i.e., 700 years 

of present-day climate. As for ERA-Interim data, a linear trend is removed from all JJA T2m data at each grid point and in 120 

each ensemble member. Note, however, that due to the ensemble set-up, this trend is calculated over only 10 years. 

2.3 Decomposing a seasonal T2m anomaly to quantify the season’s substructure 

To examine the substructure of a particular July–August (JJA) season 𝑘, we decompose its seasonal T2m anomaly (𝑆𝐴,) into 

contributions from the ranked 𝐷 daily T2m values of season 𝑘, where 𝐷 is the number of days in season 𝑘 (e.g., for JJA 𝐷 =

92). We thus aim to quantify how much each rank day (i.e., coldest day, second coldest day, etc.) of season 𝑘 contributes to 125 

the seasonal anomaly 𝑆𝐴, . This decomposition of 𝑆𝐴,  is illustrated for the example grid point 9°E/47°N (near Zürich, 

Switzerland) in Fig. 2 and introduced more formally below. It is applied to both data sets separately in exactly the same fashion 
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and therefore, a superscript 𝑀 ∈ {𝐸𝑅𝐴𝐼, 𝐶𝐸𝑆𝑀} will only be used where it is necessary to explicitly distinguish between the 

two datasets. All the important statistical quantities used in this study are summarized in Tab. 1. Furthermore, bear in mind 

that all these quantities are calculated at each grid point individually. 130 

 

We start by ranking all daily mean T2m values within their respective season 𝑘 (Figs. 2a,b) and compute seasonal means 

(𝑆𝑀,), i.e., 

𝑆𝑀, =
1
𝐷:𝑇<,,,

=

<>&

𝑘 = 1,… , 𝐾, (1) 

where 𝑇<,, is the daily mean T2m value with rank 𝑑 in season 𝑘 (i.e., the temporal ordering of the days is lost, see Fig. 2b).  

At each grid point we thus compute 𝐾BCDE = 40 seasonal mean values for ERA-Interim and 𝐾GBHI = 700 values for CESM. 135 

 

The climatological seasonal mean (𝐶) is also calculated from the ranked daily mean T2m values (𝑇<,,) as 

𝐶 =
1

𝐾 ∙ 𝐷::𝑇<,,

=

<>&

=
1
𝐷:

1
𝐾:𝑇<,,

L

,>&

=

<>&

.
L

,>&

 (2) 

Hereby, &
L
∑ 𝑇<,,L
,>&  is the average T2m value of all 𝐾 days with rank 𝑑 in their respective season, e.g., for 𝑑 = 1 the average 

coldest day of the season and for 𝑑 = 92 the average hottest day of the season. Hence, 𝐶 is computed as the mean over the 

average T2m values for each rank. These rank day T2m means (bold gray contour in Fig. 2b) are hereafter referred to as  140 

𝑅𝐷𝑀< =
1
𝐾:𝑇<,,

L

,>&

, 𝑑 = 1,… , 𝐷. (3) 

Using the 𝑅𝐷𝑀<, the seasonal T2m anomaly of any season 𝑘 (𝑆𝐴,) can be decomposed into contributions from each of the 𝐷 

rank days: 

𝑆𝐴, = 𝑆𝑀, − 𝐶 =
1
𝐷 P:𝑇<,,

=

<>&

−:𝑅𝐷𝑀<

=

<>&

Q =
1
𝐷:(𝑇<,, − 𝑅𝐷𝑀<) =

1
𝐷:𝑅𝐷𝐴<,,

=

<>&

,
=

<>&

 (4) 

where in the last equality the rank day anomaly of the day with rank 𝑑 in season 𝑘 is introduced as 𝑅𝐷𝐴<,, = 𝑇<,, − 𝑅𝐷𝑀<. 

In other words, the seasonal mean anomaly 𝑆𝐴, is expressed as the average rank day anomaly (see also Fig. 2c). 

 145 

This decomposition of 𝑆𝐴,  thus allows to assess the exact contribution from each (ranked) day of season 𝑘 to 𝑆𝐴, . For 

example, if for a particular season 𝑘 𝑆𝐴, = 1 K and 𝑅𝐷𝐴RS,, = 3 K (i.e, the hottest day of season 𝑘 is 3 K warmer than the 

respective rank day mean) this day contributed 3 92⁄ = 0.0326 K or 3.26% to the seasonal anomaly 𝑆𝐴,. In the following we 

split the 92 days of each JJA season 𝑘 into three parts according to their rank and focus on the relative contributions to 𝑆𝐴, 

from the coldest, middle and hottest third of the 92 days of season 𝑘 by calculating, e.g., 150 
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𝑆𝐹XYZ<,, =

⎝

⎛1
𝐷:𝑅𝐷𝐴<,,

]='^

<>&
⎠

⎞ 𝑆𝐴,a . (5) 

The notation [𝑥] hereby stands for 𝑥 rounded to the nearest integer. For computing contributions to 𝑆𝐴, from the middle and 

hottest thirds of the summer days (𝑆𝐹ef<<Zg,, and 𝑆𝐹hYi,,), the sum in Eq. (5) runs from ]=
'
^ + 1 to ]𝐷 S

'
^ for 𝑆𝐹ef<<Zg,, and 

from ]𝐷 S
'
^ + 1 to 𝐷 for 𝑆𝐹hYi,,. By construction, the sum of the three fractions amounts to 1. 

 

2.4 Identification and substructure of extreme summers 155 

Extremely hot summers at each grid point in the Northern Hemisphere are identified in the ERA-Interim (CESM) data set as 

the 5 (35) hottest JJA seasons, yielding two sets of extreme summers 𝕏I = {𝑘&, … , 𝑘lm},𝑀 ∈ {𝐸𝑅𝐴𝐼, 𝐶𝐸𝑆𝑀} with 𝑁BCDE =

5 and 𝑁GBHI = 35 members, respectively. Hence, ERA-Interim extreme summers correspond to the 12.5% hottest summers 

(5 out of 40), while the CESM extreme summers correspond to the 5% hottest summers (35 out of 700). 

