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We thank both referees for their constructive and detailed criticism. We agree with most of the comments
and adapted the manuscript to mitigate concerns and correct errors. Specific replies to the issues raised
are below. Our replies are marked blue.

Referee 1

General criticism My general criticism of the paper is that the concluding section does not link back
to the introduction, and to the existing literature on the effect of orography on fronts. As a result it is
impossible to see what is new in this paper and what corroborates (or contradicts) previous results (other
than the null effect on the CCB wind maximum). The summary and conclusions need re-writing to place
the current results in context, and should concentrate on verifiable results rather than speculation (e.g.
l.319-20, 328-32). This is a well-established area of research in meteorology. Only if the authors can show
a genuine novel result should this paper be published.

We revised the introduction and conclusions to better link these sections and make the novel aspects of
our study more visible. To this end, we make reference in the concluding section to three specific research
questions posed in the revised introduction:

1. Did the landfall of the storm affect the formation of its poisonous tail?

2. Did the landfall affect the track of the New Year’s Day Storm?

3. How did the landfall affect the warm and cold fronts of the New Year’s Day Storm?

These questions reflect the discussions in sections 4.1-4.3 and are taken up again in the summary-and-
conclusions section.

Further, the present case study adds to the existing literature in two ways:

1. Our results indicate that the cyclone core and its warm sector might evolve into dynamically
independent entities with the onset of the occlusion process. This presents in our view a genuinely
novel result, as most of the literature we are aware of discuss and thus implicit consider occluded
cyclones as one system.

2. Our results suggest that IGW activity might have played a role in eroding the fronts and com-
municating the orographic impact to the middle and higher troposphere. In our view that is an
interesting novel perspective, as the role of IGWs in front-orography interactions has so far not
been systematically assessed.

Section 3 The figures that accompany this section show fields from both NORA and WRF, but the text
does not make it clear which model field is being discussed. I would have thought that the reanalysis
would be closer to reality than a free-running model so the synoptic discussion should be confined to
NORA, making it a little easier to follow. I’m not sure why you need all the WRF graphs as their only
purpose as far as I can tell is to satisfy the reader that the WRF simulation looks sufficiently similar to
the reanalysis. Section 3.4 is far too superficial to require 13 figure panels (figs 2, 3, 4).

The NORA10 data set is a set of short hindcasts without data assimilation. Technically, NORA10 is
closer related to our WRF simulation than it is to a reanalysis product. More specifically, NORA10 is
a blend of members within a sequence of short (<9h lead time) mesoscale model integrations initialised
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and forced by ERA-40. Based on the available data and observations, it is difficult to identify which one
of the two data sets is closer to reality, as both have strengths and weaknesses. We therefore prefer to
keep both datasets for the discussion of the vertical wind field (Fig. 2 and Fig. 4). But, as is suggested
by the reviewer, we confine the discussion Figs. 3 and 6 to NORA10 data.

Line 256-260/Unwarranted speculation The authors propose that IGWs are responsible for the
effect of orography on mass transport at 500 mb. This need not be so: the mountains change the
thermodynamic fields at the lower levels and therefore the height field at 500 mb. Mountain waves can
only impart momentum to the flow if they break, and as they are fixed relative to the topography their
effect would be to slow the winds at 500 mb. That would disturb the geostrophic balance, suggesting a
flow towards low pressure, which is the opposite of that shown in fig 9b. In the absence of any evidence
this paragraph is pure speculation, quite probably wrong, and should be removed.

The same unwarranted speculation continues in the first paragraph of the next section, which should
either be removed or solid evidence be presented for this conjecture.

We thank the reviewer for sharing these concerns. According to the literature, IGWs can impart momen-
tum to the flow also when they non-linearly interact with each other or the “background state” on which
they propagate (e.g. Einaudi et al., 1978; Plougonven and Zhang, 2014; Fritts et al., 2016). We further
agree with the physical reasoning of the reviewer that the waves would slow down the flow at 500 hPa,
and thus induce flow towards the cyclone center. That is also exactly what we see along the Norwegian
west coast in Fig 9b, positive values indicate flow towards lower geopotential (cf. caption of Fig. 8).

Finally, it is true that the changing thermal structure will change the geopotential structure aloft.
The winds will thereafter however only change through geostrophic adjustment, which is a comparatively
slow process (e.g. Blumen, 1972) and inconsistent in direction with the observed anomalous mass flux.

In response to the concerns raised by both reviewers, we revised these paragraphs into a separate
subsection to accomodate the additional arguments outlined above, and in response to referee 2 (sec.
4.4, L299-327). We toned down the wording and highlight that we present a hypothesis. We removed
speculations from the abstract and concluding section.

Typos

Thanks for pointing these out, we corrected them.

Referee 2

General comments The interactions of the fronts of the famous New year’s day storm from 1992 with
the Norwegian orography is investigated in this paper through analysis of the NORA10 reanalysis data
and three simulations with the WRF model (a control and two simulations with modified orography).
The study is presented well with detailed analysis and should be of interest to readers of this journal. It
would be strengthened by the results being placed more firmly in the context of those from other studies.
I recommend that the authors consider my, mainly minor, comments below.
Summary and conclusions This section is rather brief and just summarises the results from the paper
rather than placing these results in the context of other studies. Please link the results to those from the
other studies discussed in the introduction.

We agree with both referees in that the introduction, results and conclusions sections need to be better
linked. We revised these sections and introduce specific research questions in the introduction to which
we explicitly refer in the discussion of the results and the concluding section.

We further link our findings better to the results of earlier studies, for example:

• Braun et al. (1997), Kljun et al. (2001), and Neiman et al. (2004) as contrasting case studies for
cold front-orography interactions.

• Doyle and Bond (2001) as a contrasting case study of warm front-orography interactions.

• Davies (1984), Blumen and Gross (1987), and Egger (1992) as conceptual context for front-orography
interactions in general.

• Einaudi et al. (1978), Plougonven and Zhang (2014), and Fritts et al. (2016) as context for the
potential role of IGWs in our case study.
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Most of these citations are put into context in the revised introduction, thus providing further links
between the introduction, discussion and conclusion sections.

Section 2 You say how many vertical model levels there are in the NORA10 hindcast and WRF sim-
ulations but please add information about the model top and the mid-tropospheric vertical model level
spacing (i.e. before interpolating to pressure levels).

Both models have the hybrid model levels with the top model level at 10 hPa, and about 35-40 hPa
resolution in the middle troposphere (at a surface pressure of about 1000 hPa). We added this information
to the descriptions of the model setup.

L69 I got confused by these two timescales. Initially I thought that UTCSat was the actual time whereas
UTCNo was an adjusted time to take account of the 1.5 hr time displacement in the hindcast such that
e.g. 0000 UTCNoNo would actually be 0130 UTC in the run. From the caption of Fig. 5 I worked out
that both times are the actual times, but that UTCNo indicates the time in the lagging hindcast run. It
might be easier to remove this notation but instead just note the times corresponding to the same stage
of the evolution in the hindcast run where required. Relating to this point, how does the timing of the
evolution in the WRF control simulation match to the satellite inferred development, is it better than
that in the NORA10 hindcast? If so, do you have any idea why? The warm air seclusion is not as warm
in the WRF control run as in the NORA10 hindcast, is this important?

We agree with the referee that the two different time axes can be confusing. With this comment in mind,
we have come to the conclusion that it will be clearest for the reader if we only mention the differences
in timing when assessing the WRF simulation.

The WRF simulation seems to lag a bit less behind the satellite imagery than the NORA10 data.
Testing different initialisation times for the WRF simulation, we noted that the simulated intensity of
the storm is quite sensitive to the initialisation time. It seems plausible that the sensitivity in intensity
goes hand in hand with a sensitivity in timing. Further, the WRF version we used for our simulations
is considerably newer than the version of HIRLAM used to create the NORA10 hindcasts. Amongst
other parameterisation, in particular different representations of moist diabatic processes could lead to a
more-or-less explosive development of the storm and thus timing differences.

We think the slightly warmer warm seclusion in NORA10 has no substantial influence on the front-
orography interactions around the storm’s warm sector, because the simulations compare well for other
parts of the storm. The simulated wind speeds along the coast are in reasonable agreement with obser-
vations for both simulations. They both have their strength and weaknesses and it is thus important to
have them both in one manuscript.

L127 Presumably the main reason that the absolute wind is weaker along the developing bent-back
front than along the cold front is because it is in the opposite direction to the motion of the cyclone i.e.
although the earth-relative winds are weak, the cyclone-relative winds would be stronger.

We agree with the argument and added it to the discussion in the manuscript.

Fig 5 What is the meaning of the blue spots in panels (a) and (c)?

Thanks for pointing those out. Those were the locations of synthetic soundings we included in an earlier
revision of the manuscript. We removed them.

L187 Do you mean to refer to Fig. e,f rather than d,e? The low-level jet associated with the bent-back
front is a long way from the coast in panel d.

Thanks for pointing out this odd reference. It is actually supposed to refer to Fig. 3g,h.

L196 It would be helpful to mark the regions of descent (Fig 4f) and patchy up and down drafts (fig 4e)
in the corresponding figs. Note that difference in the vertical motion dynamics referred to in the text is
only really clear in panels e,f and not also at the later time shown in panels g,h.

We agree with the referee. We marked the regions with a circle, and limit our reference to Fig. 4e,f.

