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Response to review #1 

We thank anonymous referee #1 for the constructive review and helpful comments that have greatly 
helped us to improve our work in the revised manuscript. The main improvement are summarized as 
follows: 

- We have performed a series of sensitivity tests which show that our findings are robust, and which 
have reduced noise in some plots and thereby their visual appearance 

- We have improved the description of the methodology section and the visualisation of the results 
- We have added further background literature on the use of causality methods in atmospheric science 

We have taken into account all suggestions made and a point-by-point response to each comment is 
reported below. Please note that in the following text the referee’s comments are highlighted in bold 
font, while our answers are in regular font. 

Specific comments 

1. There is no literature review of other approaches to identifying causal relationships in climate 
data. One example is I. Horenko, S. Gerber, T.J. O’Kane, J.S. Risbey and D. Monselesan (2017) 
On inference and validation of causality relations in climate teleconnections, (In Nonlinear and 
Stochastic Climate Dynamics. Cambridge University Press, Eds. C. Franzke and T.J. O’Kane)  
We thank the anonymous reviewer for this suggestion. We included in our revised version of the 
manuscript a paragraph briefly describing other causal approaches applied to atmospheric sciences 
(lines 114-121): “In recent years, several approaches have been applied to identify causal 
relationships in climate and atmospheric sciences (Runge et al., 2019b), ranging from Granger 
causality (McGraw and Barnes, 2018, 2020; Samarasinghe et al., 2019) to causal (Bayesian) 
graphical models (Pearl, 2000, Ebert-Uphoff and Deng, 2012a, 2012b; Horenko et al., 2017) and 
conditional independence-based network discovery methods for time series (Runge et al., 2019a). 
These studies have shown the ability of causal discovery tools to improve our understanding of several 
atmospheric circulation interactions such as Arctic – mid-latitudes connections (McGraw and Barnes, 
2020; Samarasinghe et al., 2019), synoptic-scale disturbances between boreal summer and boreal 
winter (Ebert-Uphoff and Deng, 2012a) and the relationship between ENSO and surface temperature 
in the American continent (McGraw and Barnes, 2018). ” 
 

2. The initial application of MCA appears to perform a basic dimension reduction. The authors 
assert that “expert knowledge” is required in choosing the particular variables to calculate the 
cross covariances however there is no indication that any other combinations were examined. 
For example, OLR could be replaced with velocity potential – as in indices for the MJO – with 
similar results.  
We thank the anonymous reviewer for suggesting this interesting test and we have expanded our 
analysis by considering the results obtained when other variables are used. We applied MCA on mid-
latitude Z200 and tropical OLR because we are interested in studying the relationship between mid-
latitude circulation patterns and tropical convection. Thus, we are focussing on variables representing 
tropical convection when attempting to provide a comparable analysis.  We originally selected OLR 
because it captures strong convective clouds (which is a smoother signal than direct rainfall estimates), 
and because OLR is also used, for example, to define the BSISO index that describes the essential 
evolution of convective activity over the Indian Ocean region. In the revised version of the manuscript, 
we will provide a series of sensitivity tests for the identified MCA patterns by substituting OLR with 
velocity potential or vertical velocity (a proxy of convection).  Figure S5 (in the revised version of the 
Supplementary Material) shows the first two MCA patterns for mid-latitude Z200 paired with tropical 
vertical velocity (note that upward motion has a negative sign since vertical velocity is expressed in 
Pa/s), while Fig. S6 shows the same for Z200 paired with velocity potential. The MCA patterns 
obtained when pairing vertical velocity with Z200 (figure S5) show highly consistent results with 
respect to those found for Z200 and OLR (Fig. 2 in the main text), demonstrating the robustness of the 



original MCA results obtained with OLR. When we use velocity potential (Fig. S6), the MCA 1 
pattern strongly resembles that originally obtained using OLR (with a wave-5 pattern in Z200 and low 
velocity potential over the Indian summer monsoon region). The MCA 2 pattern however shows less 
agreement: It correctly captures the OLR pattern in the western Indian Ocean but does not represent 
the WNPSM convective activity patterns. A reason for this discrepancy is that velocity potential 
provides a much smoother proxy for upper-level divergence than OLR, which is very strong in the 
Indian monsoon region, and apparently less pronounced in relation to the WNPSM. We briefly 
comment on this in the revised main text (lines 350-355): “We also investigate whether the obtained 
MCA patterns are sensitive to the choice of OLR in representing tropical convective activity. Using 
vertical velocity, another proxy for tropical convection where strong convective activity is represented 
by enhanced upward motions, shows qualitatively the same patterns as those in Figs. 2b,d (see Fig. S5 
in the Supplementary Material). When velocity potential is used instead of OLR, the first MCA mode 
still closely resembles the OLR/Z200 MCA mode 1, while the second MCA mode only partly captures 
features in the western Indian Ocean (see Fig. S6 in the Supplementary Material).”  
 
The methodology applied here seems to be unable to answer if a sufficient set of covariates has 
been chosen apart. How, for example, do you test if the combination of actors is sufficient or 
even parsimonius? Can some form of information theoretic approach be applied for example 
Akaike or Bayesian?  
We consider causal discovery here and not a prediction task of any of the actors, for which criteria 
such as those mentioned are indeed important. Hence, the choice of included actors is subject to the 
hypothesis underlying the analysis setup. One could, however, phrase causal discovery, as in 
Granger’s work, as a prediction problem. On the other hand, a causal interpretation rests on a number 
of assumptions and we discuss limitations related to causal sufficiency and other assumptions made in 
the discussion in the revised manuscript (lines 644-659): “Finally, it should not be forgotten that in the 
context of the present work, causal interpretation rests upon several assumptions, such as the causal 
Markov condition, faithfulness, causal sufficiency, stationarity of the causal links and assumptions 
about the dependence-type (Runge, 2018). These assumptions can be violated in a real system and it is 
important to be aware of the associated typical challenges for causal discovery in Earth system 
sciences (Runge et al., 2019). Causal sufficiency requires that all relevant actors in a specific system 
are accounted for. Here, given the limited set of actors analysed, we cannot rule out that other 
excluded actors may act as important (common) drivers. Therefore, the obtained links can be 
considered causal only with respect to the specific set of actors used here. However, the absence of a 
link can still be interpreted as a likely indication that no direct physical connection among the 
respective variables exists. Moreover, we assume linear dependencies and stationarity for the 
detection of the causal links. While linearity has been shown to be a useful assumption in previous 
work (Di Capua et al., 2020), monsoon dynamics behaves partly nonlinearly and therefore, our causal 
networks only capture some part of the underlying mechanisms by construction. Also, the SAM 
teleconnections might well behave in an nonstationary manner on decadal time-scales (Di Capua et 
al., 2019; Robock et al., 2003). We therefore cannot rule out that (multi-)decadal oscillations such as 
the Pacific Decadal Oscillation may influence our results. However, the amount of reliable data is 
limited and this prohibits the application of nonlinear measures or study of effects of nonstationarity.”  
 

3. Given the leading two modes of MCA appear to be in quadrature, how does MCA compare to 
EOF/PCA or even k-means?  

We thank the anonymous reviewer for raising this point. We have now performed a comparison 
between MCA patterns and EOF patterns. In Fig. S4 (in the revised version of the Supplementary 
Material), which will be included in the revised Supplementary Material, we show the first 5 EOF 
patterns for both Z200 and OLR. We calculate the spatial correlation between all EOF and MCA 
patterns. For Z200, MCA 1 shows the strongest correlation with EOF 2 (r ~ 0.8). This is consistent 
with previous literature showing that the circumglobal teleconnection pattern (as captured by Z200 of 



MCA1), is linked to the second EOF of Z200 (Ding and Wang 2005, Di Capua et al. 2020). MCA 2 
has a strong spatial correlation (r ~ 0.6) with EOF 1. For OLR, MCA 1 shows the strongest correlation 
with EOF 2 (r ~ 0.5), while MCA 2 has the strongest correlation with EOF 5 (r ~0.4). Thus, with only 
the exception of OLR MCA 2, all MCA patterns are closely related to the first two EOFs for both 
Z200 and OLR. This comparison shows that the identified MCA patterns are also on a regional level 
important in explaining the variability. Note that the fraction of variance explained is relatively low 
(for all EOFs), but this relates to the prior removal of interannual variability, thus leaving only the 
disturbances from the year-specific mean state. In our present work, we are interested in identifying 
those patterns that evolve simultaneously (due to the dynamical coupling between the two fields), and 
therefore we applied MCA to identify those patterns that can explain shared covariance, which is not 
captured by separate EOF analyses. We briefly comment on this in the main text (lines 342-349): “We 
compare the patterns obtained with MCA with those obtained with EOF analysis of Z200 and OLR 
fields (see Fig. S4 in the Supplementary Material). We find that the closest match of the Z200 MCA 
mode 1 pattern is with Z200 EOF 2 (spatial correlation ~ 0.8), while the closest match of Z200 MCA 
mode 2 is with EOF 1 (spatial correlation ~ 0.6). OLR MCA mode 1 has the closest match with EOF 2 
(spatial correlation ~ 0.5), while OLR MCA mode 2 has the closest match with EOF 5 (spatial 
correlation ~ 0.4). Thus, in general our MCA patterns also reflect the first two EOFs of Z200 and OLR 
indicating that they explain an important fraction of the regional variability. Nevertheless, here we are 
interested in those patterns that can explain shared covariance, which cannot be achieved by using 
EOF analysis alone. Therefore, we use the MCA-defined patterns for the following part of the 
analysis.” . 

 
Apparently, many of the underlying assumptions are the same i.e stationarity etc It would help 
greatly if the authors could indicate if their approach is causal in the sense of Grainger given 
there appears to be no underlying stochastic model?  
Our definition of causal graphs follows Pearl’s causal Bayesian networks (Pearl 2000) and our 
approach to estimate these graphs from data comes from the constraint-based causal discovery 
framework (Spirtes 2000), here adapted to time series (Runge et al. 2019). In the constraint-based 
causal discovery framework, the existence (or absence) of causal relations is based on conditional 
independencies among subsets of the lagged variables together with a number of assumptions (as 
listed in our Discussion section). If Granger causality is only applied to pairs of variables, Granger 
causality does not account for common drivers or indirect links as is the case in our framework. 
Further, the constraint-based causal discovery framework in general goes beyond Granger causality 
since it can also account for contemporaneous causal links. Here we only focus on lagged links. If 
Granger causality is meant in a full multivariate setting, our approach is asymptotically equivalent to 
Granger causality, but for finite samples Granger causality has much lower detection power since it 
does not deal well with the curse of dimensionality as investigated in detail in Runge et al. (2019).  
 

4. The analysis and attribution of the causal relationships is ultimately largely empirical, at times 
overly complicated and in some parts exceedingly verbose in description. The “causal maps” are 
very noisy and the reported relationships are very poorly represented from the patterns in the 
causal maps presented.  
We have taken the issue of noisiness raised by the anonymous reviewer very seriously, and combining 
this suggestion with the corresponding comment by anonymous reviewer #2, we have designed a 
robustness test that has removed much of the noise in the causal maps, greatly improving their visual 
appearance and interpretation. As a result, some of the more scattered regions that were described in 
the first version of the paper are now removed, and we can purely focus our description on the main, 
robust patterns. We describe this robustness in the revised manuscript (lines 295-303): “Finally, to test 
the robustness of our causal maps to the choice of time period, we calculate causal maps for a range 
of sub-periods. In 10 trials we removed 10% of the record (4 years). For ENSO-phase dependent 
causal maps, we have shorter time series and we thus remove one year in each trial, leaving a set of 
14 causal maps for La Niña events and 13 causal maps for El Niño events.  As a result, we obtain an 



ensemble of causal maps and apply the false discovery rate correction to p-values of each single map. 
Then, both for the full period (1979-2018) and for El Niño and La Niña years separately, we masked 
out areas where less than 70% of the trials indicated a significant causal link, giving an indication of 
the robustness of our findings and at the same time suppressing noise.”  
This results in reduced noise in the new causal maps (see Fig. 3-5 in the revised version of the 
manuscript). 