 160 

An analogous procedure to that described in Sect. 2.3 is employed to quantify the contributions from each of the three thirds 

of the extreme summer days to the average T2m anomaly of the 𝑁 considered extreme summers. The mean of these extreme 

summers (𝑋𝑀) is calculated as 𝑋𝑀 = &
l
∑ 𝑆𝑀,,∈𝕏  and is used to compute the mean anomaly of these extreme summers 𝑋𝐴 =

𝑋𝑀 − 𝐶. The relative contributions from the three thirds of the summer days to the extreme summer anomaly 𝑋𝐴 are calculated 

as, e.g., 165 

𝑋𝐹XYZ< =

⎝

⎛1
𝑁:

1
𝐷:𝑅𝐷𝐴<,,

]='^

<>&,∈𝕏
⎠

⎞ 𝑋𝐴q . (6) 

The quantities 𝑋𝐹XYZ<, 	𝑋𝐹ef<<Zg and 𝑋𝐹hYi again add up to 1 and quantify the relative contributions from the three thirds to 

the average T2m anomaly of all extreme summers at a particular grid point. Note that the quantities 𝑋𝐹XYZ<, 	𝑋𝐹ef<<Zg and 

𝑋𝐹hYi characterize the mean extreme summer substructure at a particular grid point, while 𝑆𝐹XYZ<,,, 𝑆𝐹ef<<Zg,, and 𝑆𝐹hYi,, 

characterize the substructure of a single season 𝑘. 

3 Results and discussion 170 

3.1 Extreme summer T2m anomalies 

Figures 3a and 4a depict the average T2m anomalies during extreme summers in the two data sets (𝑋𝐴BCDE and 𝑋𝐴GBHI, 

respectively). In both data sets, 𝑋𝐴  exhibits considerable spatial variability. The ERA-Interim extreme summers have 
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temperature anomalies of up to 3 K over western Russia, while over some tropical ocean areas 𝑋𝐴BCDE is less than 0.5 K (Fig. 

3a). The 𝑋𝐴GBHI field exhibits a generally similar spatial pattern to 𝑋𝐴BCDE, with larger values over land than over the oceans 175 

(Fig. 4a). However, 𝑋𝐴GBHI generally exceeds 𝑋𝐴BCDE, as the summers 𝕏GBHI are statistically more extreme than the summers 

𝕏BCDE .  In the following, we decompose the extreme summer T2m anomalies (𝑋𝐴) shown in Figs. 3a and 4a using the 

methodology described in Sect. 2.3 and 2.4, first at few selected grid points and then for all Northern Hemisphere grid points. 

 

3.2 Extreme summer substructures at selected grid points 180 

The rank day anomalies (𝑅𝐷𝐴<,,BCDE ) for the five ERA-Interim extreme summers at a grid point located in eastern India 

(81°E/21°N, Figs. 3a,b) reveal a similar substructure in at least four of the extreme summers. The largest 𝑅𝐷𝐴<,,BCDE (up to 5 K) 

occur in the hottest 30 days of each season, while for the 60 coldest summer days in each extreme summer, 𝑅𝐷𝐴<,,BCDE  does not 

exceed 1.5 K. The contributions of the coldest, middle and hottest third of all extreme summer days to 𝑋𝐴BCDE at this grid point 

(i.e., 𝑋𝐹XYZ<BCDE,𝑋𝐹ef<<ZgBCDE  and	𝑋𝐹hYiBCDE) are 13%, 20% and 67%, respectively. For the 2005 summer, the contributions were -1%, 185 

6% and 95%, and hence, almost the entire seasonal T2m anomaly resulted from the hottest 30 days of the summer being hotter 

than normal.  

 

A comparison between the ERA-Interim and CESM extreme summer substructures at this grid point (Figs. 3b and 4b) reveals 

remarkable qualitative similarities between the extreme summer substructure at 81°E/21°N in the two data sets. At this grid 190 

point, also the season 𝕏GBHI exhibit largest 𝑅𝐷𝐴<,,GBHI values for the 30 hottest summer days. Moreover, despite the different 

number of seasons in the two data sets, the 𝑋𝐹XYZ<GBHI,	𝑋𝐹ef<<ZgGBHI  and	𝑋𝐹hYiGBHI values of 11%, 24% and 65%, respectively, are not 

far off the respective values for the seasons 𝕏BCDE. Figures 3b and 4b further reveal that the largest 𝑅𝐷𝐴<,,GBHI values reach 

much larger values (up to 8 K) than the 𝑅𝐷𝐴<,,BCDE values, which is an expected result, since the seasons 𝕏GBHI are statistically 

more extreme than the seasons 𝕏BCDE.  195 

 

Considering now the grid point 116°W/39°N in Nevada, USA, we find a substantially different ERA-Interim extreme summer 

substructure compared to eastern India (Figs. 3b,c), with largest extreme summer 𝑅𝐷𝐴<,,BCDE values in the coldest third of the 

summer days and 𝑋𝐹XYZ<BCDE=49%, 	𝑋𝐹ef<<ZgBCDE =31% and		𝑋𝐹hYiBCDE=20%. Also for this grid point, the mean substructure of CESM 

extreme summers is similar to that of ERA-Interim extreme summers, with  𝑋𝐹XYZ<GBHI=42%, 	𝑋𝐹ef<<ZgGBHI =33% and		𝑋𝐹hYiGBHI=25% 200 

(Fig. 4c). Thus, at this grid point, all thirds of the T2m distribution contribute to extreme summers, but the contribution from 

the coldest third is over proportionally large (i.e., considerably larger than 33%). Hence, the re-analysis and the climate model 

data both suggest that the suppression of cool summer days (leading to coldest days of the summer that are milder than usually) 

is a key ingredient for extreme summers at 116°W/39°N.  

 205 
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Yet a further extreme summer substructure is apparent at the grid point closest to Paris, France (2°E/49°N, Figs. 3d, 4d). At 

this grid point, the ERA-Interim extreme summer of 2018 was characterized by 𝑅𝐷𝐴<,,BCDE-values of 1.5–2 K for almost all 

ranks, i.e., this summer resulted from an almost uniform shift in the entire T2m distribution. Moreover, this grid point also 

illustrates that clearly distinct extreme summer substructures can occur at the same grid point. While the extreme summer 2003 

exhibited particularly large anomalies in the coldest and the hottest third ( 𝑆𝐹XYZ<,Sss'BCDE =34%, 	𝑆𝐹ef<<Zg,Sss'BCDE =28% 210 

and		𝑆𝐹hYi,Sss'BCDE =38%), the contribution from the coldest third to the extreme summer 1995 was negative and the middle and 

top third were responsible for the entire seasonal anomaly (𝑆𝐹XYZ<,&RRtBCDE =-15%, 	𝑆𝐹ef<<Zg,&RRtBCDE =49% and		𝑆𝐹hYi,&RRtBCDE =66%, Fig. 

3d).   

