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Abstract. Precipitation is a key climate variable that affects large parts of society, especially in 9 

situations with excess amounts. Climate change projections show an intensified hydrological cycle 10 

through changes in intensity, frequency, and duration of precipitation events. Still, due to the 11 

complexity of precipitation processes and their large variability in time and space, climate models 12 

struggle to represent precipitation accurately. This study investigates the simulated precipitation in 13 

Europe in available climate model ensembles that cover a range of model horizontal resolutions. The 14 

ensembles used are: Global climate models (GCMs) from CMIP5 and CMIP6 (~100-300 km horizontal 15 

grid spacing at mid-latitudes ), GCMs from the PRIMAVERA project at sparse (~80-160 km) and dense 16 

(~25-50 km) grid spacing and CORDEX regional climate models (RCMs) at sparse (~50 km) and dense 17 

(~12.5 km) grid spacing. The aim is to seasonally and regionally over Europe investigate the differences 18 

between models and model ensembles in the representation of the precipitation distribution in its 19 

entirety and through analysis of selected standard precipitation indices. In addition, the model ensemble 20 

performances are compared to gridded observations from E-OBS. 21 

The impact of model resolution on simulated precipitation is evident. Overall, in all seasons and regions 22 

the largest differences between resolutions are seen for moderate and high precipitation rates, where the 23 

largest precipitation rates are seen in the RCMs with highest resolution (i.e. CORDEX 12.5 km) and 24 

smallest in the CMIP GCMs. However, when compared to E-OBS the high-resolution models most 25 

often overestimate high-intensity precipitation amounts, especially the CORDEX 12.5 km resolution 26 

models. An additional comparison to a regional data set of high-quality lends, on the other hand, more 27 
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confidence to the high-resolution model results. The effect of resolution is larger for precipitation 28 

indices describing heavy precipitation (e.g. maximum one-day precipitation) than for indices describing 29 

the large-scale atmospheric circulation (e.g. the number of precipitation days), especially in regions 30 

with complex topography and in summer when precipitation is predominantly caused by convective 31 

processes. Importantly, the systematic differences between low resolution and high resolution remain 32 

also when all data are regridded to common grids of 0.5°×0.5° and 2°×2° prior to analysis. This shows 33 

that the differences are effects of model physics and better resolved surface properties and not due to the 34 

different grids on which the analysis is performed. PRIMAVERA high resolution and CORDEX low 35 

resolution give similar results as they are of similar resolution.  36 

Within the PRIMAVERA and CORDEX ensembles there are clear differences between the low- and 37 

high-resolution simulations.  Once reaching ~50 km the difference between different models is often 38 

larger than between the low- and high-resolution versions of the same model. For indices describing 39 

precipitation days and heavy precipitation the difference between two models can be twice as large as 40 

the difference between two resolutions, in both the PRIMAVERA and CORDEX ensembles. Even 41 

though increasing resolution improves the simulated precipitation in comparison to observations, the 42 

inter-model variability is still large, particularly in summer when smaller scale processes and inter-43 

actions are more prevalent and model formulations (such as convective parameterizations) become 44 

more important. .  45 

1 Introduction 46 

Precipitation is a key climate variable affecting the environment and human society in different ways 47 

and on several temporal and spatial scales. In particular, heavy precipitation events may lead to large 48 

damages caused by floods or landslides, while the absence of precipitation may cause droughts and has 49 

impact on water- and hydropower supply. In recent decades there has therefore been extensive study, 50 

and considerable advancement in our understanding, of the response of extreme precipitation to climate 51 

change (O’Gorman, 2012; Kharin et al. 2013; Donat et al., 2016; Pfahl et al. 2017). For example, it is 52 

widely held through theoretical considerations and model experiments that extremes will respond 53 
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differently than changes in mean precipitation (e.g. Allen and Ingram 2002; Pall et al 2007; Ban et al., 54 

2015).  55 

 56 

Still, the simulation of precipitation in weather and climate models is challenging because of the wide 57 

range of processes involved that acts and interacts on widely different temporal and spatial scales.  An 58 

accurate representation of precipitation in models requires skill in simulating (1) the large-scale 59 

circulation, (2) interaction of the flow with the surface, and, (3) convection and cloud processes. With 60 

the typical horizontal grid resolution of O (100 km) of global climate models (GCMs) point (1) can to a 61 

large extent be properly represented but less so for (2) and (3) (e.g. van Haren et al., 2015; Champion et 62 

al., 2011; Zappa et al., 2013). In particular, atmospheric convective processes are not resolved and 63 

needs to be treated with convection parameterizations. As the range of scales resolved is broadened 64 

through refining the horizontal grid spacing the simulation of precipitation generally improves. This is 65 

achieved through more realistic representation of surface characteristics (such as topography, coastlines 66 

and inland lakes and water bodies) and through more accurately solving the motion equations resulting 67 

in more accurate horizontal moisture transport and moisture convergence (Giorgi and Marinucci 1996; 68 

Gao et al. 2006; Prein et al. 2013a). Indeed, GCMs with ~25-50 km grid spacing show promise to 69 

improve simulation of precipitation (van Haren et al., 2015; Delworth et al., 2012; Kinter et al., 2013; 70 

Haarsma et al., 2016; Roberts et al., 2018a; Baker et al., 2019).  71 

 72 

Dynamical down-scaling of GCMs with regional climate models (RCMs) allows for even finer grids 73 

which leads to more detailed information of and further improvements in regional and local climate 74 

features, for example spatial patterns and distributions of precipitation in areas of complex terrain 75 

(Rauscher et al., 2010; Di Luca et al., 2011; Prein et al., 2013b). This can also have important 76 

implications for climate change signals. Giorgi et al. (2016) found that an ensemble of RCMs at ~12 km 77 

grid spacing showed consistently an increase in summer precipitation over the Alps region which 78 

contrasted to the forcing GCMs that instead showed a decrease. The different responses were attributed 79 

to increased convective rainfall in the RCMs due to enhanced potential instability by surface heating 80 

and moistening at high altitudes not captured by the GCMs. Differences in the treatment of aerosols are 81 
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also identified as a reason for differences in climate response between RCMs and GCMs (Boé et al., 82 

2020; Gutiérrez et al., 2020). RCMs are constrained by the lateral boundary conditions provided by the 83 

forcing GCM and studies of RCM ensembles have shown that the choice of forcing GCM have 84 

introduced the major part of the overall uncertainty in regional climate (e.g. Déqué et al., 2007; 85 

Kjellström et al., 2011). This effect is relatively more important for large-scale precipitation systems, 86 

for example frontal systems associated with extra-tropical cyclones. In seasons and regions when 87 

smaller scale processes like convection dominate, for example in summer over mid-latitudes, simulated 88 

precipitation is to a larger degree dependent of the RCM itself, in terms of grid resolution and sub-grid 89 

scale parameterizations (e.g. Iorio et al., 2004). A recent study investigated the effects of model 90 

resolution on local precipitation on short time scales and found that the 12.5 km simulations better 91 

represent daily and sub-daily extreme and mean precipitation, also when simulations are aggregated to 92 

50 km (Prein et al., 2016). They note, however, that the results are highly dependent on which 93 

observations the simulations are compared with, and that improvements are seen for the ensemble 94 

mean, and not necessarily for each individual model. In similar studies as the present one Iles et al. 95 