L207 Move shorthand terminology for the runs to section 2.1 as the terminology is first used there (L89:
“in the Ocean simulation”).

Thanks for pointing this out, we adapted accordingly.

L211 Which bit of the warm sector are you referring to when you mention the “ongoing occlusion
process”? Is it the weak filament of warm air over Scandinavia in Fig 7a which isn’t there in Fig 2h, so
indicating a slower occlusion process in the Ocean simulation?
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We refer to the rather long and thin warm sector between about 60◦N and the Norwegian coast line near
the warm seclusion, which seems to be exactly the feature the reviewer refers to. We added a letter mark
to the map to be able to point directly to the specific location we have in mind.

L215 You say that the detected bent-back front extends further around the warm air seclusion in the
Ocean simulation. Which run are you comparing with here though, the control run or that with Double
orography? The extent of the bent-back front on the northern side of the seclusion is greatest in the
control run (Fig 2h).

Thanks for pointing out this inconsistency! We added the comparison to the control simulation to the
sentence. It now reads: “In the Double simulation, the detected bent-back front extends less far around
the warm-air seclusion than in the Ocean and Control simulations, indicating a less locally confined θe
gradient on the northern side of the seclusion without orographic influence (Figs. 2h; 7).”

Fig 7 caption I think you mean “Fig 2h” as both panels show results from the WRF runs (whereas Fig
2g is for the NORA10 hindcast).

We agree and have corrected.

L244 Can you provide some extra information to help me locate where you mean by “the cold sector”?

We refer to narrow north-south oriented feature just south of the cyclone core in Figs 8a-d. We added
letter marks on the map to be able to directly point to the features we have in mind.

L258 Given that air is pretty much incompressible is it really surprising that the ascent and mass
transport that occurs as the flow impinges on the orography is pretty much instantaneously seen at all
levels (including the weak ascent at 500 hPa)?

It seems very plausible that the forced ascent in the lowest troposphere is at least in part the dynamical
origin of the signal we observe at the 500 hPa-level. However, our trajectory analysis suggest that the
first parcels of near-surface air are only reaching the 500 hPa level after 9-12 hours of ascent, such that
vertical mass transport is too slow to account for the vertical communication of the anomaly signal. The
dipole in the mass flux appears nearly instantaneously, and extends throughout most of the troposphere.
In the light of the strong wave signal seen in the vertical velocity field, it seems plausible to us that IGWs
played a role in propagating the signal upwards from the lowest troposphere.

We revised this section into a separate subsection and included the arguments offered here and in
response to referee 1 (sec. 4.4, L299-327). We clearly mark our interpretation as a hypothesis and reduced
its prominence in the abstract and conclusions.

Fig 11 Please clarify in the text whether the maps in the right hand column are θe differences (as they
appear to be from comparison with the left hand column plots) or wind speed (as in Fig 10 which Fig 11
is supposed to mirror in structure).

These are θe differences. We clarified the caption, stating explicity that θe differences are shown in both
the section and the map.

L291 Please add some detail about how the trajectories were calculated. From Fig. 12d I think the
trajectories all run to 18 UTC and are started at 0, 3 and 6 UTC. But each panel seems to have 4 sets of
circle markings along the trajectories—what times are these at? The caption refers to 3 hour trajectory
segments so does e.g., Fig. 12a just show the trajectories from 0 to 9 UTC? “The caption states that the
trajectories are coloured by the pressure of the preceding timestep” does this mean that the colour of the
first segment of the trajectories in panel a relates to the pressure of these trajectories at 0 UTC? Why
are the pressures then all negative in the colour bar under panel c? Finally, why are the last set of circle
markers along the trajectories red whereas the other ones seem to match the colour of the trajectory
segments?

Thanks for pointing out this inconsistency between the trajectory map and height plot. The circles mark
the trajectory locations at 3-hourly intervals. So you have been interpreting the Figure correctly, for
panel (a) the circles mark the locations at 00, 03, 06 and 09 UTC.

You’re interpreting the color of the trajectory segments correctly. The negative pressures are a typo,
resulting from a struggle with the plotting library. The absolute numbers give pressure in hPa. Thanks
for pointing this out!

The final circles are red rather than black just for visual distinction from the previous time step.
Some trajectories (for example those close to the cyclone core) do not move much in the last of the
3-hour intervals, such that the circles would become ambiguous were they black, too. We added small
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circles to the trajectory height plot to make that correspondence between the panels more intuitive, and
clarified the Figure caption.

Technical errors

Thanks for pointing these out, we corrected them.
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Abstract. Although following a common synoptic evolution for this region, the New Year’s Day Storm 1992 was associated

with some of the strongest winds observed along the Norwegian West Cost. The narrow wind band along its bent-back front

became famous as the “poisonous tail”, and paved the way towards today’s sting jet terminology. This article re-examines the

storm’s landfall with a particular focus on the interaction with the orography.

Sensitivity analyses based on WRF simulations demonstrate that the formation and the evolution of the warm-air seclusion5

and its “poisonous tail” are largely independent from orography. In contrast, the warm sector of the storm is undergoing

considerable orographically induced modifications. Both
:::::
While

::::::
moving

:::::
over

:::
the

:::::::::
orography,

::::
both

:
warm and cold fronts are

eroded rapidly, and the
:
.
::::
This

:::::::::::
development

:::
fits

::::::
neither

:::
the

:::::::::::::::
cold-air-damming

:::
nor

:::
the

:::::::::::::::
passive-advection

:::::::::
paradigms

:::::::::
describing

:::::::::::::
front-orography

::::::::::
interactions.

::::
The

:
warm sector is lifted over the orography, thereby accelerating the occlusion process. The

insensitivity of the warm-air seclusion to the orographic modifications of the warm sector raises the question to which extent10

these entities are still interacting after the onset of the occlusion process.

Further, we observe ubiquitous and large-amplitude internal gravity waves (IGWs) during the landfall of the warm and cold

fronts, exceeding in amplitude the cross-frontal circulation. As the spatial scales of the IGW pattern and of the fronts are

comparable, we speculate that wave-front interactions
::
are

::::::::
plausible

::::
and

:
might have contributed to the rapid erosion of the

cross-frontal temperature gradient over the orography. Further, IGWs might also provide a plausible cause for
:::
we

::::::::::
hypothesize15

:::
that

:::::
IGWs

:::::::::
contribute

::
to the observed near-instantaneous flow deflection around

::
the

:
orography at 500hPa,

:::::
which

::
is well above

crest height.

Copyright statement. CC-BY 4.0

1 Introduction

The New Year’s Day Storm 1992 (norw.: Nyttårsorkanen) was one of the most vigorous winter storms in the history of recorded20

storms over Norway. Its wind gusts exceeded the upper limits of measurement stations along the Norwegian West Coast.

Through extrapolation, the Norwegian national weather service (MET Norway) estimated wind gusts exceeding 60ms−1 and
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10-min mean wind speeds exceeding 45ms−1 at Svinøy lighthouse during the landfall (locations and orography shown in Fig.

1; Aune and Harstveit, 1992). Along the coastline from the Svinøy Lighthouse to the vicinity of Trondheim, the wind speeds

are estimated to have
:::
had

:
return periods of more than 200 years (Aune and Harstveit, 1992).25

Consequently, the storm attracted the attention of the scientific community. In particular the formation of the extreme wind

speeds along the bent-back front and the formation of a warm-air seclusion received attention (Grønås, 1995; Browning,

2004; Clark et al., 2005). With his study, Grønås (1995) introduced the “poisonous tail” as a widely-used metaphor to the

scientific literature. The term “poisonous tail” was already used by to the Norwegian forecasting community before the work

of Grønås (1995), who learned about it while working as a forecaster at MET Norway in the 1960s. Later, Browning (2004)30

and Clark et al. (2005) turned the “poisonous tail” into the “sting at the end of the tail”, which has become a term popular

even in the media (Schultz and Browning, 2017). In his analysis of the New Year’s Day Storm, Grønås (1995) found that moist

diabatic processes played a crucial role in the formation and evolution of the warm-air seclusion. We complement his analysis,

investigating the role of front-orography interactions in the evolution of the storm. Specifically, we investigate the role of the

landfall on the Scandinavian coastal range (Scandes) in the formation and evolution of the warm-air seclusion
:
,
:::::::::
addressing

:::
the35

::::::::
following

::::::::
questions:

:

1.
:::
Did

::::
the

:::::::
landfall

::
of

:::
the

:::::
storm

:::::
affect

:::
the

::::::::
formation

::
of

:::
its

::::::::
poisonous

::::
tail?

:

2.
:::
Did

::::
the

:::::::
landfall

:::::
affect

::
the

:::::
track

::
of

:::
the

::::
New

::::::
Year’s

::::
Day

::::::
Storm?

3.
::::
How

:::
did

:::
the

::::::
landfall

:::::
affect

:::
the

:::::
warm

::::
and

::::
cold

:::::
fronts

::
of

:::
the

::::
New

::::::
Year’s

::::
Day

::::::
Storm?

::
To

::::
shed

::::
light

:::
on

::::
these

::::::::
questions,

:::
we

:::::::
contrast

:::::
WRF

:::::::::
simulations

::::
with

::::::
double

:::
the

:::::::::::
Scandinavian

::::::::
orography

::::
and

::::
with

::
no

:::::::::::
Scandinavian40

::::::::
orography.