 

Finally, the grid point 35°E/58°N in western Russia (Fig. 3e) illustrates that occasionally, the temperature variability during 215 

individual seasons can be fundamentally different from all other seasons at a particular grid point. Such a “regime shift” could 

be observed during the extreme summer 2010, which was characterized by 𝑅𝐷𝐴<,Ss&sBCDE  values in excess of 4 K for ranks ~40–

92 (𝑆𝐹XYZ<,Ss&sBCDE =1%, 	𝑆𝐹ef<<Zg,Ss&sBCDE =46% and		𝑆𝐹hYi,Ss&sBCDE =53%). For these ranks, the 𝑅𝐷𝐴<,Ss&sBCDE  values were almost twice as 

large as for the second hottest summer in these ranks (1981). The truly exceptional nature of the 2010 summer at 35°E/58°N 

(e.g., Barriopedro et al. 2011, Fig. 3e) becomes even more evident when comparing its 𝑅𝐷𝐴<,,BCDE values with those of the 220 

CESM extreme summers at the same grid points (Figs. 4e). For some ranks, none of the 700 CESM JJA seasons reach 

𝑅𝐷𝐴<,,GBHI values of comparable magnitude to those observed during the 2010 summer at this grid point. Some implications of 

this finding will be discussed in Sect. 4. 

 

In summary, the mean extreme summer substructure at these four grid points is qualitatively remarkably similar for the 5 225 

hottest ERA-Interim summers and the 35 hottest CESM summers. On the one hand, this similarity implies that the rank day 

anomaly patterns presented in Figs. 3b-e are not artefacts of the rather short ERA-Interim period, but rather must result from 

physical processes that shape the local extreme summer substructure. On the other hand, these similarities suggest that the 

CESM is able to correctly capture the processes that generate the distinct extreme summer substructures at these example grid 

points. We next compare the mean ERA-Interim and mean CESM extreme summer substructures at all grid points in the 230 

Northern Hemisphere by considering the spatial patterns of 𝑋𝐹XYZ<BCDE, 	𝑋𝐹hYiBCDE, 	𝑋𝐹XYZ<GBHI and 𝑋𝐹hYiGBHI.  

 

3.3 Spatial variability of ERA-Interim and CESM extreme summer substructure 

If extreme summers resulted from a uniform shift in the entire T2m distribution, all three thirds of the T2m distribution would 

contribute equally (i.e., 33%) to 𝑋𝐴BCDE. However, the 𝑋𝐹hYiBCDE field (Fig. 5a) reveals a complex pattern of coherent regions 235 

with increased (> 33%) or decreased (< 33%) contributions from the hottest third of extreme summer days to 𝑋𝐴BCDE. Land 

areas where particularly large 𝑋𝐹hYiBCDE values are found include the central US, the UK, parts of northeastern Europe, India and 
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southeast Asia as well as the southern Sahel region (Fig. 5a). In some of these areas, 𝑆𝐹hYi,,BCDE exceeded 𝑆𝐹ef<<Zg,,BCDE  and 𝑆𝐹XYZ<,,BCDE  

during at least 4 out of 5 ERA-Interim extreme summers (stippling in Fig. 5a). In these regions, at least 4 out of 5 extreme 

summers thus exhibited a similar substructure. However, it is important to bear in mind that in other regions the substructure 240 

of individual extreme seasons (i.e., 𝑆𝐹XYZ<,,, 𝑆𝐹ef<<Zg,, and 𝑆𝐹hYi,,) may differ from the mean extreme season substructure 

characterized by 𝑋𝐹XYZ<, 	𝑋𝐹ef<<Zg and 𝑋𝐹hYi.  Furthermore, also in parts of the northern North Pacific and northern North 

Atlantic, 𝑋𝐹hYiBCDE is substantially increased and reaches up to 60%. In many regions, however, 𝑋𝐹hYiBCDE  is less than 33%, 

indicating that in these regions, extreme summers do not arise primarily from the hottest 30 days of the summer being hotter 

than climatologically. 245 

 

In fact, in many regions it is the contribution to 𝑋𝐴BCDE from the coldest third of the summer (𝑋𝐹XYZ<BCDE) that is substantially 

increased (Fig. 5c), for example the southwestern US, the northern Sahel region, Pakistan and parts of Greenland. Moreover, 

increased 𝑋𝐹XYZ<BCDE values are also found in the southern North Pacific and the southern North Atlantic as well as over the Arctic 

Ocean (Fig. 5c).  Overall, Fig. 5c clearly demonstrates that the coldest third of all summer days contributes a substantial 250 

fraction to 𝑋𝐴BCDE in most regions (more than 25% over 83% of the Northern Hemisphere land area in ERAI). In fact, in 46% 

of the Northern Hemisphere land area, 𝑋𝐹XYZ<BCDE exceeds 𝑋𝐹hYiBCDE, i.e., the coldest third of extreme summers contributes more to 

𝑋𝐴BCDE than the hottest third. Consequently, in these regions the mechanisms that suppress unusually cool summer days must 

be considered when assessing the physical causes of extremely hot summers.  

 255 

Comparing these results derived from ERAI with results based on CESM, i.e., 𝑋𝐹hYiBCDE and 𝑋𝐹hYiGBHI (Figs. 5a,b) as well as 

𝑋𝐹XYZ<BCDE and 𝑋𝐹XYZ<GBHI (Figs. 5c,d), unravels strikingly similar patterns in many regions. For example, both data sets agree (even 

quantitatively) that extreme summers in India and Southeast Asia come about primarily by the hottest summer days being 

hotter than climatologically, while the coldest third of extreme summer days only contributes a marginal fraction to the 

respective 𝑋𝐴. Also in the western and central US, 𝑋𝐹XYZ< and 𝑋𝐹hYi agree very well between the two data sets, with the cool 260 

summer days contributing an over proportionally large fraction to 𝑋𝐴 in the western US, and the hot summer days in the central 

US. Further areas of remarkable agreement between 𝑋𝐹XYZ<BCDE and 𝑋𝐹XYZ<GBHI (Figs. 5c,d) are the high Arctic and the northern 

Sahel region. Moreover, in 49% of the Northern Hemisphere land area 𝑋𝐹XYZ<GBHI exceeds 𝑋𝐹hYiGBHI, which compares well with 

the 46% of the land area in which 𝑋𝐹XYZ<BCDE exceeds 𝑋𝐹hYiBCDE. Figure 5 thus clearly reveals that the CESM reproduces many 

features of the observed extreme summer substructure and its variability in space to a remarkable degree. 265 

 