(2019) and Demory et al. (2020) compare simulations from the CORDEX, CMIP5 and PRIMAVERA 96 

ensembles. The results show increases  in precipitation with resolution and , when compared to a 97 

mixture of E-OBS and high spatial-resolution gridded national datasets, CMIP5 underestimates 98 

precipitation amounts while CORDEX overestimates it,  the effect of grid resolution  being largest in 99 

areas with complex topography. They also find that PRIMAVERA performs similarly to CORDEX 100 

when run on the same resolution, which is interesting regarding that the PRIMAVERA models are 101 

developed for low resolutions. Iles et al. (2019) concluded from the considerable inter-model 102 

differences that improvements are seen for the ensemble mean rather than for individual models.  103 

 104 

Although increased grid resolution often leads to improved simulation of precipitation, convection is 105 

usually not resolved by the model dynamics, even at grid spacings of around 10 km, but is instead 106 

parameterized (although it might be possible to turn off the parameterization already at this kind of 107 

resolution (Vergara-Temprado et al., 2019)). The choice of convection parameterization can have 108 

various effects on the occurrence and amount as well as on the onset timing and location (e.g. Dai et al., 109 
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1999; Dai 2006; Stratton and Stirling, 2012; Gao et al., 2017). Commonly, models with parameterized 110 

convection exhibit biases in the diurnal precipitation cycle (Liang, 2004; Brockhaus et al., 2008; Gao et 111 

al. 2017), sometimes regardless of increases in grid resolution (Dirmeyer et al., 2012). In addition, 112 

models of coarse resolution often suffer from simulating precipitation over too large area compared to 113 

observations, and usually also too many days with weak precipitation (the “drizzle” problem) (e.g. Dai, 114 

2006, Stephens et al., 2010). At sufficiently high resolution (< 4 km) models start to largely resolve 115 

deep convection enabling the parameterization to be turned off, so called “convection-permitting” 116 

models (Prein et al., 2015; Vergada-Temprado et al., 2019). Convection-permitting regional climate 117 

models (CPRCMs) are widely shown to reduce, at least to some extent, these biases, most evidently by 118 

improving the match of the diurnal cycle to observations (e.g. Prein et al., 2013a; Ban et al., 2014; 119 

Brisson et al., 2016; Gao et al., 2017; Leutwyler et al., 2017; Belušić et al. 2020) and better 120 

representation of sub-daily high-intensity precipitation events (e.g. Ban et al., 2014; Kendon et al., 121 

2014; Fosser et al., 2015; Lind et al., 2020) than models with parameterized convection. A major draw-122 

back using these high-resolution climate models is the very high computational cost, making their use in 123 

ensembles to only recently emerge (Coppola et al., 2018).   124 

 125 

The aim of this study is to:  126 

    i. Investigate to what extent a large number of global and regional climate models can reproduce 127 

observed daily precipitation climatologies and characteristics over Europe. 128 

    ii. Investigate how model horizontal grid resolution in either global or regional models affect the 129 

simulated precipitation in Europe; are there systematic differences and if so, are these persistent for 130 

different parts of Europe and for different seasons. 131 

 132 

To this end, GCMs of standard resolution from the CMIP5 (Climate Model Intercomparison Project 133 

phase 5, Taylor et al., 2012) are compared with GCMs which participated in the HighResMIP (High 134 

Resolution Model Intercomparison Project, Haarsma et al., 2016) experiment within the H2020-EU-135 

project PRIMAVERA. These models are: ECMWF-IFS (Roberts et al., 2018b), HadGEM3-GC31 136 

(Roberts et al., 2019), MPI-ESM1.2 (Gutjahr et al., 2019), CNRM-CM6.1 (Voldoire et al., 2019) and 137 
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EC-Earth3P (Haarsma et al., 2020). Furthermore, the first results from the CMIP6 (Climate Model 138 

Intercomparison Project phase 6, Eyring et al., 2016) GCMs are included in the analysis. The GCMs are 139 

compared with RCMs from CORDEX (COordinated Regional Downscaling EXperiment, Gutowski et 140 

al., 2016). This allows for comparisons of different generations of models, global versus regional 141 

models and the impact of model horizontal grid resolutions. For a few cases, the same model version 142 

has been applied at two different grid resolutions which allows for investigating the impact of resolution 143 

alone.  The simulated daily precipitation is analysed both in terms of precipitation intensity distributions 144 

and through a collection of standard precipitation-based indices.  145 

2 Models and Methods 146 

2.1 Global and regional models 147 

The models used in this study are a selection of CMIP5 global models (corresponding to ~100-300 km 148 

horizontal grid spacing at mid-latitudes); the high (~25-50 km) and low (~80-160 km) resolution 149 

versions of the PRIMAVERA global models and the first available runs from CMIP6 (~100-300 km); 150 

and finally, a selection of CORDEX RCMs (at 12.5 and 50 km mid-latitude grid spacing). The low-151 

resolution versions in each model ensemble is called LR, and the high-resolution HR. Note that not the 152 

full CMIP5, CMIP6 and CORDEX ensembles are used, but rather “ensembles of opportunity” for 153 

which daily precipitation were  readily available.  Table 1 lists the GCM ensembles used. Table 2 lists 154 

the GCM RCM combinations used in the CORDEX ensembles. The simulated precipitation for all 155 

models is analysed over the PRUDENCE regions in Europe (Fig. 1; Christensen & Christensen, 2007). 156 

Prior to analysis all grid points over sea are filtered out, and then for each region and model we 157 

calculate precipitation characteristics for all remaining land grid points. The simulations are analysed on 158 

their native grids, because this is the kind of data that users of climate simulations will face, and since 159 

all interpolation may alter precipitation characteristics (Klingaman et al., 2017). Nevertheless, to 160 

investigate all aspects of changed resolution it is sometime necessary to compare simulations on a 161 

common grid. In these cases, the results are also aggregated to two common grids with 2°×2° and 162 

0.5°×0.5° grid spacing respectively.  163 
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 164 

2.2 Observations 165 

Climate model evaluation exercises often rely, when possible, on gridded reference data sets. In this 166 

study daily precipitation sums in models are compared with data from E-OBS version 19.0e at 0.1° and 167 

0.25° grid spacing (Cornes et al., 2018). E-OBS comprise daily station values interpolated onto a grid 168 

that spans the entire European continent. The main advantage of using E-OBS is the large geographical 169 

coverage at a relatively high resolution available over an extended (climatological) time period. It 170 

enables a consistent model-observation comparison over the whole continental part of Europe, with its 171 

varying climatological and environmental characteristics.  172 

Gridded products, such as E-OBS, involves spatial analysis and interpolation of point measurements 173 

onto a regular grid, and are inherently associated with uncertainties originating from both non-climatic 174 

influences (e.g. inaccuracies in measurement devices or relocation of measurement sites) and from 175 

sampling issues associated with weather and environmental conditions, for example in situations with 176 

snowfall in windy conditions (Kotlarski et al. 2019; Rasmussen et al., 2012). The quality of such data 177 

sets largely depends on the availability of stations to base the interpolation on, implying that in regions 178 

where station density is low the quality of the gridded product is also lower (Herrera et al. 2019). For 179 

precipitation this is of even greater importance due to its highly heterogeneous character in both time 180 

and space, in particular for high-intensity precipitation events (extremes). These are often local in 181 

character (temporally and spatially), even in cases when embedded in larger (synoptic) scale 182 

precipitation systems, and can thus be heavily undersampled (Herrera et al. 2019; Prein and Gobiet 183 