Previous case studies on front-orography interactions often focus only on cold fronts (e.g. Braun et al., 1997; Kljun et al.,

2001; Neiman et al., 2004), although a limited number also consider bent-back fronts (e.g. Steenburgh and Mass, 1996) or

warm fronts (e.g. Doyle and Bond, 2001). Together, these case studies document numerous processes that can be at play

during front-orography interactions, for example front dissipation due to orographic flow deformation (Braun et al., 1997),45

the formation of barrier jets (Braun et al., 1999; Yang et al., 2017), front retardation due to blocking (Doyle and Bond, 2001;

Neiman et al., 2004), as well as foehn and cyclogenesis in the lee (Kljun et al., 2001).

Due to the complexity of the front-orography interplay, only a limited number of conceptual models exist. One of the earliest

efforts is presented by Bjerknes and Solberg (1921), who summarised rain observations over Scandinavia in a conceptual model

of a warm front moving over a ridge. Their conceptual model includes a pocket of trapped cold air upstream of the ridge and a50

warm front modified by the vertical motion up- and downstream of the ridge. Davies (1984) and Egger (1992) apply the idea

of orographically blocked flow to a non-linear analytical model of cold fronts approaching a triangular ridge. In their model,

the approaching cold front is entirely blocked in a certain parameter regime, for example for strong stratification. In contrast,

if the flow is less stratified, the approaching front might be linearly advected by flow over the ridge (Blumen and Gross, 1987;

Blumen, 1992). Here the flow over the ridge causes a weakening of the front upstream, and a strengthening downstream. The55
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antipodal conceptual models of Davies (1984) and Blumen and Gross (1987) provide the framework within which we will

interpret our results.

As is shown in this study , the synoptic evolution of the New Year’s Day Storm during landfall, including the formation

of the warm-air seclusion, closely followsthe conceptual model in Fig. 7 of Bjerknes and Solberg (1922). Two aspects make

this similarity noteworthy. First, it indicates that the storm followed a common synoptic evolution for this region. This seems60

surprising for such an extreme event. If the evolution followed a common pattern, why did this particular storm produce

low-level winds with return periods of 200 years or more? While we do not claim to provide the ultimate answer, our analyses

allow an hypothesis on what separates the New Year Day’s Storm from more average intense winter storms in the region.

Second, the conceptual model in Fig. 7 of Bjerknes and Solberg (1922) is only a special case of their conceptual model of

secondary cyclogenesis at the occlusion point (their Fig. 6). Hence, as Bjerknes and Solberg (1922) were well aware, the65

formation of a warm-air seclusion can occur also without any orographic influence. This raises the question to which extent

the warm-air seclusion of the New Year’s Day Storm formed due to the Scandes. Here, a sensitivity analysis allows us to draw

a definitive conclusion.
::::
This

:::::
study

::
is

::::::::
organised

::
as

::::::::
follows.

::
A

:::::::::
description

::
of

:::
the

::::::::::
underlying

::::
data

::::
sets,

:::::
model

::::::::::
simulations

::::
and

::::::
analysis

::::::::
methods

::::
(sec.

:::
2)

::
is

:::::::
followed

:::
by

:
a
:::::::

detailed
::::::::

synoptic
:::::::::
discussion

::
of

:::
the

:::::
event

::::
(sec.

:::
3).

:::
In

::::::
section

:
4
:::

we
::::::::::

investigate
:::
the

:::::
impact

:::
of

:::
the

:::::::
Scandes

::
on

:::
the

:::::
storm

:::
and

:::::::
address

:::
the

::::::::
questions

:::
we

:::::
raised.

:::
We

:::::
close

::::
with

:::
our

::::::::
summary

:::
and

::::::::::
conclusions

:::::
(sec.

::
5).

:
70

2 Data and methods

We base our analysis on 3-hourly data from the Norwegian Reanalysis Archive (NORA10; Reistad et al., 2011) as well as on

sensitivity experiments using the Weather Research and Forecasting model (WRF; Skamarock et al., 2008). The horizontal

resolution of the NORA10 data set varies between 10 and 11km, with the NORA10 orography and domain boundaries indi-

cated in Fig. 1. In the vertical, the data is interpolated from 40 hybrid model levels to 25 pressure levels, covering the lower75

troposphere (1000–700hPa) with a uniform resolution of 25hPa, and a resolution of 50hPa above. In the course of our analyses

we noted that for this explosively developing case and the time period we consider in this study, the NORA10 hindcast appears

to lag behind the actual development as seen on satellite imagery by about 1-1.5hours. We therefore refer to the respective time

scales as UTCNo for the hindcast and UTCSat for the satellite imagery where ambiguous.

2.1 WRF control and sensitivity simulations80

The WRF model setup parallels that of the NORA10 hindcasts. We use a constant horizontal resolution
:
of

:
10km, but the WRF

standard configuration with 60 hybrid model levels in the vertical. The
::
In

::::
both

::::::
models

:::
the

:::::::::
uppermost

:::
grid

:::::
point

:
is
::
at
::::::
10hPa,

::::
and

::
the

:::::::
vertical

:::::::::
resolution

::
in

:::
the

::::::
middle

::::::::::
troposphere

::
is

:::::
about

:::::::::
35-40hPa.

:::
The

:::::
WRF

:
output is interpolated to the same 25 pressure

levels as the NORA10 data. The domain horizontally covers an area of 6000× 4000km, including most of the North Atlantic

and of Scandinavia. The domain fully covers the region shown in Fig. 1. The Norwegian West Coast is located centrally in the85

eastern half of the model domain to minimise the impact of the model boundaries.
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The initial state and boundary conditions are derived from 6-hourly ECMWF operational analyses. As the operational anal-

yses for the study period do not include sea-surface temperature, we supplement with those from ERA-Interim (Dee et al.,

2011). We initialise the model on 31 December 1991 06 UTC, roughly 21, 24, and 27 hours before the landfall of the warm,

cold, and bent-back fronts, respectively. We chose this initialisation time as a trade off between having sufficient model spin-up90

time and the accuracy of the simulation. We tested initialisation dates between 30 December 1991 12 UTC and 31 December

1991 UTC and find that the earlier the initialisation date, the weaker becomes the simulated New Year’s Day Storm.

We use WRF version 3.8.1 in a configuration with YSU boundary layer physics, the revised MM5 scheme (based on a Monin

Obukhov surface layer with Carlson-Boland viscous sublayer), and the WRF three-class single moment cloud microphysics

scheme. The parameterisation of cumulus convection is enabled, using the Kain-Fritsch scheme updated every 5 minutes.95

Radiation is calculated using the RRTM for long wave lengths, and the Dudhia scheme for short wave lengths, both updated

every 10 minutes. The land surface is parameterised using a thermal diffusion model with five layers.

To test the sensitivity of the evolution of the New Year’s Day Storm to the Scandinavian orography, we compare the control
:
a

simulation with full orography
:::::::::
(“Control”)

:
to (a) a simulation in which the orography is removed and the land surface replaced

by ocean
::::::::
(“Ocean”), and (b) a simulation in which we double the height of the Scandes

:::::::::
(“Double”). In the Ocean simulation,100

sea-surface temperatures over the Scandinavian peninsula are defined by iteratively minimising the local Laplacian given the

observed surface temperatures in the surrounding seas (277-280K in the Atlantic and North Sea ; 275-278K in the Baltic;

273-275K in the White Sea).

2.2 Front detection

For our analysis of the landfall, we require a front detection scheme to track and visualise the evolution of the fronts close to105

orography in the comparatively high-resolution NORA10 hindcasts and WRF simulations. There are different approaches for

the automated detection of fronts, but all of them struggle to detect fronts in the vicinity of orography. Many of the difficulties

arise from the need of higher derivatives to pinpoint the exact location of a front line (e.g. in Hewson, 1998; Jenkner et al.,

2010; Berry et al., 2011). We therefore follow the approach of Spensberger and Sprenger (2018) and detect frontal volumes

instead of front lines. Frontal volumes are defined as coherent volumes where the local thermodynamic gradient exceeds a110

given threshold

|∇τ |>K , (1)

and that exceed a given minimum volume. With this approach, we require only a first derivative of a thermodynamic field.

Spensberger and Sprenger (2018) developed this approach to detect fronts in the ERA-Interim data set. In our comparatively

high-resolution data sets, mesoscale processes can lead to locally strong thermodynamic gradients independent from a synoptic-115

scale frontal system. We are however only interested in local thermodynamic gradients associated with a synoptic-scale front,

and therefore require a minimum thermodynamic gradient both at the native resolution of the input data and in a smoothed

version of the thermodynamic field. With this extension, we are able to identify only those mesoscale gradients that belong to

a synoptic scale system, and define only those as fronts.
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For the thermodynamic field τ , we use equivalent potential temperature θe to include both temperature and moisture gradients120

in the front definition [see Schemm et al. (2017) and Thomas and Schultz (2019) for a comprehensive discussion on the merits

and drawbacks of θe for objective front detection]. We detect frontal volumes between 700 and 950 hPa with a minimum volume

of 7500km2·250hPa. Furthermore, we use a local |∇θe|-threshold of 6.0K(100km)−1 and a threshold for the smoothed field

of 4.5K(100km)−1. The conclusions of this study are independent from the exact values used for these thresholds.