5. It would greatly help the reader if the methodology was described in sufficient detail and better 
placed in context with other approaches, both in terms of dimension reduction and causal 
inference. This, in combination with a more concise discussion of the physical properties of the 
modes would allow the reader to better judge the merits of the approach.  
In the revised manuscript, we have improved the methodology section by adding a concrete example 
showing how the PCMCI algorithm works (also following the comments by the second reviewer, see 
point 1 in our response to reviewer #2), lines 213-257:  

“In this analysis, A and B represent the two MCA scores obtained for a selected MCA mode, while 
C(lat,lon) represents the grid point time series of a 2D field, e.g. T2m or Z200. In its first step, PCMCI 
iterates through partial correlations with increasing cardinality of conditions to remove the influence 
of common drivers and indirect links and estimate a preliminary set of parents. The first iteration of 
PC (cardinality 0) calculates the correlation between a selected time series, e.g. Aτ=0, and the past of 
any other available time series, { Aτ=-1, Bτ=-1, C(lat,lon) τ=-1, ... ,  Aτ=-τmax, Bτ=-τmax, C(lat,lon) τ=-τmax}, 
including its own past Aτ=-1, .., - τmax. For illustration purposes, we here provide an example for 
C(lat,lon), where ρ denotes the correlation and τ is the lag that is being used in the network (in this 
example, τmax = -2): 

                                   𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1) = 0.32,𝑝𝑝 = 0.01                                                          
(5) 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−2) = 0.13,𝑝𝑝 = 0.1 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐵𝐵𝜏𝜏=−1) = 0.35,𝑝𝑝 = 0.005 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐵𝐵𝜏𝜏=−2) = 0.23,𝑝𝑝 = 0.058 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1) = 0.41,𝑝𝑝 = 0.01 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−2) = −0.16,𝑝𝑝 = 0.06 

Applying a significance level α = 0.05, only three actors are significantly correlated with C(lat,lon) at 
the chosen time lag. These form the initial preliminary set of parents for C(lat,lon) and are ordered by 
the strength of their correlation: 

               𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
0 = {𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1}                                                         (6) 

Next, partial correlations between C(lat,lon) and each actor in 𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
0  are calculated by 

conditioning on the strongest preliminary parent: 

       𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1|𝐵𝐵𝜏𝜏=−1) = 0.35,𝑝𝑝 = 0.02                                             (7) 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐵𝐵𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1) = 0.28,𝑝𝑝 = 0.03 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1) = 0.25,𝑝𝑝 = 0.04 

Parents with significant partial correlations will enter the second set of preliminary parents: 

                                  𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
1 = {𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1}                                                         

(8) 

Next, the partial correlation is calculated conditioning on the two strongest parents: 



𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑛𝑛)𝜏𝜏=−1|𝐵𝐵𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1) = 0.31,𝑝𝑝 = 0.03                                     (9) 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐵𝐵𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1) = 0.23,𝑝𝑝 = 0.04 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1) = 0.12,𝑝𝑝 = 0.08 

Since it is not possible to further increase the dimension of the condition set, from the PC step, the 
preliminary parents converge to:  

𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
2 = {𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1}                                                         (10) 

 

By repeating this step for each variable, preliminary sets of parents are estimated. Let’s assume that 
in our example we also obtain:  

𝑃𝑃𝐴𝐴3 = � 𝐵𝐵𝜏𝜏=−1 ,𝐴𝐴𝜏𝜏=−2,�                                                         
(11) 

𝑃𝑃𝐵𝐵2 = { 𝐵𝐵𝜏𝜏=−1} 

In the MCI step, partial correlation is calculated again between each pair of actors (at different time 
lags) conditional on the above estimated sets of preliminary parents, whereby both sets of parents are 
conditioned upon. To give one example, this would lead to: 

𝜌𝜌�𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1�𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
2 ,𝑃𝑃𝐴𝐴3� = 

= 𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1 𝐵𝐵𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−2,𝐵𝐵𝜏𝜏=−3) = 0.1,𝑝𝑝 = 0.3   (12) 

Note that the parents of 𝐴𝐴𝜏𝜏=−1 are shifted in time by τ = -1. After repeating (12) for each pair of 
actors shown in (5) and for time lags from 0 to τmax, those parents that are significant in the MCI test 
will then form the final set of causal parents for each actor. We refer to Runge et al. (2019a) for a 
more detailed discussion and explanation of the algorithm design and extensive numerical 
experiments.” 

 

Moreover, we have improved the physical interpretation of each mode in the results section (lines 314-
341):  
“The first MCA mode explains 18% of the squared covariance (squared covariance fraction, SCF) and 
shows a CGT-like wave-5 pattern in mid-latitude Z200. The Pearson correlation between the two time 
series of MCA scores for the first mode is r ~ 0.5. The spatial correlation with the weekly CGT 
pattern, as defined by Ding and Wang 2005, is 0.52 (Fig. 2a). The CGT pattern also represents the 
second most important pattern in boreal summer mid-latitude circulation (Di Capua et al., 2020; Ding 
and Wang, 2005). This wave-5 pattern is linked to the South Asian monsoon (SAM) activity via its 
positive centre of action east of the Caspian Sea (see Fig. 2a). Applying MCA, we find that the CGT 
pattern co-varies with a band of enhanced tropical convective activity that extends from the Arabian 
Sea towards Southeast Asia, with a peak of convective activity over the Bay of Bengal (Fig. 2b) (Kang 
et al., 1999).. Using OLR composites and the Kikuchi Boreal Summer Intraseasonal Oscillation 
(BSISO) index, we explicitly show that the temporal evolution of the SAM convective activity as 
defined in Fig. 2b at weekly time-scales resembles the evolution of the BSISO (Goswami and Ajaya 
Mohan, 2001; Saha et al., 2012) (see Figs. S1-S2 and further discussion in the Supplementary 
Material). Therefore, we explicitly link the region of low OLR identified in Fig.   2b over the northern 
Indian Ocean and the Indian subcontinent to the SAM activity as described in the literature. Note that 
we name each MCA pattern after a characteristic regional feature, but the analysis is applied to the 
larger geographical domains as shown in Figure 2.  



The second mode of co-variability explains a SCF of 14% and is characterized by a region of strong 
positive Z200 anomalies located at ~ 45° N, over the western North Pacific, directly to the west of the 
dateline (i.e. the most prominent centre of action of the mid-latitude wave). The Pearson correlation 
between the two time series of MCA scores for the first mode is r ~ 0.6. We will refer to this pattern as 
the North Pacific High (NPH) (Fig. 2c). The NPH is the summer counterpart of the North Pacific 
subtropical high, which characterizes boreal winter. During summer, this high pressure region is 
displaced northward by the start of the monsoon season in the western Pacific Ocean and replaces the 
Aleutian Low (Lu, 2001; Riyu, 2002). The NPH is associated with a region of enhanced convection 
over the sub-tropical western North Pacific, related to the western North Pacific summer monsoon 
(WNPSM) convective activity (Fig. 2d) (Li and Wang, 2005; Nitta, 1987; Wang et al., 2001). The 
WNPSM core domain extends from 110°-160°E and 10°-20°N, while the boundary with the SAM is 
located over the South China Sea (Murakami and Matsumoto, 1994). The WNPSM is characterized by 
a late sudden onset (end of July) and a peak in rainfall activity during August and September, which is 
different from the SAM that features an earlier onset (in June) and peak rainfall activity during July-
August.”. 

  



Response to review #2 

We thank anonymous referee #2 for the constructive review and helpful comments that have greatly 
helped us to improve our work in the revised manuscript. The main improvements in the response to 
reviewer #2 are summarized as follows: 

- We have added a robustness test to check the sensitivity of the detected causal links when the time 
period is changed  

- We have improved the visualization of the causal maps by reducing the noise and adding labels to 
better identify each region when described in the text 

- We have expanded the explanation in the Methods section  
- We have checked the description of each region in the Results section  

We have taken into account all suggestions made by the reviewer and a point-by-point response to 
each comment is reported below. Please note that in the following text the referee’s comments are 
highlighted in bold font, while our answers are in regular font. 

Specific comments 

1) Clarification on methodology: - Section 2.2: The choice of MCA is not clear as compared 
to other methods of dimension reduction.  
We choose MCA over other methods of dimension reduction because we are interested to identify 
those patterns that evolve simultaneously and may be causally related (via e.g. dynamical coupling 
between multiple variables). Thus, we applied MCA to identify those patterns that can explain shared 
covariance, which is an objective that cannot be addressed by using EOF analysis alone. We explain 
this point explicitly in the revised manuscript (lines 169-174): “Among the available correlation based 
methods to highlight strong co-variability and reduce the dimensionality of a spatiotemporal dataset, 
MCA allows identification of patterns in pair of variables that evolve simultaneously and may be 
causally related (via e.g. dynamical coupling between multiple climatological fields). MCA detects 
patterns that can explain shared covariance, which cannot be achieved using other dimensionality 
reduction methods that consider individual variables separately, such as empirical orthogonal 
function (EOF) analysis. However, for providing a complete picture we will also discuss the 
corresponding EOF patterns and the fraction of variance explained for comparison with our MCA 
results.”  
 

It would be helpful to describe what will happen with MCA modes after section 2.2. 
We now explain in more detail what happens to times series identified by using MCA in section 2.2 
(lines 188-190): “Here, we select the first two MCA modes representing the dominant patterns of co-
variability between tropical convection and mid-latitude circulation, and calculate time series for 
each MCA mode. These time series will be used as input for the causal discovery algorithm (see 
sections 2.3 and 2.4).”  
 
In Figure 2, the legend suggests four time series but one can only recognize two time series.  
We agree that in the first version of Fig. 2 it was difficult to recognise two time series. We have 
changed the colours to represent the two pairs of time series and adopted a different aspect ratio for the 
axes to better show the four time series. See Fig. 2  in the revised version of the document document.  
 
Section 2.4 is very generic; it would also be useful to know at some point what “A, B, C” are in 
the current analysis.  
We will include this suggestion in the revised manuscript. In the Results section, we will make explicit 
how the variables used compare to the examples given in the method section. For example lines 379-
381: “Referring to the schematic illustrated in Fig. 1 and following the PCMCI algorithm explanation 
(section 2.3), here A and B time series are represented by the SAM and CGT time series respectively, 



while C(lon, lat) is represented by Z200, OLR and T2m fields.” Moreover, we have also added a more 
detailed explanation on how these time series are used in the causal discovery algorithm (see response 
to reviewer #1, point 4). 
 
Adding a table describing indexes and abbreviations separated in cause and response actors 
used for the causal effect analysis would be helpful.  
Following the reviewer’s suggestion we have added a table (Table 1 in this in the revised version of 
the manuscript) to better identify each time series/field used (see also point 5 in this response). 
 
A discussion on the sensitivity of results to data-length would also be useful.  
We address this comment by providing a robustness test by repeated calculation of the causal maps 
and screening for robust regions in the final results. This step also makes the causal maps less noisy, 
such that robust patterns emerge better, improving the visual appearance and interpretability of Figures 
3, 4 and 5 in the revised version of the manuscript. We describe in detail how this test is performed 
(lines 295-303): “Finally, to test the robustness of our causal maps to the choice of time period and to 
reduce non-robust small-scale features, we repeatedly calculate causal maps for reduced time series 
length. In 10 trials we removed a consecutive time record of ~10% (4 years) of the entire period. For 
ENSO dependent causal maps, we have shorter time series and we thus remove only one year in each 
trial, leaving a set of 14 causal maps for La Niña events and 13 causal maps for El Niño events.  As a 
result, we obtain an ensemble of causal maps and apply the false discovery rate correction to their p-
values. Then, both for the 1979-2018 period and for El Niño and La Niña years separately, we masked 
out areas where less than 70% of the trials indicated a significant causal link. This gives an indication 
of robustness of our findings and suppresses noise.” The masks obtained in this way and used to 
produce new Fig. 3,4 and 5  are shown in the revised Supplementary Material (Figs. S8,S9 and S12). 

 
L219-223 and L310-315 should be in Methods because this text describes methodology and not 
the results. 
We have moved those lines “To extract the dominant co-variability patterns reflecting interactions 
between mid-latitude circulation in the Northern Hemisphere and tropical convection at intraseasonal 
time-scales, we follow Ding et al. (2011) and  apply maximum covariance analysis (MCA) to OLR 
fields (used as a proxy for convective activity) in the tropical belt (15°S-30°N, 0°-360°E) paired with 
Z200 fields in the northern mid-latitudes  (25°N-75°N, 0°-360°E).” (now lines 162-166) and “Here, we 
will derive causal maps using the time series obtained with MCA for modes 1 and 2 and Z200, OLR 
and T2m fields both for the entire time period (1979-2018) and for two subsets depicting different 
ENSO phases, to assess how the ENSO background state influences the causal relationships. El Niño 
(La Niña) summers are defined as summers preceding the El Niño (La Niña) peak in boreal winter. 
We thus obtain 14 La Niña years and 13 El Niño years (see Table 1 in the Supplementary material for 
a list of corresponding years and Fig. S1 for the associated SST anomaly composites). Although the 
strongest SST anomalies related to the ENSO phase are found in winter, warm (cold) SST patterns 
related to El Niño (La Niña) phases are already clearly developed during the preceding summers.” 
(now lines 288-295) to the Methods section as suggested. 

2) Clarification on results and discussion: L250-259: It is not clear what the purpose of this 
paragraph is.  
We agree with anonymous reviewer #2 that a detailed description of BSISO can distract the reader 
from the main story line. We have moved this explanation into the SI and now refer to it only briefly 
in the main text (lines 322-325): “Using OLR composites, we explicitly show that the temporal 
evolution of the SAM convective activity at weekly time-scales resembles the evolution of the Boreal 
Summer Intraseasonal Oscillation (BSISO) (Goswami and Ajaya Mohan, 2001; Saha et al., 2012) (see 
Fig. S5-S6 and further discussion in the Supplementary Material).”  
 
L266-268: Mentioned patterns do not look “similar” at all to me. I would suggest to specify 



regions where similarities are seen by authors.  
We thank the anonymous reviewer for pointing out that it was difficult to recognize in the figures the 
regions that we are interpreting in the text. We have addressed this comment by adding labels that are 
referred to in the main text, including the Results section. See new Figs. 3,4 and 5 in this document. 
 
Explaining some of the results, authors interpret patches of beta-values on causal maps that look 
like noise. E.g., L280: "Although the CGT influence is mostly concentrated in the mid-latitude 
regions, one can see a negative causal effect of the CGT pattern on OLR values over the Bay of 
Bengal (Fig. 3f).“ It looks like the effect that authors describe is a small dash over the Bay of 
Bengal, I cannot even see the color of the region, just the black contour color. Does the method 
behind causal maps take care of spatial noise?  
We have taken the issue of robustness and potential noise in our causal maps seriously (see also our  
earlier reply and Figs. S8,S9 and S12 in the revised version of the Supplementary Material). The new 
figures 3, 4 and 5 (in the revised version of the manuscript) are now all produced using the robustness 
test described above (see our response to comment #1). As a result, the specific region described on 
line 280 (original manuscript) is now indeed masked out and we have updated the text 
correspondingly (lines 400-403): “The CGT influence is mostly concentrated in the mid-latitude 
regions, and a significant and consistent negative causal effect of the CGT pattern on OLR values in 
the tropical regions can only be seen in a small area in the western Indian Ocean (Fig. 3f).”  In 
general, using the robustness test described above noisy patterns have been removed, enabling us to 
only discuss the main, large-scale patterns of interest. 
 
