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Abstract. This article analyzes the relationship between off-season tropical cyclone (TC) 11 

frequency and climate variability and change for the Pacific and Atlantic Ocean basins. TC track 12 
data was used to extract the off-season storms for the 1900-2019 period. TC counts were 13 
aggregated by decade and the number of storms for the first six decades (pre-satellite era) was 14 
adjusted. Mann-Kendall non-parametric tests were used to identify trends in decadal TC counts 15 
and multiple linear regression models (MRL) were used to test if climatic variability or climate 16 
change factors explained the trends in off-season storms. MRL stepwise procedures were 17 
implemented to identify the climate variability and change factors that explained most of the 18 
variability in off-season TC frequency. A total of 713 TCs were identified as occurring earlier or 19 
later than their peak seasons, most during the month of May and in the West Pacific and South 20 
Pacific basins. The East Pacific (EP), North Atlantic (NA) and West Pacific (WP) basins exhibit 21 
significant increasing trends in decadal off-season TC frequency. MRL results show that trends 22 
in sea surface temperature, global mean surface temperature, and cloud cover explain most of 23 
the increasing trend in decadal off-season TC counts in the EP, NA, and WP basins. Stepwise 24 
MLR results also identified climate change variables as the dominant forces behind increasing 25 
trends in off-season TC decadal counts, yet they also showed that climate variability factors like 26 
El Niño-Southern Oscillation, the Atlantic Multidecadal Oscillation, and the Interdecadal Pacific 27 
Oscillation also account for a portion of the variability. 28 

 29 
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1.  Introduction  34 

Increasingly, scientific evidence has shown a link between tropical cyclones (TC) and global 35 
warming, especially following the dramatic rise in both the intensity and frequency of storms during 36 
the first two decades of the present century (Goldenberg et al., 2001; Holland and Webster, 2007). 37 
Scientific studies (Landsea, 2005; Emanuel, 2005; Trenberth and Shea, 2006; Trenberth, 2007) are 38 
not in agreement as to whether sea surface temperatures have a measurable effect on the frequency 39 
of tropical cyclones and other studies (Camargo and Sobel, 2005;  Nogueira and Kim, 2007; Mahala 40 
et al., 2015; Zhao et al., 2018]  have evaluated cyclonic activity on a time scale longer than 41 
interannual and have associated it with variability in the El Niño Southern Oscillation (ENSO), the 42 
Atlantic Multidecadal Oscillation (AMO) and the Interdecadal Pacific Oscillation (IPO). However, 43 
little is known about the changes in the frequency of off-season TCs, storms that occur before and 44 
after the peak TC season months, and their connections to climate variability and change.  45 

A number of recent papers (Wang and Lee, 2008; Knutson et al., 2010; Emanuel, 2013) have 46 
documented global increases in the proportion of very intense cyclones as well as latitudinal trends 47 
in maximum tropical cyclone (TC) intensity, which are consistent with future climate projections. A 48 
detailed review of the behavior of TCs (Walsh et al., 2019) concluded that it remains uncertain 49 
whether past changes in TC activity have exceeded the variability expected from natural causes, 50 
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while concerns remain about the temporal homogeneity of the best record (Landsea et al., 2006; 51 
Mann et al., 2007). Another study (Mann et al., 2009) found that recent increases in the frequency 52 
of intense TCs in the North Atlantic (NA) were the product of reinforcing effects, such as La Niña-53 
like climate conditions and relative tropical Atlantic warming. Yet, no study has focused on 54 
examining changing trends in off-season TC frequency and its relation to natural variability or 55 
climate change. 56 

A synthesis (Christensen et al., 2013) of the then-available regional projections of future TC 57 
climatology for 2081–2100 in relation to 2000–2019, for a business as usual emissions scenario 58 
similar to A1B, shows that worldwide the consensus projection was for decreases in TC numbers by 59 
approximately 5–30%, increased frequency of Category 4 and 5 storms between 0 and 25%, an 60 
increase by a small percentage in the typical maximum intensity of life, and an increase in TC 61 
rainfall amounts by 5–20%. Nevertheless, it is clear that there is great uncertainty about these 62 
projections. Such projections do not consider changes in off-season TC development in any of the 63 
basins where TCs form 64 

Several climatic reconstructions have been performed (Bradley et al., 2006; Mann et al., 2009) 65 
using proxy data by collecting sediments from the impact of hurricanes in the period 500–1850 and 66 
then calculated estimates from the statistical model of the activity of tropical cyclones based on 67 
modern instrumental weather indexes for the period (1851–2006). In analyzing these results and 68 
comparing them with the cyclone seasons fixed by the World Meteorological Organization, the 69 
hurricane season (tropical depressions, tropical storms and hurricanes) in the Atlantic Ocean was 70 
fixed as June 1 to November 30 in 1960, yet we observe a significant variability in off-season TC 71 
occurrence before/after the hurricane season after the 1960s.  72 

