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Abstract.

A pronounced signature of stratosphere-troposphere coupling is a robust negative anomaly in the surface northern annular

mode (NAM) following sudden stratospheric warming (SSW) events, consistent with an equatorward shift of the tropospheric

jet. It has previously been pointed out that tropospheric synoptic-scale eddy feedbacks, mainly induced by anomalies in the

lowermost extratropical stratosphere, play an important role in creating this surface NAM-signal. Here, we use the basic setup5

of idealised baroclinic life cycles to investigate the influence of stratospheric conditions on the behaviour of tropospheric

synoptic-scale eddies. Particular focus is given on the enhancement of the tropospheric eddy response by surface friction,

as well as the sensitivity to wind anomalies in the lower stratosphere. We find systems that include a tropospheric jet only

(modelling post-SSW conditions) to be characterised by an equatorward shift of the tropospheric jet in the final state of the life

cycle, relative to systems that include a representation of the polar vortex (mimicking more undisturbed stratospheric winter-10

time conditions), consistent with the observed NAM-response after SSWs. The corresponding relative surface NAM-signal is

increased if the system includes surface friction, presumably due to a direct coupling of the eddy field at tropopause level to

the surface winds. We further show that the jet shift signal observed in our experiments is mainly caused by changes in the

zonal wind structure of the lowermost stratosphere, while changes in the wind structure of the middle and upper stratosphere

have almost no influence.15

1 Introduction

1.1 General background

The troposphere and stratosphere form a dynamically coupled system. In order to better understand tropospheric weather and

climate behaviour it is essential to understand how stratospheric conditions and processes can have a downward influence and

modify the tropospheric circulation or produce surface signals.20

Some of the most prominent stratospheric phenomena in the northern hemisphere are (major) sudden stratospheric warming

(SSW) events. During these sudden warmings the westerly winds of the stratospheric polar jet (also polar vortex) break down

or even reverse. Thompson and Wallace (1998) showed that the winter time variability of the stratospheric polar vortex and the

tropospheric mid-latitude jet are strongly correlated.
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Baldwin and Dunkerton (2001) used a composite study of weak vortex events (of which SSWs would form the extreme25

subset) to investigate the time dependence of this coupling in more detail. They showed how the stratospheric zonal wind

anomalies propagate downwards into the troposphere and demonstrated that this downward influence appears to have two

components: at first zonal wind anomalies extend downward through the lower stratosphere where they can last for several

weeks. Once the signal reaches the tropopause level it can penetrate quasi-instantaneously into the troposphere and create

surface anomalies that persist on weekly time scales.30

Since then various studies have supported the idea that the break-down of the polar vortex can have a downward impact and

induce zonal wind anomalies in the troposphere. In particular, a polar vortex break-down can lead to periods with weak and

equatorward shifted tropospheric jet stream. This equatorward shift of the jet typically manifests as negative anomaly of the

northern annular mode (NAM) index or similar indices (e.g., Thompson and Wallace, 1998; Karpechko et al., 2017; Charlton-

Perez et al., 2018). Changes in the large scale tropospheric circulation can then affect local surface weather and, with it, change35

the likelihood of extreme events like cold spells (Thompson and Wallace, 2001; Kolstad et al., 2010; Kautz et al., 2020).

Different mechanisms have been proposed to explain the downward propagation of stratospheric wind anomalies and their

influence on the tropospheric circulation. However, no single fully conclusive mechanism has been identified yet. Note that, in

addition, the tropospheric response to SSWs might also be caused by a combination of different coupling processes. One of

these potential coupling processes is given by tropospheric eddy feedback as a response to the induced stratospheric anomalies.40

Domeisen et al. (2013) have shown in idealised model runs that tropospheric eddy feedback is essential to obtain a robust

negative NAM signal following a SSW. Hitchcock and Simpson (2014) also found tropospheric synoptic-scale eddy feedback

to play a significant role in creating a NAM-like surface response. They further concluded that the most relevant aspect of

the stratospheric variability does not seem to be the wind reversal in the mid-stratosphere, but the persistent wind anomalies

in the lowermost stratosphere. Butler et al. (2010) performed a series of steadily forced idealised model experiments with45

imposed cooling either in the entire polar stratosphere or confined to the middle and upper polar stratosphere (mimicking,

e.g., ozone-hole induced climate change), directly causing a consistent wind anomaly in the respective region. They found the

troposphere to respond to the imposed stratospheric anomalies in a NAM-like fashion if the imposed anomalies reach into the

lower stratosphere, but the tropospheric response to be weak if the anomalies are confined to the upper stratosphere. Karpechko

et al. (2017) showed that in both, model runs and reanalysis data, SSWs which produce strong and long-lasting anomalies in50

the lowermost stratosphere have an increased likelihood for a tropospheric impact compared to SSWs with weak anomalies in

the lowermost stratosphere.

1.2 Previous baroclinic life cycle work relevant for this study

A simple, yet fundamental, way to investigate the role of synoptic scale eddies in the dynamical coupling between stratosphere

and troposphere is through (idealised) baroclinic life cycle experiments, an initial value problem starting from an imposed baro-55

clinically unstable tropospheric jet. During the subsequent break-down of the imposed jet a baroclinic wave can be observed to

develop, grow and eventually decay, leaving the system in a state with a more barotropic, strengthened and poleward shifted jet

2



compared to the initial conditions (see, e.g., Simmons and Hoskins, 1978; Thorncroft et al., 1993). Such life cycle experiments

have previously been used to study the influence of stratospheric winds onto the evolution of tropospheric baroclinic eddies.

Wittman et al. (2004) performed idealised life cycle experiments using initial conditions that either do or do not include60

winds in the stratosphere, representing situations with an intact or a broken-down polar vortex. They found that if the system

includes a polar vortex the evolution of the life cycle is strongly modified and when the polar vortex is removed the system

exhibits a (weak) dipole structure in the surface geopotential height field, similar to the surface NAM response observed after

SSWs, which corresponds to an equatorward shift of the tropospheric jet. They further note that this surface signal is weak

if the polar vortex is rather confined to the stratosphere, but gets strongly enhanced if the polar vortex reaches deep into the65

troposphere.

In a following study Wittman et al. (2007) investigated the role of stratospheric vertical shear onto the evolution of baroclinic

life cycles. They used three different setups in which the winds of the tropospheric jet either decreased, stayed constant or

(further) increased above the jet core. For the three situations they found pronounced differences in the evolution of the life

cycle, including substantial changes in the growth rate of the baroclinic waves and the qualitative characteristics of the wave70

growth and decay phases. It should be noted, that the initial conditions used by Wittman et al. (2007) were mostly motivated to

resemble a setup of the Eady model for baroclinic instability, rather than realistic atmospheric conditions. The corresponding

change of stratospheric shear induces strong changes in the vertical curvature of zonal wind at tropopause level, and thus

strong changes in the meridional gradient of potential vorticity (PV) in that region, which are known to have a strong impact on

the evolution of baroclinic waves in the troposphere. In the present study we specifically design initial conditions that do not75

substantially modify tropopause-level PV gradients to minimise their direct impact on the development of baroclinic instability.