L282: "Asia and North America are strongly affected by the CGT.“ It would be useful to 
support the qualitative judgment of the link-strength by providing beta-coefficient values in 
parentheses for this particular example and throughout the text, where link’s strength from 
causal maps is described.  
We thank the anonymous reviewer for this useful suggestion. We will add the values of the beta 
coefficients throughout the revised text to help the reader in the interpretation of the results.  
 
L455: “apparent paradox”: I am not sure there is any paradox. Studies cited by the authors 
describe a trend in current observations and future climate change projections, which cover two 
different time periods, thus such comparison is not consistent.  
We have removed the sentence referring to the apparent paradox and rephrased the paragraph to make 
our point more carefully. The revised paragraph now reads (lines 620-626): “Future projections 
describe an increase in monsoon precipitation associated with increasing global mean temperature 
and thermodynamic arguments (Menon et al., 2013; Turner and Annamalai, 2012). Quantifying 
teleconnections between the tropics and mid-latitudes is important in order to better understand and 
constrain future changes in boreal summer circulation, as uncertainty may arise due to changing 
connections to remote regions.  While simulations show great uncertainty in the ENSO response to 
global warming (Cai et al., 2015; Chen et al., 2017a, 2015, 2017b), observations show a La Niña-like 
warming trend in central-western Pacific SST (Kohyama et al., 2017; Mujumdar et al., 2012). ”  
 
L435-440: A comparison of teleconnections acting on subseasonal timescales from this study 
with those from other studies on interannual and decadal timescales is odd. 
By comparing interannual and intraseasonal studies, we do not intend to imply that a similarity in the 
results obtained at different time scales should be expected. Nevertheless, a similarity in the pattern is 
found and this represents an outcome of our analysis that we believe needs to be discussed. In the 
discussion, we elaborate on what possible explanations for these findings there may be. Moreover, the 
similarity in these patterns between various time scales strongly suggests that there are interactions 
between the time scales – see for example the arguments of Sperber et al. (2000) who found a common 
mode of variability on intraseasonal and interannual time scales.  Such commonality of patterns is 
necessary in order for the large scale forcing to be able to perturb the PDF at shorter time scales. See: 
Sperber et al. (2000) “Predictability and the relationship between subseasonal and interannual 
variability during the Asian summer monsoon”, Quarterly Journal of the Royal Meteorological 
Society, 126: 2545-2574. 
 



 
L56 and L496: A statement about paving the way to better predictions without further 
explanation is a bit bold. The CEN method has a potential to improve our understanding of 
climate processes but authors need to explain better how exactly this method can improve 
climate predictions.  
We have added more in depth information on how CEN may help improving seasonal forecast in the 
revised version of the manuscript (lines 330-339): “A better understating of these teleconnections in 
observation can help to improve S2S forecasts. Verifying the existence and strength of causal 
teleconnections in forecast models, could help diagnose the origin of model biases. E.g. one could 
disentangle whether lower forecast skill (such as in the mid-latitude regions in summer) is related to 
local processes or to a misrepresentation of remote drivers. Beverley et al. (2019) showed that the 
CGT representation in seasonal forecasts is too weak. The CGT is important for predictability of 
summer extremes and its relationship with the SAM may provide some information to improve 
predictability. Therefore, these methods could help answering the question “where do model biases 
come from?” and help developing a physics-based bias correction.  At the same time, CEN provide an 
encoded predictive model, which can be used for actual forecasting (Di Capua et al., 2019; 
Kretschmer et al., 2017; Lehmann et al., 2020).”  

3) Inaccurate region description: L295: “Russia/Scandinavia”: I would say “northern and 
eastern Europe“ because this where non-zero beta values actually are. On the other hand, what 
does “non-corrected p values” from the caption mean, I do not find it explained.  
We now show only p-values that are corrected using the false discovery rate correction, to reduce 
noise and non-robust results. We have also carefully checked the description of each region in the 
Result section. 
 
L323: “over Kazakhstan” I would say “north of Kazakhstan” if the region enclosed by the 
contour is meant. Moreover, Kazakhstan is located north-east of the Caspian Sea not north-west 
of the Caspian Sea.  
This region did not pass the new robustness test and was removed. 
 
L319: “a few areas”: Indeed these are three regions which can be named. 
We have added regional labels in the causal maps and use those references in the text.  
 
L412: “European Russia”. I would rather say “northern and eastern Europe”.  
We will implement this suggestion in the revised manuscript. 
 
4) Figure 5: During El Nino years, there is a link between SAM and Z200 in the tropical 
Pacific, which is not present during the La Nina years, therefore the concluding statement in the 
results, conclusions and abstract about strong effect of El-Nino only for the second MCA mode is 
confusing.  
We thank the anonymous reviewer for pointing out this discrepancy. We now mention that both 
phases of ENSO affect the relationship between SAM and Z200 (lines 490-493): “Thus, the second 
MCA mode (the WNPSM-NPH pair) has its strongest effect during El Niño summers,  whereas the 
first MCA mode (SAM-CGT pair) is important during both La Niña and El Niño summers but with 
different characteristics” and “Nevertheless, during La Niña summers, the effect of the SAM-CGT 
mode is reinforced over Europe, North Africa and the Indian subcontinent and reaches northward 
towards Canada while during El Niño summers the effect of the SAM is mainly confined to the tropical 
belt. For the WNPSM-NPH pattern, a clear asymmetry between El Niño and La Niña summers is 
shown, with a stronger signal during El Niño (Fig. 5e,f) that is absent during La Niña years.” (lines 
596-600). 
 
NPH and mode 2 results are not described in the text.  
We now describe the results related to Mode 2 (lines 485-490): “In the western North Pacific, the most 
notable feature is the presence of both the WNPSM and NPH on the North Pacific only during El Niño 



summers (Figs. 5e,f). During those summers, the positive causal effect of the WNPSM over the western 
North Pacific (Region 1 and 2 in Fig. 5e) intensifies in magnitude (absolute beta ~ 0.3-0.4) relative to 
the 1979-2018 mean pattern (Fig. 4c), although the geographical extent of Region 1 shrinks. Over the 
western tropical Pacific, in correspondence with the La Niña warm pool, a region of positive causal 
effect is shown (Region 2 in Fig. 5e). These features disappear during La Niña summers.”  
 
L417: “the pattern identified in Fig 5f with a low over central Europe and high over western 
Russia”. I do not see a low-high dipole, the figure shows beta coefficients not geopotential. We 
have removed this sentence as this statement in not supported by the stricter robustness test applied in 
the new causal maps. 
 
L419: “: : :wave-trains initiated by La Nina: : :” I do not follow this explanation.  
We have removed this sentence as this statement in not supported by the stricter robustness test 
applied in the new causal maps. 
 
Figure 5f is about El Nino effects. Similarly, L456-458: “: : : if La Nina conditions would 
become: : :(Fig. 5f)”. Figure 5f is about El Nino effects. 
 This mistake had been corrected by including the correct panel for Fig. 5c. 
 
5) An extensive use of abbreviations makes the paper a bit difficult to follow. – Adding a 
table describing CEN actors abbreviations would be very helpful. - Abbreviation is introduced 
but never used in the manuscript such as EASM (L92) and SRP (L439). - BSISO abbreviation in 
L138 is not introduced.  
Following the suggestion of the anonymous reviewer, we have added a table showing the full name of 
each abbreviation used throughout the manuscript and, when useful, its dimensions. We have removed 
abbreviations for EASM and SRP since they are not used later in the text. We now introduce the term 
BSISO both at its first appearance and in the abbreviation table. 

 

 



1 
 

 
 
 
Dominant patterns of interaction between the tropics and mid-
latitudes in boreal summer: Causal relationships and the role of time-5 

scaletimescales  
 
 
 
 10 
 
Giorgia Di Capua1,2, Jakob Runge3, Reik V. Donner1,4, Bart van den Hurk2,5, Andrew G. Turner6,7, 
Ramesh Vellore8, Raghavan Krishnan8, and Dim Coumou1,2 

 

 15 
 

 

 

 

1Potsdam Institute for Climate Impact Research, Potsdam, Germany 20 
2VU University of Amsterdam, Institute for Environmental Studies, Amsterdam, Netherlands 
3German Aerospace Centre, Institute of Data Science, Jena, Germany 
4Magdeburg-Stendal University of Applied Sciences, Magdeburg, Germany 
5Deltares, Delft, Netherlands 
6Department of Meteorology, University of Reading, Reading, United Kingdom 25 
7National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom 
8Indian Institute for Tropical Meteorology, Pune, India 
 
 
 30 
 
 
 
 

Correspondence to: Giorgia Di Capua (dicapua@pik-potsdam.de) 35 

  



2 
 

 

Abstract.  Tropical convective activity represents a source of predictability for mid-latitude weather in the Northern 

Hemisphere. In winter, the El Niño–Southern Oscillation (ENSO) is the dominant source of predictability in the tropics and 

extra-tropics, but its role in summer is much less pronounced and the exact teleconnection pathways are not well understood. 40 

Here, we assess how tropical convection interacts with mid-latitude summer circulation at different intraseasonal time-

scaletimescales and how ENSO affects these interactions. First, we apply maximum covariance analysis (MCA) between 

tropical convective activity and mid-latitude geopotential height fields to identify the dominant modes of interaction. The first 

MCA mode connects the South Asian monsoon with the mid-latitude circumglobal teleconnection pattern. The second MCA 

mode connects the western North Pacific summer monsoon in the tropics with a wave-5 pattern centred over the North Pacific 45 

High in the mid-latitudes. We show that the MCA patterns are fairly insensitive to the selected intraseasonal time-

scaletimescale from weekly to 4-weekly data. To study the potential causal interdependencies between these modes and with 

other atmospheric fields, we apply the causal effect networks (CEN)discovery method PCMCI at different time-

scaletimescales. CENs PCMCI extends standard correlation analysis by removing the confounding effects of autocorrelation, 

indirect links and common drivers. In general, there is a two-way causal interaction between the tropics and mid-latitudes but 50 

the strength and sometimes sign of the causal link are time-scaletimescale dependent. We introduce causal maps that plot the 

regionally specific causal effect from each MCA mode. Those maps confirm the dominant patterns of interaction and in 

addition, highlight specific mid-latitude regions that are most strongly connected to tropical convection. In general, the 

identified causal teleconnection patterns are only mildly affected by ENSO and the tropical-mid-latitude linkages remain 

similar. Still, La Niña strengthens the South Asian monsoon generating a stronger response in the mid-latitudes, while during 55 

El Niño years, the Pacific pattern is reinforced. This study paves the way for process-based validation of boreal summer 

teleconnections in (sub-)seasonal forecast models and climate models and therefore works towards improved helps to improve 

sub-seasonal and climate projections.  

1 Introduction 

Tropical – mid-latitude teleconnections in boreal summer can have a great impact on surface weather conditions in the northern 60 

mid-latitudes (Ding and Wang, 2005; O’Reilly et al., 2018; Wang et al., 2001). Still, the  direct influence of the El Niño-

Southern Oscillation (ENSO) on the mid-latitude circulation is weaker in summer than in winter (Branstator, 2002; Schubert 

et al., 2011; Thomson and Vallis, 2018). Instead, in summer, convective activity related to the Northern Hemisphere tropical 

monsoon systems can profoundly influence surface weather conditions in the mid-latitudes (Branstator, 2014; Ding and Wang, 

2005; O’Reilly et al., 2018; Rodwell and Hoskins, 1996). Vice versa, mid-latitude wave trains and cyclonic activity at 65 

intraseasonal time-scaletimescales can modulate the tropical monsoons, and have been linked to extreme rainfall events in the 

Indian region (Lau and Kim, 2011; Vellore et al., 2014, 2016). Therefore, tropical and mid-latitude regions are likely connected 
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in complex, two-way, teleconnection patterns operating at a range of sub-seasonal time-scaletimescales (Di Capua et al., 2020; 

Ding and Wang, 2005, 2007). 

During boreal summer, the South Asian monsoon (SAM), represents one of the most important and powerful features of the 70 

tropical/subtropical circulation. Characterized by heavy rainfall over central India and the Bay of Bengal, the SAM has strong 

intraseasonal variability associated with alternating active and break phases, linked to the boreal summer intraseasonal 

oscillation (BSISO, Choudhury and Krishnan, 2011; Gadgil and Joseph, 2003; Goswami et al., 1998; Krishnamurti and Surgi, 

1987; Krishnan et al., 2000; Rao, 1976; Saha et al., 2012; Suhas et al., 2012). The western North Pacific summer monsoon 

(WNPSM) represents the Pacific counterpart to the SAM and is identified by strong rainfall over the sub-tropical western 75 

North Pacific (Li and Wang, 2005). Similar to the SAM, the WNPSM also exhibits strong intraseasonal oscillations (Wang 

and Xu, 1997). 

Latent heat release due to strong monsoonal rainfall can influence subtropical and mid-latitude regions via Rossby wave 

teleconnections. The SAM has been connected to subtropical arid conditions in the North African region via the so-called 

monsoon – desert mechanism, creating reinforced descending motions over the Sahara during strong SAM phases (Rodwell 80 

and Hoskins, 1996; Stephan et al., 2019). This mechanism is fairly well captured by both  climate (Cherchi et al., 2014) and 

seasonal forecast models (Beverley et al., 2019).The SAM is also connected to mid-latitude circulation via its interaction with 

the circumglobal teleconnection pattern (CGT), a wave pattern with 5 centres of action encircling the northern mid-latitudes 

and affecting temperature and precipitation there (Ding and Wang, 2005; Kripalani et al., 1997). This wave-5 like CGT pattern 

can be identified through interannual to intraseasonal (weekly) time-scaletimescales and it is likely connected with the SAM 85 

via two-way causal links (Di Capua et al., 2020). Seasonal forecast models are biased in their representation of the CGT, with 

typically a too weak CGT signal (Beverley et al., 2019). Therefore, seasonal forecasts miss an important source of predictability 

on intraseasonal time-scaletimescales, primarily in summer (Weisheimer and Palmer, 2014). 