Even though it not uncommon for TCs to develop outside of their peak TC season months, there is a 73 
need to examine trends in the number of storms that are forming during low activity months.  The 74 
formation of the extratropical storm Andrea on May 20, 2019 marks the decade of 2010 as that with 75 
the greatest number of tropical cyclones in the Atlantic Ocean before or after the hurricane season 76 
dates established by official bodies like the World Meteorological Organization (WMO) and the 77 
National Oceanic and Atmospheric Administration (NOAA). The frequency of TCs in the North 78 
Atlantic basin has been found to be influenced by fluctuations in teleconnections such as ENSO and 79 
AMO (Trenberth et al., 2006; Nogueira et al., 2013). However, human-induced climate change 80 
manifested as higher sea surface temperatures (SST) and increasing evaporation rates in the tropical 81 
and sub-tropical North Atlantic basin could also be related to the higher frequency of off-season 82 
tropical or extratropical cyclone occurrences in more recent decades. That increasing trend in SSTs 83 
in the Atlantic and other ocean basins and its relation to out off-season TC occurrences during the 84 
last century has not been thoroughly examined by the scientific community. 85 

This study aims to determine if off-season TCs have increased in their frequency since the 1900 and 86 
if that increment in the number pre and post off-season storms could be associated with normal 87 
climatic variability or climate change. The total number of out off-season TCs per decade for the 88 
North Atlantic (NA), West Pacific (WP), East Pacific (EP) and South Pacific (SP) ocean basins 89 
where analyzed to determine if any of the basins experienced an increase in the number of off-90 
season tropical/extratropical cyclones over time that could be associated to climatic variability or 91 
climate change. The Indian Ocean basins were not included in this analysis due to limited data 92 
availability. Ocean basins that were found to have statistically significant trends were then analyzed 93 
further with multiple liner regression models (MRL) and regression stepwise procedures to 94 
determine if climate variability or change factors could explain increasing trends in off-season TC 95 
frequency over time.  96 

 97 
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2.  Data 98 

Six-hourly TC track data for all storms across all ocean basins were obtained from the  International 99 
Best Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2018) and all TCs that 100 
occurred at or after 1900 were extracted. The TC tracks were then then extracted for the northern 101 
hemisphere basins that include the East Pacific (EP), the North Atlantic (NA) and the West Pacific 102 
(WP) and for the southern hemisphere basin in the South Pacific (SP) (Fig 1a).  The off-season TCs 103 
were then aggregated by decades in order to identify decadal variability or trends in total storm 104 
counts at the individual basin scales. Off-season TCs were defined as storms that occurred in the 105 
three months before and after the six-month period of peak cyclone activity in the basin.  106 

The monthly frequency of TCs for each basin were analyzed for the entire period and based on that 107 
analysis we determined that off-season TCs that occurred during the three months (Mar-Apr-May) 108 
before June 1st were pre-season and the three months (Dec-Jan-Feb) after November 30th were post-109 
season in the northern hemisphere basins (NA, EP and WP) In the southern hemisphere, the three 110 
months before (Aug-Sep-Oct) November 1st were classified as pre-season and the three months 111 
(May-Jun-Jul) after April 30th were classified as post off-season in the southern hemisphere basins 112 
(SP) (Fig 1b). Pre-season and post-season decadal time-series for the Northern/Southern hemisphere 113 
and individual basins were then constructed to calculate the total number of TCs per-decade from 114 
1900 to 2019.  115 

The climate variability indexes of ENSO (Niño 3.4), AMO (Trenberth et al., 2019) were 116 
respectively obtained from the National Oceanic and Atmospheric Administration (NOAA) 117 
Physical Sciences Lab and the National Center for Atmospheric Research. The IPO index was 118 
obtained from the NOAA Physical Sciences Laboratory (Henley et al., 2015). The variables 119 
associated with anthropogenic climate change used in this study were sea surface temperature 120 
(SST), global mean surface temperature (GMST) and cloud cover (CC). SST data were obtained 121 
from the HadISST1 1° reconstruction, GMST data were accessed from the GISTEMP v4 and CC 122 
data was acquired from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS)  123 
v2.5, all for the 1900-2019 period. The It is important to note that the ICOADS data set has some 124 
key limitations, like data coverage been sparse and limited corrections that account for changes in 125 
observing practicesCC estimates from ICOADS are obtained from voluntary observing ships that 126 
report CC in octas (eighths) ranging from 0 (completely clear sky) to 8 (completely overcast). These 127 
CC estimates are known to be temporally and spatially heterogenous with relatively high 128 
observational errors in some areas, yet increases in ocean coverage for clouds after the 1900 have 129 
been noted in the latest ICOADS 3.0 release [Eastman et al. 2011, Freeman et al. 2016; 130 
Aleksandrova et al. 2018]. A decadal average was calculated for all of the climate variability and 131 
change variables in order to use them as predictors of decadal TC total counts (Table 1).  132 

Table 1. Tropical cyclone, climate change and variability variables used in this study.  
  