Kunz et al. (2009) used a similar setup as Wittman et al. (2004) and also found that the presence of a stratospheric jet can

qualitatively alter the evolution of the baroclinic life cycle. Further, they could not explain the modification of the life cycle with

simple refractive index linear theory and therefore concluded that the non-linear part of the wave evolution plays an important

role in the coupling.80

Smy and Scott (2009) investigated the influence of stratospheric PV anomalies on the evolution of idealised baroclinic life

cycles to obtain insights into the dynamical coupling of stratosphere and troposphere during and after SSWs (including a

distinction between split and displacement events). They found a decrease in growth rates and general wave activity (and a

corresponding reduction in magnitude of the surface geopotential anomaly of the final state) with increasing strength of the

stratospheric PV perturbation. Note that Wittman et al. (2007) reported an increase of growth rate with increasing stratospheric85

shear (and hence increasing stratospheric wind speed) for low synoptic wave numbers. However, Smy and Scott (2009) also

note that some of their results (e.g., regarding sensitivity of growth rates) might be explained by a change in tropospheric

horizontal shear due to the non-local effects of the stratospheric PV anomaly and a corresponding fundamental change in

the nature of the life cycle (see also Thorncroft et al. (1993) for details on how horizontal shear can affect the evolution of

baroclinic waves). Smy and Scott (2009) further comment on the influence of the ‘sub-vortex region’, defined as a region in90

the lowermost extratropical stratosphere without imposed stratospheric PV anomaly in their experiments and therefore reduced

strength of the lower stratospheric winds. A modification of the wind structure (or equivalently the PV field) in this region
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can represent the direct effect of stratospheric anomalies on the tropospheric winds. They found that the influence of the polar

vortex on the life cycle evolution increases as the stratospheric jet reaches deeper into the lowermost stratosphere.

While much focus was given on sensitivities of the linear growth phase of baroclinic life cycles to various changes of95

the system Barnes and Young (1992) also investigated the evolution during the non-linear decay phase to a range of flow-

dependent forcing processes, including surface friction. They found the system to undergo a series of growth and decay phases

in cases with sufficiently weak diffusion, in contrast to the single growth phase with subsequent decay of eddy energy in

cases with strong diffusion. They further showed that simulations with surface friction can produce more pronounced such

‘secondary cycles’, i.e., growth and decay phases following the initial life cycle, as the surface drag tends to work against the100

barotropisation of the non-linear phase and thus act as source of baroclinicity.

1.3 Potential influence of surface friction

The influence of surface friction onto the evolution of baroclinic eddies is potentially crucial to understand the surface signal

observed after SSWs, as it can be argued that the inclusion of surface friction increases the potential for the mid- and upper-

tropospheric eddy field to couple to the surface winds. This can be illustrated using an approximated version of the evolution105

equation of the vertically averaged zonal mean zonal wind, given in Equation 1 (see, e.g., chapter 10 of Vallis (2017)).

∂t[ū] =−∂y
[
u′v′

]
− ūsfc/τ, (1)

where u and v are zonal and meridional wind, ūsfc the zonal mean zonal surface wind, τ the surface friction time scale,

square brackets and overbars denote vertical and zonal averages, respectively, and primed quantities describe deviations from

the zonal mean (note that we neglected the mean flux term as it tends to be small in our system, consistent with quasi-110

geostrophic scaling). Here we used a linear damping of surface winds as simple parametrisation of surface friction. In the

case with vanishing friction (τ →∞), only the meridional momentum fluxes can act as source for (vertically averaged) zonal

momentum and changes in ū tend to occur in regions of non-zero momentum flux, i.e., around tropopause level for baroclinic

life cycle experiments. For finite values of τ , on the other hand, the atmosphere can ‘exchange’ momentum with the surface,

allowing for a non-local coupling between surface winds and the eddy field. This additional coupling mechanism suggests that115

a dynamic modification of the eddy field (due to the presence of a stratospheric jet) can lead to an enhanced change of the

corresponding surface winds (in terms of the difference between final and initial state) in cases where surface friction is active

in the system.

1.4 Structure of this study

In the present paper we further investigate what impact the presence of a stratospheric polar vortex has on the idealised120

tropospheric baroclinic life cycle. In particular we are interested in the sensitivity of the life cycle evolution to changes in wind

structure in the lower stratosphere, compared to changes in the middle and upper stratosphere, and the influence of surface

friction onto the surface signal of the life cycle induced by the presence of a stratospheric jet. We hereby mostly focus on
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the modification of the equilibrated ‘final’ state of the system, as opposed to the details of the (linear) growth stage or the

(non-linear) decay stage of the baroclinic wave.125

Section 2 introduces the model setup used in this study and lays out the specifics of the different sets of initial conditions. In

Section 3 we discuss in detail various changes of the evolution of the baroclinic life cycle due to the presence of stratospheric jet,

with particular focus on the NAM-like response of the troposphere in the final state of a life cycle when there is no stratospheric

jet present, compared to when there is. Additionally we show that we only find a strong signature in the corresponding surface

signal when the system is subject to surface friction. We then provide evidence, in Section 4, to show that this NAM-like signal130

is mainly caused by the modification of winds in the (extra-tropical) lower stratosphere and the inclusion of winds in the middle

and upper stratosphere have almost no influence on the final state of the life cycle. In Section 5 we further discuss and interpret

some of our findings before, in Section 6, we summarise the main conclusions of this paper.

2 Model and Basic states

All simulations are run with the simple dry dynamical core model BOB (Built on Beowolf, see Rivier et al. (2002) for details).135

The model solves a spectral representation of the primitive equations in pressure coordinates with truncation at horizontal

wave number 85. The discrete vertical levels are distributed with constant spacing ∆z = 250 m up to a height of z = 60 km,

where z =−H ln(p/p0) is a log-pressure coordinate with scale height H = 7.5 km and reference pressure p0 = 1000 hPa.

To minimise upper boundary effects we add 10 additional model levels between z = 60 km and z = 82 km, equally spaced

in pressure. Note that we are using a substantially higher vertical resolution than has typically been used in similar studies,140

since we found in particular the details of the non-linear decay phase of the baroclinic life cycles to be sensitive to changes in

∆z for values larger than about ∆z = 250 m, as also further explained in Section 3. Further note that the pressure coordinate

formulation of the model used here lacks an explicit Earth’s surface. When considering the surface response (e.g., in Section

3.3) we analyse the lowest pressure layer, thereby effectively approximating the actual surface response, which would require

a modified physically consistent lower boundary condition (e.g., Haynes and Shepherd, 1989).145

The model is initialised with a prescribed state and integrated forward in time with a step length of 5 minutes over a period of

30 days, giving daily output of instantaneous fields (results are qualitatively unchanged for hourly output). To ensure numerical

stability and model energy dissipation via sub-grid-scale processes the model includes an 6th order hyper-diffusion, damping

the smallest resolved wave numbers on a time scale of 2.4 hours (for comparison Wittman et al. (2007) use a 6th order diffusion

with 1 hour time scale; Kunz et al. (2009) use an 8th order diffusion with 6 hours time scale at T42 resolution).150

All experiments are initialised with an idealised and zonally symmetric basic state, loosely based on the initial state used by

Kunz et al. (2009). The basic state is analytically defined via a given zonal wind field and is chosen to represent two general

situations, depending on the choice of parameters: either a system with a tropospheric jet only (modelling post-SSW condi-

tions), or a system that contains a tropospheric and a stratospheric jet (mimicking more undisturbed winter-time conditions).