The WNPSM has been shown to influence precipitation anomalies over North America via its relation to the Western Pacific 

– North America (WPNA) pattern (Wang et al., 2001). The WNPSM is shown to be related to surface pressure conditions over 90 

East Asia, with high pressure anomalies during years characterized by stronger WNPSM activity (Nitta, 1987). The WNPSM 

area also represents a genesis region for tropical cyclones in the North Pacific (Briegel and Frank, 1997). The WNPSM is 

weaker during the decaying phase of El Niño (Wang et al., 2001) and its related circulation anomalies provide a link from 

ENSO to the East Asian summer monsoon (EASM) (Yim et al., 2008). Thus, in summary, the SAM appears particularly 

important for sub-seasonal variability over Eurasia, while the WNPSM is important for the Pacific-North American sector.  95 

ENSO, operating at interannual time-scaletimescales, might primarily influence the mid-latitude circulation via its effect on 

the SAM strength (Ding et al., 2011). During boreal summers preceding La Niña phases, a strengthening of the Walker 

circulation can enhance SAM rainfall, while El Niño phases often have an opposite effect (Joseph et al., 2011; Ju and Slingo, 

1995; Terray et al., 2003; Wu et al., 2012). However, this relationship depends on the longitudinal position of the strongest El 

Niño related sea surface temperature (SST) anomalies (Krishna Kumar et al., 2006) and potentially has weakened over recent 100 

decades (Chakraborty and Krishnamurti, 2003; Krishna Kumar et al., 1999; Srivastava et al., 2017; Xavier et al., 2007). At 



4 
 

interannual time-scaletimescales, anomalous tropical convection in the central-eastern Pacific related to ENSO has also been 

shown to affect mid-latitude circulation over the Euro-Atlantic sector as well as temperature and precipitation anomalies over 

Europe during boreal summer (O’Reilly et al., 2018). Trends in tropical SSTs play a crucial role in the interdecadal changes 

of this tropical-extratropical teleconnection (O’Reilly et al., 2019).  105 

In general, a major challenge faced by teleconnection research is to understand the underlying physical processes and 

associated cause-effect relationships. Past observational studies have typically employed correlation analysis or linear 

regression techniques. Such analyses can however be dominated by spurious correlations and therefore can give only limited 

insight into cause-effect relationships. On the other hand, model-based studies can be affected by biases in the representation 

of circulation and precipitation characteristics (Beverley et al., 2019; Schubert et al., 2011; Weisheimer and Palmer, 2014), 110 

which can feed back on each other. Also, although perturbation and sensitivity experiments can point towards potential causal 

relationships, they do not necessarily reveal the causal links between tropical and mid-latitudinal features, since the uncovered 

relationship may not be the dominant one.  

 

In recent years, several approaches have been applied to identify causal relationships in climate and atmospheric sciences 115 

(Runge et al., 2019b), ranging from Granger causality (McGraw and Barnes, 2018, 2020; Samarasinghe et al., 2019) to causal 

(Bayesian) graphical models (Ebert-Uphoff and Deng, 2012a, 2012b; Horenko et al., 2017; Pearl, 2000) and conditional 

independence-based network discovery methods for time series (Runge et al., 2019a). These studies have shown the ability of 

causal discovery tools to improve our understanding of several atmospheric circulation interactions such as Arctic – mid-

latitudes connections (McGraw and Barnes, 2020; Samarasinghe et al., 2019), synoptic-scale disturbances between boreal 120 

summer and boreal winter (Ebert-Uphoff and Deng, 2012a) and the relationship between ENSO and surface temperature in 

the American continent (McGraw and Barnes, 2018).    

 

Here, we use a causal inference approach to study the relationships between the Northern Hemisphere mid-latitudes and the 

tropical belt during boreal summer at different intraseasonal timescales. We apply a causal discovery approach making use of 125 

the so-called PCMCI (Peter & Clark algorithm combined with the Momentary Conditional Independence approach, see Section 

2.3) method (Runge et al., 2019a) .and then estimate physically interpretable causal links weights by (standardized) 

multivariate regression. The resulting weighted network representation of causal interdependencies is referred to as a  This 

method detects causal links and Causal Effect Networks (CEN) (Kretschmer et al., 2016). to quantify their effect strength, in 

order to study the relationships between the Northern Hemisphere mid-latitudes and the tropical belt during boreal summer at 130 

different intraseasonal time-scaletimescales.  Expanding our understanding of the corresponding physicalthese mechanisms 

has the potential to improve seasonal and subseasonal forecasts in boreal summer. The main advantage of such causal discovery 

tools is that they can identify and remove spurious correlations (Runge et al., 2015b; Runge, 2018; Runge et al., 2019a) and  

thus provide insight into the potential causal relationships (McGraw and Barnes, 2018; Runge et al., 2014). Building upon this 

advanced methodology, we introduce a new concept called causal maps, identifying visually highlighting causally related 135 
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spatial structures. Finally, we assess the role of the ENSO background state on the identified causal relationships between the 

tropical belt and the mid-latitude circulation. The remainder of this paper is organized as follows: Section 2 presents the data 

and methods used in this analysis. Section 3 describes the results obtained by applying CEN and causal maps to the identified 

research questions. Section 4 illustrates provides athe discussion of the obtained results in the context of the existing literature 

and finally, Section 5 presents a short summary and conclusions. 140 

 2 Data and Methods 

2.1 Data 

In our analysis, we diagnose monsoon characteristics and Northern Hemisphere circulation features using outgoing longwave 

radiation (OLR) at the top of the atmosphere, geopotential height at 200 hPa (Z200) and 2m surface temperature (T2m) data 

from the ERA-Interim Reanalysis (Dee et al., 2011) for the period 1979-2018 (1.5°x1.5°).  Strong tropical convection is 145 

characterized by high cloud tops and thus by low emission temperatures, which in turn correspond to low OLR values 

(Krishnan et al., 2000). In the tropical belt, OLR can be used as a proxy of convective activity, and therefore, rainfall. To select 

different ENSO phases, we use the monthly Niño3.4 index from NOAA (data are available at 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/), representing the central Pacific SST anomalies. El Niño and 

La Niña events are discerned by periods of December-to-February Niño3.4 index values larger than 0.5°C or smaller than -150 

0.5°C respectively. Then, we identify El Niño summers as those preceding the El Niño peak in winter and La Niña summers 

as those preceding the La Niña peak in winter. We use the Niño3.4 index since it has been shown to have a relatively strong 

connection to Indian monsoon rainfall (Krishna Kumar et al., 2006). 

We also use the BSISO index as defined by Kikuchi et al. (2012) and Kikuchi and Wang (2010) (data are available at 

http://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-90bpfil_pc.txt) in order to describe the phase and 155 

amplitude of the BSISO characterising the large-scale driver of active and break events over India. Causal discovery tool 

techniques require detrended anomalies centred at zero. Therefore, all data are linearly detrended and anomalies are calculated 

relative to an individual year’s mean seasonal state by removing both the mean seasonal cycle and the year’s mean seasonal 

state (i.e. the seasonal average from May to September, MJJAS) (Di Capua et al., 2020; Ding and Wang, 2007). Removing the 

year’s mean seasonal state, and thus excluding the influence of interannual variations of the involved mechanisms, is essential 160 

to analyse intraseasonal variability of atmospheric components that present a strong interannual variably, such as the SAM.  

 

2.2 Maximum covariance analysis 

To extract the dominant co-variability patterns reflecting interactions between mid-latitude circulation in the Northern 

Hemisphere and tropical convection at intraseasonal timescales, we follow Ding et al. (2011) and the tropics and mid-latitude, 165 

we first apply maximum covariance analysis (MCA) to tropical OLR fields (used as a proxy for convective activity) in the 

http://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-90bpfil_pc.txt
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tropical belt (15°S-30°N, 0°-360°E) paired with Z200 fields in the northern mid-latitudes and northern mid-latitude Z200 

(25°N-75°N, 0°-360°E) fields.  

MCA identifies the patterns that explain the greatest squared covariance between two different fields (Ding et al., 2011; 

Wiedermann et al., 2017) and ranks them according to their explained squared covariance fraction (SCF) (Wilks, 2011). 170 

Among the available correlation based methods to highlight strong co-variability and reduce the dimensionality of a 

spatiotemporal dataset, MCA allows identification of patterns in pairs of variables that evolve simultaneously and may be 

causally related (via e.g. dynamical coupling between multiple climatological fields). MCA detects patterns that can explain 

shared covariance, which cannot be achieved using other dimensionality reduction methods that consider individual variables 

separately, such as empirical orthogonal function (EOF) analysis. However, for providing a complete picture we will also 175 

discuss the corresponding EOF patterns and the fraction of variance explained for comparison with our MCA results. 

Each MCA mode thus provides two coupled (2D) spatial patterns (one for tropical OLR and one for mid-latitude Z200) and 

two associated (1D) time series (the time-dependent MCA scores or pattern amplitudes for both fields), describing the 

magnitude (prominence) and phase (sign) of those patterns for each time step. These (1D) time series are obtained by 

calculating the scalar product between each MCA spatial pattern (2D field) and the original spatial field of the associated 180 

variable at each time step as 

𝐴𝐴 = 𝒖𝒖𝑇𝑇𝑿𝑿                                                                                        (1) 

𝐵𝐵 = 𝒗𝒗𝑇𝑇𝒀𝒀                                                                                        (2) 

where A and B represent the two  MCA scores for Z200 and OLR, X and Y are two matrices representing the Z200 and OLR 

fields, u and v are the coupled patterns that maximize their covariance c, defined as: 185 

𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐[𝐴𝐴,𝐵𝐵] = 𝑐𝑐𝑐𝑐𝑐𝑐[𝒖𝒖𝑇𝑇𝑿𝑿,𝒗𝒗𝑇𝑇𝒀𝒀] = 1
𝑛𝑛−1

[𝒖𝒖𝑇𝑇𝑿𝑿(𝒗𝒗𝑇𝑇𝒀𝒀)𝑇𝑇] = 𝒖𝒖𝑇𝑇𝑪𝑪𝑥𝑥𝑥𝑥𝒗𝒗                                           (3) 

and 

𝑪𝑪𝑥𝑥𝑥𝑥 = 1
𝑛𝑛−1

𝑿𝑿𝒀𝒀𝑇𝑇                                                                                   (4) 

with n denoting the number of observation times.                                                                                         

Here, we select the first two MCA modes that represent the dominant patterns of co-variability between tropical convection 190 

and mid-latitude circulation, and calculate time series for each MCA mode. These time series will be used as inputs for the 

causal discovery algorithm (see sections 2.3 and 2.4). 

 

2.3 PCMCI and Causal Effect Networks 

PCMCI is a causal discovery method based on the PC algorithm (named after its inventors Peter and Clark, see Spirtes et al., 195 

2000) combined with the Momentary Conditional Independence approach (MCI,  Runge et al., 2019). Given a set of univariate 

time series (called actors), PCMCI estimates their time series graph that representsrepresenting the conditional independencies 

among the time-lagged actors. In the context of the present work, actors are user-selected based on theoretical knowledge to 
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represent either a specific component of the atmospheric circulation or surface conditions estimated with MCA (A, B) or an 

individual grid point time series C(lat, lonlat,lon). Assuming linear dependencies, PCMCI uses partial correlations to 200 

iteratively test conditional independencies and remove spurious links arising from autocorrelation effects, indirect links, or 

common drivers. For example, if an actor Z drives X at lag -1 and Y at lag -2, then X and Y will be correlated, but the partial 

correlation ρ(Xτt-1, Yt | Zτt-2) will be zero. PCMCI efficiently conducts partial correlation tests to identify which links cannot be 

explained by other time-lagged actors. Compared to the standard PC algorithm, PCMCI better deals with autocorrelation and 

high-dimensional sets of actors (Runge et al., 2019a). The output of PCMCI is a p-value for each time-lagged causal link. 205 

It is important to note that the term causal rests on specific assumptions (Runge, 2018; Spirtes et al., 2000), most importantly 

that it should be understood as “causal relative to the set of analysed actors”. Therefore, adding (or removing) an actor can 

alter the result of PCMCI, highlighting the importance of having an expert-guided hypothesis underlying the choice of the 

selected set of actors. In addition, using partial correlation for a conditional independence test implies further assumptions 

such as the stationarity and linearity of the relationships. To ensure that control for multiple testing does not inflate p-values 210 

or the multiple  among the multiple grid locations in causal maps, we apply the a false discovery rate (FDR) correction 

(Benjamini and Hochberg, 1995).  

Based on the reconstructed network among the actor variables (at some significance level α), we determine the causal parents 

as the incoming links to each actor (C(lat, lonlat,lon), A, B), which can come from the pasts of A, B, or C(lat, lonlat,lon) , i.e., 

{ Aτt=-1, Bτt=-1, C(lat, lonlat,lon) τt=-1, ... ,  Aτt=-τmax, Bτt=-τmax, C(lat, lonlat,lon) τt=-τmax}. In this analysis, A and B represent the two 215 

MCA scores obtained for a selected MCA mode, while C(lat,lon) represents the grid point time series of a 2D field, e.g. T2m 

or Z200. In its first step, PCMCI iterates through partial correlations with increasing cardinality of conditions to remove the 

influence of common drivers and indirect links and estimate a preliminary set of parents. The first iteration of PC (cardinality 

0) calculates the correlation between a selected time series, e.g. Aτ=0, and the past of any other available time series, { Aτ=-1, 

Bτ=-1, C(lat,lon) τ=-1, ... ,  Aτ=-τmax, Bτ=-τmax, C(lat,lon) τ=-τmax}, including its own past Aτ=-1, .., - τmax. For illustration purposes, we 220 

here provide an example for C(lat,lon), where ρ denotes the correlation and τ is the lag that is being used in the network (in 

this example, τmax = -2): 

                                                              𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1) = 0.32, 𝑝𝑝 = 0.01                                                          (5) 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−2) = 0.13, 𝑝𝑝 = 0.1 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜 ,𝐵𝐵𝜏𝜏=−1) = 0.35, 𝑝𝑝 = 0.005 225 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜 ,𝐵𝐵𝜏𝜏=−2) = 0.23, 𝑝𝑝 = 0.058 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜 ,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1) = 0.41, 𝑝𝑝 = 0.01 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−2) = −0.16, 𝑝𝑝 = 0.06 

Applying a significance level α = 0.05, only three actors are significantly correlated with C(lat,lon) at the chosen time lag. 