To arrive at the lower-resolution data set, we smooth the θe field by 30 passes of a three-point filter τ∗i = τi +( 14τi−1−125
1
2τi +

1
4τi+1) in both horizontal dimensions. Here, i is the grid point index and ∗ denotes the new value after one pass of the

filter. With 30 passes, this filter largely suppresses waves shorter than 10 grid points (approx. 110km), while waves longer than

approximately 20 grid points retain more than 50% of their amplitude.

3 Synoptic evolution during landfall

3.1 Explosive deepening over the central North Atlantic130

We start following the synoptic evolution at 00 UTC No on 1 January 1992, corresponding to 18 hours lead time of the WRF

simulations (Fig. 2). At this point in time, the cyclone underwent an explosive deepening of approximately 40hPa during the

preceding 24 hours (Grønås, 1995). Its structure is that of a mature cyclone following the Shapiro and Keyser (1990) conceptual

model (Fig. 2a,b). The warm sector is bounded on the northern side by a well-developed bent-back front, and to the west by

several cold front segments. On the warm front side, however, the θe gradient is below the detection threshold.135

At this point in time, the strongest winds occur along the cold front (Fig. 3a,b), in agreement with, for example, the low-

level jet described in Lackmann (2002). This low-level jet ahead of the cold front transports warm moist air towards the

cyclone core, providing the inflow to a warm conveyor belt, as indicated by the broad area of stratiform ascent along the

bent-back and warm fronts (vertical wind in Fig. 4a,b; cloud observations in Fig. 5). Although the absolute wind speed is

smaller along the developing bent-back front than along the cold front jet, stronger ageostrophic winds indicate considerable140

flow imbalances along the developing bent-back front (exceeding 20ms−1 in the NORA10 hindcastsand 25ms−1 in the WRF

control simulation; Fig. 3a,b).
:
).
:::::
Parts

::
of

:::
the

::::
wind

:::::
speed

:::::::::
difference

:::::::
between

:::
the

:::::::::
bent-back

:::
and

::::
cold

:::::
front

:::::
might

::
be

::::
due

::
to

:::
the

::::::::
cyclone’s

:::::::
direction

::
of

:::::::::::
propagation:

:::
the

:::::
winds

:::::
along

:::
the

::::
cold

:::::
front

:::
are

::::::
largely

::::::
parallel

::
to

::::
this

::::::::
direction,

:::::::
whereas

:::
the

::::
flow

:::::
along

::
the

:::::::::
bent-back

::::
front

::
is

::::::
largely

::::::::
opposing

:::
this

::::::::
direction.

:

3.2 Landfall of the warm sector145

At 03 UTC on 1 January 1992, the leading edge of the warm sector arrives at the Scandes (Fig. 2c,d). At 850hPa, the warm

front does not fulfil our detection criteria except for a small region close to Svinøy on the northwestern cape of the West Coast,

but at 925hPa the temperature gradient exceeds the detection threshold in a line connecting Bergen with the cyclone’s bent

back front (not shown). The temperature gradient tightens as the front approaches the coast line, consistent with increased θe
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frontogenesis at 850hPa driven by flow deformation (not shown). This flow deformation is consistent with an increase in ascent150

long
:::::
along

:
the warm front as it approaches the Scandes (Fig. 4c,d).

The intensification of the fronts approaching the Scandes indicates some orographic blocking of the warm air mass that

acts frontogenetically. The orographic flow distortion is associated with increasing ageostrophic wind components where the

Scandes intersect with the 850hPa surface (Fig. 3c,d
:
b). In contrast, at 700hPa, parts of the warm sector already moved over

the Scandes (not shown), which reach up to a crest height of about 850-800hPa. Both the 700hPa θe distribution and the155

corresponding cloud cover on the Meteosat 4 satellite imagery show hardly any orographic distortion (Fig. 5a), confirming that

only levels below 850hPa are affected by some degree of orographic blocking.

Between 03 and 06 UTC, the cold front crosses the North Sea and is at 06 UTC about to make landfall on the Norwegian

West Coast (Fig. 2e, f). With the approaching cold front, the warm sector narrows to a thin filament along the coast line north

of Bergen. To the south of Bergen, the Scandes are lower and the warm sector continues to propagate eastward relatively160

unaffected by the orography. This north-south difference in propagation speed further indicates that the warm front is partly

blocked to the north of Bergen. At 850hPa and below, the core of the cyclone is already largely cut off from the warm sector

(Fig. 2e, f), while at 700hPa core and warm sector remain connected (not shown).

Along the coast line between Svinøy and Trondheim (Fig. 1), both the NORA10 hindcasts and the WRF control simulation

exhibit an area of increased wind speeds (Fig. 3e, f). In WRF this area is a homogeneous tongue of high wind speeds associated165

with descent at 700hPa (Fig. 4f). In contrast, the NORA10 hindcasts show pronounced small-scale variations in the horizontal

wind speed collocated with varying up- and downdrafts (Figs. 3e, 4e).

During the landfall of the cold front, between 0430 UTC Sat to
:::
and 0600 UTCSat, satellite imagery shows the development of

a cloud-free area on the eastern side of the Scandes (Fig. 5d). This cloud-free area indicates descending air masses and cloud

evaporation. There is however some indication that this descent does not reach the lowest troposphere. First, the southwesterlies170

in the warm sector at 850hPa are not evident in the wind field in the lee of the Scandes (Fig. 2e, f). Second, the 850hPa

temperature in this region remains unchanged between 03 UTC and 06 UTC No (Fig. 2c-f), suggesting that the lowest levels in

the lee of the Scandes are at 06 UTC still covered by the incipient cold air mass.

Although some of the cold air moved over the Scandes after 09 UTC (Fig. 2g-j), the temperature gradient in the lee has

become too diffuse to qualify as a cold front following our definition. Further, the previously clear signal in the vertical wind175

associated with the warm front (Figs. 4c,d) disappears over the Scandes. Over and in the lee of the Scandes, the vertical

wind pattern is now dominated by wave structures indicating considerable activity of orographically triggered gravity waves

(IGWs; Figs. 4c-h). These waves dominate over the organised vertical wind structure associated with the frontal circulation

over the Atlantic and North Sea. The larger scale structure of the horizontal wind in the warm sector is re-emerging in the lee

of the Scandes (compare Figs. 3c,d and 3g,h
:
b
:::
and

:::
3d), although the peak wind speed is considerably reduced and features180

a superposed a wavy pattern consistent with IGWs. In contrast, over southern Sweden and Denmark, the cold front could

propagate eastward without encountering any orography, leaving the wind structure largely intact (Figs. 3g,h
:
d).
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3.3 Evolution of the warm-air seclusion

So far we focused the synoptic discussion on the landfall of the cold and warm front
:::::
fronts, and orographic impacts on the warm

sector. In the following, we shift focus towards the remaining front structure, the bent-back front, and its evolution in tandem185

with the warm-air seclusion.

At 09 UTCNo, the warm-air seclusion is fully cut off from the warm sector at 850hPa (Fig. 2g,h). The warm sector is located

entirely on the eastern side of the Scandes, and covers the southern part of Scandinavia (Fig 2g,h). At 700hPa, however, the

warm-air seclusion is still largely connected with the warm sector, although the warm-air seclusion is now associated with a

separate θe maximum close to the bent-back front (Fig. 6a,
:
).
:::

At
::::
925

:::
hPa,

:::
the

::::::::
Scandes

:::::::
separate

:::
the

:::::
warm

:::::
sector

:::
to

:::
the

:::::
south190

::::
from

:::
the

:::::::::::::
warm-seclusion

::
to

:::
the

:::::
north

::::
(Fig.

::
6b).

With the formation of the warm-air seclusion, the cloud cover in the cyclone core starts to change. At 0300 UTCSat, the

cyclone core is covered by low-level clouds, and partly even cloud-free. From 0430 UTC Sat onward, the cyclone core is

increasingly covered by spots of high-top convective clouds (Fig. 5c-e). The temporal correlation with the formation of the

warm-air seclusion indicates
::::::
suggests

:
that the onset of the convective activity in the cyclone core is dynamically linked with195

the cut-off of the seclusion from its warm sector. At 0730 UTC Sat most of the warm-air seclusion is covered by patchy high

clouds (Fig. 5e).

From 00 UTC to 09 UTC, the bent-back front continuously changes orientation. At 00 UTC the tip of the bent-back front

points to the southwest, at 06 UTC to the south, and at 09 UTC to the southeast. The change of orientation is particularly

pronounced between 06 UTC and 09 UTC, while the tip of the bent-back front is rapidly approaching the coast line. Between200

09 UTC and 12 UTC, the bent-back front makes landfall and its orientation stops changing. Thus, the low-level jet associated

with the bent-back front impinges on the coast line almost perpendicularly (Fig. 2d,e
::
3d).

The following hours are characterised by a rapid decay of the warm-core seclusion (not shown). The weakening cyclone

core crosses the Scandes between 15 and 18 UTC at around 65◦N, where the Scandes are lower than further south. Together

with the cyclone core, parts of the warm-air seclusion cross the Scandes, but in this process the temperature gradient along the205

bent-back front weakens, and no longer qualifies as a front following our definition.

3.4 Assessing the WRF control
:::::::
Control simulation

Overall, WRF reproduces the synoptic evolution of the New Year’s Day Storm well compared to the NORA10 reanalyses and

the satellite imagery (Figs. 2-6
::
2,

::
4,

::
5). As indicated in the discussion of the synoptic evolution, there are however more or

less subtle differences between NORA10 and WRF. Conceptually, the most prominent difference concerns the dynamics of the210

flow in the lee of the Scandes, between Svinøy and Trondheim at 06 and 09 UTC (Figs. 3e-h; 4e-h
:::
blue

::::::
circles

::
in

::::
Fig.