However, there are also some areas of notable differences between 𝑋𝐹hYiBCDE and 𝑋𝐹hYiGBHI as well as 𝑋𝐹XYZ<BCDE and 𝑋𝐹XYZ<GBHI. For 

example over Greenland, Saudi Arabia and the northern North Atlantic, there are substantial differences between 𝑋𝐹XYZ<BCDE and 

𝑋𝐹XYZ<GBHI (Figs. 5c,d). Moreover, over the northern North Pacific as well as the high Arctic, the 𝑋𝐹hYiGBHI and 𝑋𝐹hYiBCDE patterns 

agree only qualitatively, but not quantitatively (Figs. 5a,b). It is important to note, though, that some differences in the 𝑋𝐹XYZ< 270 
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and 𝑋𝐹hYi fields for the two data sets are expected due to the different sample sizes, even if the model was perfect. In the 

remainder of this paper we aim to explain statistical and physical reasons behind selected aspects of the spatial variability in 

𝑋𝐹XYZ< and 𝑋𝐹hYi.  

 

3.4 A statistical explanation for the observed extreme summer substructures 275 

Figures 3b,c and 4b,c clearly illustrate that, at the selected grid points in India (81°E/21°N) and in the US (116°W/39°N) some 

rank days are climatologically much more variable than others. Importantly, this is the case not just for extreme summers but 

it is rather a climatological characteristic of the local temperature variability. For example, at 81°E/21°N the hottest 30 days 

of the summer are much more variable than the colder days. The 5th to 95th percentile range of the 𝑅𝐷𝐴us,,GBHI-values is roughly 

four times larger than that of the 𝑅𝐷𝐴&s,,GBHI-values (Fig. 4b). At 116°W/39°N the largest rank day variability is found for lower 280 

ranks and the 5th to 95th percentile range of the 𝑅𝐷𝐴us,,GBHI values is roughly 2 times smaller than the same percentile range of 

the 𝑅𝐷𝐴&s,,GBHI-values (Fig. 4c). Similar ratios are found when comparing the spread of 𝑅𝐷𝐴us,,BCDE and 𝑅𝐷𝐴&s,,BCDE for these two 

grid points (Figs. 3b,c).  Moreover, at both grid points extreme summers occur when the most variable rank days are 

particularly hot (Figs. 3b,c and 4b,c). Hence, from a statistical point of view, the extreme summer substructure at these two 

particular grid points appears to be largely determined by the local “rank day variability pattern”.  That is, the contributions to 285 

𝑋𝐴  from the distinct rank days during extreme summers depend on how variable the respective values 𝑇<,,  are 

climatologically.  

 

We next assess whether the local rank day variability pattern also explains the extreme summer substructure at other Northern 

Hemisphere grid points. To do so, we consider the variance (𝑉) of the 𝑅𝐷𝐴<,, values of all ranks and all JJA seasons at a 290 

particular grid point: 

𝑉 =
1

𝐾 ∙ 𝐷::(𝑅𝐷𝐴<,,)S.
=

<>&

L

,>&

 (7) 

Here we have used the fact that the mean of the 𝑅𝐷𝐴<,, values is by construction equal to zero and thus their variance reduces 

to the average of the squared 𝑅𝐷𝐴<,,-values of all 𝑑 and all 𝑘. The contributions from the coldest, middle and hottest third to 

𝑉 are then e.g., 

𝑉𝐹XYZ< =

⎝

⎛ 1
𝐾 ∙ 𝐷::(𝑅𝐷𝐴<,,)S

]='^

<>&

L

,>&
⎠

⎞ 𝑉q , (8) 

and analogously for the middle and hottest third of the summer days. 295 
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The fields of 𝑉BCDE  and 𝑉GBHI  (Figs. 6a, 7a) resemble the 𝑋𝐴BCDE  and 𝑋𝐴GBHI -fields (Figs. 3a, 4a), as large rank day 

anomalies are a prerequisite for large seasonal T2m anomalies. Furthermore, comparing 𝑋𝐹hYiBCDE and 𝑉𝐹hYiBCDE (Figs. 5a and 6b) 

clearly reveals that wherever the contribution from the hottest third of the summer days to 𝑋𝐴BCDE is increased (𝑋𝐹hYiBCDE >

33%), the rank day variability in the hottest third (quantified by 𝑉𝐹hYiBCDE) contributes over proportionally to 𝑉BCDE. Figures 5c 300 

and 6c illustrate that the same relationship also holds for 𝑋𝐹XYZ<BCDE and 𝑉𝐹XYZ<BCDE: regions where milder than normal cool summer 

days contribute over proportionally to  𝑋𝐴BCDE (i.e., 𝑋𝐹XYZ<BCDE > 33%) exhibit increased 𝑉𝐹XYZ<BCDE values. Figures 5b,d and 7b,c 

confirm this finding also for the CESM data. We thus conclude that in both data sets, the extreme summer substructure is 

largely determined by the local rank day variability pattern.  

 305 

Furthermore, comparing the patterns of 𝑉𝐹hYiBCDE and 𝑉𝐹hYiGBHI  (Figs. 6b, 7b) reveals agreement in the same regions where also 

the patterns of 𝑋𝐹hYiBCDE and 𝑋𝐹hYiGBHI (Figs. 5a,b) agree, and, conversely, disagreement between 𝑉𝐹hYiBCDE and 𝑉𝐹hYiGBHI also results 

in disagreement between 𝑋𝐹hYiBCDE  and 𝑋𝐹hYiGBHI . For example, the 𝑉𝐹hYiBCDE  and 𝑉𝐹hYiGBHI  fields (and the 𝑋𝐹hYiBCDE  and 𝑋𝐹hYiGBHI 

fields) are almost identical in India and Southeast Asia, the northern Sahel, the western US or Eastern Europe (cf. Figs. 6b  and 

7b, and Figs. 5a,b). Over Saudi Arabia or the northern North Atlantic, however, the patterns of 𝑉𝐹hYiBCDE and 𝑉𝐹hYiGBHI (and of 310 

𝑋𝐹hYiBCDE and 𝑋𝐹hYiGBHI) do not agree particularly well. In summary, while the CESM correctly reproduces the local rank day 

variability pattern in most regions, differences in the local rank day variability patterns between the two data sets also lead to 

differences in the extreme summer substructures.  