  Abbreviations  Units  

Tropical Cyclone Counts TCs Decadal Total Counts 
 
Climate Change Variables    

 
Sea Surface Temperature  SST ° 
Global Mean Surface Temperature  GMST ° 
Cloud Cover  CC Oktas 

 
Climate Variability Variables    

 
El Niño Southern Oscillation  ENSO 3.4 °SST anomalies index 
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Interdecadal Pacific Oscillation IPO °SST anomalies index 

Atlantic Multi-decadal Oscillation  AMO °SST anomalies index 

 133 

 134 

3.  TC Adjustment Method 135 

TC counts before 1966 (pre-satellite era) are incomplete (Mann et al., 2007; Landsea, 2007) since a 136 
lot of storms that didn’t make landfall weren’t recorded, so in order to make any comparisons 137 
between the earlier and later decades, the series for each basin need to be adjusted accordingly. 138 
Another issue related to pre-satellite era TC track data is the undercount of weaker tropical 139 
depressions, since the detection and classification of those weaker storms that showed poor 140 
organization was probably more difficult before 1966 (Moon et al., 2019). The average landfall 141 
percentage of TCs were calculated for the periods 1900-1965 (pre-satellite) and 1966-2019 (satellite 142 
era and new TC monitoring technologies available) in order to determine the share of storms that 143 
made landfall in both periods. The percentage of landfalling TCs is expected to be higher in the 144 
1900-65 period since a higher number of storms that remained over the ocean were not reported, so 145 
the landfall percentage of the pre-satellite period is then adjusted so that it matches the 1966-2019 146 
post-satellite period.  147 

To obtain the estimated number of missing TCs for the 1900-65 period, the number of total storms 148 
in the pre-satellite period is increased until its landfall percentage is equal to the one in the post 149 
satellite era. The total number of additional TCs that resulted in the landfall percentages between the 150 
two periods to be the same or near equal are then divided by the 7 decades of the pre-satellite era 151 
and then the number of extra storms for each decade is multiplied by the percentage of off-season 152 
storms for each basin and that resulting number is then added then  to each of the individual decades 153 
between 1900 and 1969. In a previous study (Landsea, 2007), this method was applied to adjust TC 154 
counts in the North Atlantic to determine if the basin has experienced an increasing trend in annual 155 
TC frequency since the 1900, and its results show that after adjusting the tropical storm counts no 156 
trends were found.   157 

Here we show how this TC series adjustment method was applied to the total TC count for the NA 158 
basin for the 1900-2019 period . First, we calculate the landfall percentage for the pre-satellite  period 159 
1900-65 by dividing the number of landfalling TCs (LFTCs) with the total number of storms (TTCs) 160 
and multiply by 100 to get the landfall percentage, check the equations below: 161 
 162 

 (𝐿𝐹𝑇𝐶𝑠 /𝑇𝑇𝐶𝑠)  ∗  100 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: (479/610) ∗ 100 =  78.5% 
(1) 

 163 
 164 

Then calculate landfall % for the period post-satellite period 1966-2019,  165 
 166 

 (𝐿𝐹𝑇𝐶𝑠 /𝑇𝑇𝐶𝑠)  ∗  100   

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: (583/844) ∗ 100 =  69.1% 
(2) 

 167 
 168 
Then artificially increase the number of TCs (+83 for the NA basin) until the landfall % of the 1900-169 
65 period is equal to landfall % of the 1966-2019:  170 
 171 

 𝐿𝐹𝑇𝐶𝑠 / (𝑇𝑇𝐶𝑠 +  𝐴𝑑𝑑𝑇𝐶𝑠)  ∗  100 

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 479/ (610 + 83) ∗ 100 =  69.1% 
(3) 

 172 



 

5 
 

 173 
Then calculate the percentage (OffP) of off-season TCs (OffTCs) by dividing it by total number of 174 
TCs: 175 
 176 

 (𝑂𝑓𝑓𝑇𝐶𝑠 /𝑇𝑇𝐶𝑠)  ∗  100 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 ∶  (67/1454) ∗ 100 =  4.61% 
(4) 

 177 
Then divide additional TCs (83) by the number of decades between 1900 and 1969 (7) and then 178 
multiply by the off-season TC percentage (.0461) 179 
 180 
 181 

 (𝐴𝑑𝑑𝑇𝐶𝑠/𝐷𝑒𝑐𝑎𝑑𝑒𝑠)  ∗  𝑂𝑓𝑓𝑃 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: (83/7)  ∗  .0461 =  0.54 

 

(5) 

 182 
In the case of the NA, we determined that by using the above TC series adjustment method the basin 183 
would get an additional  0.54 off-season TCs for each of the seven decades that go from the 1900 to 184 
1969. Finally, the additional 0.54 TCs per decade will be divided between pre and post off-season 185 
TCs by multiplying the added storms with the respective percentage of pre/post off season cyclones: 186 
 187 