::::
4e,f).

Here, WRF simulates a coherent region of descent which might be indicative of a foehn event, while the NORA10 hindcasts

exhibit patchy up- and downdrafts indicative of convective activity. This and

::
In

:::::::
addition,

:::
the

:::::::::
NORA10

::::::::
hindcasts

::::
seem

:::
to

:::
lag

::::::
behind

::::
both

:::
the

:::::::
satellite

:::::::
imagery

:::
and

:::
the

:::::
WRF

:::::::::::
simulations.

:::
For

::::::::
example,

::
the

:::::::
landfall

::
of

:::
the

::::
cold

:::::
front

:::::
makes

:::::::
landfall

::
on

:::
the

::::::::::
Norwegian

::::
west

:::::
coast

::::::
around

::
06

:::::
UTC

::
in

::::::::
NORA10

:::::
(Fig.

:::
2e),

:::::::::
compared

::
to215
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::::::
around

::::
0430

:::::
UTC

::
in

:::
the

:::::::
satellite

:::::::
imagery

::::
(Fig.

:::
5c)

::::
and

::::::
around

::
05

:::::
UTC

::
in

:::
the

:::::
WRF

:::::::::
simulation

:::
(not

:::::::
shown).

::::::
These

:::
and

:
other

differences between NORA10 and WRF are however inconsequential for the following discussion of orographic effects.

4 Orographic impacts

4.1 Little impact on the formation of the warm-air seclusion and its poisonous tail

In the synoptic evolution of the New Year’s Day Storm in NORA10 and WRF, we observe
:
a clear orographic influence on the220

storm. In particular, we found a separation of the cyclone core from its warm sector below 850hPa, a synoptic evolution similar

to the one described in Bjerknes and Solberg (1922). However, the extent to which the formation of the warm-air seclusion

was forced or accelerated by the orography remains unclear. Levels above 850hPa did not experience an orographically forced

cut-off of a pocket of warm air from the warm sector but still see a warm-air seclusion. To assess the impact of orography on the

storm, we performed sensitivity analyses in
:
in
:::
the

::::::::
following

::::::::
compare

:::::::::
simulations

::
in
:
which we either replaced the Scandinavian225

peninsula by ocean(“Ocean” simulation), or doubled the height of the Scandes(“Double” simulation).

These changes to the orography have surprisingly little impact on the evolution of the storm (Fig. 7). In particular, these

simulations demonstrate that the warm-air seclusion would have formed even in the absence of orography (Fig. 7a). Without

orography, the warm sector would have deformed to a long arched filament on 850hPa (
::::
mark

:::
A

::
in

:
Fig. 7a), indicating an

ongoing occlusion process independent from orography. The Scandes however accelerated this deforming and separation in an230

orographic occlusion process.

In tandem with the largely unaffected warm-air seclusion, the bent-back front shows hardly any orographic impact prior to

its own landfall around 09 UTC (Fig. 7). In the Ocean
::::::
Double simulation, the detected bent-back front extends further

:::
less

:::
far

around the warm-air seclusion
:::
than

:::
in

:::
the

:::::
Ocean

::::
and

::::::
Control

::::::::::
simulations, indicating a more

:::
less locally confined θe gradient

on the northern side of the seclusion without orographic influence .
:::::
(Figs.

:::
2h;

:::
7).

:
The structure of the wind field around the235

poisonous tail however are largely unaffected by the orography (not shown), and in particular unaffected by the landfall and

decay of the storm’s warm sector.

This insensitivity of the wind field might indicate that the extreme winds in the storm’s poisonous tail are part of a sting jet,

dynamically arising from downward transport of momentum (Schultz and Browning, 2017; Clark and Gray, 2018). However,

in neither the NORA10 hindcasts nor our WRF simulations, there is a region of coherent descent that would indicate a sting240

jet (Fig. 4c-h). We therefore interpret the poisonous tail as predominantly a cold conveyor belt jet (Clark and Gray, 2018). In

synthesis with the results of Grønås (1995), we suggest that the dynamics of the poisonous tail are more determined by local

moist diabatic effects than
::
the somewhat more remote orographic flow distortions.

In summary, the warm-air seclusion and its poisonous tail exhibit only weak sensitivity to the partial cut-off and rapid decay

of the warm sector. This weak sensitivity suggests that the cyclone core and its warm sector hardly interact at this stage in the245

development. The fronts fronts framing the warm sector decay quickly when moving over the Scandes and the warm conveyor

belt inflow is at least partially interrupted. Yet, the warm-air seclusion evolves largely unaffected. Consequently, it might be

most appropriate to regard the seclusion and the warm sector as two dynamically independent entities as soon as the occlusion
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process started. The evolution of these entities would then be in sync primarily because of a joint history rather than because

of a persistent dynamical linkage.250

The observation of Bjerknes and Solberg (1922) that secondary cyclogenesis frequently occurs at the occlusion point cor-

roborates our interpretation. Cyclogenetic processes in the warm section
:::::
sector frequently lead to the formation of a secondary

core rather than intensifying the incipient cyclone. Secondary cyclogenesis thus provides further indication that the dynami-

cal ties between the warm sector and the incipient cyclone core tend to weaken considerably with the onset of the occlusion

process.255

4.2 Northward displacement of the warm-air seclusion

The main impact of the Scandes on the warm-air seclusion is a slight displacement to the north in the presence of orography

that goes along with higher pressure on the upstream side of the Scandes. These orographically induced differences in the

pressure (and hence mass) distribution are consistent with the orographically impacted mass transports in Figure 8. Figure 8

shows the mass transport σ at 850hPa perpendicular to the geopotential isolines at this level. Here,260

σ =−ρv · ∇φ
|∇φ|

, (2)

where ρ is density, v the horizontal wind vector and φ geopotential.

Before landfall, mass transport towards the lower geopotential occurs primarily along the cold front
:::::
(mark

:::
A)

:
as well as

a convergence line in the cold sector (
::::
mark

:::
B; Fig. 8a,b). Further, the mass transport exhibits a pronounced dipole structure

around the cyclone core, which we expect mainly reflects the movement of the low pressure centre.265

Even before the landfall of the fronts, the Scandes induce some mass transport towards lower pressure along the Norwegian

west coast, peaking close to Svinøy (Fig. 8b). The mass transport peaks around 03 UTC (Fig. 8d), the time of the landfall of

the warm front and the associated start of the orographic occlusion process. It is still a prominent feature of the mass transport

around 06 UTC (Fig. 8f), when the orographic occlusion process completed the separation of the cyclone core from its warm

sector. It is plausible that this orographically induced mass transport caused both the displacement of the cyclone core to the270

north, as well as the higher pressures along the Norwegian west coast.

Interestingly, this orographic mass transport is not restricted to the height of the orography. Although it is most pronounced

below crest level, it remains visible throughout the troposphere, as for example at 500hPa, shown in Figure 9. At this level, the

orographic impact is evident in a dipole pattern centred over the Scandes in southern Norway that is consistent with a ridge

evolving over the orography.275

While the appearance of this orographically induced mass transport in the middle troposphere is hardly surprising, it might

be instructive to ask what process causes its appearance. The 500hPa mass transport evolves in tandem with the one at 850hPa

without discernible delay (shown for 03 UTC, compare Figs. 8d, 9b). Whatever does communicate the orographic impact to

500hPa must hence do so rapidly. In the light of the ubiquitous and high-amplitude IGW signatures in the vertical wind over

and in the lee of the Scandes (Fig. 4), it seems plausible that IGWs are responsible for the changing mid-tropospheric flow280

pattern.
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4.3 Considerable impact on the warm and cold fronts

IGWs might also have impacted the evolution of the warm sector, and in particular the cold front. The cross-front temperature

contrast is considerably smoother in the lee of the Scandes (Fig. 2), suggesting that the cold front largely decayed while passing

over the Scandes. Further, over and in the lee of the mountains the vertical wind does no longer show any signs of the frontal285

circulation (Fig. 4e-h). As the wave length of the IGWs over the Scandes is comparable to the cross-frontal length scale of

the approaching cold front, interactions between the frontal circulation and IGWs seem likely. This interaction would need to be

non-linear in order for IGWs to be able to alter the background state on which they propagate (e.g., review on the sources and effects of IGWs in Plougonven and Zhang, 2014).

In order to investigate further, we follow the evolution of the warm and cold fronts in cross sections through the warm sector290

in the Ocean and Double simulations (Figs. 10, 11). Without orography, the cold sector catches up with the warm sector around

05 UTC, and an occlusion process begins (Fig. 10b). In this simulation ageostrophic winds exceeding 15ms−1 occur solely in

the boundary layer and along the eastward end of a wind maximum in the upper troposphere, around 400km along the section

in Fig. 10b.

In the Double simulation, the equivalent potential temperature and wind structure differs considerably from that in the Ocean295

simulation (Fig. 11). Most prominently, upstream of the Scandes a cold anomaly exceeding 8K is evident both at 03 and 05

UTC. This cold anomaly indicates the orographically retarded propagation of the warm front at 03 UTC and a leftover pocket of

incipient cold air trapped below 900hPa at 05 UTC (Fig. 11a,b), similar to the one included the conceptual model of Bjerknes

and Solberg (1921). Both at 03 UTC and at 05 UTC, low-level ageostrophic winds upstream of the Scandes exceed 35ms−1.