These form the initial preliminary set of parents for C(lat,lon) and are ordered by the strength of their correlation: 230 

                                                               𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
0 = {𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1}                                                         (6) 
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Next, partial correlations between C(lat,lon) and each actor in 𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
0  are calculated by conditioning on the strongest 

preliminary parent: 

                                          𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1|𝐵𝐵𝜏𝜏=−1) = 0.35, 𝑝𝑝 = 0.02                                             (7) 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐵𝐵𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1) = 0.28, 𝑝𝑝 = 0.03 235 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜 ,𝐴𝐴𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1) = 0.25, 𝑝𝑝 = 0.04 

Parents with significant partial correlations will enter the second set of preliminary parents: 

                                                         𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
1 = {𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1}                                                         (8) 

Next, the partial correlation is calculated conditioning on the two strongest parents: 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1|𝐵𝐵𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1) = 0.31, 𝑝𝑝 = 0.03                                     (9) 240 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐵𝐵𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐴𝐴𝜏𝜏=−1) = 0.23, 𝑝𝑝 = 0.04 

𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1) = 0.12, 𝑝𝑝 = 0.08 

Since it is not possible to further increase the dimension of the condition set, from the PC step, the preliminary parents converge 

to:  

𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
2 = {𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−1}                                                         (10) 245 

 

By repeating this step for each variable, preliminary sets of parents are estimated. Let’s assume that in our example we also 

obtain:  

𝑃𝑃𝐴𝐴3 = � 𝐵𝐵𝜏𝜏=−1 ,𝐴𝐴𝜏𝜏=−2,�                                                         (11) 

𝑃𝑃𝐵𝐵2 = { 𝐵𝐵𝜏𝜏=−1} 250 

In the MCI step, partial correlation is calculated again between each pair of actors (at different time lags) conditional on the 

above estimated sets of preliminary parents, whereby both sets of parents are conditioned upon. To give one example, this 

would lead to: 

𝜌𝜌�𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜,𝐴𝐴𝜏𝜏=−1�𝑃𝑃𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙𝑙𝑙𝑙𝑙)
2 ,𝑃𝑃𝐴𝐴3� = 

= 𝜌𝜌(𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=𝑜𝑜 ,𝐴𝐴𝜏𝜏=−1|𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝜏𝜏=−1 𝐵𝐵𝜏𝜏=−1,𝐵𝐵𝜏𝜏=−2,𝐵𝐵𝜏𝜏=−3) = 0.1, 𝑝𝑝 = 0.3   (12) 255 

Note that the parents of 𝐴𝐴𝜏𝜏=−1 are shifted in time by τ = -1. After repeating (12) for each pair of actors shown in (5) and for 

time lags from 0 to τmax, those parents that are significant in the MCI test will then form the final set of causal parents for each 

actor. We refer to Runge et al. (2019a) for a more detailed discussion and explanation of the algorithm design and extensive 

numerical experiments. 

Then Finally, we estimate the Causal Effect Network (CEN) (Kretschmer et al., 2016; Runge et al., 2015a) among A, B and 260 

C(lat, lonlat,lon) by applying standardized multiple regression of each actor onto its causal parents identified via PCMCI, i.e., 

for Y ∈ in At, Bt, C(lat, lonlat,lon)t and the parents P: 

𝑌𝑌𝑡𝑡 = ∑ β𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑌𝑌                                                                                      (513) 
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where Xi ∈ P{Y}, i = 1, .., N, i.e. the set of N parents of Y. Note that there can be different numbers N of parents for each actor. 265 

Finally, the strength of a causal link Xt-τ → Yt is expressed in terms of the path coefficient β, which can be interpreted as the 

change in the expectation of Yt (in units of its standard deviation (s.d.)) induced by raising Xt-τ by 1 s.d., while keeping all other 

parents of Yt constant. Thus, for β = 0.5, a change in a causal parent of 1 s.d. at lag -1 corresponds to a change 0.5 s.d. in the 

analysed actor at lag 0 (Runge et al., 2015a). The influence of an actor on itself is referred to as the autocorrelation path 

coefficient, which must not be confused with the Pearson autocorrelation. A detailed description of the PCMCI algorithm is 270 

available in Runge et al. (2019), while recent applications can be found in Kretschmer et al. (2016, 2018) and (Di Capua et al., 

2019, 2020)Di Capua et al. (2019).  

2.4 Causal maps 

To explore the causal effects that a specific actor has on a selected 3D (lat, lonlat,lon, time) atmospheric field, we introduce 

the concept of causal maps. Conceptually, causal maps are similar to correlation maps, as they show the spatial pattern of the 275 

relationship between a 3D climate data set (covering two spatial dimensions plus time) and a 1D time series. However,  instead 

of computing correlations between the time variations at each grid point and one additional time series, we apply here the 

PCMCI+CEN approach with actors consisting of the two MCA scores time series (A, B) and each individual grid point time 

series (C(lat, lonlat,lon)). The causal map then plots the path coefficient β from one of the MCA scores (as one actor) to this 

gridpoint, conditioned on all remaining actors. For a set of two actor timeseries (A and B in Fig. 1) and one time-varying 280 

atmospheric field C, we can thus derive two causal maps: one from A to C(lat, lonlat,lon) conditioned on B and on the 

autocorrelation in all actors, and one from B to C(lat, lonlat,lon) conditioned on A and on all autocorrelation effects. Figure 1 

provides an illustrative example of this type of analysis. Both correlation maps (Fig. 1a) indicate a positive value for a specific 

geographical location highlighted with the black diamond. The CEN constructed for A, B and C(lat, lonlat,lon) at this gridpoint 

is plotted in Fig. 1b and shows that only B is causally connected to C. The correlation between A and C is thus due to an 285 

indirect link via B (or to a common driver not included in the CEN). This is also seen in the causal maps plotting the path 

coefficient β which for the B → C(lat, lonlat,lon) link is positive (right panel) but is non-significant for the A → C(lat, 

lonlat,lon) link (left panel). In causal map visualization we can directly illustrate the effect of a specific actor on a global field 

(taking into account the influence of autocorrelation), indirect links and common driver effects due to other competing 

variables.  290 

Here, we will derive causal maps using the time series obtained with MCA for modes 1 and 2 and Z200, OLR and T2m fields 

both for the entire time period (1979-2018) and for two subsets depicting different ENSO phases, to assess how the ENSO 

background state influences the causal relationships. El Niño (La Niña) summers are defined as summers preceding the El 

Niño (La Niña) peak in boreal winter. We thus obtain 14 La Niña years and 13 El Niño years (see Table 1 in the Supplementary 

material for a list of corresponding years and Fig. S1 for the associated SST anomaly composites). Although the strongest SST 295 

anomalies related to the ENSO phase are found in winter, warm (cold) SST patterns related to El Niño (La Niña) phases are 

already clearly developed during the preceding summers.  
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Finally, to test the robustness of our causal maps to the choice of time period, we calculate causal maps for a range of sub-

periods. In 10 trials we removed 10% of the record (4 years). For ENSO-phase dependent causal maps, we have shorter time 

series and we thus remove one year in each trial, leaving a set of 14 causal maps for La Niña events and 13 causal maps for El 300 

Niño events.  As a result, we obtain an ensemble of causal maps and apply the false discovery rate correction to p-values of 

each single map. Then, both for the full period (1979-2018) and for El Niño and La Niña years separately, we masked out 

areas where less than 70% of the trials indicated a significant causal link, giving an indication of the robustness of our findings 

and at the same time suppressing noise. 

A summary of the abbreviation and variable used in this analysis can be found in Table 1, while the parameters used for the 305 

PCMCI algorithm are reported in the Supplementary Material.  

 

3 Results 

3.1 Tropical – mid-latitude interactions: maximum covariance analysis  

Figures 2a-d show the coupled patterns for the first two MCA modes between weekly tropical OLR and mid-latitude Z200. 310 

Figure 2e shows the associated time series of MCA scores for all four patterns (two for each MCA mode), obtained as explained 

in Section 2.2.  

The first two MCA modes highlight the two key patterns of boreal summer monsoonal activity in the tropics along with the 

co-varying mid-latitude Z200 patterns. In both modes, the mid-latitudes are characterized by a zonally oriented circumglobal 

wave pattern with a wavenumber close to 5 (i.e. roughly 5 centres of action).  However, the two wave patterns are phase 315 

shifted, aligned with the longitudinal position of the strongest monsoonal convection in the tropics.  

The first MCA mode explains 18% of the squared covariance (squared covariance fraction, SCF) and shows a CGT-like wave-

5 pattern in mid-latitude Z200. The Pearson correlation between the two time series of MCA scores for the first mode is r ~ 

0.5. T(the spatial correlation with the weekly CGT pattern, as defined by Ding and Wang 2005Di Capua et al. 2020, is 0.52 ) 

in mid-latitude Z200 (Fig. 2a). The CGT pattern also represents the second most important pattern in boreal summer mid-320 

latitude circulation (Di Capua et al., 2020; Ding and Wang, 2005). This wave-5 pattern is linked to the South Asian monsoon 

(SAM) activity via its positive centre of action east of the Caspian Sea (see Fig. 2a). Applying MCA, we find that tThe CGT 

pattern co-varies with a band of enhanced tropical convective activity that extends from the Arabian Sea towards Southeast 

Asia, with a peak of convective activity over the Bay of Bengal (Fig. 2b) (Kang et al., 1999). We will refer to this pattern as 

the South Asian monsoon (SAM).Using OLR composites and the Kikuchi Boreal Summer Intraseasonal Oscillation (BSISO) 325 

index, we explicitly show that the temporal evolution of SAM convective activity as defined in Fig. 2b at weekly timescales 

closely resembles the evolution of the BSISO (Goswami and Ajaya Mohan, 2001; Saha et al., 2012) (see Figs. S2-S3 and 

further discussion in the Supplementary Material). Therefore, we explicitly link the region of low OLR identified in Fig. 2b 

over the northern Indian Ocean and the Indian subcontinent to SAM activity as described in the literature. Note that we name 
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each MCA pattern after a characteristic regional feature, but the analysis is applied to the larger geographical domains as 330 

shown in Figure 2. The Pearson correlation between the two time series of MCA scores for the first mode is r ~ 0.5.  

The second mode of co-variability explains a SCF of 14% between the two fields and is characterized by a region of strong 

positive Z200 anomalies located at ~ 45° N, over the western North Pacific, directly to the west of the dateline (i.e. the most 

prominent centre of action of the mid-latitude wave). The Pearson correlation between the two time series of MCA scores for 

the first mode is r ~ 0.6. We will refer to this pattern as the North Pacific High (NPH) (Fig. 2c). The NPH is the summer 335 

counterpart of the North Pacific subtropical high, which characterizes boreal winter. During summer, this high pressure region 

is displaced northward by the start of the monsoon season over the western Pacific Ocean and replaciesng the Aleutian Low 

(Lu, 2001; Riyu, 2002). As can be seen in MCA mode 1, tThe NPH is associated with a region of enhanced convection over 

the sub-tropical western North Pacific, related to the western North Pacific summer monsoon (WNPSM) convective activity 

(Fig. 2d) (Li and Wang, 2005; Nitta, 1987; Wang et al., 2001). The WNPSM core domain extends from 110°-160°E and 10°-340 

20°N, while the boundary with the SAM is located over the South China Sea (Murakami and Matsumoto, 1994). The WNPSM 

is characterized by a late sudden onset (end of July) and a peak in rainfall activity during August and September, which is 

different from the SAM that features an earlier onset (in June) and peak rainfall activity during July-August. The Pearson 

correlation between the two time series of MCA scores for the first mode is r ~ 0.6. 

We compare the patterns obtained with MCA with those obtained with EOF analysis of Z200 and OLR fields (see Fig. S4 in 345 

the Supplementary Material). We find that the closest match of the Z200 MCA mode 1 pattern is with Z200 EOF 2 (spatial 

correlation ~ 0.8), while the closest match of Z200 MCA mode 2 is with EOF 1 (spatial correlation ~ 0.6). OLR MCA mode 

1 has the closest match with EOF 2 (spatial correlation ~ 0.5), while OLR MCA mode 2 has the closest match with EOF 5 

(spatial correlation ~ 0.4). Thus, in general our MCA patterns also reflect the first two EOFs of Z200 and OLR indicating that 

they explain an important fraction of the regional variability. Nevertheless, here we are interested in those patterns that can 350 

explain shared covariance, which cannot be achieved by using EOF analysis alone. Therefore, we use the MCA-defined 

patterns for the following part of the analysis. 

We also investigate whether the obtained MCA patterns are sensitive to the choice of OLR in representing tropical convective 

activity. Using vertical velocity, another proxy for tropical convection where strong convective activity is represented by 

enhanced upward motion, shows qualitatively the same patterns as those in Figs. 2a-d (see Fig. S5 in the Supplementary 355 

Material). When velocity potential is used instead of OLR, the first MCA mode still closely resembles the OLR/Z200 MCA 

mode 1, while the second MCA mode only partly captures features in the western Indian Ocean (see Fig. S6 in the 

Supplementary Material).  