In order to also study the sensitivity of changes in the wind structure of different regions in atmosphere we further use a set of155

basic states which include the tropospheric jet and only the upper or lower part of the stratospheric jet, respectively. Table 1
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Figure 1. Examples of the basic state used in this study with different choice for parameter values to include either a) a tropospheric jet

only (experiment T) or b) a tropospheric and a stratospheric jet (experiment TS). The shading shows the zonal wind, thin black contours

show potential temperature [K] and thick blue contours show the meridional PV gradient [PVU/deg], with dashed contours corresponding to

negative values.

summarises the different types of basic state configurations used in the present study. The two main basic state configurations

(T and TS) are visualised in Figure 1 (note that only a part of the domain is shown).

Table 1. Different basic state configurations used.

Experiment Description

T Tropospheric jet only

TS Tropospheric and stratospheric jet (with magnitude uSmax = 75m/s)

TS<zη Tropospheric and lower part of the stratospheric jet (below height zη)

TS>zη Tropospheric and upper part of the stratospheric jet (above height zη)

The temperature distribution of the respective initial state is calculated to be in thermal-wind balance with the prescribed

wind field. Note that the resulting meridional PV gradient (thick blue contours in Figure 1) strongly depends on the vertical160

curvature of the underlying wind field and therefore produces a pronounced local maximum near the tropospheric jet core.

Further note that both configurations displayed in Figure 1, due to the strong dependency on the wind field structure, include

regions with (a slightly) negative PV gradient, which could potentially influence the evolution of the life cycle. However, the

corresponding initial states follow the typical setup used in this type of idealised life cycle experiment. We further performed

a series of sensitivity experiments and concluded the regions of negative PV gradient to have no significant influence on the165

qualitative results presented in this paper. Magnusdottir and Haynes (1996) also raised the question of the effect of negative
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PV gradients in typical life cycle setups on the evolution of the baroclinic wave and concluded that these regions can have an

effect on certain details of the non-linear phase (e.g., details of the energetics), but seem to have no impact on most aspects of

the qualitative behaviour.

To trigger the growth of a baroclinic wave the initial state is perturbed by super-imposing a zonally periodic near-surface170

temperature perturbation of fixed zonal wave number 6, centred around 45◦ latitude. We found our results to be qualitatively

similar for perturbations with wave number 7, but the stratospheric jet to have almost no influence on the life cycle for wave

numbers 5 and 8 (in these cases the purely tropospheric life cycle is generally weaker than for perturbations with wave numbers

6 and 7). Our main focus is to study the behaviour of tropospheric waves at synoptic scales, which are primarily forced as a

result of baroclinic instability. We expect the mechanisms discussed in the present study to be relevant for synoptic eddy175

feedbacks involved in real atmospheric stratosphere-troposphere coupling, while acknowledging that planetary waves, which

are not explicitly considered here, may also play an important role.

More details on how the basic state is constructed are given in the Appendix. Starting from the described initial conditions the

experiments are then either run freely (without any external forcing) or including a linear Rayleigh surface friction, following

the friction profile specified by Held and Suarez (1994) with a maximum friction coefficient of kf = 1 day−1 at the surface,180

gradually reducing to zero at 700 hPa (z ≈ 3 km).

3 Modification of the life cycle by a stratospheric jet

We start our study by investigating in what way the general evolution of an idealised baroclinic life cycle is altered when the

initial conditions include a tropospheric and a stratospheric jet, the latter representing the winter time polar vortex, compared

to when they include a tropospheric jet only, as is usually the case after a SSW and is the conventional life cycle setup. In185

the rest of this section we therefore analyse a set of life cycle experiments with varying values of the stratospheric jet strength

parameter uSmax (see Equation A2 in the Appendix) and thus varying strength of the stratospheric jet that is added onto the

system with tropospheric jet only.

3.1 Modification of the baroclinic wave breaking

The evolution of idealised baroclinic life cycles is often described in terms of the distribution of potential vorticity (PV) on an190

isentropic surface close to the jet core (or equivalently close to the tropopause). Zonal modulations in PV contours in this region

of sharp PV gradient (also seen in Figure 1) give insights into the growth and decay of the eddy field, while any change in the

position of the maximum in zonally averaged PV gradient represents a meridional shift of the jet. The top and middle rows

in Figure 2 show the horizontal PV distribution on the 350 K isentrope at selected days for the two initial state configurations

with tropospheric jet only (experiment T) and tropospheric and stratospheric jet (experiment TS).195

The general evolution of both experiments is similar to each other in the sense that the baroclinic wave grows gradually

until about day 6. At that point the wave becomes non-linear, breaks and eventually decays. Note that the PV distributions at

day 6 are almost identical for the experiments T and TS, suggesting that the difference in evolution during the linear growth
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phase induced by stratospheric winds are rather small. This represents an important distinction from previous baroclinic life

cycle studies that have highlighted stratospheric impacts during the growth phase (e.g., Wittman et al. (2007); Smy and Scott200

(2009)). We will discuss this apparent contradiction in more detail later in this section. In contrast to the small differences

during the linear phase, the non-linear decay phase shows substantial differences in the specific evolution of the PV field

when a stratospheric jet is present. The wave breaking is still characterised by filaments of high PV that stretch out on the

equatorward side of the jet core, break off and eventually roll up anticyclonically, but the timing of events and the details of

the small scale structures are altered considerably compared to the tropospheric jet only case. The decay of the baroclinic wave205

happens faster and at day 9 a new wave structure seems to have grown already, showing strong characteristics of cyclonic wave

breaking (sometimes referred to as LC2 life cycle in contrast to the anticyclonic LC1 life cycle; see, for example, Thorncroft

et al. (1993) for further details).

Figure 2. Evolution of PV distribution on the 350 K isentrope at different days for a system with tropospheric jet only (experiment T, top

panel) or a tropospheric and stratospheric jet (experiment TS, middle panel). The bottom panel shows the difference of both experiments

(T-TS), with 8 PVU contours of the respective full fields superimposed.

To highlight the modification in PV evolution induced by the presence of a stratospheric jet the bottom panel of Figure 2

shows the difference in the PV field of a simulation with and without stratospheric jet. Overlaid are the corresponding 8 PVU210

contours of the two respective experiments. It can be seen that at day 6, i.e., at the end of the linear growth phase, the two

baroclinic waves have a similar magnitude and structure, but are slightly phase shifted with respect to each other. This shift can

potentially be explained by a minor increase in phase speed in the case with a stratospheric jet. This might be due to a minor

increase in wind speed near the tropopause (also further discussed in Sections 4 and 5) and/or a change of the corresponding PV

gradient in that region due to the slightly modified wind structure in the case with stratospheric jet. While a pure zonal phase215

shift of the wave should not have any influence on the subsequent behaviour of the wave-breaking due to the zonal symmetry

of the system, it does indicate a change in the dispersion relation.
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At days 7 to 9, i.e., during the non-linear phase, the evolution of the system is strongly influenced by the stratospheric jet

and Figure 2 shows a large difference in PV distribution. Especially at days 8 and 9 the baroclinic wave in experiment TS,

including a stratospheric jet, seems to have entered a second growth phase, while the wave in experiment T still seems to220

be decaying. As mentioned in Section 1 these ‘secondary life cycles’ during the non-linear decay phase have been discussed

previously by Barnes and Young (1992). We find the details of the non-linear phase, like the occurrence, timing or apparent

flavour (in a LC1/LC2 sense) of ‘secondary cycles’, to be very sensitive to small changes of the initial conditions or the details

of the physical processes involved, as can also be seen in Figure 2. Recall that, as mentioned in Section 2, the occurrence and

strength of these secondary cycles varied in a set of sensitivity experiments with lower vertical resolution. For the purpose of225

this study we therefore focus primarily on the evolution of the entire life cycle, e.g., in terms of the difference between initial

and some final state.