2017). Furthermore, mountainous areas act as strong forcing of precipitation giving rise to large spatial 184 

variability over the terrain. Combined with the lack of dense networks of stations in these regions, and 185 

usually also a higher occurrence of snowfall, makes it very difficult to achieve highly reliable data over 186 

mountains (e.g. Hughes et al. 2017; Lundquist et al. 2019). 187 

The quality of E-OBS varies over Europe (see Fig. 1 in Cornes et al. 2018); the station density is for 188 

example very high over Scandinavia, Germany and Poland, while it is lower in Eastern Europe and in 189 

the Mediterranean region. Gridded regional or national data sets may offer higher quality as these are 190 
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generally based on a denser station network and are often also provided with higher spatial and/or 191 

temporal resolution compared to E-OBS (Kotlarski et al. 2019, Prein and Gobiet 2017). Here, we limit 192 

the comparison to E-OBS only. However, to assess the impact of high-quality regional data, an 193 

additional analysis of the precipitation distributions was performed, using ASoP analysis (see Sec. 2.3), 194 

comparing models and E-OBS against the NGCD (Nordic Gridded Climate Dataset, Lussana et al. 195 

2018) data set. NGCD is based on daily station data for precipitation and temperature, interpolated onto 196 

a 1x1 km grid covering Scandinavia. 197 

 198 

2.3 ASoP and precipitation indices 199 

To investigate the effect of model grid resolution on the full distributions of daily precipitation 200 

intensities, we use the ASoP (Analysing Scales of Precipitation) method (Klingaman et al., 2017; 201 

Berthou et al., 2018). ASoP involves splitting precipitation distributions into bins of different intensities 202 

and then provides information of the contributions from each precipitation intensity separately to the 203 

total mean precipitation rate (i.e. given by all intensities taken together). In the first step, precipitation 204 

intensities are binned in such a way that each bin contains a similar number of events, with the 205 

exception of the most intense events, which are rare. The actual contribution (in mm) of each bin to the 206 

total mean precipitation rate is obtained by multiplying the frequency of events by the mean 207 

precipitation rate. The sum of the actual contributions from all bins gives the total mean precipitation 208 

rate. The fractional contribution (in %) of each bin is further obtained by dividing the actual 209 

contributions by the mean precipitation rate. In this case, the sum of all fractional contributions is equal 210 

to one, thus the information provided by fractional contributions is predominantly about the shape of the 211 

distribution. Taking the absolute differences between two fractional distributions and sum over all bins 212 

gives a measure of the difference in the shapes of the precipitation distributions. This is here called the 213 

“Index of fractional contributions”. Since E-OBS precipitation intensities, in contrast to model data, are 214 

not continuous, the resulting ASoP factors for E-OBS tend to be noisy, especially for lower intensities. 215 

In order to facilitate the interpretation of the results, the regionally averaged ASoP factors for E-OBS 216 

were smoothed to some extent by using a simple filter. 217 

 218 
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The ASoP method is here applied to grid points pooled over target regions (Fig. 1) separately and the 219 

result is a distribution for each model showing the probability of different precipitation intensities based 220 

on daily precipitation. Most results presented here concern the actual contributions, both to limit the 221 

number of figures and because these factors conveniently provide information on both shape of 222 

distributions as well as the mean values. The ASoP distributions of all analysed models are used to 223 

compare model behaviour and performance. In particular to see how changing the grid resolution affects 224 

different parts of the distribution, for example if contributions from low and high precipitation 225 

intensities are different. 226 

 227 

In addition to ASoP, a number of indices based on daily precipitation (listed in Table 3) are calculated 228 

for the same regions. For each model, the indices are calculated separately for each grid point within a 229 

region (land points only), and the values are then pooled to calculate percentiles representing the region. 230 

This also means that the calculated model spread reflects geographical and not temporal variability.  231 

The index percentiles are represented by box plots (Sect. 3).  232 

3 Results 233 

3.1 ASoP analysis 234 

3.1.1 Annual precipitation 235 

Since the ASoP results are very similar between CMIP5 and CMIP6 GCMs (not shown), the results 236 

presented here include only one of these ensembles, CMIP6. Figure 2 presents the actual contributions 237 

(normalized bin frequency × mean bin rate) for annual daily precipitation over four of the PRUDENCE 238 

regions: Scandinavia, mid-Europe, the Alps and the Mediterranean. In general, the model ensembles 239 

have higher amounts of precipitation compared to E-OBS, signified by larger contributions at low (< 2-240 

3 mm day-1) and moderate-to-high (> 5-10 mm day-1) intensities. An exception is the CMIP6 ensemble 241 

that instead shows lower contributions for moderate-to-high precipitation intensities, i.e. above 10-20 242 

mm day-1 (Scandinavia, mid-Europe and the Alps) or between 5-20 mm day-1 (Mediterranean). CMIP6 243 

also tends to have the largest overestimates of contributions from the lower intensities (below 5 mm 244 
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day-1). Another consistent feature is that the probabilities for the higher intensities (above 15 mm day-1) 245 

increase with increasing grid resolutions of respective model ensemble, and consequently the 246 

contributions become increasingly larger than E-OBS (Fig. 2). This is most evident for the Alps region 247 

where the CMIP6 models (100-300 km grid spacing) clearly give smaller contributions than E-OBS and 248 

the PRIMAVERA models (25-160 km), the latter having smaller contributions than the CORDEX LR 249 

models (50 km) and the CORDEX HR models (12.5 km). The higher resolution models peak at higher 250 

intensities and have wider distributions with larger contributions from high-intensity daily rates. The 251 

sensitivity of model grid resolution to precipitation amounts and variability in association with areas 252 

with complex and steep topography (e.g. Prein et al., 2015) is most likely the main reason for the large 253 

differences between model ensembles in the Alps region. For example, the upper end of the CMIP6 254 

distributions is around 50 mm day-1 while corresponding part in CORDEX HR models is around 100 255 

mm day-1 (bottom right panel in Fig. 2). To further verify the results, the same analysis was performed 256 

after all data had been interpolated (conservatively) to two common grids; one at 2o×2o resolution and 257 

one at 0.5o×0.5o degree resolution (Figs. S1 and S2 in Supplementary). The interpolation to either grid 258 

has an overall small impact on the results. With the coarser grid (2o×2o) the ASoP actual contributions 259 

have relatively larger contributions from the bulk part and a smaller contribution from the highest 260 

intensities, as expected from the smoothing effect of interpolation. These results provide increased 261 

confidence in the conclusions drawn from analysis on native grids.    262 

3.1.2 Seasonal precipitation 263 

Further insight can be gained by investigating seasonal differences (Fig. 3).  In winter (DJF) the model 264 

ensemble means generally overestimate total mean precipitation compared to E-OBS (i.e. total areas 265 

under the curves showing differences are positive). The bulk of the distributions are slightly shifted to 266 

higher precipitation rates and also to higher contributions (except for the Mediterranean region). The 267 

largest inter-ensemble differences are seen for the Mediterranean where CORDEX HR shows the 268 

largest shift from E-OBS towards contributions from higher precipitation rates, and PRIMAVERA is 269 

similar to CORDEX LR. In summer (JJA), the ensemble means show larger contributions from 270 

intensities above 10-15 mm/day than E-OBS, especially in CORDEX HR. However, as this is in many 271 
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cases compensated by lower contributions from rates between 2-10, the total mean precipitation biases 272 

are smaller than in winter. While the CORDEX ensemble means indicate larger total mean precipitation 273 

in France and Mediterranean, CMIP6 produces in all regions higher contributions from low-to-moderate 274 