 

It is interesting to compare the 𝑉𝐹XYZ<  and 𝑉𝐹hYi  patterns presented in Figs. 6 and 7 with the skewness of the local daily 315 

temperature distributions, which has been studied extensively in the past (Donat and Alexander, 2012; Garfinkel and Harnik, 

2017; Linz et al., 2018; Loikith et al., 2018; Loikith and Neelin, 2015; Ruff and Neelin, 2012). The upper tail of, e.g., a 

positively skewed JJA T2m distribution is longer than the lower tail, which is the case if the hottest summer days are more 

variable than the coldest summer days (cf. Figs. 5b,c and Fig. S1). Hence, explanations of distinct skewness in daily T2m 

distributions also help to understand differences in the rank day variability patterns and, subsequently, extreme summer 320 

substructures. Garfinkel and Harnik (2017) showed that the winter low-level temperature distributions are positively skewed 

on the cold side of the Northern Hemisphere storm tracks, primarily because there the magnitude of warm air advection exceeds 

that of cold air advection. And, vice versa, the winter low-level temperature distributions are negatively skewed on the warm 

side of the Northern Hemisphere storm tracks, where the magnitude of cold air advection exceeds that of warm air advection. 

Consistent with their results, Figs. 6 and 7 depict more variable hot summer days to the north and more variable cold summer 325 

days to the south of the Northern Hemisphere storm tracks, where the horizontal gradients of T2m are particularly large (see 

in particular yellow contours in Figs. 6b,c). 
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While this argument explains differences in the rank day variability and the extreme summer substructures in regions of strong 

surface temperature gradients, Figs. 5-7 also reveal numerous rather small-scale features, that do not necessarily occur in 330 

regions of strong surface temperature gradients. We therefore next analyze the extreme summer substructure and its causes in 

three example regions in more detail. Due to the similarity between the ERA-Interim and CESM extreme summer 

substructures, we restrict this analysis to ERA-Interim data (except where mentioned otherwise).  

 

3.5 (Examples of) physical causes of extreme summer substructures 335 

A particularly striking feature of Fig. 5 is the large contribution from the hottest third of the summer days to 𝑋𝐴BCDE in India, 

illustrated exemplarily for the grid point at 81°E/21°N in Fig. 3b. The general temperature evolution in JJA (i.e., considering 

all JJA seasons) at this grid point follows a particular sub-seasonal pattern (Fig. 8a). In early June, ERA-Interim T2m values 

are highly variable and range from 27°C to almost 40°C, with a mean of 35°C on 1 June. Throughout June and the first half of 

July the climatological T2m drops to approximately 26°C and remains at this level until the end of August. Moreover, during 340 

that period, the variability in T2m is much smaller than in early June. The extreme summers exhibit comparatively high 

temperatures primarily in June, while in July and August their T2m evolution does not differ substantially from other JJA 

seasons (Fig. 8a). The drop of T2m in June is associated with the onset of the Indian summer monsoon [Fig. 8b; e.g., Slingo, 

(1999)]. During most JJA seasons, precipitation starts to fall already during the first half of June. However, the extreme 

summers each featured very little precipitation for at least the first 20 days of June, which suggests that extreme summers at 345 

this grid point occur when there is an unusually late onset of the Indian summer monsoon at this particular location. Moreover, 

the rank day variability pattern at 81°E/21°N is easily understood from Fig. 8: The hottest days of the season mostly occur in 

June and are associated with dry conditions. The onset date of the monsoon determines how many dry (and thus very hot) days 

occur in a JJA season, i.e., an early onset of the Indian monsoon suppresses a large number of very hot days and a late onset 

increases this number, which leads to the large temperature variability seen in the warmest 30 days of the JJA season.  350 

 

A further noteworthy feature in Fig. 5 is the sharp boundary in the extreme summer substructure around 75°N–80°N, for 

example in the North Atlantic sector. North of this boundary, the coldest third of all extreme summer days contribute up to 

60% to the extreme summer anomaly (Figs. 5c,d). South of it, the contribution from the coldest third of extreme summer days 

is much smaller. (Quantitatively, there is some disagreement between the CESM and ERAI extreme summer substructures, 355 

but both data sets agree about the general pattern.) This sharp boundary in the extreme summer substructure is co-located with 

the climatological sea ice edge in JJA (Fig. 9a). Examining the JJA T2m distributions at three grid points across this boundary 

(42°W/83°N, 42°W/81°N and 42°W/79°N) reveals that for T2m below –1°C, their probability density functions (pdfs) of the 

daily T2m values are almost identical, which is not surprising due to their close spatial proximity.  However, large differences 

in the three pdfs are found for T2m at about 0°C and above. At 83°N, i.e., north of the climatological sea ice edge (Fig. 9a), 360 

the pdf exhibits a very short upper tail with very little probability density exceeding +2°C (i.e., the pdf is strongly negatively 
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skewed), while at 79°N (i.e., south of the climatological sea ice edge) the upper tail is much more variable. The geographical 

co-location of this extreme summer substructure boundary and of the climatological sea ice edge is striking and suggests that 

the contrasting substructures arise because the sea ice buffers “warm” temperatures at 0°C, that is, air with T2m > 0°C is 

cooled down to close to 0°C by the induced sea ice melting. The same effect has also been shown to shorten the upper tail of 365 

the surface temperature pdf over snow covered areas (Loikith et al., 2018).   

 

As a third example, we return to the grid point in Nevada, US (at 116°W/39°N), where the rank day variability is largest for 

the cold summer days and extreme summers occur when the coldest 30 days exhibit mostly large positive rank day anomalies 

(Figs. 3c and 4c). Thus, at this grid point, milder than normal coldest days of the summer (or, equivalently, suppressed cool 370 

summer days) are a key ingredient for extreme summers. We therefore briefly explore why, at this grid point, the coldest 

summer days during extreme summers are warmer than normal.  

