
I am grateful to both reviewers for carefully reading the manuscript and making suggestions
for improvements. In this document I explain my response to all individual comments as well
as the changes I made to the manusscript. The reviewers’ comments are repeated in black
font, followed by my replies and the explanations how I revised the manuscript in blue font.
In addition I provide all changes to the manuscript in the form of output from the latexdiff
command.

Reviewer 1 (Olivia Martius)

This paper presents a systematic analysis of the sensitivity of Rossby wave propagation to
the strength and width of the extratropical jet stream. A simple but convincing set of
idealized simulations are run to explore the role of turning latitudes and PV gradients for
wave propagability. It is a joy to read this well organized and clear paper. Two theoretical
concepts are introduced and compared against the model results. The limitations of the
model simulations are discussed. I recommend acceptance after minor revisions.

Minor points:

L2 which: change to that done

L28 suggest to replace what aspect with which properties done

L35 This is an aspect of the QR theory that is also unclear to me. In my understanding
an interference of the wave with itself is not needed for QR. Rather the interference with
the forced signal is crucial. However, if the wave is circumpolar the interference should be
constructive. See also: https://link.springer.com/article/10.1007/s40641- 019-00150-x

Both reviewers ask a very similar question, therefore I chose to give a rather extended reply.

The phenomenon of resonance is well known in classical mechanics. Quite generally it applies
to a linear system, where the full solution is a superposition of a forced (inhomogeneous)
solution with a free (unforced, homogeneous) solution. The latter can be adjusted in order
to satisfy initial and boundary conditions, if present. In this theory, the phenomenon of
resonance is a property of the stationary forced solution, namely that it becomes
infinite (in case of no damping) if the resonance criterion is met.

This general concept of resonance has a very clean analog in the theory of Rossby waves forced
by stationary orography in a beta-channel (Held, 1983) or on the sphere (Haurwitz, 1940).
The resonance criterion for the case of these Rossby waves says that the wavenumber
of the forcing must be equal to the stationary wavenumber, and the latter is defined as the
wavenumber that a free solution needs to have in order to be stationary.

In reality, this solution with infinite amplitude is never realized for two reasons. Either the
system contains some damping, which regularizes the problem such that instead of an infinity
the system only shows a large peak if the resonance criterion is met. Alternatively, assuming
no damping and starting from a finite initial condition, the amplitude of the response grows
linearly with time, which means that there is no stationary solution at all (which, in turn,
makes the search for a stationary solution ill-posed). Obviously, in any real system such
a gradual (linear) growth leads to violation of some of the underlying assumptions at some
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point, whereafter the whole model (and in particular the assumption of linearity) turns moot.

I carefully read the article by Petoukhov et al. (2013), but I admit that I had a hard time
to understand what exactly they mean by “quasi-resonance”. Do they mean that in real
geophysical systems there is always some amount of damping such that one only realizes the
damped version of resonance? Yet, I am sure that they are refering to the framework of
linear theory, since the basis of their analysis is the linearized PV equation (their equation
(1)). I am also sure that they are talking about the classical mechanism of resonance as
sketched above, since their key result (given in their equation (3)) relates the amplitude
of the stationary solution to an expression on the right hand side which is exactly what
Charney and Eliassen (1949, their equation (38)) or Held (1983, his equation (6.7)) have
in their discussion of resonant Rossby waves in a zonal channel: The numerator essentially
contains the amplitude of the forcing (Ãort

m in the terminology of Petoukhov et al. 2013) and
the denominator contains the sum of two terms, namely the difference between two total
wavenumbers squared plus a second term representing the damping processes. The key to
resonance is that the denominator may become zero in the undamped case, if and only if
these two wavenumbers are identical and, hence, their difference becomes zero.

In no case I think that quasi-resonance can be considered to be the superposition
of a free wave with a forced wave, because (as stated above) resonance is a property of
the forced solution alone. In a linear system one can always superpose a solution from the
homogenous equation, but this cannot possibly lead to infinite or linearly growing amplitudes
in the sense of resonance. The key difference between linear superposition of two solutions
and resonance is that in the former case the amplitudes can only add (in case of constructive
interference) and therefore the resulting total amplitude remains finite, while in the latter
case the amplitude may become infinite (in case of resonance). In this sense resonance is
“infintely more powerful” than the superposition of (or the interference between) two waves,
and for this reason I believe that these two terms should be strictly distinguished from each
other. It also transpires that the sentence “a free wave resonates with a starionary
(or forced) wave” does not make sense, because (1) resonance (as explained above) is a
property of the forced solution alone and (2) an “interaction” between two waves can never
lead to infinite amplitudes.