(< ~5 mm/day) compared to E-OBS and lower contributions from higher intensities. Furthermore, there 275 

is a tendency in all regions of a larger spread within each model ensemble in JJA than in DJF (see 276 

coloured shadings in Fig. 3). Even though it is a very crude estimate of the spreads (the 5-95 percentile 277 

range in respective model ensemble), it can be argued that the differences in part is related to the 278 

seasonally prevailing weather conditions. In winter the North Atlantic storm track is in its active phase 279 

with frequent passings of synoptic weather systems over Europe. These features are generally well 280 

represented in climate models – hence larger consistency with associated precipitation across models. In 281 

summer, on the other hand, synoptic activity is reduced and convective processes (either as isolated or 282 

organized systems or embedded in larger scale features like fronts) become more prominent in 283 

precipitation events. Sensitivity to model grid resolution and physics parameterizations (e.g. convection 284 

parameterization) is larger during this season. The larger summertime spread in ensembles seen in Fig. 285 

3 might then reflect larger uncertainties associated with model resolution and formulation. It is further 286 

noted that the ensemble spread is not increased as much (from winter to summer) over northern/north-287 

western Europe which is relatively more affected by synoptic scale events during summer compared to 288 

southern parts of Europe (not shown).   289 

 290 

Model ensemble differences for all regions and seasons are summarized in Figure 4, with E-OBS as 291 

reference. In spring (MAM) and winter (DJF) all ensembles have higher total mean precipitation in all 292 

regions. In summer (JJA) and autumn (SON) biases are also mostly on the positive side but smaller 293 

(primarily for GCM ensembles), and in some regions close to zero or slightly negative (e.g. the Alps, 294 

East Europe, Iberian Peninsula). Often there is an indication of a positive correlation between 295 

differences in mean (x-axis in Fig. 4) and differences in fractional contributions (y-axis, which indicates 296 

overall differences in the shape of the distributions), as seen for example in France or Mid-Europe 297 

regions. However, there are also cases with large differences in the shape but small total mean 298 

precipitation biases, for example the CMIP ensembles in JJA and SON over the Alps, suggesting 299 
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compensating effects from different parts of the precipitation distribution. The overall spread is also 300 

highly variable between the regions; Scandinavia, Mid- and East-Europe and the British Isles are 301 

characterized by relatively smaller inter-ensemble differences, while in the Alps and Mediterranean the 302 

spread is large. The spread is in some regions dominated by inter-seasonal differences, e.g. in Mid-303 

Europe and France, where typically the largest differences (in terms of both total means and distribution 304 

shapes) occur in DJF and MAM and smaller spreads in JJA and SON. In the Alps, Iberian Peninsula 305 

and the Mediterranean regions, however, the relatively larger inter-ensemble differences lead to an 306 

increased overall spread. Here, CORDEX HR further exhibits the largest differences to the GCM 307 

ensembles and also often larger deviations from E-OBS. These latter regions are either characterized by 308 

complex and steep topography (e.g. the Alps and the Pyrenees), large fraction of coastal areas and/or by 309 

relatively dry environments dominated by precipitation of convective nature (particularly for the 310 

warmer months). These factors most likely play important roles for the larger differences seen between 311 

the low resolution CMIP GCMs and the higher resolution PRIMAVERA GCMs and CORDEX RCMs, 312 

as well as contributing to larger uncertainties in, and lower quality and representativeness of, 313 

observational data. In contrast, in almost all seasons over the British Isles, the CORDEX HR biases in 314 

total precipitation compared to E-OBS are among the smallest with respect to the other ensembles (the 315 

difference in the shape is similar). Finally, it is noted that for all regions PRIMAVERA HR and 316 

CORDEX LR give comparable distributions as they are of similar resolution.  317 

 318 

To summarize, we can conclude that, in comparison to E-OBS, most model ensembles exhibit larger 319 

contributions for most precipitation intensities, but most consistent for low (< ca 3 mm day-1) and 320 

moderate-to-high (> ca 10 mm day-1). The larger contributions occur predominantly in DJF while in 321 

summer there are often lower contributions than in E-OBS for moderate intensities (leading to smaller 322 

biases in total means). In general, the CORDEX ensembles, and most often also PRIMAVERA, show a 323 

shift towards larger contributions from higher intensities compared to CMIP ensembles, especially in 324 

areas with complex orography as in the Alps. The higher model grid resolution does not always lead to 325 

improvements, i.e. closer agreements to E-OBS. However, it is worth re-emphasizing that the quality of 326 

E-OBS observations can be significantly lower in certain regions (e.g. mountainous areas or areas with 327 
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low density of precipitation gauges) and seasons (especially in wintertime when the fraction of snowfall 328 

is largest which is more sensitive to wind induced undercatch) (Prein and Gobiet, 2017; Herrera et al., 329 

2019), thus complicating the assessment of model behaviour in comparison to observations. To further 330 

highlight this issue, we have included an ASoP analysis for the Scandinavia region (Fig. S3) including a 331 

regional high-quality high-resolution gridded observational data set; NGCD (Lussana et al., 2018). In 332 

both DJF and JJA, the model ensembles still overestimate contributions from the bulk of the intensity 333 

distribution; however, NGCD has higher contributions from low intensities compared to E-OBS, 334 

reducing the model ensemble bias. More interestingly, NGCD shifts towards larger contributions for 335 

high intensities, > 10 mm day-1, in effect lending more credibility to the CORDEX HR ensemble and 336 

less to the others.     337 

3.1.3 Effect of grid resolutions – a one-to-one comparison 338 

For multi-model ensembles, the sensitivity to model grid resolutions can generally only be assessed 339 

qualitatively since other aspects, such as differences in model formulation, also contribute to differences 340 

in model performance. In other words, it cannot be definitely stated to what extent differences in 341 

performance comes from higher resolution or from other differences in the model code. For the 342 

PRIMAVERA models, however, it is possible to directly compare low- and high-resolution model 343 

versions. In CORDEX ensembles this is also possible to some extent for a few models where low- and 344 

high-resolution versions of RCMs have been forced by the same parent GCMs. This is the case for nine 345 

RCM-GCM combinations (6 different RCMs driven by 4 different GCMs). Note that, in contrast to 346 

PRIMAVERA, CORDEX LR-HR “pairs” may not use the same version of the common model, which 347 

could also influence the results in addition to change in grid resolution. Further, the magnitude of the 348 

grid resolution change (the delta value) is the same for CORDEX models (delta=4), while for 349 

PRIMAVERA models it varies between approximately 2 and 5. Figure 5 shows the one-to-one 350 

comparison for DJF and JJA for selected regions. For CORDEX models the high-resolution model 351 

versions generally generate, in both seasons, larger contributions from precipitation intensities above ca 352 

10 mm day-1. This is sometimes accompanied by lower contributions from lower rates as seen for 353 

example in Scandinavia and the Alps in DJF. Similar results are seen for PRIMAVERA although not as 354 
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consistently; e.g. over the British Isles and the Alps in JJA about half the models show increased 355 

contributions in the HR models over the bulk part, the other half showing instead lower contributions 356 

