
SHORT COMMENT (combined for both Reviewer #1 and #2) 

 

We thank the two anonymous reviewers for their valuable comments and constructive reviews. Both 
reports have been very helpful for us to identify those sections in the manuscript that require further 
improvements. Since the two reviews share several inputs and raise similar points, we provide here 
an initial short response addressing comments from both reviews. This is not intended to be our final 
response, but a pitch of how we intend to address the reviews, and in the spirit of open discussion 
provided by Weather and Climate Dynamics, we hope to inspire a fruitful conversation with the 
reviewers to further improve our work. In our final response, we will describe in full detail how we 
plan to take all comments into account and implement them in the revised version of the paper. In 
particular: 

- Both reviewers indicate that the causal maps appear “noisy” and that “a discussion on the 
sensitivity of results to data-length would also be useful”. We have already done a range of 
sensitivity tests (see below) showing that the identified large-scale patterns are indeed 
robust. This step also makes the causal maps less noisy such that the robust patterns emerge 
better. This thus improves the visual appearance and interpretability of figures 3, 4 and 5. 
 

- Further, we will improve on the design of the causal maps to make it easier for the reader to 
identify those regions in the maps that are described in the text 
 

- We will improve the literature review and provide more context along with additional 
references to similar techniques previously applied to similar research questions 
 

- We will improve the explanation of both the causal discovery algorithm and causal maps in 
the Methods section to help the readers better understanding each step  
 

- We will highlight better why using causal discovery algorithms gives an advantage with 
respect to simple correlation techniques and why our work adds information on the tropical 
– mid-latitude interaction topic 
 

- In general, we will work on the main text to improve the readability throughout the entire 
manuscript and make it is easier for the reader to follow the explanation of both the 
Methods and the Results sections 

We have already implemented part of the suggested additional analyses, to verify the robustness and 
sensitivity of the results, and we provide some of the results below.  

 

ROBUSTNESS OF CAUSAL MAPS  

Both reviewers have pointed out that the causal maps appear noisy and that a test of robustness on 
how sensitive these results may be to different temporal periods is needed. This is an important 
point, and hence we addressed it immediately. 

To address both issues, we have pursued the following strategy: we calculate causal maps several  
times (10x) by removing each time the 10% of the total time series length. Here, we have 40 years of 
data, we thus remove in each step 4 consecutive years. As an example, in the first iteration we 
remove years 1979-1982, in the second iteration years 1983-1986 and so on. As a result, we obtain 



10 causal maps. Then, collapse the information to one single map (Fig. 1 in this document) showing 
(for each grid-point) the fraction of times in which a significant causal link has been found based on 
the reduced data sets. Figure 1 reported below shows the results of this process for MCA 1. Regions 
that show a dark purple colour correspond to those identified in all ten causal maps. We can then set 
a threshold, for example 0.7 (meaning that a certain region is identified in 70% of the times) and use 
this as a mask for our causal maps (See Fig. 2 in this document). This results in a less noisy plot, 
where the plotted regions also represent the robustness of the analysis. 

 

Fig. 1: Robustness test for causal maps as shown in Fig. 3 of the main manuscript. Dark purple shows 
regions that show a significant causal link at alpha = 0.05 (after applying the false discovery rate 
correction) in all the ten causal maps obtained by iteratively removing a set of 4 consecutive years 
each time, with a value of 1 meaning that a certain regions is always identified. 



 

Fig. 2: As for Fig. 3 in the main text but masking out all regions that appear less then 70% of the times 
(see Fig. 1 in this document). 

 

COMPARISON WITH EOF PATTERNS 

We address the comment n3 by reviewer #1 on how our MCA patterns compare to EOF patterns. In 
Fig. 3, we show the first 5 EOF patterns for both Z200 and OLR. We calculate the spatial correlation 
between EOF and MCA patterns. For Z200, MCA 1 shows the strongest correlation with EOF 2 (r ~ 
0.8), unsurprisingly since this pattern represents the circumglobal teleconnection pattern, which has 
been previously shown to be linked to the second EOF of Z200 (Ding and Wang 2005, Di Capua et al. 
2020). MCA 2 has a stronger spatial correlation (r ~ 0.6) with EOF 1. For OLR, MCA 1 shows the 
strongest correlation with EOF 2 (r ~ 0.5), while MCA 2 has the strongest correlation with EOF 5 (r 
~0.4). 

Thus, with the only exception of OLR MCA 2, all MCA patterns are closely related with the first two 
EOFs for both Z200 and OLR. This comparison is useful to show how important each pattern is when 
a dimension reduction analysis is applied on Z200 and OLR separately. Note that the amount of 
variance explained is relatively low, but this depends on the fact that the interannual variability has 
been removed, thus leaving only the disturbances from the year-specific mean state. However, since 
in our present work, we are interested in identifying those patterns that evolve simultaneously (due 
to some dynamical coupling between the two fields), we applied MCA to identify those patterns that 
can explain shared covariance, which is an objective that cannot be addressed by using EOF analysis 
alone. 



 

Fig. 3: EOF analysis. The right column shows the first five EOF patterns for Z200, the left column 
shows the first five EOF patterns for OLR. In the title of each panel, the spatial correlation values with 
the MCA patterns reported in Fig. 2 of the main manuscript are shown. Red font highlights those 
EOFs that exhibit the strongest overall correlation with the MCA patterns discussed in our 
manuscript. 

 

MCA WITH VERTICAL VELOCITY AND VELOCITY POTENTIAL 

Following the recommendations of reviewer #1, we provide a sensitivity test for the identified MCA 
patterns by substituting OLR with velocity potential and vertical velocity. Note that, we have 
originally applied MCA on mid-latitude Z200 and tropical OLR because we are interested in studying 
the relationship between mid-latitude circulation patterns and tropical convection. Thus, we are 
restricted to variables representing tropical convection when attempting to provide a comparable 
analysis.  

We originally selected OLR both because it captures strong convective clouds (but in a more 
smoothed way than expected for direct rainfall estimates), and because OLR is also used, for 
example, to define the BSISO index that describes the essential evolution of convective activity over 
the Indian Ocean region. Figure 4 shows the first two MCA patterns for Z200 paired with vertical 
velocity, while Fig. 5 shows the same for Z200 paired with velocity potential.  

As we are interested in a proxy for convective activity, we perform our MCA analysis using vertical 
velocity, another proxy of convection (as strong upward vertical motions occur along with strong 
convective activity). The MCA patterns obtained when pairing vertical velocity with Z200 show highly 
consistent results with respect to those found for Z200 and OLR (Fig. 2 in the main text), thus 
demonstrating the robustness of the original MCA results obtained with OLR. (Note that in Fig. 4 
upward motion has a negative sign since vertical velocity is expressed in Pa/s). 

When we use velocity potential (Fig. 5 in this document), the original MCA 1 pattern obtained using 
OLR is still well recovered (with a wave-5 pattern in Z200 and low velocity potential over the Indian 
summer monsoon region). The MCA 2 pattern however shows a less pronounced agreement, only 



partly capturing the OLR pattern in the western Indian Ocean but failing to represent the WNPSM 
convective activity. A reason for this discrepancy is that velocity potential provides an even smoother 
proxy for divergence, which is very strong in the Indian monsoon region, and apparently less 
pronounced in relation to the WNPSM.  

 

Fig. 4 MCA results for Z200 and velocity potential. 

 

 

Fig. 5 MCA results for Z200 and vertical velocity. 

 