Application of the MCA to 4-weekly data gives nearly identical MCA patterns but with somewhat lower magnitude of the 

Z200 and ORLR anomalies (see Fig. S1 S7 in the Supplementary Material). In this case, we define both 4-weekly and weekly 360 

MCA scores by projecting 4-weekly MCA patterns onto 4-weekly and weekly data respectively (see Fig. S1eS7e-f in the 

Supplementary Material). In this way, we check whether the analysis is robust given different definitions of the MCA patterns.  
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Using OLR composites, we explicitly show that the temporal evolution of the SAM convective activity at weekly time-

scaletimescales resembles the evolution of the Boreal Summer Intraseasonal Oscillation (BSISO) (Goswami and Ajaya Mohan, 

2001; Saha et al., 2012) (see Fig. S2 in the Supplementary Material). The OLR pattern depicted by the first MCA mode 365 

represents phase 4-5 of the BSISO evolution (Fig. S2). The BSISO is characterized by a rainfall band tilted from northeast to 

southwest propagating from the tropical Indian Ocean toward Southeast Asia with a period of about one to two months. To 

further explore this hypothesis, we present a Wheeler-Hendon diagram using the BSISO index as defined by Kikuchi (2010) 

and plot (using different colours) BSISO phases that correspond to different lags (as defined considering the MCA mode 1 

pattern for OLR as lag 0, see Fig. S2). The results show that each lag tends to cluster consistently around the corresponding 370 

BSISO phase (see Fig. S3a in the Supplementary Material).  This suggests that the BSISO may exert a large-scale tropical 

control on mid-latitude anomalies, using variations in SAM rainfall as a pathway. When the same approach is applied to the 

WNPSM pattern, no consistent behaviour can be identified (Fig. S3b). 

3.2 Influence of tropical – mid-latitude MCA modes on Northern Hemisphere circulation  

To show how each MCA mode affects the circulation and surface conditions in the Northern Hemisphere, we calculate causal 375 

maps for the influence of SAM, CGT, WNPSM and NPH time series (as defined in Fig. 2e) on selected atmospheric fields in 

the Northern Hemisphere (15°S-75°N, 0°-360°E). Although we use τmax = -4 2 and τmin = 0, we plot only β values for lag -1 

(week), as β values for longer time lags are mostly nonsignificant. This way also the past behaviour of each actor, with potential 

confounding effects, is also accounted for in the corresponding grid-point CEN. Note that we only show robust links as defined 

in Section 2.4 and the masks used to plot the results are shown in Figs. S8-S9 in the Supplementary Material. 380 

Figure 3 shows the causal maps for weekly Z200, OLR and T2m fields with SAM and CGT time series, including correlation 

maps for weekly Z200 fields with SAM and CGT time series. Referring to the schematic illustrated in Fig. 1 and following 

the PCMCI algorithm explanation (section 2.3), here the A and B time series are represented by the SAM and CGT time series 

respectively, while C(lat,lon) is represented by Z200, OLR and T2m fields. In the mid-latitudes, the correlation map between 

Z200 and SAM (Fig. 3a) shows a similar wave pattern as that shownsome similarities in the correlation map between Z200 385 

and CGT (Fig. 3b), with negative correlation regions over central Europe and Scandinavia (Region 2 and Region 4) and over 

the eastern North Pacific and eastern Canada visible in both plots (regions 3 and 6). Both correlation maps also display a 

positive correlation over northern Africa (Region 1), though with smaller values in the CGT plot. The causal map for the link 

SAM τ = -1 → Z200 τ = 0 (after removing the effects of the CGT and of the past of both SAM and Z200) shows that the path 

coefficient β remains pronounced over northern India and northern Africa (Region 1 in Fig. 3c), with values β ~ 0.3-0.4. 390 

Interestingly, those regions disappear completely in the causal map for the link CGT τ = -1 → Z200 τ = 0 (after removing the 

effects from SAM and of the past of both CGT and Z200). Thus, in this way, we can separate the signal coming from SAM 

convective activity from signals originating from the CGT pattern. Also, the causal maps in Figs. 3c and 3d indicate that the 

influence of SAM on Europe (negative path coefficients shown by Region 2 in,  Fig. 3c) and the North Pacific (seesaw of 

positive and negative path coefficients shown by Region 3 in Fig. 3c) is not mediated via the CGT. This influence is weaker 395 
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than that over the North Africa, with values of β ~ 0.1-0.3. In turn, the influence of SAM on other mid-latitude regions (over 

the North Atlantic, Region 4, over some parts of East Asia, Region 5 and Canada/USA, Region 6 in Fig. 3d) is mediated via 

the CGT , with values of β ~ 0.1-0.3(Fig. 3d). 

 

In the mid-latitudes, the causal maps for OLR and T2m (Figs. 3e-h) are largely consistent with those obtained for Z200, with 400 

negative βw values for OLR representing wet anomalies (negative OLR) overlapping with negative β values for T2m 

representing colder T2m anomalies and dry anomalies (positive β values for OLR) overlapping with warm T2m (positive β 

values for T2m). Although tThe CGT influence is mostly concentrated in the mid-latitude regions, where the same Regions 4 

to 6 identified in Fig. 3d, can also be found in Figs. 3f and 3h., one can see  Aa significant and consistent negative causal effect 

of the CGT pattern on OLR values over the Bay of Bengal in the tropical regions can only be seen in a small area in the western 405 

Indian Ocean (Region 1 in Fig. 3f). Again, the OLR and T2m causal maps indicate that the SAM has a direct influence on 

northern Africa and Europe as well as tropical Africa (Region 1 in Figs. 3e and 3g).  Asia and North America are strongly 

affected by the CGT. Over the Indian peninsula and Indochina, strong convective motions (negative β values for OLR in Fig. 

3e) are accompanied by colder temperature (negative β values for T2m in Fig. 3g), related to increased precipitation and 

consequently, decreased surface temperatures during active SAM activity. The influence of SAM on the western North Pacific 410 

identified by Region 3 in Fig. 3c is also detected in OLR (Region 3 in Fig. 3e). Negative β values found over Region 2 in Fig. 

3c are only slightly visible in OLR and T2m. However, we should also remind the reader that our causal maps show only the 

most robust links (see Section 2.4). 

 

Figure 4 shows the same set of results but now for the second MCA mode consisting of WNPSM and NPH pattern related 415 

time series. Here, our A and B time series are represented by the WNPSM and NPH time series while C(lat,lon) is again 

represented by either Z200, OLR or  T2m fields. As expected, both correlation maps resemble the Z200 field of MCA 2 (Fig. 

2c,d) with two characteristic features: an arch-shaped wave pattern in the North Pacific (Regions 7,8 and 9 in Figs. 4a and 4b) 

A wave-5 pattern with a prominent positive correlation over the NPH region and over western North America and two weaker 

centres of action over the Eurasian continent (Region 10 and 11 in Fig. 4b and Region 11 in Fig. 4a). The corresponding causal 420 

maps based on CENs are given in Figs. 4c (path coefficient β for the link WNPSM τ = -1 → Z200 τ = 0) and 4d (for the link NPH 

τ = -1 → Z200 τ = 0). If we compare the correlation maps (Figs. 4a,b) with the causal maps (Figs. 4c,d), we find great similarity 

in the spatial structures of the Z200 patterns over the North Pacific in both figures (Region 7 in Figs. 4c,d) with β ,~ 0.1-0.3 

for the influence of NPH on Z200 and β ~ 0.1-0.2 for the influence of WNPSM on Z200although the magnitudes have reduced 

in Fig. 4c. These causal maps show that the influence of the WNPSM on Z200 (after removing the effect of the NPH) is 425 

confined to the North Pacific alone (Regions 7 and 8 in Fig. 4c). The causal effect of the NPH pattern on Z200 (after removing 

effects of WNPSM) shows The two most prominent regions displaying a significant positive path coefficient β ~ 0.2-0.4 are 

found over the NPH region (Region 7 in Fig. 4d) and over the US west coast (Region 9 in Fig. 4d). In contrast, the causal 

effect of the NPH pattern on Z200 (after removing effects of WNPSM) shows a wave train that encircles the mid-latitudes 
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(Fig. 4d). Like the MCA mode 2 pattern itself, this wave train shows positive centres over Russia/Scandinavia, the western 430 

North Pacific and western US coast. The two regionsRegion 7 in the Pacific sector coincides with those that found for the 

WNPSM causal map (Fig. 4c). This suggests that the NPH is reinforced both by convective activity of the WNPSM and by 

the mid-latitude wave pattern localized in the North Pacific. Regions 10 and 11 found in Figs. 4a and 4b disappear in both 

Figs. 4c and 4d, showing that the correlation in these regions is mostly explained by Z200 activity in the mid-latitude itself 

(note that in the CEN we also condition on the past of Z200) or by other factors not considered in this analysis.  435 

Next, we compute the causal maps for the influence of WNPSM and NPH on weekly OLR and T2m fields (Figs. 4e,f and 4g,h 

respectively). For T2m causal maps, the results are largely consistent with those obtained for Z200, with positive Z200 

anomalies hinting to warm and dry weather in the mid-latitudes and strong convective motions being accompanied by colder 

temperatures in the tropical belt. Thus, these results highlight the importance of the NPH in shaping surface temperatures 

across the northern mid-latitudes. The impact of the WNPSM on OLR and T2m fields is very weak, though it is possible to 440 

recognise some negative β ~ 0.1-0.2 over the Arabian Sea and over the WNPSM area (Region 8 in Fig. 4e)pattern is confined 

to the western North Pacific. Further, convective activity in the WNPSM region is reinforced by the NPH pattern as indicated 

by a negative OLR anomaly over the WNPSM region (Fig. 4f). These results thus indicate that there is a two-way causal 

relationship between the WNPSM and the NPH. FThe impact of NPH on OLR and or T2m causal maps shows some similarities 

with the correlation map shown in Fig. 4b. T2m and OLR show the strongest effect over North America (Region 9 in Figs. 4f 445 

and 4h) with β ~ 0.2-0.4, and thisthe results areis largely consistent with thosethat obtained for Z200, with positive Z200 

anomalies hinting tato warm and dry weather in the mid-latitudes related to an active WNPSM. Over Eurasia, it is possible to 

recognize Regions 10 and 11 in both ORL and T2m causal maps but with smaller regions and lower β ~ 0.1-0.2 (Figs. 4f and 

4h).  and strong convective motions being accompanied by colder temperatures in the tropical belt. Thus, these results highlight 

the importance of the NPH pattern in shaping surface temperatures across the northern mid-latitudes. 450 

 

Using weekly MCA scores obtained from 4-weekly MCA patterns (Fig. S1S7) gives consistent results, showing that the 

analysis is robust when a different definition of the MCA pattern is chosen (see Figs. S4S10-S5 S11 in the Supplementary 

Material). Causal maps calculated for 4-weekly Z200 for both MCA 1 and MCA 2 show less significant results, likely due to 

the limited time series length (not shown).  455 

3.3 The influence of ENSO on tropical – mid-latitude causal interactions  

Next, we assess how the ENSO background state influences the causal relationships between mid-latitude and tropical patterns 

in boreal summer. We recalculate the causal maps for both MCA scores and Z200 fields, where A and B time series are 

represented by the SAM and CGT time series for the first MCA mode and by the WNPSM and NPH time series for the second 

MCA mode, while C(lat,lon) is represented by Z200. As for Fig. 3 and 4, the robustness mask used to plot the results shown 460 

in Fig. 5  is shown in Fig. S12 in the Supplementary Material. 
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To do so, we compute causal maps, similar to those in Figs. 3 and 4 but for El Niño and La Niña summers separately (Fig. 5), 

where El Niño (La Niña) summers are defined as summers preceding the El Niño (La Niña) peak in boreal winter. Figure S6 

in the Supplementary Material shows composites of SST anomalies for summers associated with the different types of ENSO 

phases as defined in this way. The warm (cold) SST patterns related to El Niño (La Niña) phases are already clearly developed 465 

during preceding summers, though the strongest anomalies are found in winter.  

In general, the strength and the sign of the patterns seen in the causal maps (Fig. 3 and 4) are not markedly affected by ENSO, 

though we can see higher absolute values of β ~ 0.1 in Fig. 5 with respect to Figs. 3 and 4 with some notable exceptions. 

During La Niña years, the effect of SAM on the Sahara Desert intensifies and also its effects on the Tibetan Plateau and in the 

mid-latitudes are more pronounced (Region 1, 2 and 6 in Fig. 5c). This is likely related to stronger SAM convective activity 470 

during La Niña summers. During La Niña, we also see a few affected areas over Eurasia and North America that are not present 

during El Niño. The region of negative causal effect of SAM on central Europe, is also present only during La Niña summers 

(with a β ~ 0.2-0.3 and larger in area when compared toin the 1979-2018 causal map in (Fig. 3c), however here the signal 

intensifies (and it disappears during El Niño summers). This signal is possibly linked to the strong positive causal effect over 

the Sahara Desert (Region 1). At the north-west of the Caspian Sea, a region of positive causal effect appears over Kazakhstan, 475 

linked to the region of positive causal effect in the south, over the Tibetan Plateau. The region of positive causal effect over 

the Tibetan Plateau further extends to the South China Sea, the Korean peninsula and southern Japan shows the same intensity 

as for the 1979-2018 period (β ~ 0.2-0.3) though it remains more confined over the Indian subcontinent and the Tibetan Plateau 

with respect to the 1979-2018 period (Region 1 in Fig. 5c). During La Niña, we also see an area of positive β values over North 

America (Region 6 in Fig. 5c) that is not present during El Niño.The SAM influence continues towards the east and shows 480 

two regions of positive causal effect (in central North Pacific and central Canada) and one region of negative causal effect over 

eastern North Pacific.   