 

We first investigate what makes the climatologically coldest summer days at 116°W/39°N particularly cold and then contrast 

them with the coldest summer days during extreme summers at 116°W/39°N. A composite analysis of the upper-level flow 375 

during the 100 climatologically coldest ERA-Interim days of all 1979–2018 summers unravels a characteristic upper-level 

flow pattern: a highly amplified Rossby wave pattern over the eastern North Pacific and North America, with a breaking 

synoptic-scale trough covering 116°W/39°N (Fig. 10a). The breaking Rossby wave causing the trough is part of a synoptic-

scale and transient wave packet (Fig. 10b) which has just the right phasing such that the trough axis crosses 116°W/39°N when 

the amplitude of the trough is largest (Fig. 10b). This type of relatively small-scale troughs, shown here with contours of 380 

potential vorticity on an isentrope in the upper troposphere (Fig. 10a), is relatively slow moving (Fig. 10b), such that the 

induced northwesterly low-level flow along its western flank can lead to strong and persistent cold-air advection to the western 

US. Additionally, the  low-level flow induced by the trough impinges on the topography at the US west coast. Consequently, 

low-level air masses that are advected into the western US are most likely forced to ascend, which leads to adiabatic cooling 

of these already cool airmasses and finally results in the climatologically coldest summer days at 116°W/39°N. 385 

 

The composites for the 100 coldest days during extreme summers, in contrast, do not reveal such a wave pattern (Figs. 10a 

and 10c). This indicates that the flow pattern characteristic of the climatologically coldest days at this grid point, i.e., the 

Rossby wave breaking and trough formation with the phasing discussed above, simply did not occur very often during extreme 

summers. Furthermore, a synoptic analysis of these 100 coldest extreme summer days (not shown) reveals that the associated 390 

upper-level flow configurations are rather variable, some featuring troughs while others even exhibited low-amplitude ridges, 

resulting in the rather zonal composite upper-level flow apparent in Figs. 10a and 10c.  

 

Why in extreme summers at 116°W/39°N such highly amplified troughs with the right phasing did not occur is currently 

unclear, and at the same time challenging to assess. Possibly, the exact longitude where the synoptic-scale waves have been 395 
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triggered (Röthlisberger et al., 2018) as well as the strength and longitudinal extent of the North Pacific jet, which modulates 

the waves’ downstream propagation and breaking behavior (e.g., Drouard et al. 2015), might have played a role. However, 

both the jet strength and the characteristics of the transient waves propagating along the jet are strongly modulated by lower-

frequency processes such as the Madden-Julian Oscillation (Moore et al., 2010) and the El Niño Southern Oscillation (Drouard 

et al., 2015; Shapiro et al., 2001). This example thus illustrates that a seamless approach, combining processes on different 400 

time scales, is most likely required to fully reveal the physical causes of extreme summers. 

4 Summary and concluding remarks 

In this study, extreme summers are defined in the upper tail of the JJA seasonal mean T2m distribution at each grid point in 

the Northern Hemisphere and then analyzed with regard to their substructure. Hereby, the extreme summer T2m anomaly is 

decomposed into its contribution from each rank day. First, all days are ranked within their respective season (i.e., from rank 405 

1 to 92 for JJA) and then compared to the climatological T2m of all days with the same rank. The resulting rank day anomalies 

exactly quantify how much each (rank) day contributes to the T2m anomaly of the respective season and therefore allow for 

very intuitive statements about the characteristics of extreme summers. For example, we show that during the 2010 summer at 

the ERAI grid point at 35°E/58°N the 31 hottest days contributed 53% to the seasonal anomaly of 3.13 K and were each at 

least 4 K warmer than climatologically.  This decomposition is applied to T2m data from ERA-Interim as well as data from 410 

700 simulated years with CESM for present day climate conditions. Thereby, the contributions from the coldest, middle and 

hottest third of extreme summers to the extreme summer T2m anomalies are quantified at each Northern Hemisphere grid 

point (𝑋𝐹XYZ<,	𝑋𝐹ef<<Zg and 	𝑋𝐹hYi). 

 

This analysis reveals clearly distinct extreme summer substructures, occurring in coherent geographical regions. Despite the 415 

relatively small scale of the structures in the 𝑋𝐹XYZ<BCDE and 𝑋𝐹hYiBCDE fields as well as different numbers of extreme summers in 

the two data sets, CESM is able to reproduce these fields to a remarkable degree. This result firstly underlines that the ERA-

Interim extreme summer substructures and their spatial variability result from physical processes rather than a too short data 

record and, secondly, testifies to the model’s ability to reproduce the physical processes responsible for the occurrence of 

extreme summers in most regions in the Northern Hemisphere. Areas where CESM and ERA-Interim extreme summer 420 

substructures differ include Greenland, the northern North Atlantic as well as the Arabian Peninsula. 

 

Furthermore, a key finding of this study is that the mean extreme summer substructure is consistent with the shape of the 

underlying local T2m distribution. The extreme summer substructure is largely determined by which of the 92 JJA rank days 

are most variable (i.e., the rank day variability pattern), which is qualitatively related to the skewness of the T2m distribution. 425 

Simply speaking, in regions where the coldest days of the summer are most variable (i.e., negatively skewed T2m distribution), 

extreme summers occur when the coldest days of the summer are unusually hot, and, analogously, for the case where hottest 
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days vary the most (i.e., positively skewed T2m distribution). This finding is relevant for two reasons. Firstly, it constrains 

what kind of extreme summer substructures can locally be expected, in particular in regions with strongly skewed daily 

temperature distributions. For example, extreme summers arising primarily from extremely hot summer days (i.e., heat waves) 430 

are unlikely to occur in regions with strongly negatively skewed temperature distributions. Secondly, some individual extreme 

summers such as the 2010 summer at the grid point at 35°E/58°N featured clear temperature regime shifts, with rank day 

anomalies far outside of what could be expected from their climatological variability (e.g., almost twice as large as the second 

large anomalies for the same ranks during the 2010 summer at 35°E/58°N). The general consistency between the mean extreme 

summer substructure and the skewness of the underlying T2m distribution illustrates that such regime shifts in the temperature 435 

variability during extreme summers are the exception rather than the norm.  

 

This consistency furthermore allows us to rely on previous work on physical causes of skewed surface temperature distributions 

for interpreting our results. Consistent with the findings of Garfinkel and Harnik (2017), we find distinct extreme summer 

substructures relative to the location of large surface temperature gradients, in particular in the Northern Hemisphere storm 440 

track regions. Extreme summers occurring north of the Northern Hemisphere storm tracks have large contributions from the 

hottest third of summer days, and south of the storm tracks the contributions from the coldest days are largest. This is primarily 

because on the cold side of a temperature gradient, warm air advection can reach much larger magnitudes than cold air 

advection, and vice versa on the warm side (e.g., Garfinkel and Harnik, 2017; Linz et al., 2018; Tamarin-Brodsky et al., 2019). 

Moreover, the few areas where the ERA-Interim and CESM extreme summer substructures differ, also have distinct rank day 445 

variability patterns in ERA-Interim and CESM. Thus, the climate model’s ability to reproduce the ERA-Interim extreme 

summer substructures in most places results largely from the model’s ability to produce local rank day variability patterns that 

agree with ERA-Interim.  