3.2 Dependency on stratospheric jet magnitude

In addition to the evolution of the PV field baroclinic life cycles can be quantified in terms of the global energetics of the system,

typically with a strong focus on eddy kinetic energy (EKE), which describes the growth and decay of the baroclinic wave in230

the region of large meridional PV gradient near the jet core (see Figure 1). In particular the decay of EKE is associated with

an energy transfer to the zonal mean state, i.e., an increase of the mean kinetic energy (MKE). This increase in MKE can be

associated with a poleward shift, and a corresponding acceleration, of the tropospheric jet due to wave-mean-flow interactions

and poleward eddy momentum fluxes during the decay phase of the life cycle.

The way the evolution of the life cycle is altered by a stratospheric jet can be seen in terms of EKE and MKE time series,235

shown in Figure 3 for experiments with different values for the stratospheric jet magnitude uSmax (see Appendix for details).

Note that here we use ∆MKE, which is simply the change in MKE with respect to the initial conditions and that both, EKE

and ∆MKE, are displayed as vertically integrated (over the entire atmosphere) and horizontally averaged (over the northern

hemisphere) energy densities.

In agreement with Figure 2, which suggests only a phase shift in the baroclinic waves during the linear phase, but no240

difference in magnitudes, Figure 3 shows essentially no sensitivity to introducing a stratospheric jet before day 6, in particular

we do not find any significant change in growth rate, as has been reported by other authors, e.g., Wittman et al. (2007). A

potential explanation for the strong change in growth rate found by Wittman et al. (2007) could be a substantial difference in

meridional PV gradient (due to the substantial modification of the vertical curvature of zonal wind at the tropopause) between

their different experimental setups. The basic states used in the present study, on the other hand, do only slightly differ in245

terms of their tropopause level PV gradients (see Figure 1). However, during the non-linear phase, so from day 7 onwards, the

stratospheric jet seems to extensively alter the evolution of the life cycle. Especially the onset of a secondary phase of wave

growth (with EKE peaking again at about day 10) seems to happen about a day earlier when a stratospheric jet is present in

the system, and leads to a much stronger and more persistent secondary peak. The persistently elevated EKE of the secondary

cycles during the non-linear phase (with EKE reducing again towards the final state) is consistent with the idea of a stronger250
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LC2 flavour (which is often characterised by persistently increased EKE in the decay phase) of the secondary cycles, as is also

suggested by Figure 2 and is further discussed in Section 5.

The alteration of the system as we increase uSmax does not only manifest as changes in the details of how the wave breaking

evolves, but also leads to a change of the final state (here defined as average over days 20-30), in particular a systematic increase

of ∆MKE.255

Figure 3. Evolution of mean kinetic energy change (a) and eddy kinetic energy (b) of the system with a tropospheric jet and a stratospheric jet

with varying strength parameter uSmax (see Equation A2). The case with uSmax = 0 corresponds to experiment T, the case uSmax = 75 m/s

to experiment TS. Energies are displayed as vertically integrated and horizontally averaged energy densities.

The elevated values of EKE during the decay phase and ∆MKE in the final state are are consistent with an enhanced

barotropic conversion of energy from EKE to MKE (see Fig. S2 in the supplement), as also further discussed in Section 5. The

increase in final state ∆MKE can further be linked to a stronger poleward shift (and correspondingly a stronger acceleration)

of the tropospheric jet over the course of the life cycle when a stratospheric jet is present.

This relative shift (compared to the experiment T, with tropospheric jet only) can be seen in Figure 4, which shows in all260

subplots as black contours the evolution of the zonal mean zonal wind field at 10 km. Figure 4a furthermore shows the zonal

wind anomaly of experiment T with respect to the initial conditions. One can clearly see a dipole pattern developing around

the initial jet core (45◦ latitude) at the start of the non-linear phase at about day 6 and strengthening roughly until day 15,

corresponding to a poleward shift of the jet core to about 60◦ latitude during the life cycle.
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Figure 4. Black contours: Evolution of zonal mean zonal wind [m/s] on the 10 km surface for experiments with tropospheric jet only (a) or

tropospheric and stratospheric jet of varying strength (b-d); the case with uSmax = 0 corresponds to experiment T, the case uSmax = 75 m/s

to experiment TS. The shading in (a) shows the wind anomaly with respect to the initial state, the shading in (b-d) shows the wind anomaly

induced when the stratospheric jet is removed from the system (i.e., the wind anomalies in b-d are formed by subtracting the respective wind

fields from the wind field shown in subplot a). The vertical dashed lines indicate day 6.

Figures 4b-d show the evolution of zonal mean zonal wind anomaly at 10 km of experiment TS, with varying strength of265

the imposed stratospheric jet, relative to experiment T, with tropospheric jet only (i.e. the difference between the wind field of

experiment T and the wind field of the respective experiment). The displayed anomaly therefore indicates the changes in zonal

mean zonal wind induced by a removal of the stratospheric jet from a system (hence modelling changes induced by a SSW).

As suggested by the MKE time series shown earlier the zonal wind anomaly evolution indicates a dipole around the position

of the final jet core emerging during the non-linear phase of the life cycle. The change in zonal wind corresponds to a stronger270

poleward shift of the jet during the final state in cases where a stratospheric jet is present, or equivalently, a relative equatorward

shift of the tropospheric jet when the stratospheric jet is removed. This jet shift is analogous to the NAM-like signature that

has been observed after SSW events, and its appearance as response to stratospheric conditions in the framework of a dry
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dynamical model further indicates the fundamental importance of tropospheric synoptic-scale eddy feedback in causing the

observed negative NAM-signal, as has previously been shown by other studies (e.g., Domeisen et al., 2013; Hitchcock and275

Simpson, 2014), and allows for a way to quantify these eddy feedback processes (e.g., in terms of EKE and MKE evolution)

in a simple and idealised setting.”

3.3 Vertical structure of the response and influence of surface friction

The vertical structure of the relative jet shift of the final state can be seen in Figure 5, showing the difference in zonal mean

zonal wind during the final state (days 20-30 mean) between experiments T (with tropospheric jet only) and TS (also including280

a stratospheric jet of magnitude uSmax = 75 m/s). Subplot 5a shows the latitude-height equivalent of subplot 4d averaged over

the final state, while subplot 5b illustrates the corresponding zonal wind anomaly for an experiment with surface friction applied

to the system (see Section 2 for details). Both subplots show a clear equatorward jet-shift signature around the jet core of the

final jet when the stratospheric jet is removed. Note that the inclusion of surface friction will lead to a continuous dissipation of

energy and thus a steady ‘final state’ is not reached (see supplementary material). However, we define the final state analogous285

to the case without friction (days 20-30 average) in order to analyse the effect of surface friction on the evolution of the main

life cycle.