Throughout the shown evolution, wavy patterns in the ageostrophic wind component indicate IGW activity over the leeward300

slopes of the Scandes (Fig. 11). Consistent with our interpretationas IGWs
::
this

::::::::::::
interpretation, these wavy patterns are even

more pronounced in the stratosphere and there exceed amplitudes of 20K in θe.

In the same region, isentropes are pulled down to follow the orographic slope over varying fractions of the troposphere (Fig.

11a-d). These simulated downdrafts are consistent with the appearing cloud-free area observed in the satellite imagery after the

passing of the cold front (Fig. 5). Despite these downslope winds, neither the warm nor the cold sector affect the lowest level305

temperatures in the lee of the Scandes. This is particularly evident at 07 UTC, when the warm sector is located in the region

between 800km and 1000km along the section in the Ocean simulation (Fig. 10c). In the same region, there is a pronounced

cold anomaly below crest height in Figure 11c, showing that the orographically lifted warm sector hardly descends in the lee

of the Scandes. This result confirms our previous interpretation of the orographic impact on the warm sector as an orographic

occlusion.310

A trajectory analysis based on the NORA10 hindcasts provides further support. Air parcels released in the North Sea up-

stream of the Norwegian west coast at 925hPa in (a) the incipient cold air mass, (b) the warm sector and (c) the cold sector all

are first lifted above the Scandes and then either level off or continue their ascent. Only few trajectories released in the cold

sector descend the lee slopes of the Scandes. The warm sector is thus lifted off the surface in the lee of the Scandes.
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Based on the demonstrated orographic impact on the warm sector, we can finally form a hypothesis on why this particular315

storm was associated with extreme winds despite following a relatively typical pattern (Bjerknes and Solberg, 1922). Comparing

our simulations, we note that the landfall of the warm sector in the Double and Control simulations coincides almost perfectly

with the onset of
::::
With

::
the

::::
flow

:::::::
moving

::::::::::::
predominantly

::::
over

:::
the

:::::::
Scandes,

:::
our

::::
case

:::::
study

::::::
differs

::::::::::
considerably

:::::
from

:::::::
previous

::::
case

::::::
studies

::
of

:::
cold

::::
and

:::::
warm

:::::
fronts

::::::::
impinging

:::
on

::
the

::::::
North

::::::::
American

::::
west

::::
coast

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Braun et al., 1997; Doyle and Bond, 2001; Neiman et al., 2004) and

::
of

::::
cold

:::::
fronts

:::::::::
impinging

:::
on

:::
the

::::
Alps

::::::::::::::::::::
(e.g. Kljun et al., 2001).

:::
All

:::::
these

::::
case

::::::
studies

:::::::::
document

:::::
larger

:::::::
degrees

::
of

::::::::::
orographic320

:::::::
blocking

:::
and

::::
flow

::::::::
deviation

::::::
around

:::
the

:::::::::
orography.

:::::::::::
Consequently,

:::
the

:::::::
cold-air

::::::::
damming

::::::::
paradigm

::
of

:::::::::::::::
Davies (1984) and

:::::::
idealised

:::::
model

:::
of

::::::::::::::::::::::::::::
Egger and Hoinka (1992) provide

::::
little

::::::::
guidance

::
to

:::::::
interpret

:::
our

::::
case

:::::
study.

:

::::::::
Although

:::
the

::::
flow

::
is

::::::
largely

:::::::::
unblocked

:::
by

:::
the

::::::::
Scandes, the occlusion process in the Ocean simulation. As the occlusion

process is only somewhat accelerated in the Double and Control simulations, the forming warm-core seclusion could evolve

largely unaffected by orography. Further, the landfall of
:::::
forced

:::::
ascent

::::
over

:::
the

:::::::::
orography

::::::::
interrupts

:::
the

:::::
lowest

::::
part

::
of

:::
the

:::::
warm325

:::::::
conveyor

::::
belt

:::::
inflow

:::::::
towards

:::
the

:::::::
cyclone

:::::
core.

::
By

:::::::
cutting

:::
this

::::
link

:::::::
between

:::
the

:::::::
cyclone

::::
core

:::::
(here, the bent-back front a few

hours after the begin of the orographic occlusion coincides very well with the most intense stage of the cyclone, which also for

the New Year’s Day Storm is observed slightly after the begin of the occlusion process (more generally documented in Schultz and Vaughan, 2011).

From these findings, we hypothesise that it was mainly the timing of the landfall within the life cycle of the New Year’s Day

Storm that made this case such an extreme event.330

In summary, we followed the synoptic evolution of the New Year’s Day Storm from its mature stage and through the landfall

of, in sequence, the warm , cold and bent-back front. Perhaps surprisingly, we find that the formation and evolution of the

warm-air seclusion, the feature that Grønås (1995) made responsible for the storms devastating effects, is largely independent

from the Scandinavian coastal range (Scandes). This insensitivity is largely due to the cyclone ’s inherent occlusion process.

The Scandes did hence not induce, but only accelerate the occlusion process without considerably affecting the formation and335

evolution of the warm-air seclusion. Further, we find that the extreme wind speeds along the bent-back front of the storm, the

poisonous tail, form as a cold conveyor belt jet and occur irrespective of orography.

With that finding, the )
::::
and

::
its

:::::
warm

::::::
sector,

:::
the

:::::::::
orographic

::::::
impact

:::
on

:::
the

:
New Year’s Day Storm becomes an ideal natural

experiment to clarify the dynamical relation between the cyclone core (here, the warm-air seclusion) and its warm sector

once the occlusion process has started. While the Scandes clearly affect the warm sector by retarding and eroding the fronts340

that move over the orography, the evolution of the warm-air seclusion is only slightly displaced to the north, but otherwise

unaffected. This insensitivity of the core to the evolution of the warm sector suggests that the cyclone core at this stage of the

life cycle has become a largely independent dynamical entity, that only co-evolves rather than interacts, with its warm sector.

The observed tendency for secondary cyclogenesis at the occlusion point indicates that this finding for the New Year’s Day

Storm might apply more generally.345

Based on these findings, we speculate that the timing of the landfall within the life cycle of the

4.4
:::::::

Potential
::::
role

::
of

::::::
IGWs
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::::::
Finally,

:::
we

:::
can

:::::
based

:::
on

::
the

:::::::::
presented

:::::::
evidence

::::::
discuss

::::::::
potential

:::::::::
dynamical

::::::::::
mechanisms

::::::
linking

:::
the

:::::::
Scandes

::::
with

:::
the

:::::::
induced

:
a
::::
mass

::::::::
transport

::
in

:::
the

::::::
middle

::::::::::
troposphere

::::
(Fig.

:::
9).

:
A
:::::
most

:::::::::::::
straightforward

:::::::::
explanation

::::::
would

::
be

:::
that

::::
this

:::::
signal

:::::
arises

:::::::
through

::::::::
advection

::::
with

:::
the

::::::
forced

:::::
ascent

:::
on

:::
the

::::::
upwind

::::
side

::
of

:::
the

::::::::
Scandes.

::::::::
However,

:::
our

:::::::::
trajectory

:::::::
analysis

:::::::::::
demonstrates

:::
that

:::::
none350

::
of

:::
the

::::::
parcels

:::::::
released

::
at

::
03

:::::
UTC

::
in

:::
the

:::::
warm

:::::
sector

::
or

::
at

::
06

:::::
UTC

::
in

:::
the

::::
cold

:::::
sector

:::::
reach

:::::::
500hPa

::::
(Fig.

:::::
12d).

:::::
Some

::::::
parcels

::
in

::
the

:::::
warm

::::::
sector

:::::::::
admittedly

::::::
ascend

::
to

:::::
nearly

::::::::
500hPa,

:::
but

::::
their

:::::
ascent

::
to

:::::::::::
550-600hPa

::::
takes

:::::::
between

::
9
:::
and

:::
15

:::::
hours

::::
(Fig.

:::::
12d).

::::
This

::::::::
advective

::::
time

::::
scale

::
is

::
by

:::
far

:::
too

::::
long

::
to

::::::
explain

:::
the

::::::::
observed

:::::::::::::::
near-instantaneous

:::::::::
adaptation

::
of

:::
the

:::::::
500hPa

::::
flow,

::::
such

::::
that

::::::
vertical

:::::
ascent

::::::
seems

::
an

::::::::::
implausible

::::::::::
explanation.

:

:
A
:::::::::::

combination
:::

of
:::::::::
hydrostatic

::::
and

::::::::::
geostrophic

::::::::::
adjustment

:::::
might

:::::::::
constitute

::
a
::::::
second

::::::::
potential

::::::
causal

:::::
chain

::::::
linking

::::
the355

:::::::
Scandes

:::
and

:::
the

::::
mid-

:::
and

:::::
upper

::::::::::
tropospheric

:::::
flow.

::
At

:::
the

::::
time

::
of

:::
the

:::::::::
anomalous

::::
mass

::::
flux

::
in

:::::
Figure

::
9,

:::
we

:::::::
observe

:
a
::::::::::
pronounced

:::
cold

::::::::
anomaly

::
in
::::

the
::::::
Double

:::::::::
simulation

:::::::::
compared

::
to

:::
the

::::::
Ocean

::::::::::
simulation

::::
(Fig.