 𝐷𝑒𝑐𝑂𝑓𝑓𝑇𝐶𝑠 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒/𝑃𝑜𝑠𝑡 𝑆𝑒𝑎𝑠𝑜𝑛 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 0.54/0.62 =  0.33 𝑎𝑛𝑑 0.54/0.38 = 0.21 
(6) 

 188 
The pre off-season decades of the NA basin before 1970 will get an additional 0.33 TCs and the 189 
post off-season decades will get 0.21 more storms. This off-season TC adjustment method was 190 
applied to the other five basins. It is important to note that this TC adjustment method has been only 191 
implemented in the NA basin and that this study is the first attempt to apply technique in other 192 
ocean basins. This technique is in no way capable of detecting all TCs that formed before the 193 
satellite era, yet it offers us the opportunity to estimate missed storms by comparing the TC landfall 194 
percentage of the pre- and post-satellite eras.  195 
 196 
4. Statistical Methods & Models 197 

 198 
Mann-Kendall (MK) tests for trends (Mann, 1945; McLeod, 2005) were applied to all the off-199 

season TC decadal series for all basins in order to determine if the frequency of storms has increased 200 
or decreased over time. This test has the advantage of not assuming any special form for the 201 
distribution function of the data, while having a power nearly as high as their parametric equivalents 202 
and that is why its use is highly recommended by the World Meteorological Organization (Hipel and 203 
McLeod, 2005).  204 
 205 

The decadal series that were then found to have a significant trend based on the MK results were 206 
then furtherly analyzed by applying a series of multiple linear regression models (MLR). MLR were 207 
used to model the decadal count of off-season TCs for basins that showed increasing or decreasing 208 
trends in storm numbers to test if covariates associated with climatic variability and climate change 209 
explained off-season TC frequency. MLR attempts to model the relationship between two or more 210 
explanatory variables and a response variable by fitting a linear equation to observed data.  211 
 212 

Three different MLR models were run for each off-season TC series that exhibited a statistically 213 
significant trend, one MLR model with the climate change variables (SST, GMST & CC) as 214 
predictors, another model with just the climate variability factors (ENSO, AMO & IOD) and a final 215 
model with all of the variables included. Then the three MLR models (pre-season, post-season and 216 
off-season) were run for each of the basins with increasing trends in off-season TCs, the best models 217 
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(highest adjusted R-squared and lowest p-value) were then selected for each of the series. The MLR 218 
models were run in The R Project for Statistical Computing using the biglm package.   219 

  220 
Finally, stepwise selection MLR models were used to identify the climate variability or change 221 

factors making the most statistically significant contributions to off-season increasing TC frequency. 222 
Here we use stepwise selection which is a combination of the forward and backward procedures where 223 
you start with no predictors, then sequentially add the most contributive predictors. After adding each 224 
new variable, it removes the variables that no longer provide an improvement in the model fit (James 225 
et al., 2014; Bruce and Bruce, 2017). The MLR and stepwise for the off-season TC count series for 226 
each of the basins with significant increasing trends were run in The R Project for Statistical 227 
Computing using the MASS package (Venables and Ripley, 2002).  228 

 229 

5.  Results & Discussion  230 

When analyzing the number of TCs for all basins for the 1900-2019 period we found that 713 231 
off-season storms occurred during that time, most during the months of May (NH pre-season and SH 232 
post-season) with 430 and December (NH post-season) with 341 (Figure 1a, 1b). When looking at 233 
the count of off-season TCs per basin we found that as expected the West Pacific (611) and South 234 
Pacific (85) accounted for 81.3% of all off-season storm occurrences. When grouping the basins 235 
between northern and southern hemispheres, we find that 89% of all off -season TCs occurred north 236 
of the equator for the 1900-2019 period (Figure 1a, 1b). The North Atlantic and East Pacific basins 237 
were found to be the ones with the lowest numbers of off-season TCs when compared to the other 238 
two Pacific basins.  239 
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 240 

 241 

Figure 1. Tracks of all out off-season TCs (a) and the number of storms per month for the WP (b), 242 
SP (c), EP (d) and NA (e) basins for the 1900-2019 period. 243 

As shown in Figure 2, even after adding the estimated missing storms before the 1970 decade, 244 
most basins experienced their highest number of out off-season TCs (pre or post) in decades at or 245 
after 1960-69. The 1960-69 decade for the northern hemisphere basins (WP, NA and EP) was found 246 
to be the one with the highest number of pre off-season TCs with 69 and the 1950-1959 decade was 247 
identified as the one with the most post off-season storms with 68 (Figure 2a, 2b, 2c and 2d). When 248 
examining TC counts for all basins individually, we found that the NA and EP basins had their most 249 
active decades after 1970 and that the WP and SP basins experienced their highest storm count decade 250 
after 1960 (Figure 2c, 2d). It is important to note that these results already reflect the additional TCs 251 
that were added to the pre-satellite era.  252 
 253 
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 255 