Figure 5. Contours: zonal mean zonal wind [m/s] of the final state (days 20-30 average) of a system with stratospheric jet. Shading: Changes

to the final state zonal mean zonal wind when the stratospheric jet is removed from the system. Subplot a) shows an experiment without

surface friction, while b) displays an experiment with surface friction as described in Section 2.
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Several differences can be observed in the final state of the life cycle for systems with and without surface friction. First,

an overall weakening of the jet in the final state (black contours) can be observed when surface friction is included, which is

easily explained by the direct dissipation of kinetic energy over the course of the life cycle due to the added friction process.290

The same argument holds for the disappearance of the strong wind anomaly patterns close to the surface at about 30◦ and 40◦

latitude in the case without friction. These patterns develop due to strong temperature fluxes in this region arising from the

large meridional surface temperature gradient (see Figure 1) and they are likely not influential on the standard baroclinic life

cycle evolution. More importantly, however, the vertical structure of the dipole pattern around the final jet core at 60◦ latitude

is drastically different between the experiments with and without surface friction displayed in Figure 5. When the system is295

subject to surface friction during the life cycle the corresponding dipole pattern is more barotropic, thus it extends much further

down and shows much stronger anomalies at the surface.

Figures 4 and 5 indicate a tendency of the tropospheric jet to exhibit a weaker poleward shift during the baroclinic life

cycle if there is no stratospheric jet present compared to when there is. This behaviour is consistent with the negative NAM

response, associated with an equatorward shift of the tropospheric jet, observed during periods following SSWs (see Baldwin300

and Dunkerton, 2001). It further provides a simple model framework to quantify the eddy feedback processes (e.g., in terms

of EKE and MKE response) potentially involved in creating the corresponding jet shift signal. Figure 5 shows the shift signal

only to have a significant surface contribution if the system is subject to surface friction.

To further illustrate the surface signal observed in our model experiments Figure 6 shows the geostrophic geopotential height

field Z, calculated by solving the equation305

∂φZ =−faū− ū2 tanφ (2)

via simple numerical integration with boundary condition Z(φ= 0) = 0 for the zonal mean zonal wind field ū of the final

state (note that we neglected the surface friction term in Equation 2 as it tends to be small during the final state of our exper-

iments). Here f is the Coriolis parameter, a the radius of the Earth, g the gravitational acceleration and φ the latitude. Since

ū(z = 0) vanishes for the initial state the surface geopotential height Zsfc ≡ Z(z = 0) of the final state (or more precisely its310

gradient) describes the change in surface winds induced over the course of the baroclinic life cycle.

Figure 6 shows Zsfc for experiments that include surface friction and two different sets of initial conditions: T and TS, i.e.,

including a tropospheric jet only and including both, a tropospheric and a stratospheric jet. For both experiments we find the

development of strong meridional gradients in Zsfc at around 50◦ or 60◦ latitude, respectively, consistent with strong surface

winds. The farther equatorwards shifted position of the gradient of Zsfc in experiment T, relative to experiment TS, indicates315

again the relative equatorward shift of the final tropospheric jet if the stratospheric jet is removed from the initial conditions,

corresponding to the NAM-signal discussed earlier.

The strength of the NAM-like jet shift signal depends on the magnitude of the stratospheric jet (uSmax) included in the

system, as can be seen in Figure 7. First, the NAM-signal, in the form of a dipole jet shift pattern around 60◦ latitude, seems

to develop for stratospheric jet magnitudes below about uSmax / 50 m/s, but stays mostly unchanged for stratospheric jets320
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Figure 6. Zonal mean geopotential height at 1000hPa (or equivalently z = 0) of the final state for two experiments with surface friction and

with tropospheric jet only (T) and tropospheric and stratospheric jet (TS), respectively. The dashed line shows the difference of both.

exceeding uSmax ' 50 m/s. Second, the NAM-response does not seem to be symmetric for positive and negative values of

uSmax. While the jet shift signal develops already for relatively weak westerly stratospheric jets, no coherent signal can be

observed for easterly stratospheric jets for the parameter range shown (a positive NAM-signal, i.e., a relative poleward shift,

only starts to develop for uSmax /−40 m/s).

In the rest of this paper we investigate the influence of a stratospheric jet onto the final state of the baroclinic life cycle and325

the resulting NAM-like signature in more detail. In particular we identify a region in the lower stratosphere which is highly

sensitive to changes in the zonal wind that are induced by the inclusion of a stratospheric jet.

4 Sensitivity of the life cycle to changes in the extratropical lower stratosphere

In the previous section we established that introducing a stratospheric jet can modify the evolution of the system in an idealised

baroclinic life experiment, as has also been shown by other authors (e.g., Wittman et al., 2004). In this section we show that330

the system is particularly sensitive to changes in wind structure in the extratropical lower stratosphere (heights below about 25

km), while changes in the middle and upper stratosphere have almost no influence on the final state. In order to investigate this

sensitivity we analyse a set of experiments with initial conditions that include a tropospheric jet, as well as a stratospheric jet

with modified vertical structure.

We modify the structure by multiplying the profile of the stratospheric jet used in experiment TS by a function η(z) (see335

Equation A2). We choose η(z) to follow a tanh-profile, which allows us to smoothly set the winds of the stratospheric jet
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Figure 7. Contours: Zonal mean zonal wind at 10 km of the final state of experiments that include a stratospheric jet with varying strength

parameter uSmax. Shading: The changes induced when the stratospheric jet is removed from the system. The two subplots show experiment

without and with surface friction, respectively. The vertical dotted line indicates uSmax = 0, and thus experiment T.

component to zero below or above a set transition height zη and thus investigate which part of the stratospheric jet has the

strongest influence on the life cycle. We hereby refer to the experiments where we only include the part of the stratospheric jet

below height zη as ‘TS<zη ’, and correspondingly refer to the experiments where we keep the part above zη as ‘TS>zη ’ (for

simplicity we drop the units of zη within this notation and set it to be kilometres). See the Appendix for details on how the340

basic state is defined.

Figure 8 illustrates the different basic states in terms of the full zonal mean zonal wind field, and the anomaly with respect

to experiment T, i.e., the experiment without any superimposed stratospheric jet. Subplots 8a and b show experiments T and

TS, including no or the full stratospheric jet, respectively. The experiments displayed in subplots 8b and c only superimpose

the upper part of the stratospheric jet, above either 25 km or 10 km, while the experiments displayed in subplots 8e and f only345

include the respective lower parts.

Details of the vertical structure of the various initial wind fields can also be seen in Figure 9, displaying the zonal wind at

60◦ latitude, i.e., at the northern flank of the tropospheric jet and through the core of the stratospheric jet. A very prominent

difference is that profiles where the stratospheric jet reaches into the lower stratosphere have substantially increased wind

speeds in that region (roughly between 10 and 25km), compared to profiles where the contribution of the jet is mostly confined350

to the troposphere or the middle and upper stratosphere. This criterion divides the six profiles into two groups, one consisting

of profiles T, TS>25 and TS<10 with weak winds in the lower stratosphere, and the other consisting of profiles TS, TS>10 and

TS<25 with strong winds in the lower stratosphere. In most of the rest of this section we analyse the experiments with different

initial conditions keeping in mind the grouping into these two sets.
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Figure 8. Zonal wind (shading) and anomaly from experiment T (green contours, in m/s) of the initial conditions for experiments with a

tropospheric jet and varying vertical profiles of the superimposed stratospheric jet depending on the function η(z) in Equation A2. Note that

both sets of green contours, thick and thin, show the same quantity, but for different level ranges.

To visualise the NAM-like jet shift signature of the final state, and to investigate which contribution to this jet shift can be355

associated the different parts of the stratospheric jet, Figure 10 shows the zonal mean zonal wind averaged over days 20-30 and

the corresponding anomaly from experiment T (with tropospheric jet only).