 

However, three case studies illustrate that the extreme summer substructure cannot always be explained by temperature 450 

advection alone. In eastern India, more than 65% of the extreme summer T2m anomaly results from the hottest 30 days of JJA 

being hotter than climatologically. At the considered grid point, T2m exhibits a distinct sub-seasonal pattern, as it typically 

drops by almost 10 K with the onset of the Indian summer monsoon. Thus, the hottest days of the season (occurring in June) 

are highly variable, and extreme summers occur in seasons with particularly late monsoon onsets.  

 455 

In the high Arctic the highest surface temperatures are buffered around 0°C, as excess heat would result in sea ice melting and 

subsequent latent cooling. Hence, the cold part of the T2m distribution accounts for most of the rank day anomaly variance 

and, consequently, extreme summers occur when the coldest summer days are warmer than normally. This buffering effect of 

the Arctic sea ice leads to a strong boundary in the extreme summer substructure around 75°N-80°N, i.e., near the 

climatological JJA sea ice edge.  460 
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At a grid point in the western United States, all parts of the T2m distribution contribute significantly to extreme summers, 

however, an over proportionally large fraction comes from the coldest third of the extreme summer days (i.e., the coldest 

extreme summer days are warmer than their rank day mean). Composites of the upper-level flow during the 100 

climatologically coldest summer days reveal that an amplified upper-level flow pattern with a particular phasing of a prominent 465 

trough and its associated cold air advection is characteristic of the climatologically coldest summer days at this grid point. This 

particular flow pattern did not occur frequently during the extreme summers, leading to milder than normal cool summer days. 

This result is consistent with previous work on physical causes of non-Gaussian temperature distributions (Garfinkel and 

Harnik, 2017; Linz et al., 2018; Tamarin-Brodsky et al., 2019), as it highlights the role of temperature advection by transient 

waves in generating a non-uniform rank day variability pattern, or similarly, a skewed T2m distribution.  470 

 

Overall, the case studies illustrate that for understanding the physical causes of extreme summers, a seamless approach is 

necessary, which combines weather system dynamics, local thermodynamics and surface-atmosphere interactions as well as 

lower frequency variability in the atmosphere and the ocean. Clearly, distinct physical causes might lead to similar extreme 

summer substructures, in particular when comparing regions that are far apart (e.g., the northern Sahel region and the high 475 

Arctic, Fig. 5). However, similar extreme summer substructures in neighboring regions conceivably also point to similar 

physical causes of extreme summers (e.g., the Asian Monsoon region). Therefore, the extreme summer substructure is a helpful 

tool for discriminating between neighboring regions with distinct physical causes of extreme summers and might also be 

helpful for identifying coherent regions with similar physical causes of extreme summers. 

 480 

A further key result of this study is that in most places, the cool summer days contribute substantially to extreme summer T2m 

anomalies [more than 25% over 83% (86%) of the Northern Hemisphere land area in ERAI (CESM)]. In fact, Fig. 5 reveals 

that for ERA-Interim (CESM) in 46% (49%) of the Northern Hemisphere land area, the coldest third of the summer contributes 

more to the extreme summer anomaly (𝑋𝐴) than the hottest third. Thus, large positive seasonal temperature anomalies (i.e. 

extreme summers as opposed to individual heat waves), cannot be understood and explained by only considering the physical 485 

drivers of heat waves. Rather, the processes which suppress the occurrence of cold summer days must also be considered. Yet, 

these processes are so far virtually unexplored and thus possibly yield an untapped potential for improving our understanding 

of extreme summers. However, as illustrated by the example of extreme summers in the western US, the processes that suppress 

the occurrence of cold summer days sometimes seem rather intangible, as they do not necessarily manifest themselves in the 

occurrence of an unusual flow pattern, but rather in the non-occurrence of the particular flow that typically produces the coldest 490 

summer days. 

 

This study has illustrated that extreme summers across the Northern Hemisphere have distinct substructures, which result 

directly from the physical causes of the extreme summers. However, the concept of the extreme season substructure has 

applications beyond what has been presented in this study and thus calls for subsequent studies. Firstly, the presented analyses 495 
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could be extended to the Southern Hemisphere and other seasons and variables. (The application of the technique is most 

promising for variables that are potentially unbound and variable on both ends, i.e., not for a positive definite variable like 

precipitation.) Secondly, the concept of a “season substructure” can be relevant for field campaigns, as the representativeness 

of the campaigns’ measurements depends on how representative the time period of the campaign was (Wernli et al., 2010).   

Thirdly, extreme summers with distinct substructures conceivably have different societal effects and thus future research 500 

should assess whether or not and where the extreme summer substructure is affected by climate change. The results of this 

study suggest that the CESM is a suitable tool for this task, as it is largely able to reproduce the observed (ERA-Interim) 

extreme summer substructure in the current climate. However, some of the extreme summers observed within the last 40 years 

appear to be outside of the spectrum of 700 years of CESM. Hence, while CESM is able to reproduce the local extreme summer 

substructures, it may not be able to reproduce the most extreme summers that are physically possible in some regions. Clearly, 505 

this finding requires detailed and critical further investigation. Finally, changes in the extreme summer substructure with 

climate change must be related to changes in the physical causes of extreme summers, as a uniform warming would not affect 

the local rank day variability pattern. Therefore, contrasting extreme summer substructures in present and future climate 

simulations might also help to identify regions where the physical causes of extreme summers are altered by climate change. 

 510 
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 635 

 