During El Niño summers, the influence of the SAM is less pronouncedalmost completely absent in the mid-latitude regions, 

with only one region of low β values over the eastern North Pacific still being present (Region 3 in Fig. 5a). However, itThe 

positive β values over the tropical Pacific found in Fig. 3c disappear during La Niña and only some residues of this region are 485 

seen during El Niño years extends towards the entire tropical Pacific (Region 8 in Fig. 5a).  

In the western North Pacific, the most notable feature is the much strongerthe influence presence of both the WNPSM and 

NPH on the North Pacific only during El Niño summers (Figs. 5e,f). During those summers, the positive causal effect of the 

WNPSM over the western North Pacific (Region 7 and 8 in Fig. 5e) intensifies in magnitude (absolute β ~ 0.3-0.4) with respect 

to the 1979-2018 causal mapmean pattern (Fig. 4c), although the geographical extent of Region 7 shrinks. Over the western 490 

tropical Pacific, in correspondence with the La Niña warm pool, a region of positive causal effect is shown (Region 8 in Fig. 

5e). Both These features disappear during La Niña summers. Thus, during El Niño summers, tThus, the second MCA mode 

(the WNPSM-NPH pair) shows more intense causal mapshas its strongest effect during El Niño summers,  whereas during la 
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Niña summers the first MCA mode (SAM-CGT pair) is more important during both La Niña and El Niño summers but with 

different spatial characteristics. 495 

Calculating MCA pattern during different ENSO phases does not change the results in a qualitative way, although the order of 

the patterns is reversed in La Niña summers (see Fig. S7S13, in the Supplementary Material). Moreover, we have checked 

whether the distribution of the spatial correlation between each MCA mode and the respective Z200/OLR fields changes during 

different ENSO phases and found that ENSO does not affect the frequency of each pattern in a significant way (see Fig. S8S14, 

in the Supplementary Material). 500 

As for the 1979-2018 causal maps, when weekly MCA scores obtained from 4-weekly MCA patterns (Fig. S1S7) are used to 

provide ENSO-dependent causal maps, consistent results are obtained (see Figs. S9 S15 in the Supplementary Material). 

Further analysis of possible physical explanations is provided in Section 4. 

 

3.4 MCA causal interactions   505 

Finally, we study the role of time-scaletimescales on the causal interaction patterns presented above. We create CENs between 

the two time series of scores for each MCA mode, as identified in Fig. 2 and Fig. S1S7, and do so for weekly and 4-weekly 

data for the 1979-2018 period. Figure 6 plots the path coefficient β for two separate sets of CENs built for MCA mode 1 (SAM 

with CGT, Fig. 6a) and MCA mode 2 (WNPSM with NPH, Fig. 6b) for both 4-weekly and weekly time-scaletimescales. As 

for the causal maps, we use τmax = -4 2 for weekly data and τmax = -1 for 4-weekly data. In both cases, τmin = 0. 510 

At the 4-weekly time-scaletimescale, the pair WNPSM-NPH pair does not show significant causal links (Figs. 6b). The SAM-

CGT pair shows two fairly strong causal links with absolute values β~0.3-0.4, though with different signs (Figs. 6a). The 

northward link, i.e. SAM τ = -1 → CGT τ = 0, shows a positive β ~ 0.4: a 1 s.d. shift in the SAM leads to a ~ 0.4 s.d. positive shift 

in the CGT 4 weeks later (Fig. 6a). The southward link, i.e. CGT τ = -1 → SAM τ = 0, shows β ~ -0.3, meaning that at this time-

scaletimescale a more intense CGT pattern leads to a weakening of the SAM pattern 4 weeks later (Fig. 6a). 515 

At the weekly time-scaletimescale, both the WNPSM τ = -1 → NPH τ = 0 and the NPH τ = -1 → WNPSM τ = 0 links show a β ~ 0.1-

0.2, indicating that the two-way link has a similar magnitude in both southward and northward directions (Fig. 6b). At this 

time-scaletimescale, the path coefficient β for the SAM τ = -1 → CGT τ = 0 link is about a factor 4 smaller than that for the 4-

weekly time-scaletimescale (Fig. 6a). The southward link, CGT τ = -1 → SAM τ = 0, shows a positive β ~ 0.2 that is about twice 

as strong as the northward link (Fig. 6a). Thus, the influence of the SAM on the CGT pattern is weak (but present) at shorter 520 

(weekly) time-scaletimescales, but much stronger at longer (4-weekly) time-scaletimescales.  

Finally, we tested how the CENs change when the 4-weekly signal is removed from the weekly time series: Each 4-weekly 

mean is removed from the four values of the corresponding weekly data (Fig. S16). This way, we attempt to isolate the 

dominant time-scaletimescales of physical processes behind the different MCA patterns. This is similar in rationale to 

removing the effects of interannual variability before quantifying intraseasonal variability. Results for the first MCA (SAM 525 

and CGT) shows that the path coefficient β for CGT τ = -1 → SAM τ = 0 link remains almost unaffected (see Fig. S8aS16a, in the 
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Supplementary Material). This suggests that this southward link typically operates at weekly time-scaletimescales (rather than 

4-weekly), which is rather intuitive since mid-latitude variability dominates at synoptic time-scaletimescales. In contrast, the 

path coefficient β for the northward link (SAM τ = -1 → CGT τ = 0) becomes insignificant when the 4-weekly signal is removed 

from the weekly time series, suggesting that the influence from the tropics via the SAM pattern operates at longer, 4-weekly 530 

time-scaletimescales. Removing the 4-weekly signal from the weekly time series for the second MCA (WNPSM and NPH) 

roughly halves the path coefficient β for both the northward and southward link (see Fig. S816b in the Supplementary Material). 

4 Discussion  

In our analysis, we have found that the dominant patterns of interaction between the tropics and mid-latitudes remain 

qualitatively similar across different sub-seasonal time-scaletimescales (weekly and 4-weekly averages) (Fig. 2 and Fig. S71 535 

in the Supplementary Material). Two pairs of co-varying patterns are identified: a) convective activity of the South Asian 

monsoon (SAM) paired with a mid-latitude wavenumber-5 wave train resembling the circumglobal teleconnection (CGT) 

pattern and b) convective activity over the western North Pacific, related to the western North Pacific summer monsoon 

(WNPSM) paired with a second wave-5 circumglobal wave pattern with its strongest action centre represented by the North 

Pacific High (NPH) and phase shifted with respect to the CGT pattern, to the longitudinal position of WNPSM monsoonal 540 

convection in the tropics. These patterns of sub-seasonal co-variability between the mid-latitudes and tropics during boreal 

summer are remarkably similar to those identified by Ding et al.  (2011) for interannual time-scaletimescales. This consistency 

across time-scaletimescales (from weekly over monthly to interannual) suggests that the interannual patterns originate from a 

summation of the same patterns at sub-seasonal time-scaletimescales. Still, the strength and sign of the causal interactions are 

time-scaletimescale dependent. At longer time-scaletimescales (from monthly to seasonal) slowly varying components such 545 

as tropical SST and associated regions of convective activity dominate. Therefore, on these time-scaletimescales the causal 

links from the tropics to mid-latitudes tend to be stronger. At shorter (weekly) time-scaletimescales, in general a two-way 

positive feedback between the tropics and mid-latitudes is found, although strong variability in the mid-latitudes dominates 

over the tropical convection and thus the reversed southward pathways become stronger (Fig. 6). Moreover, we have 

introduced a novel visualization approach – termed causal maps – that can provide regionally specific information on the 550 

causal influence of a specific teleconnection source, and how this signal gets mediated. In tThis way, we identify mid-latitude 

regions and surface weather conditions that are influenced by tropical drivers by taking into account the linear influence of 

both MCA patterns together (for each MCA mode). The strongest causal effect of SAM convection is found over the Saharan 

region, and depicts the monsoon-desert mechanism (Rodwell and Hoskins, 1996). Also important is the effect of SAM on the 

central Asian CGT centre of action (see Di Capua et al., 2020). The SAM also appears to directly influence geopotential heights 555 

in the North Pacific and central European surface temperatures one week ahead (Fig. 3c,e). The influence of the CGT pattern 

is stronger over the mid-latitude regions, nevertheless some influence on the Indian Ocean is detected (Fig. 3d,f), further 

supporting the results shown in Fig. 6. In the North Pacific there is a clear two-way positive influence between from the 
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WNPSM and towards the NPH patterns reflecting a Hadley cell-like circulation (Fig. 4d). The direct causal effect from the 

NPH on surface weather conditions This system has ais particularly strong influence ion central North American and 560 

Scandinavian surface weather conditions  while its direct effect back on the tropics is weak (Fig. 4d,f,h). Thus, for MCA mode 

2, the signal from the WNPSM towards the NPH is consistent both in simple CEN (Fig. 6) and causal maps (Fig. 4), while the 

direct influence of the NPH on the tropical belt is present but weaker and less robust (see Fig S9 in the Supplementary Material). 

 

In the tropical belt, the processes behind the identified MCA patterns are linked to strong convection related to the monsoon 565 

activity.  Though tropical convection is characterized by heavy precipitation with a typical duration of less than a day, the 

latent heat release can act as a Rossby wave source for up to two weeks after the initial forcing is removed (Branstator, 2014). 

Moreover, while individual convective events are short-lived, the regions of dominant convective activity in the tropics change 

on much longer time-scaletimescales, such as in response to the BSISO (30-60 days). Thus, this finding could serve as a 

possible explanation for why the patterns identified at weekly and 4-weekly time-scaletimescales show great similarity (see 570 

also the discussion surrounding Figs. S2 and S3 in the Supplementary Material). It appears reasonable to assume that the 

tropics operate at longer time-scaletimescales providing potential sources of predictability at seasonal-to-subseasonal (S2S) 

time-scaletimescales. In contrast, mid-latitude circulation in summer is weaker than in winter and is characterized by 

circumglobal wave trains with typical time-scaletimescales of about one or two weeks (Di Capua et al., 2020; Ding and Wang, 

2007; Kornhuber et al., 2016).  575 

On the western North Pacific side, our findings linking the WNPSM convective activity to the NPH, and in turn to a wave-5 

circumglobal wave train that affects surface weather condition in the mid-latitudes, further supports results from previous 

studies suggesting that convective activity related to this oceanic monsoon system can enhance the high pressure found in the 

North Pacific mid-latitudes and that this affects weather conditions in western North America (Chou et al., 2003; Wang et al., 

2001). Three Four centres of action over northern and eastern Europe, central Asia European Russia, central North America 580 

and the central North Pacific are identified in the T2m causal map (Fig. 4h). Eastern Europe and central North America were 

also identified to be teleconnected regions associated with a boreal summer wave-5  strongly correspond to the phase locking 

regions identified for boreal summer wave-5 by Kornhuber et al. (2020), who highlighted the risk for thus linking the NPH 

and the WNPSM activity to potential bread-basket failures. Recent evidence indicate that land-atmosphere interactions and 

increased aridity in mid-latitude regions such as North America and Europe may constitute an enhancing mechanism for the 585 

amplification of circumglobal quasi-stationary Rossby wave events during boreal summer (Teng and Branstator, 2019). 

Moreover, the pattern identified in Fig. 5f with a low over central Europe and a high over western Russia, resembles the results 

shown by previous studies that link positive geopotential height anomalies over western Russia during summer 2010 with low-

frequency wave trains initiated by La Niña-related convection in the tropical Pacific (Drouard and Woollings, 2018; Hong et 

al., 2011; Schneidereit et al., 2012; Trenberth and Fasullo, 2012). Therefore, our results support the importance of the role of 590 

Pacific forcing for this wave-5 circumglobal wave pattern. Although other mechanisms could also be relevant in exciting and 
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maintaining this pattern, the link to the WNPSM convection may hold the potential to affect seasonal forecasts and climate 

risks, such as heat waves and simultaneous crop failures. 

 

We have applied our causal map analyses to specific ENSO phases to assess the role of El Niño and La Niña in modulating 595 

the interactions between mid-latitude circulation and tropical convection in boreal summer. These analyses suggest that in 

general the ENSO phase does not change the qualitative nature of the causal relationships between different MCA patterns: 

the signs and strengths of the causal links are largely unaffected (see Fig. 5a-d). Moreover, the same MCA patterns occur both 

in La Niña and El Niño summers, and their frequency is hardly affected (Figs. S7S13-S148). Nevertheless, during La Niña 

summers, the effect of the SAM-CGT mode is reinforced over Europe, North Africa and the Indian subcontinent and reaches 600 

northward towards Canada, while during El Niño summers the effect of the SAM is mainly confined to the tropical belt. For 

the WNPSM-NPH pattern, a clear asymmetry between El Niño and La Niña summers is shown, with a stronger signal during 

El Niño years (Fig. 5e,f) that is absent during La Niña years dominates. Although, this effect is not very large, it is still 

important. During La Niña summers, SAM exerts a stronger causal effect on the Tibetan High, along with a reinforced 

monsoon-desert mechanism and a stronger effect on European circulation. This could be due to the fact thatbecause under La 605 

Niña conditions, the SAM circulation is supported by a favourable Walker circulation (Ju and Slingo, 1995; Terray et al., 

2003). The same applies to the southward link: although ENSO does not alter the normalized standardized causal effect from 

the CGT to SAM, a stronger CGT pattern in the mid-latitudes would have a stronger absolute effect on SAM activity at the 

weekly time-scaletimescale. At interannual time-scaletimescales, Ding et al. (2011) show that the SAM-CGT pair is strongest 

during the developing phase of ENSO. Therefore, our results further support the hypothesis that ENSO acts on the CGT pattern 610 

via its influence on SAM activity, in agreement with Ding et al. (2011). This finding is also in agreement with previous work 

showing that, at decadal time-scaletimescales, the CGT and Silk Road (SRP) patterns intensify under PDO negative (i.e. La 

Niña-like) forcing (Stephan et al., 2019). During El Niño summers, the SAM shows a more prominent effect on the tropical 

Pacific. Nevertheless, since we condition on the effect of the CGT, we cannot exclude that this strong signal over the Niño-

3.4 region may be due to an element outside our CEN. In the North Pacific, causal maps for different ENSO phases show  615 

stronger activity of both WNPSM and NPH links during El Niño summers, consistent with previous literature (Chou et al., 

2003; Liu et al., 2016). During El Niño events, tropical convection shifts together with SST anomalies towards the central-

eastern Pacific, which may favour WNPSM convective activity. In contrast, during La Niña summers convection is shifted 

towards the Maritime Continent and the western tropical Indian Ocean, reducing convective activity over the central Pacific 

and WNPSM region. A weaker WNPSM system may in turn be more prone to the influence of mid-latitude variability on the 620 

NPH.  