Figure 2. Adjusted decadal count of all observed and estimated off-season TCs for the WP (a), NA (b), EP (c) 256 
and SP (d) ocean basins for the 1900-2019 period. 257 

The Mann-Kendall non-parametric tests for trends for all basins show that three basins exhibited 258 
statistically significant increasing trends in adjusted decadal off-season TC counts for the 1900-2019 259 
period (Table 2). The basins with statistically significant increasing trends for the entire time period 260 
were the EP (pre and off-season), NA (pre, post and off-season) and the WP (pre, post and off-season). 261 
The EP basin shows an increasing trend in pre- and off-season TCs that is more evident from the 262 
1950s to the present (Figure 2d), while the increasing trend in the NA basin can be observed from the 263 
1970s to 2019. The NA and EP basins also exhibit positive trends when the analysis is done only 264 
considering the post satellite era, yet the results are not statistically significant (Table 2)  265 

The increasing trend in off-season TCs in the WP basin is more evident from the 1900 to 1969 266 
(Figure 2a), which was during  the pre-satellite era where missing TCs were added to the series. 267 
However, no trenda negative trend is found in the WP basin if the decadal counts are analyzed from 268 
the 19670s to the present, yet those results were not statistically significant. In the post-satellite era 269 
in the WP basin, the 1990-1999 decade was identified as the one with most off-season TCs, however 270 
the two following decades exhibited a decreasing trend. The EP and NA basins show significant 271 
increasing trends in off-season TC counts (Table 2). Opposites to the trends identified in the WP 272 
basin, the EP and NA also show increasing decadal counts after the 1960s and 1970s.  decades. The 273 
SP basin also exhibited a positive Tau coefficient, yet it was statistically insignificant for the entire 274 
period and the post-satellite era (Figure 2d).  275 

 276 
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Table 2. Results of Mann-Kendall trend tests for the 1900-2019 period for all ocean basins 
where TCs form. 
  

Trends for the 1900-2019 period  

Pre TCs Tau S P-value Post TCs Tau S P-value Off TCs Tau  S P-value 

EP 0.746 0.002 EP 0.098 0.723 EP 0.679 0.004 

NA 0.572 0.015 NA 0.485 0.042 NA 0.554 0.016 

SP 0.048 0.889 SP 0.015 1.000 SP 0.061 0.836 

WP 0.554 0.016 WP 0.485 0.034 WP 0.534 0.019 

Trends for the 1960-2019 period 

EP 0.596 0.158 EP 0.414 0.338 EP 0.69 0.085 

NA 0.596 0.158 NA 0.645 0.119 NA 0.6 0.132 

SP 0.596 0.158 SP -0.2 0.707 SP -0.06 1 

WP -0.467 0.259 WP -0.6 0.132 WP -0.69 0.085 
 

 Significant trends in bold. 

 277 
MLR models were run on the basins that exhibited statistically significant (< 0.05) increasing 278 

trends in decadal total off-season TC counts over time and here we report the best models for each of 279 
the series. The MLR results show that the statistically significant increasing trends in TC frequency 280 
for the EP (pre and off-season) and WP basins is best explained by climate change factors SST, GMST 281 
and CC in both the normal and detrended series at the 0.05 significance level (Table 3). Climate 282 
change factors accounted for 56% (pre-season) and 52% (off-season) of the increasing trend in TC 283 
counts for the EP basin. In the WP basin climate change factors explained 55% (pre-season), 64% 284 
(post-season) and 68% (off-season) of the trends in off-season TCs, yet lower R squares were found 285 
when the analysis was done with the detrended series. Increasing trends in SSTs, GMST and moisture 286 
(CC) outside of the prime months of tropical storm development could promote more optimumbetter 287 
conditions for higher off-season TC occurrences (Klozbachk, 2006; Hansen et al., 2010). The MLR 288 
models were also done with detrended decadal series of off-season TCs, and detrended decadal series 289 
of the different climate variability and change factors, and similar results were found.  290 
 
Table 3. Best multiple linear regression models (MLR) for basins with statistically 
significant increasing trends in off-season TCs with detrended climate indices. 

Model Adj. R² Adj. R² Det. Factors  p-val. p-val Det. 

EP pre-season 0.563 0.444 SST, GMST & CC 0.021 0.038 
      

EP off-season 0.522 0.472 SST, GMST & CC 0.030 0.024 
      

NA pre-season 0.481 0.496 SST, GMST & CC 0.041 0.022 
      

NA post-season 0.427 0.247 ENSO & AMO 0.130 0.057 
      

NA off-season 0.384 0.406 SST, GMST & CC 0.070 0.010 
      

WP pre-season 0.551 0.462 SST, GMST & CC 0.020 0.000 
      

WP post-season 0.645 0.478 SST, GMST & CC 0.000 0.023 
      

WP off-season 0.689 0.481 SST, GMST & CC 0.005 0.017 

 291 

Table 3. Best multiple linear regression models (MLR) for basins with statistically 
significant increasing trends in off-season TCs. 
  