(although for higher rates most HR models show larger contributions). In fact, for many regions there is 357 

a larger spread in JJA within each model ensemble and also between the individual LR versus HR 358 

responses compared to DJF. It could be argued that this effect is related to precipitation events being of 359 

more convective nature in summer and thus larger sensitivity to model grid resolution as well as model 360 

physics. In winter, CORDEX RCMs are to a larger extent being influenced by the forcing GCMs and 361 

therefore, as there is only four different GCMs used in the nine RCM-GCM combinations shown here, 362 

tends to exhibit more similar responses in this season. 363 

3.2 Selected precipitation-based indices 364 

3.2.1 Model ensemble comparison 365 

 Figure 6 shows the number of precipitation days (RR1, Table 3) as simulated by all models for each 366 

PRUDENCE region. The number of precipitation days does not differ much between the model 367 

ensembles. There are clear differences between individual models, but it is difficult to establish any 368 

significant differences between the model ensembles. This is the case both for regions with a higher 369 

occurrence of precipitation days (e.g. SC) and regions with fewer precipitation days (e.g. IP). All 370 

models show about the same number of precipitation events over the whole year, which may suggest 371 

that the large-scale weather patterns are not influenced that much by higher resolution; also, when 372 

looking at individual seasons the differences between ensembles are small (Fig. S4). Note, however, 373 

that the large-scale circulation in the RCMs to a large extent is governed by the driving GCM which 374 

have typical resolutions of around 200 km. Interpolating the data to a common grid prior to analysis 375 

does not have a large impact on RR1 (Fig. S5). Most models overestimate the number of precipitation 376 

days compared to observations. It is a well-known feature of climate models, particularly those with  377 

parameterized convection, that they tend to have too many wet days (e.g. Dai, 2006; Stephens et al., 378 

2010). 379 

 380 
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The number of days with large precipitation amounts, above 10 mm day-1 and 20 mm day-1, become 381 

more frequent with higher model resolution. For example, the number of days with precipitation over 20 382 

mm (R20mm, Table 3) increases from just a few in CMIP5 to 5-10, or even more, in CORDEX HR 383 

(Fig. 7). The 10th to 90th inter-percentile range increases, due to a larger increase in the 90th percentile. 384 

Generally, the spread is larger for models with high resolution. This could partly be explained by higher 385 

number of data points in the high-resolution models (i.e. larger number of grid points); a high-resolution 386 

model is more likely to better represent the spatial variations of precipitation within a region while in 387 

coarser scale models precipitation fields are smoother due to fewer grid points. The differences between 388 

resolutions remain, however, also when all data are interpolated to two common grids of 0.5°×0.5° and 389 

2°×2° resolutions; the median and spread also remain  similar in all ensembles. In small regions such as 390 

AL the coarsest grid gives to few points, which means that it’s difficult to calculate the 10th and 90th 391 

percentiles. The spread in CORDEX HR increases when interpolated to 2°×2° because the points with 392 

high values are not balanced by as many points close to the median (a 0.5°×0.5° grid contains 16 times 393 

more points than a 2°×2° grid). Compared to E-OBS the average number of days with more than 20 mm 394 

day-1 is more accurately simulated in the high-resolution ensembles, but the spread is highly 395 

exaggerated. The PRIMAVERA models have median values  similar to E-OBS and also a more similar 396 

spread. The signal is the same for the individual seasons, but less pronounced since the potential 397 

number of days is smaller when divided over four seasons instead of counted over the whole year (Fig 398 

S6). The effect of resolution is therefore clearest in the season where most days occur, which means 399 

winter in western Europe and summer in central Europe.  400 

 401 

The fact that the number of wet days is similar between LR and HR models (Fig. 6) but with increased 402 

frequency of (heavy) precipitation in HR models (Fig. 7) suggests that, for the latter, the precipitation 403 

intensity on the wet days is higher. This is shown in the simple precipitation intensity index (SDII, 404 

Table 3, Fig. 8). SDII is indeed affected by resolution, at least between CMIP5/6 and CORDEX; the wet 405 

day average precipitation is larger in the HR simulations compared to LR models, and also the intra-406 

model spread (spread between models within the ensemble) is larger. For all regions, SDII is higher in 407 

the HR models. Perhaps, the relative increase in SDII is higher in regions with large spatial variations 408 
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(for example because of complex orography or coastlines) such as IP and AL. The median SDII values 409 

in high-resolution models are in all regions closer to E-OBS than the low-resolution models, even 410 

though the model spread is generally larger in the climate models than in E-OBS. The differences 411 

between ensembles remain both for the median and the spread when the data are regridded to common 412 

grids. Also, for individual seasons it is clear that SDII increases with higher resolution, but the SDII 413 

values do not vary much with season (Fig. S7). 414 

 415 

The higher intensities for extreme precipitation in high-resolution models compared to low-resolution 416 

models are also seen in the maximum one-day (Rx1day, Table 3, Fig. 9) and maximum five-day 417 

precipitation (not shown).  There is a clear increase in both intensities and intra model spread in the 418 

high-resolution models. It can be discussed if this increase is an improvement since the CORDEX HR 419 

models give a maximum one-day precipitation that is significantly larger than E-OBS. On the other 420 

hand, it can be discussed if E-OBS is able to reliably represent these extremes (Hofstra et al., 2009; 421 

Prein and Gobiet, 2017). The medians and the spreads remain more or less the same also when 422 

regridded to common grids. In small regions such as AL the spread is reduced because the number of 423 

data points is small when regridded to a coarse grid. In regions with large spatial variations (e.g. 424 

between coast and mountain) such as IP the spread increases because high values are not balanced by as 425 

many points with values close to the median.  In winter the effect of higher resolution is mainly seen in 426 

regions with complex topography, while in summer there is a clear signal in all regions (Fig 10). This 427 

reflects that higher resolution makes the largest difference in complex topography and for convective 428 

precipitation events. 429 

3.2.2 One-to-one comparison 430 

We let the mid-Europe region (ME) represent the whole domain, as the same conclusions can be made 431 

for all regions, only with small differences in the number of models that give significant differences. A 432 

one-to-one comparison is made of the selected indices for the models where there is both a low and a 433 

high grid resolution version (Fig. 11). The LR and HR versions are compared with a Welsh’s t-test 434 
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(Welsh, 1947) at the 0.05 significance level to see if the simulated indices are significantly different. 435 

This corroborates the analysis above, and adds  further detail by quantifying the differences. 436 

 437 

Although the difference in the number of precipitation days (RR1, Fig. 11, top row) is significant for 438 

most models it is not clear how it is affected by resolution. The differences are small, mainly within ±10 439 

days year-1, in some cases negative and in some positive. The differences between models are larger 440 

than the differences between resolutions. It is clear, however, that all models overestimate the number 441 

of precipitation days compared to E-OBS. This is true also when the data is regridded to common grids, 442 

but three models and E-OBS get insignificant differences when regridded to 2°×2° instead of only one 443 

model at the native grids.  444 

 445 

The number of days with precipitation more than 20 mm (R20mm, Fig. 11, second row) is significantly 446 

different between HR and LR for all models and E-OBS. For the CORDEX models R20mm is higher in 447 

most HR versions, while the difference is less clear in the PRIMAVERA models. All simulations with 448 

the RCA4 RCM, regardless of the driving GCM, clearly show higher R20mm in the HR version 449 

compared to the LR versions, which indicates that the difference in the index mainly is a result of the 450 

changed grid resolution in the RCM. The differences between LR and HR remain also when regridded 451 

to common grids which means that this is an effect of differences in model physics. CORDEX LR is 452 

close to E-OBS, while CORDEX HR generally overestimates R20mm. 453 

 454 

The simple precipitation intensity index (SDII, Fig. 11, third row) is significantly different in one out of 455 

four PRIMAVERA models and four out of nine CORDEX models. Differences are small, tenths of mm 456 

day-1, for most models. Most significant differences disappear when regridded to 0.5°×0.5° and all 457 

disappear when regridded to 2°×2° suggesting that the resolution does not affect SDII much in these 458 

model pairs. We still see a difference between CMIP GCMs and CORDEX RCMs (cf. Fig 8). 459 