We first look at the experiments with weak winds in the lower stratosphere. The final state zonal wind field of experiment

TS>25 (Figure 10c) does not show any substantial deviation from experiment T, indicating that winds in the middle and

upper stratosphere have virtually no influence on the life cycle. Experiment TS<10, with superimposed winds confined to the360

troposphere, shows a dipole pattern, which could potentially be attributed to the projection of the wind modification on e.g.,

the increase in tropospheric jet magnitude or the vertical shear, also further discussed in Section 5. However, also note that the

superimposed winds of the stratospheric jet do not abruptly vanish at the given cut-off height (e.g., above 10 km for TS<10),

but follow a smooth transition over the course of about 4 km and therefore still reach into the lower stratosphere region.
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Figure 9. Vertical profiles of zonal mean zonal wind at 60◦ latitude of the initial conditions for different experiments without (T), with full

(TS) or with partial stratospheric jet (other profiles). Subplot a) shows the full fields, subplot b) the anomaly from experiment T.

The experiments with strong winds in the lower stratosphere (bottom panel of Figure 10) do all show a clear dipole structure365

in the anomaly field, centred around about 60◦ latitude. Note in particular the strong signal of experiment TS<25, where the

superimposed winds are confined to the troposphere and lower stratosphere, further suggesting the winds in the middle and up-

per troposphere have no significant contribution in causing the observed jet shift. Experiment TS>10, including a stratospheric

jet that reaches into the lower stratosphere but does not reach far into the troposphere, also shows a clear dipole pattern in

zonal wind anomaly. In particular compare experiments TS>10 and TS>25, as well as TS<25 and TS<10: in both cases the jet370

shift signal increases in strength when the superimposed stratospheric jet reaches into the lower stratosphere (10 km to 25 km),

compared to when it does not. The significance of the lower stratospheric wind anomalies is discussed further in Section 5.

The surface signal of the NAM-like response discussed above can be seen in Figure 11, displaying the zonally averaged

geopotential height field calculated via Equation 2. It can clearly be seen how the different experiments show indications for

NAM-like surface signals in good agreement with what is shown in Figure 10. Especially the experiments with strong lower-375

stratospheric winds (bottom panel) show a poleward shift and acceleration of the surface winds (in terms of gradient of the

shown curves) relative to the reference experiment T, with only the tropospheric jet.
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Figure 10. Black contours show the zonal mean zonal wind [m/s] distribution of the final state for different experiments. The shading in (a)

indicates the initial zonal winds [m/s] of experiment T, the shading in (b-f) shows the anomaly from experiment T in zonal mean zonal wind

of the final state. All experiments include surface friction.

Figure 11b further shows the sum of the geopotential height anomalies induced by removal of the (partial) stratospheric jet

from the experiments T<10 and T>10, i.e, experiments where we only include the part of the stratospheric jet above or below

10km. The similarity of this sum to the corresponding geopotential height anomaly of experiment TS, with full stratospheric380

jet included, suggests a certain additivity of the response to the stratospheric jet1, also further discussed in Section 5.

5 Discussion

In Section 3 we showed that the growth phase of an idealised baroclinic life cycle is almost unchanged when introducing a

stratospheric jet to the system. In particular the linear growth rate of the baroclinic wave (in terms of EKE) is not sensitive to

changes in stratospheric conditions. These findings seem to contradict previously reported results (e.g.,Wittman et al. (2007);385

Smy and Scott (2009)). A likely explanation for this discrepancy is that the linear growth phase is highly sensitive to tropopause-

1Note that the same similarity seems to hold for the sum of anomalies of experiments T<25 and T>25 (not shown explicitly).
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Figure 11. Geopotential height at 1000 hPa of the final state of the experiments displayed in Figure 8. Subplot a) illustrates the difference

in initial and final state geopotential height for experiment T, all other subplots illustrate the difference between the respective experiment

and the reference experiment T. The purple dash-dotted line in subplot b) shows the sum of the anomalies for the cases T<10 and T>10. All

experiments include surface friction.

level PV gradients of the initial conditions, which had been altered due to changes in the stratosphere in these previous studies.

The structure of the PV gradient in our experiments, on the other hand, is essentially not altered by the inclusion of stratospheric

winds and the linear growth of baroclinic waves (driven by tropospheric heat fluxes) is therefore unchanged. However, we found

that the presence of a stratospheric jet substantially altered the non-linear decay phase of the life cycle. Notably it is during this390

decay phase where the eddy momentum flux acts to convert eddy kinetic to mean kinetic energy while at the same time driving

a meridional shift of the tropospheric jet. Given that the momentum flux is proportional to the equatorward wave activity flux

our findings are consistent with a stratospheric influence via modifications to meridional wave propagation near the tropopause.

Figures 2 and 3 showed changes in the secondary cycles occurring during the non-linear decay stage, including changes in

number, strength, duration, timing and apparent type (or flavour) of these secondary cycles. The different types of baroclinic395
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wave breaking (LC1 and LC2) have been linked to different weather regimes, and thus corresponding transitions within a life

cycle can potentially have a large impact on surface weather (e.g., Michel and Rivière, 2011). As discussed, the baroclinic

decay phase of experiment TS shows characteristics of both, LC1 and LC2 flavour, or equivalently cyclonic and anticyclonic

wave breaking, while experiment T shows more LC1 characteristics. However, the general behaviour of the TS life cycle

(e.g., in terms of its final state) still follows primarily the (anticyclonic) LC1 type, and it only seems to experience individual,400

transient (cyclonic) LC2 wave-breaking events. The importance of these transient LC2 events for the overall meteorological

regime is presently not clear. Note that other authors have previously also reported about transitions between LC1 and LC2

wave breaking states based on stratospheric conditions (e.g., Kunz et al., 2009), but mostly in terms of the entire life cycle,

rather than in terms of more transient events.

Further note that the introduction of a stratospheric jet not only modifies the details of the wave breaking during the decay405

phase, but also the (quasi-steady) final state of the life cycle. In particular, do generally elevated values of EKE during the decay

phase and increased MKE during the final state suggest an enhanced barotropic EKE to MKE conversion (as also seen in Fig.

S2 in the supplementary material). The inclusion of a stratospheric jet to a basic state also formally corresponds to an increase

in MPE (mean potential energy, also referred to as available potential energy or APE), where the latter in principle forms the

main energy source for the life cycle and is, via EKE, ultimately converted into MKE. However, since this increase in MPE410

is primarily associated with stratospheric temperature structure, it is unlikely to contribute to the predominantly tropospheric

energy conversions during the life cycle.

Consistent with the change in final state MKE we observed a relative equatorward shift of the tropospheric jet in the final

state when removing the stratospheric jet from the initial conditions of the system, as can be seen in Figures 5 and 6. This

relative jet shift is analogous to the NAM-like signature that has been observed after SSW events. To what extent the observed415

NAM response to SSWs is similarly influenced by tropospheric eddy feedbacks, as suggested by our results, remains to be

quantified further. It also is important to remember that the coupling of troposphere and stratosphere works in both directions

and the coupled system will generally react as a whole to any (tropospheric or stratospheric) forcing.