Model Multiple R-squared Adjusted R² Factors  p-value 

EP pre-season 0.682 0.563 SST, GMST & CC 0.021 
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EP off-season 0.653 0.522 SST, GMST & CC 0.030 
     

NA pre-season 0.622 0.481 SST, GMST & CC 0.041 
     

NA post-season 0.687 0.427 ENSO & AMO 0.130 
     

NA off-season 0.552 0.384 SST, GMST & CC 0.070 

WP pre-season 0.673 0.551 SST, GMST & CC 0.020 
     

WP post-season 0.742 0.645 SST, GMST & CC 0.000      

WP off-season 0.774 0.689 SST, GMST & CC 0.005 

 292 

The climate variability factors (ENSO, AMO & IOD) did not exhibit statistically significant 293 
relationships with increasing off-season TC counts, which shows that natural variability does not 294 
explain the incrementing number of storms in the EP and WP basins.  MLR model results for the 295 
NA basin also showed the climate change variables accounting for 48% (pre-season) and 38% (off-296 
season) of the increasing trend in TCs (Table 3). However, the MLR model results for the post-297 
season months in the NA basin showed that the climate variability variables (ENSO & AMO) 298 
accounted for 42% (25% in the detrended) of the increasing trend in TCs, yet the model was not 299 
found to be statistically significant in both the normal and detrended series. It is well known that 300 
cold phases of ENSO (La Niña) and warm phases of AMO tend to be associated with higher TC 301 
frequency in the North Atlantic ocean (Tang and Neelin, 2004; Briggs, 2008) and this could explain 302 
why those teleconnections were  found to have the most significant influence on post-season TC 303 
frequency in the NA basin. When the MLR results of the original and detrended series are compared 304 
(Table 3), we find that the models with the detrended series exhibit lower R squares than the MLR 305 
models with the original series, yet those models were still found to be statistically significant 306 
which suggests that the correlation between off-season TCs and climate change factors is strong 307 
even after decadal trends are removed. . Yet, it is important to note that in most basin series, 308 

including the NA, climate change variables explained more of the off-season TC increasing trend 309 

than the climate variability factors.  310 

Stepwise MLR model results showed that climate change factors (SST, GMST & CC) were among 311 
the selected variables that explained most of the increasing trend in off-season TCs for all basins 312 
analyzed (Table 4). In the EP basin, SST, ENSO, and CC, accounted for 69% (pre-season) and 65% 313 
(off-season) of the increasing trend in TCs. In the NA basin, the stepwise procedure selected CC as 314 
the sole climate change factor that explained 52% (pre-season) and 40% (off-season) of the rising 315 
frequency in TC counts. However, CC & AMO were selected as the variables that explained (43%) 316 
most of the variability in TC frequency during the post-season months in the NA basin. Stepwise 317 
procedure results for the WP basin show that climate change and variability factors were selected as 318 
the best predictors of TC frequency, with GMST and CC accounting for 57% (pre-season), CC, 319 
GMST, ENSO and IPO explaining 72% (post-season) and 74% (off-season) of the variability of 320 
TCs.  321 

Table 4. Stepwise multiple linear regression models (MLR) for basins with 
statistically significant increasing trends in off-season TCs. 
  

Model R-squared Adjusted R² Factors  p-value 

EP pre-season 0.777 0.694 SST, ENSO & CC 0.005 
     

EP off-season 0.747 0.652 SST, ENSO & CC 0.008 
     

NA pre-season 0.569 0.526 CC 0.004 
     

NA post-season 0.687 0.427 CC & AMO 0.098 
     

NA off-season 0.460 0.406 CC 0.015 
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WP pre-season 0.655 0.578 GMST & CC 0.008 
     

WP post-season 0.826 0.726 CC, GMST, ENSO & IPO 0.008 
     

WP off-season 0.839 0.747 CC, GMST, ENSO & IPO 0.006 

 322 

The EP experienced a steady increase in off-season TC total counts from 1900 to 2019 at a rate 323 
of 1.1 additional storms per decade. The decadal off-season total TC count series for the EP basin 324 
closely resembles the increasing trend in average SSTs and CCs (Fig 3a, 3c). When the EP off-season 325 
TC tracks are examined, it shows that most storms have formed in areas that have experienced 326 
statistically significant increasing trends in SST and CC, yet no changes in track or genesis location 327 
were detected over time. (Fig 3d, 3e). The correlation between off-season TCs in the EP basin and 328 
ENSO is not as clear as the one between SST and CC, with some mostly warm ENSO decades like 329 
the 1990-1999 exhibiting lower storm counts and other periods with cooler phases dominating 330 
showing a higher number of cyclones. When SST patterns for areas in the EP basin where TCs 331 
develop are examined over time, we find that most tropical/sub-tropical ocean waters have 332 
experienced a statistically significant increasing trend in ocean surface temperatures from 1900 to 333 
2019 (Fig 3d). Similar to other studies (Hansen et al., 2010), we find that the EP tropical ocean 334 
surfaces have increased by 0.051 degrees C° per decade. When CC patterns are  examined, we find 335 
that it has also experienced a statistically significant increasing trend in some areas in the EP basin 336 
(Fig 3e).  337 