:::::
11a).

::::::::::
Hydrostatic

:::::::::
adjustment

::::
will

:::::::
rapidly

:::::::::::
communicate

:::
that

::::::
signal

::::::::
upwards,

::::::::
lowering

:::
the

::::::::::
geopotential

::
in
::::

the
::::::
column

::::::
above.

::::
The

::::::::
following

::::::::::
geostrophic

::::::::::
adjustment

::
is

:::::::
however

::::::::::
inconsistent

::::
with

:::
the

::::::::
observed

::::::::::
anomalous

::::
mass

:::::
flux.

:::::
First,

:::
the

:::::
initial

::::::::::
adjustment

:::::
would

:::::::::
constitute

::
an

:::::::::::
acceleration

::::::
towards

:::
the

:::::::
lowered

::::::::::::
geopotential,

:::
i.e.

:::::::
towards

:::
the

:::::::
Scandes,

::::::
while

:::
the

:::::::::
anomalous

:::::
mass

:::
flux

::
is
::::::::

directed
:::::
along

:::
the

:::::
coast

::::
line.360

::::::
Second,

:::
the

:::::::::::::
geostrophically

:::::::
adjusted

::::
state

::::::
would

::::::::
constitute

::
an

:::::::::
anomalous

:::::::
cyclonic

:::::::::
circulation

::::::
around

:::
the

:::::::
lowered

:::::::::::
geopotential.

:::::
Along

:::
the

:::::
coast

::::
line,

:::
this

:::::
would

::::::
imply

:
a
:::::::::
southward

::::
mass

::::::::
transport,

::::::
which

::
is

:::
the

:::::::
opposite

::
of

::::
what

:::
we

:::::::
observe

::
in

::::::
Figure

::
9.

::::
This

::::
leads

::
us

::
to
:::::::::::
hypothesize

:::
that

:::
the

:::::
IGWs

:::::
might

:::::
have

:::::
played

::
a
:::
role

:::
in

::::::::::::
communicating

:::
the

::::::::::
orographic

::::
flow

::::::::
distortion

::
to

:::
the

:::::
upper

::::::::::
troposphere.

:::
We

::::::::
observed

:::::::::
ubiquitous

:::
and

:::::::::::::
high-amplitude

:::::
IGW

::::::::
signatures

::
in

:::
the

:::::::
vertical

::::
wind

::::
over

::::
and

::
in

:::
the

:::
lee

::
of

:::
the

:::::::
Scandes

::::
(Fig.

::
4).

::::::::
Through

::::::::
non-linear

:::::::::::
interactions,

::::
both

:::::::
between

:::::::
different

::::::
waves

:::
and

:::::::
between

:
a
:::::
wave

:::
and

:::
the

::::::::::
background

:::::
state,365

:::::
IGWs

:::
can

::::::
impart

:::::::::
momentum

::
on

:::
the

::::::::::
background

::::
state

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Einaudi et al., 1978; Plougonven and Zhang, 2014; Fritts et al., 2016),

:::::::
plausibly

:::::::
leading

::
to

:
a
:::::::::::
deceleration

::
in

:::
this

::::
case

:::
of

::::::::::::
orographically

:::::::
induced

::::::
IGWs.

::
In

:::
our

:::::
case,

:::
the

::::::::::
cross-frontal

::::::
length

::::
scale

:::
of

::
the

:::::::::::
approaching

::::
cold

::::
front

::
is
::::::::::
comparable

::
to

:::
the

:::::
wave

::::::
length

::
of

:::
the

:::::
IGWs

::::
over

:::
the

::::::::
Scandes,

::::
such

::::
that

::::::::::::::
wave-background

:::::
state

:::::::::
interactions

:::::
seem

::::::::
plausible.

::
A
::::::::::::
IGW-induced

::::::::::
deceleration

::::::
would

::
in

:::
turn

::::
give

::::
rise

::
to

:
a
::::::::::
geostrophic

::::::::::
adjustment

::::::
process

::::
with

:::
an

:::::
initial

::::::::::
acceleration

:::::::
towards

:::
the

::::::
cyclone

:::::
core,

::::::::
consistent

::::
with

::::::
Figure

::
9.370

::::::::
Consistent

:::::
with

:::
this

::::::::::
hypothesis,

:::::
IGWs

:::::
might

:::::::
explain

:::
the

:::::
rapid

:::::
decay

::
of

::
in

:::::::::
particular

:::
the

::::
cold

::::
front

::::
over

:::
the

::::::::
Scandes.

::::
The

:::::::::
cross-front

::::::::::
temperature

:::::::
contrast

::
is

:::::::::::
considerably

::::::::
smoother

::
in

:::
the

:::
lee

::
of

:::
the

:::::::
Scandes

:::::
(Fig.

:::
2),

:::
and

:::
the

:::::::
vertical

::::
wind

:::
no

::::::
longer

:::::
shows

:::
any

:::::
signs

:::
of

:::
the

::::::
frontal

:::::::::
circulation

::::
(Fig.

::::::
4e-h).

::::
This

:::::
decay

:::
of

:::
the

:::::
fronts

::
is

::::::::::
inconsistent

::::
with

:::
the

::::::::::
conceptual

:::::
model

:::
of

:::::::::::::::::::::
Blumen and Gross (1987),

:::
in

:::::
which

:::
the

::::::
fronts

:::
are

::::::::
passively

::::::::
advected

::::
over

:::
an

:::::::::
orographic

:::::::
obstacle

:::
to

::::::::
re-emerge

:::::
with

:::::
equal

:::::::
intensity

::
in

:::
the

:::
lee.

:
375

5 Summary and conclusions

::
In

::::::::
summary,

:::
we

::::::::
followed

:::
the

:::::::
synoptic

::::::::
evolution

::
of

:::
the

:
New Year’s Day Storm was crucial to make it an extreme event. The

::::
from

::
its

:::::::
mature

::::
stage

::::
and

::::::
through

::::
the

::::::
landfall

:::
of,

::
in

:::::::::
sequence,

:::
the

:::::
warm,

::::
cold

::::
and

::::::::
bent-back

:::::
front.

::::::
Based

::
on

:::
our

::::::
results

::::
and

:::::::::
discussion,

:::
we

::::
now

:::::
return

::
to

:::
the

::::::::
questions

:::
we

:::::
posed

::
in

:::
the

:::::::::::
introduction.

12



–
::::
First,

:::
we

::::
find

:::
that

:::
the

:
landfall of the warm sector coincided well with the natural onset of the

::::
storm

::::::
hardly

:::::::
affected

:::
the380

::::::::
formation

::
of

:::
the

::::::::
warm-air

::::::::
seclusion

:::
and

:::
the

:
storm’s occlusion process, thereby limiting the effect of the landfall on the

::::::::
poisonous

::::
tail.

::::
This

::::::::::
insensitivity

::
is

::::::
largely

::::
due

::
to

:::
the

::::::::
cyclone’s

:::::::
inherent

::::::::
occlusion

:::::::
process.

::::
The

:::::::
Scandes

:::::
hence

::::
did

:::
not

::::::
induce,

:::
but

::::::::
accelerate

:::
the

:::::::::
occlusion

::::::
process

:::::::
without

::::::::::
considerably

::::::::
affecting

:::
the formation and evolution of the warm-air

seclusion. Further,
:::
we

::::
find

:::
that

:::
the

:::::::
extreme

:::::
wind

::::::
speeds

:::::
along

:
the landfall of the bent-back front coincided well with

the peak intensity of the storm, a few hours after the beginning
:::
the

::::::::
poisonous

::::
tail,

::::::
formed

::
as

::
a
::::
cold

:::::::
conveyor

::::
belt

::
jet

::::
and385

:::::
would

::::
have

::::::::
occurred

:::::::::
irrespective

::
of

:::::::::
orography.

::::
This

:::::::::::
insensitivity

:::::
raises

::
the

::::::::
question

::
to

:::::
which

:::::
extent

:::::
these

:::
the

:::::::::
warm-core

:::::::
seclusion

::::
and

:::
the

:::::
warm

:::::
sector

:::
are

::::
still

:::::::::
interacting

::::
after

:::
the

::::
onset

:
of the occlusion

:::::::
process.

–
::::::
Second,

:::
the

:::::::
landfall

:::::::
affected

:::
the

:::::
track

::
of

:::
the

::::::::
warm-air

:::::::::
seclusion.

:::
The

::::::::
Scandes

:::::::
induced

::
an

:::::::::
anomalous

:::::
mass

::::
flux

:::::
along

::
the

::::::::::
Norwegian

::::
west

:::::
coast

::::::
towards

:::
the

:::::::
cyclone

::::
core

:::::
which

::
is
:::::
most

:::::::::
pronounced

:::
in

:::
the

:::::
lowest

:::::::::::
troposphere,

:::
but

::::::
extends

:::
up

::
to

:::
the

:::::::::
tropopause.

::::
The

:::::::::
anomalous

:::::
mass

::::
flux

::
is

::::::::
consistent

::::
with

:::
the

:::::
more

::::::::
northerly

::::
track

:::
of

:::
the

:::::
storm

::
in

:::
the

:::::::
presence

:::
of390

::
the

::::::::::
orography.