 
Figure 1. Schematic surface temperature evolution during extreme summers with different substructures: an extreme summer arising from 
just one heat wave (orange), from a suppression of cool summer days (green) and from a shift in the entire T2m distribution (blue) and 
from a general shift towards higher temperatures and a heat wave (red). The schematic climatological surface temperature evolution is 640 
depicted in gray.  
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Figure 2. Steps in computing 𝑅𝐷𝐴<,,BCDE values at the grid point closest to Zürich, Switzerland (9°E/47°N). Values for the 1994 summer are 
highlighted in red. Panel (a) shows ERA-Interim T2m at 9°E/47°N for all 40 ERA-Interim summers. The sorted T2m values (𝑇<,,BCDE) are 645 
shown in panel (b) and the 𝑅𝐷𝐴<,,BCDE values in panel (c). Note that for illustrating purposes Fig. 2 presents non-detrended T2m data. 
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Figure 3. Extreme summer T2m anomaly and extreme summer substructure for selected grid points in ERA-Interim. Panel (a) depicts 
𝑋𝐴BCDE,	panels (b–e) show 𝑅𝐷𝐴<,,BCDEfor the five ERA-Interim extreme summers in colours and for the remaining summers in light grey. 650 
Crosses in panel (a) indicate the grid points for which the 𝑅𝐷𝐴<,,BCDE-values are shown in panels (b–e).     
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Figure 4. Extreme summer T2m anomaly and extreme summer substructure for selected grid points in CESM. Panel (a) displays 𝑋𝐴GBHI 
and panels (b–e) show in red the maximum and minimum (dotted), 90th and 10th percentile (dashed) and the median (solid red) 𝑅𝐷𝐴<,,GBHIof 
the 35 CESM extreme summers. The 5th to 95th percentile range of the 𝑅𝐷𝐴<,,GBHI of all JJA seasons are depicted in grey. Crosses in panel 655 
(a) indicate the grid points for which the rank day anomalies are shown in panels (b–e).   
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Figure 5. Spatial variability in the extreme summer substructure in ERA-Interim and CESM. Panels (a) and (b) depict 𝑋𝐹hYiBCDE and 𝑋𝐹hYiGBHI, 
respectively, while 𝑋𝐹XYZ<BCDE and 𝑋𝐹XYZ<GBHI are shown in panels (c) and (d). Stippled areas in all panels indicate grid points at which the same 660 
third of the distribution contributes the largest fraction of all thirds to at least 80% of the extreme summers (i.e., similar substructure in at 
least 80% of the extreme summers). Black crosses as in Fig. 3a.  
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Figure 6. The variance of 𝑅𝐷𝐴<,,BCDE and its contributions from the coldest and hottest third of summer days. Panel (a) depicts 𝑉BCDE and 
panels (b) and (c) show 𝑉𝐹hYiBCDE and 𝑉𝐹XYZ<BCDE, respectively. Green contours in (b) and (c) depict 𝐶BCDE gradient magnitudes of 6 and 12 K 10-665 
6  m-1. The 𝐶BCDE gradient magnitudes have been computed as first order central differences and are only plotted over oceans. Black crosses 
as in Fig. 3a. 
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 670 
Figure 7. The variance of 𝑅𝐷𝐴<,,GBHI and its contributions from the coldest and hottest third of summer days. Panel (a) depicts 𝑉GBHI and 
panels (b) and (c) show 𝑉𝐹hYiGBHI and 𝑉𝐹XYZ<GBHI, respectively. Black crosses as in Fig. 3a.  
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Figure 8. The JJA temperature and precipitation evolution at 81°E/21°N. Panels (a) and (b) depict non-detrended ERA-Interim T2m and 675 
accumulated precipitation at 81°E/21°N for all JJA seasons, respectively. The extreme summers are highlighted in colors. The dashed black 
line in (a) depicts the climatological calendar day mean T2m at 81°E/21°N. 
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 680 
Figure 9. Arctic sea ice and local summer temperature variability. Panel (a): 𝑋𝐹XYZ<BCDE (shading, only 70°N–90°N is shown) and mean 1979–
2018 JJA ERA-Interim sea ice concentration (green contours indicate sea ice concentrations of 0.3, 0.5 and 0.7). Panel (b): empirical 
probability density function of non-detrended ERA-Interim T2m at 79°N/42°E (red), 81°N/42°E (gray) and 83°N/42°E (blue). Crosses in 
(a) locate these three grid points. 
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Figure 10. (a) T2m difference between the 100 climatologically coldest JJA days and the 100 coldest extreme summer days (shading). 
Contours depict the composite PV field at 335 K (contours of 2, 3.5 and 5 PVU) for the 100 climatologically coldest JJA days (blue) and for 
the 100 coldest extreme summer days (red). The yellow cross indicates 116°W/39°N. Panels (b) and (c) depict composite Hovmöller 
diagrams of the anomalous 250 hPa meridional wind, averaged between 35°N and 65°N, and temporally centered on the 100 climatologically 690 
coldest JJA days (b) and on the 100 coldest extreme summer days (c). Meridional wind anomalies are calculated relative to the 1979–2018 
mean JJA meridional wind. The vertical line in (b) and (c) indicates 116°W. 
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Table 1. Definitions and descriptions of important quantities used in this study. 695 

Symbol Formal definition Description 

𝑇<,,  Daily mean T2m with rank 𝑑 in season 𝑘 (Fig. 2b) 

𝑆𝑀, 1
𝐷:𝑇<,,

=

<>&

 
Seasonal mean T2m of season 𝑘 

𝐶 1
𝐾 ∙ 𝐷::𝑇<,,

=

<>&

L

,>&

 
Climatological JJA seasonal mean 

𝑆𝐴, 𝑆𝑀, − 𝐶 Seasonal anomaly of season 𝑘 

𝑅𝐷𝑀< 1
𝐾:𝑇<,,

L

,>&

 
Rank day mean of rank 𝑑 

𝑅𝐷𝐴<,, 𝑇<,, − 𝑅𝐷𝑀< Rank day anomaly of rank 𝑑 in season 𝑘 (Figs. 2c, 

3b–e, 4b–e) 

𝑋𝑀 1
𝑁:𝑆𝑀,

,∈𝕏

 Mean of 𝑁 considered extreme summers  

𝑋𝐴 𝑋𝑀 − 𝐶 Mean anomaly of 𝑁 considered extreme summers 

(Figs. 3a, 4a) 

𝑆𝐹XYZ<,, 

⎝

⎛1
𝐷:𝑅𝐷𝐴<,,

]='^

<>&
⎠

⎞ 𝑆𝐴,a  

Fractional contribution from the coldest third of 

summer days of season 𝑘 to 𝑆𝐴, 

𝑋𝐹XYZ< 

⎝

⎛1
𝑁:

1
𝐷:𝑅𝐷𝐴<,,

]='^

<>&,∈𝕏
⎠

⎞ 𝑋𝐴q  

Fractional contribution from coldest third of 

extreme summer days to 𝑋𝐴 (Fig. 5) 

𝑉	 1
𝐾 ∙ 𝐷::(𝑅𝐷𝐴<,,)S

=

<>&

L

,>&

 
Variance of all 𝑅𝐷𝐴<,, values at a particular grid 

point. (Figs. 6a, 7a) 

𝑉𝐹XYZ<	

⎝

⎛ 1
𝐾 ∙ 𝐷::(𝑅𝐷𝐴<,,)S

]='^

<>&

L

,>&
⎠

⎞ 𝑉q  

Fractional contribution from the coldest third of all 

summer days to 𝑉 (Figs. 6b,c, 7b,c) 

 

 