 

Quantifying the teleconnections between tropics and mid-latitudes is important in order to better understand and constrain 

future changes in boreal summer circulation. Future projections describe an increase in monsoon precipitation associated with 

increasing global mean temperature and thermodynamic arguments (Menon et al., 2013; Turner and Annamalai, 2012). 625 
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Quantifying teleconnections between the tropics and mid-latitudes is important in order to better understand and constrain 

future changes in boreal summer circulation, as However, uncertainty may arise due to changing connections to remote regions.  

While simulations show great uncertainty in the ENSO response to global warming , suggesting an enhanced warming trend 

in eastern Pacific SST and stronger extreme ENSO events (Cai et al., 2015; Chen et al., 2017a, 2015, 2017b), whereas 

observations show a La Niña-like warming trend in central-western Pacific SST (Kohyama et al., 2017; Mujumdar et al., 630 

2012). Recent work has shown that this apparent paradox between observations and models might be due to systematic biases 

in the models in their representation of tropical Pacific SSTs .  Based on our results, if La Niña conditions would become more 

frequent and SAM activity increases due to global warming, this should favour the influence of the SAM on the CGT pattern 

and thus on Z200 and T2m patterns across all northern mid-latitudes (Fig. 5f). Finally, aA better understating of these 

teleconnections in observations can help to paves the way for improved S2S forecasts. Verifying the existence and strength of 635 

causal teleconnections in forecast models could help diagnose the origin of model biases. E.g. one could disentangle whether 

lower forecast skill (such as in the mid-latitude regions in summer) is related to local processes or to a misrepresentation of 

remote drivers. Beverley et al. (2019) showed that the CGT representation in seasonal forecasts is too weak. The CGT is 

important for predictability of summer extremes and its relationship with the SAM may provide some information to improve 

predictability. Therefore, these methods could help answering the question “where do model biases come from?” and help 640 

developing a physics-based bias correction.  At the same time, CEN provide an encoded predictive model, which can be used 

for actual forecasting (Di Capua et al., 2019; Kretschmer et al., 2017; Lehmann et al., 2020).,  in particular for the mid-latitude 

regions, which currently suffer from low seasonal forecasts skill in summer. OOur analysis shows that at 4-weekly time-

scaletimescale, the effect of SAM on the CGT pattern has a path coefficient β ~ 0.4, thus indicating potential for predictability. 

Further work should analyse how the causal links between these teleconnection patterns are reproduced in corresponding state-645 

of-the-art S2S forecast and climate models, respectively. 

 

Finally, it should not be forgotten that in the context of the present work, the term causal interpretation rests upon several 

assumptions, such as the causal Markov condition, faithfulness, causal sufficiency, stationarity of the causal links and the 

assumptions made on theabout the  dependence-type (Runge, 2018). These assumptions can be violated in a real system and 650 

it is important to be aware of the associated typical challenges for causal discovery in Earth system sciences (Runge et al., 

2019a). Causal sufficiency requires that all the important relevant actors in a specific system are accounted for. Here, given 

the limited set of actors analysed, itwe cannot be excluded rule out that other not-inexcluded actors may act as important 

(common) drivers. Therefore, the obtained links can be considered causal only with respect to the specific set of actors used 

here. However, the absence of a link can still be interpreted as a likely indication that no direct physical connection among the 655 

respective variables exists (Runge, 2018). Moreover, we assume linear dependencies and stationarity for the detection of the 

causal links. While linearity has been shown to be a useful assumption in previous work (Di Capua et al., 2020), monsoon 

dynamics behaves partly nonlinearly and therefore, our causal networks by construction only capture some part of the 

underlying mechanisms by construction. Also, the SAM teleconnections might well behave in an nonstationary manner on 
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decadal time-scaletimescales (Di Capua et al., 2019; Robock et al., 2003). We therefore cannot rule outexclude the possibility 660 

that decadal and interdecadal (multi-)decadal oscillations such as the Pacific Decadal Oscillation may influence our results. 

However, the amount of reliable data is limited and this prohibits the application of nonlinear measures or to the study of 

effects due to nonstationarity.  

 

 665 

5 Conclusions  

We have analysed the interdependencies and spatial effects of the two main MCA modes of co-variability between tropical 

convection and Northern Hemisphere mid-latitude circulation in boreal summer. The first MCA pair connects the circumglobal 

teleconnection (CGT) pattern in the mid-latitudes with the South Asian monsoon (SAM) convection, while the second MCA 

pair connects the western North Pacific summer monsoon (WNPSM) convection with a second circumglobal pattern related 670 

to the North Pacific High (NPH). These patterns appear qualitatively independent of the analysed time-scaletimescales and 

emerge in weekly, 4-weekly and interannual analyses. The strength of the causal links is time-scaletimescale dependent. In 

particular, the influence of SAM on CGT is strongest at the 4-weekly time-scaletimescale, while the reversed link is stronger 

at weekly time-scaletimescale. The patterns and sign of the standardized causal effect links are also not strongly affected by 

ENSO. Still, dDuring La Niña years the effect of the SAM on the mid-latitudes intensifies,  while we find statistically 675 

significant links during El Niño years for the WNPSM effect on the mid-latitudes only for El Niño years dominates. Moreover, 

the boreal summer intraseasonal oscillation exerts strong control on the SAM convection at various lags.  

Furthermore, we have introduced causal maps, a new application of the concept of causal effect networks and have highlighted 

how this method can overcome limitations of correlation maps by removing spurious links. These causal maps further confirm 

our findings by showing a general positive two-way causal relationship between the dominant modes. Moreover, they highlight 680 

specific regions in the mid-latitudes that are particularly affected by the tropical modes (e.g. Eurasia, North America). These 

findings provide an improved understanding of the interactions between tropical convective activity and circumglobal wave 

trains that characterize mid-latitude circulation in boreal summer. This may help paves the way for improving sub-seasonal 

forecasts as well as constraining future projections of boreal summer circulation. Further work shall assess whether these 

causal relationships are captured by general circulation models and whether this knowledge can be used to improve seasonal 685 

forecasts over the mid-latitudes. 
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ABBREVIATION  FULL NAME  DIMENSIONS  

BSISO Boreal summer intraseasonal oscillation 1D time series  

SAM South Asian monsoon - MCA mode 1 OLR 2D spatial pattern + 1D time series   

CGT Circumglobal teleconnection pattern – MCA mode 1 Z200 2D spatial pattern +  1D time series  

WNPSM Western North Pacific summer monsoon – MCA mode 2 

OLR 

2D spatial pattern + 1D time series  

NPH North Pacific High – MCA mode 2 Z200 2D spatial pattern +  1D time series  

Z200 Geopotential height at 200 hPa 2D field  + time 

OLR Outgoing longwave radiation 2D field  + time 

T2M 2m temperature  2D field  + time 

 

Table 1. Abbreviations.  
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 885 
Figure 1:  Schematic explanation of causal maps. Panel (a) shows the correlation maps for A with C(lat, lonlat,lon) (left panel) and B with 
C(lat, lonlat,lon) (right panel). Panel (b) shows an example of a CEN constructed with A, B and C(lat, lonlat,lon) for a specific geographical 
position (identified with a diamond in the 2D maps). Panel (c) shows the corresponding causal maps showing the path coefficients β from A 
to C, conditioned on B and all autocorrelations (bottom-left panel) and from B to C, conditioned on A and all autocorrelations (bottom-right 
panel). The “|” denotes the conditioned-out actor: A for the right panel and B for the left panel. See text for further description.  890 



30 
 

 

 
Figure 2:  MCA of mid-latitude Z200 and tropical OLR at intraseasonal time-scaletimescaletimescales. Panels (a) and (b) show the 
first MCA mode for mid-latitude Z200 (25-75° N) and tropical OLR (15°S-30°N), respectively, at the weekly time-scaletimescaletimescale. 
The first MCA highlights the circumglobal teleconnection (CGT) pattern in the mid-latitudes and the South Asian monsoon (SAM) in the 895 
tropical belt. Panels (c) and (d): Same as for panel (a) and (b) but for the second MCA mode. This mode depicts the North Pacific High 
(NPH) in the mid-latitudes and the western North Pacific summer monsoon (WNPSM) in the tropical belt. The squared covariance fraction 
(SCF) of each MCA mode is given on top of the panels. Panel (e) shows the time series of MCA scores for the two MCA modes at weekly 
time-scaletimescaletimescale. Each MCA pattern has its own time series, i.e. one for tropical OLR and one for mid-latitude Z200 (note that 
different y-axes are used). 900 
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Figure 3:  Influence of MCA mode 1 on Northern Hemisphere circulation. Panel (a): correlation Correlation map between the weekly 
SAM time series and the Z200 field. Panel (b): Same as panel (a) but for the correlation between weekly CGT time series and the Z200 field. 
Panel (c): path Path coefficient β for link SAM τ = -1 → Z200τ = 0 for a 3-actors CEN built with SAM, CGT and Z200. Here, the “|” denotes 
the conditioned-out actor: CGT. Panel (d): Same as panel (c) but for the link CGT τ = -1 → Z200τ = 0. The “|” denotes the conditioned-out 905 
actor: SAM. Panels (e) and (g): Same as panel (c) but for the influence of SAM on OLR and T2m fields respectively. Panels (f) and (h): 
Same as panel (d) but for the influence of CGT on OLR and T2m fields respectively. Only path coefficients β with p < 0.05  (accounting for 
the effect of serial correlations) and the robustness mask (see Fig. S8 in the Supplementary Material) are shown. by black contours, while 
grid points which are found significant only with non-corrected p-values are shaded. The dashed black line located at 30°N shows the border 
between the tropical and the mid-latitude belt which separates OLR and Z200 analysis. 910 
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Figure 4:  Influence of MCA mode 2 on Northern Hemisphere circulation. Panel (a): correlation Correlation between the weekly 
WNPSM time series and the Z200 field. Panel (b): Same as panel (a) but for the correlation between weekly NPH time series and the Z200 
field. Panel (c): path Path coefficient β for the link WNPSM τ = -1 → Z200τ = 0 in a 3-actors CEN built with WNPSM, NPH and Z200. Here, 915 
the “|” denotes the conditioned-out actor: NPH. Panel (d): Same as panel (c) but for the link NPH τ = -1 → Z200τ = 0. Here, the “|” denotes the 
conditioned-out actor: WNPSM. Panels (e) and (g): Same as panel (c) but for the influence of WNPSM on OLR and T2m fields respectively. 
Panels (f) and (h): Same as panel (d) but for the influence of NPH on OLR and T2m fields respectively. Only path coefficients β with p < 
0.05 (accounting for the effect of serial correlations) and the robustness mask (see Fig. S9 in the Supplementary Material) are shown by 
black contours, while grid points which are found significant only with non-corrected p-values are shaded.  The dashed black line located at 920 
30°N shows the border between the tropical and the mid-latitude belt which separates OLR and Z200 analysis. 
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Figure 5:  Causal maps and ENSO influence. Panel (a) shows the β for link SAM τ = -1 → Z200τ = 0 a 3-actors CEN built with SAM, CGT 925 
and Z200 during El Niño years. Here, the “|” denotes the conditioned-out actor: CGT. Panel (b) and (d): Same as panels (a) and (c) but for 
the link CGT τ = -1 → Z200τ = 0. The “|” denotes the conditioned-out actor: SAM. Panel (c): Same as panel (a) but for La Niña years. Panel 
(d): Same as panel (c) but for the link CGT τ = -1 → Z200τ = 0. Panel (e) and (g): Same as panels (a) and (c) but for the link WNPSM τ = -1 → 
Z200τ = 0 from a 3-actors CEN built with WNPSM, NPH and Z200. Panel (f) and (h): Same as panels (e) and (g) but for the link NPH τ = -1 
→ Z200τ = 0. Only path coefficients β with p < 0.05 (accounting for the effect of serial correlations) and the robustness mask (see Fig. S12 930 
in the Supplementary Material) are shown by black contours, while grid points which are found significant only with non-corrected p-values 
are shaded.  The dashed black line located at 30°N shows the border between the tropical and the mid-latitude belt which separates OLR and 
Z200 analysis. 
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 935 

 
Figure 6: Two-way causal link between tropical OLR and mid-latitude Z200. Shown is the path coefficient for pairs of MCA time series. 
The CGT is studied along with the SAM, while the NPH is analysed together with the WNPSM. Panel (a) shows the path coefficient β for 
the link SAM τ = -1 → CGT τ = 0 over the 1979-2018 period (first row), and path coefficient β for the link CGT τ = -1 → SAM τ = 0 (second row). 
4-weekly β are shown in the left column, weekly β values are shown in the right column. Panel (b): Same as for panel (a) but for WNPSM τ 940 
= -1 → NPH τ = 0 and NPH τ = -1 → WNPSM τ = 0 links respectively. β values with p < 0.1 (0.05) are identified with one (two) asterisks.  
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