 460 

The maximum one-day precipitation (Rx1day, Fig. 11, bottom row) is significantly different in the HR 461 

version in all but one model (a PRIMAVERA model). The HR versions have higher precipitation values 462 
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and larger spread in all but two PRIMAVERA models and one CORDEX model. Especially the 463 

CORDEX HR models have a higher maximum one-day precipitation. This seems to be driven by the 464 

RCM rather than the driving GCM. As an example, three RCMs are forced with the MPI-ESM-LR 465 

GCM. When forced by this GCM the Rx1day in the CCLM4-8-17 RCM is lower in the HR version, 466 

while in REMO2009 and RCA4 HR RCMs Rx1day is higher. In RCA4 the difference is particularly 467 

large, regardless of the driving GCM. That the differences  result from  differences in model physics is 468 

supported by the fact that the differences remain also when the data is regridded to common grids. 469 

 470 

The one-to-one comparison of selected indices shows that there are significant differences between the 471 

LR and HR models and that these are results of differences in model performance and not only the 472 

number of data points. It also shows that for some indices the largest difference occurs between 473 

CMIP5/6 and PRIMAVERA HR, rather than between PRIMAVERA and CORDEX. This means that 474 

some of the differences seen in Figures 6-10 are not as clear in figure 11. The comparison also shows 475 

that even though there are significant differences between LR and HR it is for some cases difficult to 476 

establish significant differences between two ensembles since the difference between two models are 477 

often larger than  between the LR and HR version of the same model.  478 

 479 

It should be noted that the CORDEX RCMs are not always run with the same model version in the LR 480 

and HR simulations. Model differences could thus explain some of the differences between LR and HR. 481 

Since we don’t have LR and HR simulations with all model versions we can’t quantify this effect, only 482 

acknowledge it. It should also be noted that the difference in horizontal grid spacing varies between 483 

models. For CORDEX RCMs the resolution delta (LR/HR) is always 4 (50 km/12.5 km), but for 484 

PRIMAVERA it varies between 2 and 5.  The delta value is larger in CORDEX than in most 485 

PRIMAVERA models, which could potentially mean that the effect of resolution is overestimated for 486 

the CORDEX RCMs. Figure 12 shows how the absolute differences in RR1, R20mm, SDII and Rx1day 487 

between the LR and HR version of the PRIMAVERA and CORDEX models described above correlates 488 

to the delta value in the ME region. There is no clear relation between the delta value and the size of the 489 

difference. CORDEX models that all have the same delta value span from small to large differences. 490 
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The spread between PRIMAVERA models is also quite large. This again suggests that the response of a 491 

model to increased resolution depends on the model itself and not only on the magnitude of the 492 

resolution change.  493 

4 Discussion and conclusions 494 

This study investigates the importance of model resolution on the simulated precipitation in Europe. 495 

The aim is to investigate the differences between models and model ensembles, but also to evaluate 496 

their performance compared to gridded observations. In a similar study Demory et al. (2020) compare 497 

PRIMAVERA models with CORDEX LR and CORDEX HR. They conclude that CORDEX 498 

indisputably improves the data from the driving CMIP5 models, but that the differences between 499 

CORDEX LR and PRIMAVERA are generally small. Both ensembles perform well, but tend to 500 

overestimate precipitation in winter and spring. The largest differences between the ensembles are for 501 

high precipitation intensities, in especially summer, where PRIMAVERA gives less heavy precipitation 502 

which makes it agree more with observations than CORDEX. Iles et al. (2020) compare the effect of 503 

resolution on extreme precipitation in Europe in CMIP5 GCMs and CORDEX RCMs. They conclude 504 

that high resolution models systematically produce higher frequencies of high-intensity precipitation 505 

events. Our interpretation of this, given the results in our study, is that in some cases also the 506 

overestimation of precipitation compared to E-OBS increases with higher resolution. The findings in 507 

this study support the conclusions from the above-mentioned studies, and add details based on a wider 508 

range of model ensembles and precipitation metrics. The fact that we come to the same conclusions as 509 

Iles et al. (2019) and Demory et al (2020) with slightly different methods give strength to these 510 

conclusions. 511 

The ASoP analysis in this study shows that all model ensembles have larger contributions from heavy 512 

precipitation in winter compared to E-OBS, and that the higher values become most prominent for the 513 

ensemble with the highest grid resolution, CORDEX HR. The biases compared to E-OBS are generally 514 

smaller in summer. The PRIMAVERA ensemble is in good agreement with observations and has 515 

smaller bias than CORDEX for many regions. CMIP5 and CMIP6 mostly underestimate contributions 516 
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from moderate-to-high precipitation intensities in summer while overestimating low-intensity events. 517 

Overall, in the summer season, the spread is large between ensembles and between models within the 518 

ensembles. This is indicative of large uncertainties which are most likely related to uncertainties in how 519 

models are able to treat smaller scale precipitation events involving convection. With respect to E-OBS, 520 

the ASoP results partly show that higher horizontal grid resolution does not necessarily mean better. 521 

However, in coastal regions and regions with steep or complex topography there are uncertainties in 522 

both models and observations. Particularly in winter observations suffer from undercatch when 523 

precipitation falls as snow during windy conditions and in summer, smaller scale convective 524 

precipitation may be smoothed considerably or missed completely by ground rain gauges (which E-525 

OBS is based on). E-OBS is not based on the full network of rain gauges in all countries, which could 526 

also lead to undercatch. Therefore, it is not always obvious which model or ensemble of models is 527 

closest to reality. When compared to NGDC, a regional data set of high-quality, the difference between 528 

CORDEX HR and observations is reduced, which gives more confidence to the high-resolution model 529 

results. 530 

 531 

It is clear that the horizontal resolution of a model has a large effect on precipitation, mostly on the 532 

heavier precipitation and in areas with complex and steep orography. The number of precipitation days 533 

does not depend much on resolution as this is mostly depending on large scale weather patterns and not 534 

so much on local topography and convection. For heavy precipitation events, which often are more local 535 

and short-lived in character, model resolution is more important. The high-resolution models better 536 

resolve such events and distinguish better between different parts of a region. Thus, extreme 537 

precipitation is more intense and more frequent in the HR models compared to the LR models in this 538 

study. With the same amount of wet days this means that precipitation intensifies so that the wet days 539 

get wetter. The largest impact of increased model scale resolution on precipitation is most evident for 540 

the coarser scale models; increasing the resolution from CMIP5/6 to PRIMAVERA HR has a greater 541 

effect than increasing from CORDEX LR/PRIMAVERA HR to CORDEX HR. This does not, however, 542 

mean that increased resolution gets less and less worthwhile; further refining the grid until convection-543 

permitting resolutions are reached (less than ~5 km grid spacing), in which case convection 544 
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parameterizations may be turned off, has a large positive effect (e.g. Prein et al. 2015). This is not 545 

shown here as the smallest grid spacing in models in this study is 12.5 km. The effect of higher 546 

resolution is seen in regions with small amounts of precipitation as well as regions with high amounts of 547 

precipitation, and in regions with small and large geographical differences. The higher percentiles 548 

change more than the low percentiles for all studied indices. Increasing resolution has about the same 549 

effect on both GCMs and RCMs, furthermore GCMs and RCMs of comparable resolution simulate 550 

comparable precipitation climates, even though PRIMAVERA is often drier than CORDEX. 551 