 338 
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 339 

Figure 3. Decadal TC counts for the EP off-seasons and decadal average SSTs (a), decadal TC counts for 340 
the EP off-seasons and decadal average ENSO 3.4 (b), decadal TC counts for the EP off-seasons and 341 
decadal average correlation between Time and Dec-May averaged CC (c), correlation between Time and 342 
Dec-May averaged SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation 343 
between Time and Dec-May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period.  344 

 345 
The decadal off-season total TC count series for the NA basin closely resembles the 346 

increasing trend in average SSTs and CCs (Fig 4a, 4c). The NA decadal series shows a steady increase 347 
in off-season TC total counts from 1900 to 2019 at a rate of 0.7 additional storms per decade and an 348 
SST increasing trend of 0.055 C° per decade. Both the average decadal SST and CC series coincide 349 
with the peaks and valleys in off-season TC counts for the NA basin, with the 1950-1959 showing a 350 
high number of storms associated with high mean SSTs and CCs while the drop in storm counts in 351 
the 1960-1969 decade matches a drastic drop in ocean surface temperatures (Figures 4a, 4c). The off-352 
season TC tracks in the NA basin also formed in areas that exhibited increasing trends in SST and 353 
CC, however no changes in track or genesis location were detected over time  (Figure 4d, 4e).  Even 354 
though average SSTs increase to 0.135 C° per decade from 1970 to 2019, off-season TC total counts 355 
went down in the 1990-1999 and 2010-2019 decades, with the decade in between (2000-2009) 356 
exhibiting the highest number of off-season TCs (14) of all decades examined. However, it is 357 
important to note that 5 out of the 6 decades with the most off-season TCs in the NA basin occurred 358 
after the 1970s.  359 
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 360 
When North Atlantic SSTs are examined in areas where TCs form, we found that ocean surface 361 

temperatures have increased at a rate of 0.055 degrees C° per decade for the off-season months of 362 
Dec-March (Fig 4d). When CC patterns are  examined, we find that it has also experienced a 363 
statistically significant increasing trend of 0.06 oktas (eighths of the sky that are covered in clouds) 364 
per decade in the North Atlantic basin since the 1900 (Figure 4e). If the NA pre/post off-season series 365 
is modified to begin in the 1960s, we find that SSTs have increased at a decadal rate of 0.082 C° per 366 
decade  at a rate of 1.2 additional storms per decade. Overall, these results suggest that increasing 367 
trends in SSTs, which also drive increasing trends in evaporation rates associated with high CCs, are 368 
the physical mechanisms behind most of the recent increase in the total number of out of season TCs 369 
in the NA basin. The correlation between off-season TCs in the NA basin and AMO is not as clear as 370 
the one between SST and CC, with some warm AMO phases between 1930-1959 exhibiting lower 371 
storm counts while some cooler phases (1970-89) showing a higher number of cyclones. 372 
 373 

 374 

Figure 3. Decadal TC counts for the EP off-seasons and decadal average SSTs (a), decadal TC counts for 375 
the EP off-seasons and decadal average ENSO 3.4 (b), decadal TC counts for the EP off-seasons and 376 
decadal average Correlation between Time and Dec-May averaged CC (c), correlation between Time and 377 
Dec-May averaged SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation 378 
between Time and Dec-May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period  379 
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 380 

Figure 4. Decadal TC counts for the NA off-seasons and decadal average SSTs (a), decadal TC counts for the 381 
NA off-seasons and decadal average AMO (b), decadal TC counts for the NA off-seasons and decadal average 382 
cCorrelation between Time and Dec-May averaged CC (c), correlation between Time and Dec-May averaged 383 
SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation between Time and Dec-384 
May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period (e).  385 
 386 

The decadal off-season total TC count series for the WP basin closely resembles the increasing 387 
trend in GMST (Fig 5a). However, the WP basin experienced the highest count of off-season TCs in 388 
the 1960-69 decade, not in the more recent decades like the EP and NA basins. More importantly, if 389 
trend analysis for off-season TC counts is done from 1960-2019 in the WP basin, we find find no 390 
statistically significant increasing a non-statistically significantor decreasing trend. However, it is 391 
important to note that four out of the five decades with most off-season TCs in the WP basin occurred 392 
after 1960. However, the 2010-2019 decade was identified as the period with the lowest total number 393 
of off-season TCs even though increasing trends in mean SST, GMST and CC continued (Fig 5a, 5d 394 
and 5e). Off-season TC tracks in the WP basin also correlate spatially with areas that show increasing 395 
trends in SST and CC (Fig 5d, 5e), yet no changes in TC genesis or tracks were identified over time. 396 
The decreasing number of off-season TCs in the last two decades coincided with a negative phase of 397 
the IPO, which suggests that TC frequency in the WP basin is influenced by fluctuations in the IPO 398 
(Fig 5c), whose recent negative phase since 1998 resembles La Niña–like SST anomaly patterns 399 