The general concept of resonance indicates that the linear increase of amplitude (in the case
of resonance) is due to a constant input of “energy” into the system, which is allowed to
“accumulate” infintely (in the case of no damping). Applying this concept to Rossby waves,
the continued accumulation of wave amplitude occurs through constructive interference of a
forced wave that travels around the globe in the zonal direction and then superposes with
itself, and assuming that this process repeats itself again and again. This mechanism allows
the wave amplitude to grow continuously and reach infinity for t→∞, which is the hall-mark
of resonance in an initial value problem. Obviously, cicumglobal waves only lead to resonance
as described above if the resonance criterion is met; if the resonance criterion is not met,
the interference accumulates amplitude only to a certain extent and thereafter subsequent
contributions add up to zero in a bunch-wise fashion. Another indication for the fact that
resonance requires circumglobal waves can be found in the analysis in Charney and Eliassen
(1949), where they derive the Green’s function for the forced problem, i.e., the solution for a
very sharp δ-like mountain (their equation (38) and subsequent unlabeled equations). Their
solution clearly shows that an infinite response is only obtained if and to the extent that
the damping is so small that the wave can travel around the globe and “reconnects” with
itself at the location of the mountain (see also their Fig. 2 illustrating this phenomenon).
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In summary: yes, I believe that resonance in the current setup requires cirumglobal
Rossby waves as a prerequisite.

L50 This statement is unclear for me.

The text was probably too terse and misleading. The other reviewer pointed to the same
issue. I simply removed the sentence, as it is not really necessary at this point.

L54ff This is slightly confusing since one scale is in the meridional direction and the other
scale in the longitudinal direction.

Well, when defining spatial scales, these do need to refer to the same direction, right? Here,
the scale ∆bg always refers to the meridional direction, while the scale of the wave ∆w is best
obtained by using the wavelength along the wavevector k = (k, l), and the latter may be in
any direction.

L91 why is vf set to zero?

I chose to use a purely zonal flow for the pseudo-orographic forcing term. After all, the exact
form of this forcing term is irrelevant for the purpose of this paper, so I preferred to make
it as simple as possible. The location of the forcing is later depicted schematically in Fig. 3
(see the figure caption).

L90ff A schematic depiction of the forcing could help the reader.

The location of the forcing is schematically depicted in Fig. 3 through a yellow circle, thus
clarifying the location of the forcing.

L137 delete however done

L158 void: change to devoid done

L168 could you add the equation of motion for the convenience of the reader?

That’s a good point: the equation of motion was introduced earlier in section 2, and in the
revised version I refer to this equation at this point. The new text reads: “First, we linearize
the model equation (4) about the background state q0(φ) ....”

L203 weak: change to small done

L217 ON the other hand: change to in contrast done

L220 which: change to: that done

L227 turning latitudes done

L292 On the other hand: change to in contrast done

L310 How independent are the jet width and the jet strength? Can these two parameters be
varied completely independently?

Yes, it is possible to vary independently the jet strength and the jet width. Another option
would be to prescribe latitudinal profiles of PV and (through PV inversion) deduce the
associated profile of the zonal wind. However, I quite deliberately chose to specify the jet in
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terms of the wind, because it facilitates the systematic sensitivity study regarding jet strength
and jet width. In this respect I simply follow the lead of Manola et al. (2013).

L345 behavior done

L405 This can also interpreted from a PV anomaly point of view. The far field effect of PV
anomalies would allow waves to cross areas of weaker gradients and “reinitate” a wave on a
downstream waveguide.

This is a very interesting remark, thank you for pointing this out to me! I extended the text
to make clear that the non-locality mentioned here is similarly borne out in the framework
of PV thinking. It means that the WKB solution can only be a good approximation if and
to the extent that the scale of the response from PV inversion is much smaller than the scale
on which the background flow varies. This remark is particularly pertinent in the current
context because in (1) PV thinking is not limited to linear perturbations, and (2) PV thinking
is exact in the framework of the barotropic model.

The revised text reads: “Incidentally we note that a similar kind of non-localness is obtained
in the framework of PV thinking due to the elliptic nature of the equation for PV inversion
(Hoskins et al., 1985).”

L424 maybe add the equation for the group velocity

I prefer not to write down here the formula for the group velocity, because it is not needed
in the remaining part of the paper. I simply assume that the reader has a broad idea about
the concept of a group velocity, and that is all that’s needed at this point.

Reviewer 2 (Tim Woollings)

This is a very nice paper which provides useful analysis and insight into the concept of
waveguiding. I suggest acceptance subject to minor revisions.

One general query I had is whether any comment can be made on how much the results
might apply to non-stationary situations. The analysis focuses on stationary waves but it
seems the mechanisms should be similar? The O’Reilly et al case is an interesting one in this
regard, with an initial transient development with non-zero phase speed acting to set up the
’circumglobal’ stationary pattern.