 552 

It is worth to note that the differences between RCM simulations, and how they respond to differences 553 

in resolution, may very well be explained by the driving GCM and the state of the atmospheric general 554 

circulation in them (Kjellström et al., 2018; Sørland et al., 2018; Vautard et al., 2020). Higher resolution 555 

is expected to give a better described and more detailed climate, with for example deeper cyclones and 556 

more intense local showers; in a sense with more pronounced weather events. If two models are in 557 

different states, for example when it comes to where storm tracks cross Europe, and if these states are 558 

pronounced, that may lead to even larger model differences. Instead of a weak storm track in the south 559 

and a weak storm track in the north in the low-resolution model, we may now instead have strong storm 560 

tracks, which mean that the difference between the models increases. Still, the largest differences are 561 

seen in the CORDEX ensemble where the LR and HR models are run with the same coarse resolution 562 

GCM. This suggests that (regional) model resolution and performance is what determines high 563 

precipitation rates, rather than the driving GCM. To fully answer that would require an analysis of the 564 

circulation patterns in the different models. This is not done here, but should be a topic for further 565 

studies.   566 

 567 

The differences between LR and HR largely remain also when the results are regridded to common 568 

grids of 0.5°×0.5° and 2°×2° which means that the HR version performs differently than the LR version 569 

of the same model, mainly because of better representations of topography and convection. The largest 570 

seasonal differences are seen for the heavy precipitation (R20mm, Rx1day). Heavy precipitation events 571 
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usually occur locally in summer which makes it more sensitive to model resolution. Difference in 572 

resolution has a larger impact on heavy precipitation in summer than in winter.  573 

 574 

Higher resolution does not necessarily mean better results. If a model is already too wet the increase in 575 

heavy precipitation that is induced by the higher resolution means that the HR version agrees less with 576 

observations than the LR version. For the individual model it is possible to quantify the difference and 577 

improvement between LR and HR. On the ensemble level this is more difficult. The difference between 578 

different models is often larger than between LR and HR versions of the same model. In this sense the 579 

quality of an ensemble is depending more on the models it consists of rather than the average resolution 580 

of the ensemble. Furthermore, when downscaling with an RCM, the simulated extreme precipitation, 581 

and the differences between GCM and RCM, depends more on the used RCM and less on the down-582 

scaling itself, especially for heavy precipitation and particularly in summer. 583 
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 931 

Tables 932 

Ensemble 

 

Model Contact institute Atmo-

spheric 

grid 

spacing 

CMIP5 ACCESS1-0 Commonwealth Scientific and Industrial Research 

Organisation, Australia, and Bureau of Meteorology 

N96 

CMIP5 ACESS1-3 Commonwealth Scientific and Industrial Research 

Organisation, Australia, and Bureau of Meteorology 

N96 

CMIP5 CanESM2 Canadian Centre for Climate Modelling and Analysis T63 

CMIP5 CMCC-CESM Centro Euro-Mediterraneo per i Cambiamenti 

Climatici 

96x48 

CMIP5 CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti 

Climatici 

480x240 

CMIP5 CMCC-CMS Centro Euro-Mediterraneo per i Cambiamenti 

Climatici 

192x96 

CMIP5 CSIRO-Mk3-6-0 Australian Commonwealth Scientific and Industrial 

Research Organization (CSIRO) Marine and 

Atmospheric Research in collaboration with the 

Queensland Climate Change Centre of Excellence 

(QCCCE)  

T63 

CMIP5 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy 

of Sciences and Tsinghua University 

128x60 

CMIP5 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 144x90 

CMIP5 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 144x90 

CMIP5 HadCM3 Met Office Hadley Centre 96x73 

CMIP5 HadGEM2-CC Met Office Hadley Centre N96 

CMIP5 HadGEM2-ES Met Office Hadley Centre N96 

CMIP5 IPSL-CM5A-LR Institut Pierre Simon Laplace 96x96 

CMIP5 IPSL-CM5A-MR Institut Pierre Simon Laplace 144x143 
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CMIP5 MPI-ESM-LR Max Planck Institute for Meteorology T63 

CMIP5 MPI-ESM-MR Max Planck Institute for Meteorology T63 

CMIP5 NorESM1-M Norwegian Climate Centre 144x96 

CMIP6 ACCESS-CM2 Commonwealth Scientific and Industrial Research 

Organisation, Australia, and Bureau of Meteorology 

192x145 

CMIP6 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research 

Organisation, Australia, and Bureau of Meteorology 

192x145 

CMIP6 CESM2-FV2 The National Center for Atmospheric Research 144x96 

CMIP6 CESM2 The National Center for Atmospheric Research 288x192 

CMIP6 CESM2-WACCM-FV2 The National Center for Atmospheric Research 144x96 

CMIP6 CESM2-WACCM The National Center for Atmospheric Research 288x192 

CMIP6 EC-Earth3 EC-Earth-Consortium 512x256 

CMIP6 EC-Earth3-Veg EC-Earth-Consortium 512x256 

CMIP6 GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory 360x180 

CMIP6 INM-CM4-8 Institute for Numerical Mathematics, Russian 

Academy of Science 

180x120 

CMIP6 INM-CM5-0 Institute for Numerical Mathematics, Russian 

Academy of Science 

180x120 

CMIP6 MIROC6 Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute, The University of Tokyo, National Institute 

for Environmental Studies, RIKEN Center for 

Computational Science 

T85 

CMIP6 MPI-ESM-1-2-HAM Max Planck Institute for Meteorology 192x96 

CMIP6 MPI-ESM1-2-LR Max Planck Institute for Meteorology 192x96 

CMIP6 MRI-ESM2-0 Meteorological Research Institute, Tsukuba 320x160 

CMIP6 NorCPM1 Norwegian Climate Centre 320x384 

CMIP6 NorESM2-LM Norwegian Climate Centre 144x96 

CMIP6 NorESM2-MM Norwegian Climate Centre 288x192 

CMIP6 SAM0-UNICON Seoul National University 288x192 

PRIMAVERA CNMR-CM6-1 CNRM-CERFACS 256x128 

PRIMAVERA CNRM-CM6-1-HR CNRM-CERFACS 720x360 

PRIMAVERA EC-Earth3 EC-Earth-Consortium 512x256 
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PRIMAVERA EC-Earth3-HR EC-Earth-Consortium 1024x512 