We further want to point out that the relative meridional shift between the final jet in the experiments T and TS results

from differences in the meridional eddy momentum transport during the life cycle (not shown). The increased momentum420

fluxes in experiment TS, compared to T, can be related to increased wave activity around tropopause level, which is consistent

with the increase in EKE shown in Figure 3. Similar changes in eddy momentum transport as a result to (in particular lower-

stratospheric) climate anomalies have been observed previously in idealised general circulation model experiments by various

authors (e.g., Polvani and Kushner, 2002; Butler et al., 2010).

Figure 5 further shows that the surface signal of the NAM-response in the final state, given by the zonal mean zonal wind dif-425

ference between experiments T and TS, is enhanced when the system is subject to surface friction. The effect of surface friction

to increase the surface wind signal of the NAM-response might seem counter-intuitive. However, as we already pointed out in

Subsection 1.3, surface friction can provide a way for tropopause level eddy momentum fluxes to couple to the surface winds.

The modification of the baroclinic eddy field by the presence of a stratospheric jet can therefore project more strongly onto the

surface winds and produce a stronger surface signal. The evolution equation of the vertically averaged zonal mean zonal wind430
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(Equation 1) is often used to argue that on long time scales (where ∂t[ū]≈ 0) the eddy flux convergence has to be balanced

by the (dissipation of) surface winds. In our (transient) life cycle experiments we cannot neglect the wind tendency term and

the main balance is given by ∂t[ū]≈−∂y
[
u′v′

]
. However, the dissipation term ūsfc/τ provides an important contribution to

the equation and strongly modifies the acceleration of the jet, as is already suggested by the factor 2 difference of the final jet

magnitude in the cases with and without surface friction (see Figure 5).435

When interpreting Equation 1 one also has to keep in mind that it describes the evolution of the full (vertically and zonally

averaged) wind field, whereas we are mostly interested in the enhanced surface signal of the difference in wind field between

experiments TS and T (see Figure 5), i.e., the NAM-like shift signal. The line of argumentation, however, is analogous. The

introduction (or removal) of a stratospheric jet influences the evolution of baroclinic eddies at tropopause level. Following

Equation 1, the corresponding changes in eddy momentum flux then induce changes in the wind tendency (which will tend to440

be close to the level of the eddy flux, primarily near the tropopause), but also couple directly to the surface winds.

The enhancement of the surface signal by surface friction can potentially be understood via the following mechanism: the

decay stage of the life cycle is characterised by a barotropisation of the tropospheric jet and thus a reduction of vertical shear

and a strengthening of surface winds. The surface friction, on the other hand, tends to increase the vertical wind shear and

therefore act as a source of baroclinicity. This increase in baroclinicity then leads to an enhanced barotropisation of the jet445

(similar to what was observed by Barnes and Young, 1992) and a correspondingly enhanced downward propagation of the jet-

shift signal. The idea of an enhanced baroclinisation/barotropisation is consistent with the formation of additional life cycles

which we observed during the late stages of the life cycle in experiments with surface friction (seen roughly between days 15

and 25 in Fig. S3 in the supplementary material).

Figure 7 indicated that the strength of the NAM-response following the removal of the stratospheric jet depends non-linearly450

on the magnitude of the stratospheric jet. In particular, the signal seems to saturate when the stratospheric jet magnitude exceeds

a certain value and stronger jets do not lead to a stronger NAM-signal any more. This behaviour suggests that an anomalously

strong polar vortex does not necessarily lead to anomalously positive NAM-signals. Similarly Figure 7 indicates that a reversal

of the stratospheric jet (with uSmax < 0) does not lead to a negative NAM-response with respect to experiment T, which

suggests that in terms of NAM-response it is not important whether a SSW leads to slightly or strongly reversed winds of the455

polar vortex. However, the setup of baroclinic life cycle experiments does, of course, not capture the dynamics around SSWs

in their entire complexity and these results do not necessarily carry over to the real atmosphere.

In Section 4 we showed that the NAM-response observed in the final state of our life cycle experiments is mostly caused by

the change in wind structure in the lower stratosphere when including the stratospheric jet, rather than wind anomalies in the

middle and upper stratosphere (Figure 10). The sensitivity of the eddy feedback to wind anomalies in the lower stratosphere is460

consistent with results previously reported by various authors (e.g., Butler et al., 2010).

It should be noted that changing the wind structure in the lower stratosphere does also introduce changes in various other

characteristics of the corresponding initial conditions, like the height of maximum wind speed, the vertical wind shear in the

upper troposphere (roughly up to 10km) and the magnitude of the tropospheric jet (especially obvious for profiles T and TS

in Figure 9). However, these three characteristics are intrinsically not completely independent and can potentially all affect465
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the evolution of the life cycle. This can be seen, e.g., since the vertical wind shear is (via thermal wind balance) related to

the horizontal temperature gradient, which drives the growth of baroclinic waves and can, among other things, modify their

(linear) growth rate (although note that the near surface shear is almost identical in the different experiments).

We performed a set of sensitivity experiments (not shown) with tropospheric jet only and varying tropospheric jet magnitude

(and therefore increased vertical shear in the troposphere). We found that an increase in tropospheric jet strength also leads to470

a increased poleward shift during the life cycle (i.e., an equatorward shift of the jet in the final state of experiment T relative to

a case with stronger tropospheric jet), similar to the shift observed in Figure 5a. In order to achieve a jet shift signal of similar

magnitude as the one shown in Figure 5, however, it was necessary to increase the jet magnitude by order of 10 m/s in these

sensitivity experiments (the difference in tropospheric jet magnitude between experiments T and TS is only of the order of 1

m/s.), indicating that other characteristics of the initial state need to contribute and the observed jet shift cannot purely be a475

result of a strengthened tropospheric jet. The inclusion of the stratospheric jet does to some extent project onto the mentioned

characteristics (e.g., height of the jet core and tropospheric shear) of the total zonal wind profile and the resulting jet shift can

potentially be interpreted as the result of a combination of factors.

Figure 11 further suggested that we essentially recover the surface geopotential height signal of experiment TS (with full

stratospheric jet), when adding the corresponding signals of experiments T<10 and T>10. Such additivity of responses might480

be another indication that the stratospheric jet projects onto various other structures and characteristics (e.g., tropospheric

shear and jet core height) and the corresponding jet shift response forms as the result of a combination of responses to those

modifications. However, while the anomalies of the respective experiments seem to be additive when it comes to the surface

geopotential height (although not perfect), the middle tropospheric jet shift response in Figure 10 does not appear to follow the

same additive behaviour.485

As discussed, Figure 10 shows the NAM-like jet shift signature of the life cycle due to the inclusion of a stratospheric jet

to be mainly caused by the corresponding change in winds in the lower stratosphere, rather than the winds in the middle and

upper stratosphere, where the stratospheric jet itself is strongest. A similar conclusion can be drawn from the energetics of the

system (provided as supplementary material), which shows a consistent increase in MKE of the final state for the experiments

with strong winds in the lower stratosphere (as defined in Section 4), compared to the experiments with weak winds, in a490

system that does not include surface friction. As also explained in Section 3, this increase in MKE is caused by the relative

meridional shift of the final tropospheric jet. Note that if the system includes surface friction the constant dissipation of winds

leads to a gradual and flow dependent decrease of MKE, which makes the interpretation of the energetics in terms of a final

state difficult. However, we find basic states which include a stratospheric jet to be associated with an enhanced barotropic

energy conversion of EKE to MKE during the life cycle in both, systems that do and do not include surface friction (see Fig.495

S2 in the supplement).