Quite deliberately I focus in this paper on the stationary situation, because only stationary
wave fields are likely to result in prolonged extreme weather situations. In this respect I
follow the lead of numerous previous papers which used ray tracing concepts in order to
understand the stationary eddy field. Extension to non-stationary situations would open
a considerable amount of additional degrees of freedom, which in the present context is
considered as unnecessary.

I wonder whether the discussion on ray tracing should be broadened a little. Of course there
are many issues with a literal interpretation of this, as the author shows very convincingly, but
the results here are quite specific to a zonal waveguiding situation. More broadly, ray tracing
theory has some predictive power to suggest wave paths resulting from vorticity sources, for
example, which just a quantification of the PV gradient doesn’t. (Though this application
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also has limitations, and should in general not be relied upon in isolation.) Essentially, the
theory also suggests a refraction towards higher values of K2

s , not just the simplistic turning
latitude approach taken here.

Admittedly, the interpretation of ray tracing in my text is quite literal and I agree that a
somewhat broader interpretation allows some non-trivial insight. In fact, I do mention this in
my concluding section, where I reflect on the predictive power of the refractive index in, for
instance, the work of Hoskins and Ambrizzi (1993), and where I say that with a somewhat
broader interpretation some predictive power remains. However, it is exactly the literal
interpretation that was repeatedly used in recent publications in connection with arguments
of waveguidability, and this motivated me to investigate in more detail such more literal
interpretation in the present paper.

My only real concern with the paper (and a minor one) is the use of just one measure of waves,
named epsilon here (eq 33). In some applications, the approach is to define a conservative
wave activity, by dividing the enstrophy by the mean PV gradient. This is probably not
important, but I just wonder if this would alter some of the interpretation of Ks - ie could
Ks have a better relationship to the waveguidability W if a different measure of wave activity
was used?

The reviewer raises the important issue of the sensitivity of my results with respect to the
waviness metric used. In fact, originally I was trying to use linear local wave activity

A =
(q∗)2

2 dq0/dy
(1)

as a measure for waviness. However, this quantity becomes singular at those latititudes where
the meridional gradient of basic state PV, dq0/dy, is zero, and this does happen in all my
background states that have a jet stronger than UJ > 10 m/s. For this reason, such a local
wave activity metric turned out to be unsuitable for my purposes.

Nevertheless it is important to get a feeling for the sensitivity of the results with respect to
the particular waviness metric chosen. I, therefore, repeated the calculations, but using eddy
kinetic energy

K(λ, φ) =
1

2

{
(ū∗)2 + (v̄∗)2

}
, (2)

as an alternative metric instead of eddy enstrophy. The corresponding dependence of wave-
guidability W on jet amplitude and jet width is very similar to the behavior shown in Fig. 6
of the paper, suggesting that my results do not sensitively depend on the metric chosen
to quantify waviness. For illustration, I show the results for both metrics in Fig. 1 of this
reply document: the difference between the red and the green markers is, indeed, small and
irrelevant regarding the interpretations that I refer to in the paper.

In revising the manuscript, I added a paragraph in section 4.2 in which I now mention the
runs with this alternative metric K and say that the results are essentially unchanged.

Minor queries;

line 35: Does quasi-resonance concern the resonance of the wave with itself, as suggested
here, or the resonance of forced and free waves?

For the interpretation of quasi-resonance in terms of superposition of waves: see my extensive
remarks in reply to reviewer 1.
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Figure 1: Dependence of waveguidability W on jet strength UJ (for fixed jet width σJ = 5 deg). The red
markers represent eddy enstrophy as waviness metric, the green markers represent eddy kinetic
energy as waviness metric.

line 50: not sure this is right. In ray tracing you have to specify the zonal wavenumber, which
is a property of the wave.

The reviewer is right (and the other reviewer had a similar issue here). I simply omitted this
sentence, as it is not really necessary here.

line 55: clarify the length scales in this paragraph

Indeed, this section was not very clear. I enhanced the text in order to clarify. The revised text
reads: “For instance, in the analysis of Kornhuber et al. (2016), the two turning latitudes
are separated by about 10 deg ≈ 1000 km (see their Fig. 1); assuming that this distance
corresponds to one half wavelength in the meridional direction and that the associated scale
is given by the wavelength divided by 2π, one obtains ∆bg ≈ 320 km; but at the same time the
zonal wavelength of the waves in question (wavenumber 7 at midlatitudes) is on the order of
4000 km, which means that ∆w ≈ 640 km. In this situation, the relation (1) is badly violated
and one would not expect WKB theory to be applicable at all.”

I didn’t find fig 1 very convincing. It seems there is a lot of transient activity which has to be
averaged out, though I suppose this is not unlike reality. Are the magnitudes in fig 1 weaker
than those in fig 3b?