–
:::::
Third,

:::
the

:::::
warm

:::
and

::::
cold

::::::
fronts

:::
are

:::::::
strongly

::::::::
impacted

::
by

:::
the

:::::::
landfall.

::::::
While

::::
there

::
is
:::::
some

:::::::::
indication

::
of

::::
flow

::::::::
deviation

::::::
around

:::
the

::::::::
orography

::::
and

::::
thus

::::
some

::::::
degree

:::
of

::::::::
blocking,

:
a
::::::::
trajectory

:::::::
analysis

:::::::::::
demonstrates

::::
that

:::
the

::::
flow

::::
was

::::::::
primarily

::::::
moving

::::
over

::::
the

::::::::
Scandes.

::
In

::::
this

::::::
aspect,

::::
our

::::
case

:::::
study

:::::::
deviates

:::::::::::
considerably

:::::
from

::::::::
previous

::::
case

::::::
studies

:::
in

:::::
other

::::::
regions

:::::
which

::::::::
generally

:::::::::
document

:
a
::::::

larger
::::::
degree

::
of

::::::::
blocking.

:::
For

:::
the

:::::
same

:::::::
reason,

:::
the

::::::
cold-air

:::::::::
damming

::::::
concept

:::
of395

:::::::::::::
Davies (1984) is

:::
not

:::::::::
applicable

::
to

:::
our

::::
case

::::
study.

:::::::
Neither,

:::::::
however,

::::
does

:::
our

::::
case

:::::
study

:::::
follow

:::
the

:::::::::::::::::::::::::::::
Blumen and Gross (1987) paradigm

::
of

::::::
passive

:::::::::
advection

::::
over

:::
the

:::::::::
orography,

:::::::
because

::::
both

:::
the

::::::
warm

:::
and

::::
cold

:::::
front

:::::
decay

:::::::
rapidly

:::::
while

::::::
moving

:::::
over

:::
the

:::::::
Scandes.

::::
The

::::
rapid

:::::
decay

::::::::
suggests

::::::::::
interactions

:::::::
between

:::
the

:::::
fronts

:::
and

:::
the

::::::::::::
orographically

::::::::
distorted

::::
flow.

:

In this study, we could not clarify why the evolution of the New Year’s Day Storm constitutes a common pattern for the

region. For this pattern to appear, storms which approach Norway would generally need to be at a similar stage of their life400

cycle. A climatological quantification of typical genesis regions for these storms could clarify this and put this case studyin a

climatological context.

Finally, we highlighted
::::::
Besides

:::::
these

:::::::::
questions,

:::
we

:::::::
describe

:
two examples where internal gravity waves (IGWs) might

have played a role in
:::::::
affected the synoptic evolution of the storm. First, they might be responsible for

::::
have

::::::::::
contributed

::
to the

orographically induced mass transport in the mid-troposphere that contributed to the northward displacement of the warm-air405

seclusion
::::::
evolves

:::
in

::::::
tandem

::::
with

:::
the

::::::::
low-level

:::::::::
orographic

::::
flow

:::::::::
distortion

::::::
without

::::::::::
discernible

:::::
delay.

:::
Our

:::::::::
trajectory

:::::
shows

::::
that

:::
this

:::::
mass

:::::::
transport

::::::::
emerges

::
to

::::::
rapidly

::
to

:::
be

::::::::
explained

:::
by

::::::
vertical

:::::::::
advection.

:::::::
Further,

:::
the

::::::::
direction

::
of

:::
the

:::::
mass

::::
flux

:::::::
towards

::
the

:::::::
cyclone

::::
core

::
is
:::::::::

consistent
::::
with

::
a
:::::::::
slow-down

:::
of

:::
the

::::
flow

:::
due

:::
to

::::
these

::::::::::
orographic

:::::
IGWs. Second, they

:::::
IGWs

:
might have

contributed to the erosion of the cold front while it
:::
they

:
passed over the Scandes.

:::
The

:::::::::::
cross-frontal

::::::
length

::::
scale

::
is

::::::::::
comparable

::
to

::
the

:::::
wave

::::::
length,

::::
such

:::
that

::::::::::
interactions

:::
are

::::::::
plausible. To underpin these more tentative results, and generalise them beyond the410

case study presented here, we would require a more systematic assessment of the role of IGWs for front-orography interactions.
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Figure 1. Orographic height map [m] from the NORA10 data set. The white circles show the location of some major cities and the Svinøy

Lighthouse mentioned in the text.

18



a

c

e

g

270 274 278 282 286 290 294 298 302 306

i

Figure 2. Frontal evolution for the New Year’s Day Storm at 850hPa. Equivalent potential temperature shading [K] and geopotential height

contours with an interval of 50m. Detected frontal zones are marked by dark shading. The panels show the development from (top row) 00

UTC through (bottom row) 12 UTC on 1 January 1992 in 3-hour intervals. The left column is based on the NORA10 hindcasts, the right on

a WRF
::
the

::::::
Control simulation.
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Figure 3. Full wind speed [ms−1] at 850hPa
:
in
:::

the
:::::::
NORA10

::::::::
hindcasts on (a,b) 00 UTC, (c,d

:
b) 03 UTC, (e,f

:
c) 06 UTC and (g,h

:
d) 09 UTC

of 1 January 1992. Barbs and pale red contours show ageostrophic wind with contours at 15, 25, and 35ms−1. Dark shared regions show

location of front volumes at 850hPa as in Fig. 2. The left column is based on the NORA10 hindcasts, the right on a WRF simulation.
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Figure 4. Pressure vertical velocity [Pas−1] at 700hPa for (a,b) 00 UTC, (c,d) 03 UTC, (e,f) 06 UTC, and (g,h) 09 UTC. Dark grey contours

show geopotential at 700hPa, with a contour interval of 50m, respectively. Blue shaded regions indicate the location of frontal zones at

850hPa for both columns. The left column is based on the NORA10 hindcasts, the right on a WRF
::
the

:::::::
Control simulation.

::
For

:::
the

::::
blue

:::::
circles

::
in

:::
(e,f)

::::
refer

::
to

::
the

::::
main

::::
text.
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Figure 5. Remapped infrared imagery (10.8µm wave length, in Wm−2 sr−1) from Meteosat 4 covering the landfall of the New Year’s Day

Storm from (a) 0130 UTC Sat through (e) 0730 UTC Sat on 1 January 1992 in 1.5-hour intervals. These times correspond approximately to

the period 03 UTCNo–09 UTCNo. Imagery © EUMETSAT 2016.

22



a

270 274 278 282 286 290 294 298 302 306 270 274 278 282 286 290 294 298 302 306

b

Figure 6. As Fig. 2g, h, but for (a,b) 700hPa and (c,d
:
b) 925hPa.

A

Figure 7. As Fig. 2g,h, but for (a) the Ocean simulation, and (b) the Double simulation.
::

For
:::
the

::::
mark

::
A,

::::
refer

::
to

::
the

::::
main

::::
text.
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Figure 8. Mass transport [kgs−1 m−2] perpendicular to geopotential isolines at 850hPa, with positive values indicating transport towards

lower geopotential. The rows show the time evolution for (a,b) 00 UTC, (c,d) 03 UTC and (e,f) 06 UTC. The left column is based on a WRF

simulation in which the Scandinavian orography as been removed and converted to ocean, the right column on a WRF simulation in which

the Scandinavian orography is twice its original height.
:::
For

::
the

:::::
marks

::
A,

::
B
::::
refer

::
to

::
the

::::
main

::::
text.

Figure 9. As Fig. 8c,d, but for mass transport at 500hPa.
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Figure 10. Cross section of wind speed (shading, ms−1), equivalent potential temperature (black contours with interval 5K, 300,K and 350K

thickened) and ageostrophic horizontal wind with contours at 15, 25 and 35ms−1. The blue and red lines mark subjectively analysed cold

and warm fronts, respectively. The maps in the right column show wind speed at 850hPa as well as the location of the cross section with

ticks every 200km. The rows show (a) 03 UTC, (b) 05 UTC, (c) 07 UTC, and (d) 09 UTC on 1 January 1992 for the Ocean simulation.
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Figure 11. As Fig. 10, but showing in shading the equivalent potential temperature difference in Kelvin between the Double and the Ocean

simulation
:
in
::::

both
:::
the

:::::
section

::::
and

::
the

::::
map. Contours show equivalent potential temperature and ageostrophic wind speed as in Fig. 10, but

for the Double simulation.
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Figure 12. Forward trajectories released from the box 58.0-62.0◦N, 1.0-4.0◦E at 925hPa at (a) 00 UTC, (b) 03 UTC and (c) 06 UTC. The

trajectory segments
::::::
between

:::
the

:::::
circles

:
each cover 3hours, and they are coloured by pressure [hPa] of the preceding time step. The

::::::
position

:
of
:::

the
::::::
parcels

:
9
::::
hours

::::
after

:::
the

:::::::
respective

::::::
release

:::
are

:::
red.

:::
The grey shading and black contours shows

::::
show θe and geopotential, respectively

:::
both

:
at 925hPa, at the release time of the trajectories with the same contour interval and limits as in Fig. 2. The bottom panel

::::
Panel

:
(d)

shows the median pressure evolution of the above parcels.
:::::
Circles

::::::
indicate

::::
time

::::
steps

::::::
shown

:
in
:::

the
::::::::
trajectory

::::
maps

::::::
(a)-(c). The respective

transparent shading indicates variability between the trajectories by the 15 and 85 percentiles.27