PRIMAVERA IFS-HR European Centre for Medium-Range Weather 

Forecasts 

720x360 

PRIMAVERA IFS-LR European Centre for Medium-Range Weather 

Forecasts 

360x180 

PRIMAVERA HadGEM3-GC31-HM Met Office Hadley Centre 1024x720 

PRIMAVERA HadGEM3-GC31-LM Met Office Hadley Centre 192x144 

PRIMAVERA HadGEM3-GC31-MM Met Office Hadley Centre 432x324 

PRIMAVERA MPIESM-1-2-HR Max Planck Institute for Meteorology 384x192 

PRIMAVERA MPIESM-1-2-XR Max Planck Institute for Meteorology 768x384 

Table 1. The GCM ensembles used in this study and the GCMs they consist of. Grid spacing is given in the same format as 933 

in the meta data for each model. 934 

 935 

Institute RCM Driving GCM 

  1 2 3 4 5 6 7 8 9 10 

CLMcom CCLM4-8-17 x x  x  x  x xo  

CNRM ALADIN53  x         

CNRM ALADIN63  x         

DMI HIRHAM5    xo  x    x 

GERICS REMO2015 x x  x  x  x  x 

IPSL WRF331F       xo    

KNMI RACMO22E    xo  o    x 

MPI-CSC REMO2009         xo  

SMHI RCA4 o o o xo o xo xo o xo o 

UHOH WRF361H      x   x  

HMS ALADIN52  o         

Table 2. RCM GCM combinations used in this study. EURO-CORDEX simulations at 0.11° (~12.5 km) are marked with 936 

“x” and at 0.44° (~50 km) are marked with “o”. The driving GCMs are: 1) CanESM2, 2) CNRM-CM5, 3) CSIRO-Mk3-6-0, 937 

4) EC-Earth, 5) GFDL-ESM2M, 6) HadGEM2-ES, 7) IPSL-CM5A-MR, 8) MIROC5, 9) MPI-ESM-LR, 10) NorESM1-M 938 

 939 

 940 

Short Long name Definition Unit 



39 
 

name 

RR1 Wet days index Number of days with precipitation sum 

equal to or more than 1 mm 

Days year-

1 

R20mm Very heavy precipitation days 

index 

Number of days with precipitation sum 

more than 20 mm 

Days year-

1 

SDII Simple daily intensity index Average precipitation sum on days with 

precipitation sum equal to or above 1 mm 

mm day-1 

Rx1day Highest one day precipitation 

amount 

Precipitation amount on the day with 

highest amount 

mm day-1 

Table 3. Definitions of indices 941 

 942 

  943 
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Figures 944 

 945 
Figure 1: The regions for which precipitation data is analysed: Scandinavia (SC), British Isles (BI), Mid-Europe (ME), France 946 
(FR), The Alps (AL), Eastern Europe (EA), Iberian Peninsula (IP) and the Mediterranean (MD). 947 
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 948 
Figure 2: The panels show the actual contribution (to the total median precipitation, y-axis) per precipitation intensity bin (x-axis), 949 
based on annual (ANN) daily precipitation values in the CMIP6 (green dotted lines and shading), PRIMAVERA (orange dashed-950 
dotted lines and shading), CORDEX low resolution (red dashed lines and shading) and CORDEX high resolution (blue dashed 951 
lines and shading) ensembles. The displayed regions are Scandinavia (SC, top left), mid-Europe (ME, top right), the Alps (AL, 952 
bottom left) and the Mediterranean (MD, bottom right). Coloured shadings represent the 5-95 percentile range in respective 953 
ensemble. Black solid lines are E-OBS (0.1o resolution) observations. 954 
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 955 
Figure 3: Same as in Fig. 2 but for DJF (top row) and JJA (bottom row) daily precipitation values and for the eastern Europe (EA, 956 
left), France (FR, middle) and the Mediterranean (MD, right) regions. Coloured shadings represent the 5-95 percentile range in 957 
respective ensemble. Black solid lines are E-OBS (0.1o resolution) observations. 958 
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 959 
Figure 4: The index of fractional contributions (y-axis) plotted as a function of the fractional difference in seasonal total 960 
precipitation (x-axis).  E-OBS (0.1o resolution) is the reference data set and E-OBS average annual total precipitation (in mm year-961 
1) is shown in lower right in each panel.   962 
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 963 
Figure 5: The panels show the actual contribution (to the total mean precipitation, y-axis) per precipitation intensity bin (x-axis), 964 
based on DJF (top row) and JJA (bottom row) daily mean precipitation values in CORDEX and PRIMAVERA models for the 965 
Scandinavia (SC), British Isles (BI), the Alps (AL) and Iberian Peninsula (IP) regions. Thin lines in upper part of each panel 966 
represent each individual model while the thick lines represent the ensemble means. In the lower part of each panel each line 967 
represents differences between respective high- and low-resolution model pair.    968 
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 969 
Figure 6. Number of precipitation days (RR1 (days year-1]) in the Alps (AL, top left), Scandinavia (SC, top right), the Iberian 970 
Peninsula (IP, bottom left) and mid-Europe (ME, bottom right) for individual models in the CMIP5 (brown), CMIP6 (red), 971 
PRIMAVERA LR (orange), PRIMAVERA HR (light blue), CORDEX LR (green) and CORDEX HR (purple) ensembles as well as 972 
E-OBS at 28 (grey) and 11 km (black). Boxes mark the 25th and 75th percentile, with the median inside; whiskers go from the 10th 973 
to the 90th percentile. 974 
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 975 
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Figure 7. Same as Figure 6 but for the number of days with precipitation amount over 20 mm (R20mm (days year-1)). Left column: 976 
model data on their original grids, centre column: all data regridded to 0.5°×0.5° grid, right column: all data regridded to  2°×2° 977 
grid. 978 

  979 



48 
  980 



49 
 

Figure 8. Same as Figure 7 but for the simple precipitation intensity index (SDII (mm day-1)). 981 

  982 
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 983 



51 
 

Figure 9. Same as Figure 7 but for the maximum one day precipitation (Rx1day (mm day-1)). 984 

 985 

  986 
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 987 
Figure 10. Same as Figure 6 but for the maximum one-day precipitation (Rx1day (mm day-1)), top row: winter (DJF), bottom row: 988 
summer (JJA). 989 
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Figure 11. Number of precipitation days (RR1 (days year-1), first row), number of days with precipitation amount over 20 mm 991 
(R20mm (days year-1), second row), simple precipitation intensity index (SDII (mm day-1), third row), maximum one day 992 
precipitation (Rx1day (mm day-1), fourth row) in the Mid-European region (ME) in the PRIMAVERA LR (pink) and HR (red) 993 
models, CORDEX LR (light blue) and HR (purple) models as well as E-OBS LR (grey) and HR (black). Left column: model data 994 
on their original grids, centre column: all data regridded to 0.5°×0.5° grid, right column: all data regridded to 2°×2° grid. Boxes 995 
mark the 25th and 75th percentile, with the median inside; whiskers go from the 10th to the 90th percentile. If the the high-resolution 996 
version of a model is significantly different from the low-resolution version this is marked with a vertical line in the high-resolution 997 
boxes. 998 

  999 
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 1000 

 1001 
Figure 12. Absolute difference between HR and LR version of PRIMAVERA (black rings), CORDEX (red circles) and E-OBS 1002 
(blue squares) in precipitation days (RR1 (days year-1), first column, number of days with precipitation amount over 20 mm 1003 
(R20mm (days year-1), second column), simple precipitation intensity index (SDII (mm day-1), third column), maximum one day 1004 
precipitation (Rx1day (mm day-1), fourth column) in the Mid-European region (ME). X-axes show the resolution delta (LR/HR) 1005 
for each model (example: 50 km grid spacing divided by 12.5 km equals 4). 1006 