While the present study discusses the sensitivity of the tropospheric jet shift to the presence of a stratospheric jet during

baroclinic life cycles in some detail, various questions remain open and provide potential for future work. It might be possible

to use the idealised life cycle set-up discussed above to gain insights into the distinction between the responses to different

types of SSWs. For example, sudden stratospheric warming events characterised as split or displacement have been found500
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to be associated with different lower-stratospheric wind anomalies, while the question of differences in their tropospheric

response has not been fully answered (see Charlton and Polvani, 2007; Mitchell et al., 2011; Maycock and Hitchcock, 2015).

Smy and Scott (2009) studied the distinction of split and displacement events in idealised life cycle experiments and found

strong differences in tropospheric response. However, it should be noted that their experiments are initialised with a basic state

constructed via the inversion of an imposed PV field which will inevitably have an influence on the tropospheric initial state505

and thus directly affect the evolution of the life cycle. The distinct stratospheric influences via direct remote PV signatures or

indirect influences on non-linear baroclinic eddy dynamics remains to be investigated further.

6 Summary and conclusions

In this paper we discussed changes in the evolution of idealised baroclinic life cycles induced by the presence of a stratospheric

jet. Particular focus was given on a jet shift signal in the zonal wind anomaly of the final state of the life cycle, similar to510

the signature of negative (surface) anomalies of the northern annular mode (NAM) often observed after sudden stratospheric

warming (SSW) events.

We found that the final state of the life cycle is associated with increased zonal mean kinetic energy when a stratospheric jet

is included in the system, roughly representing the polar vortex of typical winter-time conditions, compared to the typical life

cycle setup including only a tropospheric jet, roughly representing post-SSW conditions. This increase in mean kinetic energy515

corresponds to a negative NAM signal in the final state zonal wind, i.e., a relative equatorward shift of the tropospheric jet in

the case with tropospheric jet only compared to the case with tropospheric and stratospheric jet. The negative NAM signal is

the result of a reduced poleward shift over the course of the life cycle induced by a reduction in eddy momentum transport at

tropopause level.

The corresponding NAM-like jet-shift response has an increased surface signal if the system includes surface friction, which520

might seem counter-intuitive, but is consistent with the idea of an increased coupling of surface winds to the eddy momentum

transport at tropopause level due to the friction.

We further showed that the system is mainly sensitive to changes of the wind structure in the lower stratosphere (heights

between 10 km and 25 km), rather than to zonal wind anomalies in the middle and upper stratosphere.

The findings of this paper provide further evidence for the role of tropospheric eddy feedbacks in shaping the tropospheric525

response to stratospheric events. In particular, they help to explain the observed negative surface NAM signal following SSWs.

The simplified nature of the idealised life cycle setup allows for a clean separation of tropospheric eddy feedbacks in the

surface response to different stratospheric conditions, highlighting the role of tropopause-level momentum fluxes in the non-

linear phase of the life cycle. It furthermore offers quantitative insights into the role of surface friction in modulating the surface

response to stratospheric events in a simplified setting.530
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Appendix A: Appendix: Construction of initial state

The basic state used to initialise our experiments is defined via a zonally symmetric zonal wind field, consisting of two indi-

vidual components: a tropospheric jet UT (representing the mid-latitude jet) and a stratospheric jet US (representing the polar

vortex). The total wind field is then given by the sum of both components U = UT +US , with the tropospheric jet profile being

given by535

UT = uTmax (z/zTmid)exp((1− (z/zTmid)
α

)/α)sin3
(
π sin2 (φ)

)
, (A1)

where z =−H ln(p/p0) is a log-pressure coordinate with scale height H = 7.5 km and reference pressure p0 = 1000 hPa

and φ describes latitude. The parameters uTmax, zTmid and α can be used to modify the jet strength, the core height and the

depth of the jet, respectively. The corresponding stratospheric jet profile is defined via

US = uSmaxη(z)exp
(
−(z− zSmid)2/∆z2S − (φ−φS)2/∆φ2S

)
, (A2)540

where uSmax determines the strength of the jet, zSmid and φS its core position and ∆zS and ∆φS its width and depth,

respectively. Note that we restrict both jet profiles to the northern hemisphere, i.e., for φ < 0 we choose uTmax = uSmax = 0

and therefore keep the southern hemisphere of the basic state at rest.

The function η(z) can be used to further modify the vertical structure of the stratospheric jet. For all experiments in Section

3 we choose η ≡ 1, so the stratospheric jet is unmodified, while for the cut-off experiment in Section 4 we choose545

η(z) = 0.5(1± tanh((z− zη)/∆zη)) , (A3)

in order to set the stratospheric jet strength to zero above or below (depending on whether a plus or minus is used within

Equation A3) the transition height zη with a smooth transition of depth ∆zη . This gives us a way to isolate the parts of the

stratospheric jet within the troposphere, lower stratosphere or middle and upper stratosphere, respectively, and thus study the

corresponding influence on the life cycles individually.550

From this initial wind field we compute the meridionally varying part of the initial temperature field following the thermal

wind balance approach used by Polvani and Esler (2007). The meridionally constant part of the (potential) temperature field is

specified by the profile θ(z), which is constructed by solving Equation A4 for given (horizontally constant) static stability N2

and surface potential temperature θsfc.

N2(z) = (g/θ)∂zθ, (A4)555
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with gravitational acceleration g. The imposed profile of N2(z) is defined by Equation A5 and consists of two regions of

constant static stability (N2
T and N2

S , corresponding to troposphere and stratosphere) with a smooth transition at height zTP .

N2(z) =N2
T + 0.5(N2

S −N2
T )(1 + tanh((z− zTP )/∆zTP )) (A5)

To trigger wave growth due to the baroclinic instability of the system we perturb the temperature field of the initial state with

a vertically and meridionally confined and zonally periodic disturbance of fixed zonal wave number k. The spatial structure560

Tpert of this temperature perturbation is defined via Equation A6. Following Polvani et al. (2004) we do not introduce an

equivalent balanced wind perturbation as the small imbalance of this initial perturbation only has a negligible effect on the

general evolution of the flow, compared to the rapidly growing unstable modes of the system.

Tpert = Tmax cos(kλ)cosh(2(φ−φpert))−2 exp((p− p0)/(p0− ppert)) , (A6)

where p0 = 1000 hPa and λ is longitude. Table A1 lists the physical parameters and parameter ranges used to define the565

different basic states used in the present paper.
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Table A1. Physical parameters used in the the different model experiments.

Symbol Physical meaning Value

uTmax Tropospheric jet strength 45 m/s

zTmid Tropospheric jet core height 11 km

α Tropospheric jet depth parameter 3

uSmax Stratospheric jet strength 0-75 m/s

zSmid Stratospheric jet core height 50 km

∆zS Stratospheric jet depth 22 km

φS Stratospheric jet core latitude 60◦

∆φS Stratospheric jet width 12◦

θsfc Surface potential temperature 288 K

N2
T Tropospheric static stability 1.2e-4 s−1

N2
S Stratospheric static stability 5e-4 s−1

zTP Reference tropopause height 12.5 km

∆zTP Reference tropopause depth 3 km

Tmax Temperature perturbation magnitude 1 K

k Zonal perturbation wave number 6

φpert Perturbation latitude centre 45◦

ppert Perturbation pressure top 700 hPa

zη Cut-off transition height 10 km and 25 km

∆zη Cut-off transition depth 4 km
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