First of all, I added a color bar to Fig. 1, which was missing in the original version. This color
bar has the same scaling as the color bar in Fig. 3, which allows one to estimate the relative
strength of the fields plotted. The reason why I want to show Fig. 1 is that it illustrates the
kind of transients that one obtains from barotropic instability in the case of a strong and
narrow jet. As can be seen in this Hovmoeller diagram, after some time the transients are
essentially sine-shaped modes with a rather large eastward phase velocity. These transient
modes make it necessary to consider a time average rather than the field itself. However,
barotropic instability only occurs for rather strong and narrow jets; in other words, for most of
my background states the flow is stable and the transients die out quickly leaving a stationary
flow field.
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lines 246-251: These sentences seem a bit out of place in a paragraph on solid body rotation.
The focus is exclusively on zonal PV gradients - can the concept be extended to relate to
meridional gradients and wave propagation.

This is a good point. I reworded parts of this paragraph to make clear that the addition of
a jet may lead to a second turning latitude. The middle part of the paragraph now reads:
“ ..... In addition, K̂2

s goes to zero at both poles such that at some point the expression
on the right hand side of (29) turns negative leading to a turning latitude close to the pole.
The crucial question in our context is whether the addition of a jet leads to a second (more
equatorward) turning latitude which prevents the general equatorward refraction and forces
the ray path back into the zonal direction. The latter scenario would be equivalent to a
perfect zonal waveguide.....”

l267-9: I’m not sure this means much - surely this is the only thing that can happen in that
model?

Possibly the word “model” was misleading in this context, I changed it to “framework”.
What I refer to here is the idealization of the reality by a step-wise PV distribution with a
PV front. The revised text reads: “ ...It transpires that in this framework a zonal waveguide
is present to the extent that the PV distribution has a zonally oriented sharp PV gradient
separating two regions with near-homogeneous PV on both sides of the sharp gradient. ...”

l306: I would have thought it depends strongly, not slightly, on the choice of down-stream
longitudes.

Well, yes, if you change the downstream longitude by a lot, the result changes a lot. The
text was reworded to avoid any misinterpretation. The revised text reads:“ ... it is not exact
because it depends on model details like, e.g., the exact value of the damping parameter
λr, the choice of the boundaries for the downstream region [λ1, λ2], and the definition of
“Northern midlatitudes” [φ1, φ2]. Nevertheless, this diagnostic is appropriate for our purpose,
because we will only study relative changes of W as we change the background flow.”

I found the argument around line 420 a bit hard to follow. Presumably a key step is that the
linearisation can be excluded as a reason, given fig 10?

This was probably a little too terse in the original version. The entire argument assumes
that linear theory is applicable to a reasonable approximation (as shown in Fig. 10), so this
is not the point here. Rather, the point is that in the undamped limit the only parameter left
in the equation, i.e., in the new equation (47), is Ks, suggesting that the solution can only
depend on Ks. As a consequence, I would expect definitely a better correlation with Ks in
this (hypothetical) case than with βM . Now, the numerical experiments suggest exactly the
opposite, i.e., better correlation with βM than with Ks. The conclusion is that we cannot
be close to this hypothetical undamped limit, or (in other words) the fact that I included
dissipation (in addition to forcing) in my experiments must be crucial for the results obtained.

The revised text reads: “It implies that the solution of this equation can only depend on
the combination of background fields contained in K̂2

s , and this should lead to a better
correlation of waveguidability with K̂2

s than with βM . However, this is in conflict with our
numerical results from section 4.2, which show a better correlation of waveguidability with
βM than with K̂s. The only possible conclusion is that our results about waveguidability and
their dependence on the background flow are essentially determined by the forced-dissipative
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nature of our model configuration.”

the discussion at the end of section 5 is interesting. So would the author expect Ks to be
more useful in the limit of no damping? Are the experiments sensitive to the damping?

Yes, I would expect that in the undamped limit the solution only depends on Ks, for exactly
the reason mentioned in section 5 (in connection with the [new] equation (47)). However, it
seems to me that this cannot be tested in any straightforward manner with the current model
configuration. The reason is that the ”result” of any of my model integrations is one value
for waveguidability each. However, this requires (1) that the damping must not be too strong
(because otherwise the wave signal is not able to travel far enough downstream to allow my
kind of analysis), and (2) that the damping must not be too weak (because otherwise one
would obtain circumglobal waves and, hence, interference phenomena which would prevent
any straighforward interpretation in terms of waveguidability). The bottom line is that in
order to diagnose waveguidability one has to more or less tune the value for λr to be right
inbetween the above two options of (1) too strong and (2) too weak; the value chosen in my
experiments corresponds to such a tuned value for λr. For this reason, the obvious sensitivity
experiment (namely to test the sensitivity of W with respect to λr) is not possible in any
straightforward manner.

typos - l45: straddled - search for this - l59: midlatitude - l74: The key ? - l245: poles -l266:
exponentially - l292: midlatitudes all corrected
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