 

16 
 

(Zhao et.al, 2018). Even though most of the variability in off-season TC frequency in the WP basin 400 
can be explained by climate change trends in GMST, SST and CC, the rest of the variance in TCs is 401 
account by fluctuations in the IPO and ENSO teleconnections. 402 
 403 

 404 
Figure 5. Decadal TC counts for the WP off-seasons and decadal average SSTs (a), decadal TC counts for the 405 
WP off-seasons and decadal average AMO (b), decadal TC counts for the WP off-seasons and decadal average 406 
cCorrelation between Time and Dec-May averaged CC (c), correlation between Time and Dec-May averaged 407 
SST (C°) and the off-season TC tracks for the 1900-2019 period (d) and correlation between Time and Dec-408 
May averaged CC (oktas) and the off-season TC tracks for the 1900-2019 period (e). 409 
 410 

The results of the MLR and stepwise procedures have shown that decadal off-season TC 411 
increasing trends in the NA, EP and WP basins is mostly associated with climate change (SST and 412 
CC) and climate variability factors (ENSO and IPO). Since no previous studies have focused on 413 
analyzing trends in off-season TC trends, our results can only be compared to analyses that have 414 
consider in-season storms. Studies that have examined TC frequency overall have found increases in 415 
the number of most intense hurricanes [(Wang and Lee, 2008; Knutson et al., 2010; Emanuel, 2013]), 416 
yet no clear trend has been found when lower intensity TCs have been examined [Landsea, 2007]. 417 
The results of other studies show that there is no overall agreement on the relationship between SSTs 418 
and TC frequency (Landsea, 2005; Emanuel, 2005; Trenberth and Shea, 2006; Trenberth, 2007), yet 419 
some  have found strong associations between TC variability and ENSO, AMO and IPO [Camargo 420 
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and Sobel, 2005;  Nogueira and Kim, 2007; Mahala et al., 2015; Zhao et al., 2018].. In this study we 421 
analyzed off-season TCs and our results differ from those that have found no trend in overall TC 422 
frequency, since we found decadal increasing trends in the NA and EP basin in both the pre and post-423 
satellite eras. The results presented here suggest that climate change trends like increasing SSTs and 424 
more favorable moisture environments (CC) between the months of Dec to May in the NA and EP 425 
basins seem to be the major factors behind decadal increasing trends in off-season TCs.   426 
 427 
The results of the MLR and stepwise procedures have shown that decadal off-season TC increasing 428 
trends in the NA, EP and WP basins is mostly associated with climate change (SST and CC) and 429 
climate variability factors (ENSO and IPO). Since no previous studies have focused on analyzing 430 
trends in off-season TC trends, our results can only be compared to analyses that have consider in-431 
season storms. Studies that have examined TC frequency overall have found increases in the number 432 
of most intense hurricanes (Wang and Lee, 2008; Knutson et al., 2010; Emanuel, 2013).  433 

6.  Summary and concluding remarks  434 

The frequency of TCs that developed outside of their prime season months were analyzed to 435 
determine if trends in higher storm totals in the Pacific and Atlantic Ocean basins were associated 436 
with natural variability, climate change or both. Adjusted off-season decadal TC total counts for six 437 
ocean basins were analyzed for the 1900-2019 period in order to determine if the number of storms 438 
have been increasing over time. Mann-Kendall tests for trends were done and the basins that exhibited 439 
statistically significant increasing trends were then furtherly analyzed using multiple linear regression 440 
models and stepwise procedures to determine if those trends could be explained by fluctuations 441 
associated with climate variability, climate change trends or a combination of both.  442 

 443 
 The main results of this study suggest that decadal total off-season (pre/post) TC counts have 444 

significantly increase over time since the 1900 in the East Pacific (EP), North Atlantic (NA) and West 445 
Pacific (WP) basins. The EP and NA basins exhibited statistically significant increasing trends even 446 
if the analysis was done from the 1960s instead of the 1900. The WP basin showed an overall 447 
increasing trend in the total number of off-season TCs per decade, yet if the analysis is done from the 448 
1960s to the present, no statistically significant increasing trend is found. However, the three basins 449 
that reflected an overall increase in decadal off-season TC frequency had their most active decades 450 
after the 1970s.  451 

 452 
Results from the best multiple linear regression (MLR) models show that the increasing decadal 453 

count of off-season TCs has been found to be strongly associated with climate change trends in sea 454 
surface temperature (SST), global mean surface temperature (GMST) and cloud cover (CC) in all 455 
three basins (EP, NA and WP). The MLR model where climate variability variables (ENSO and 456 
AMO) explained most of the variance in off-season TC counts was in the storm decadal counts for 457 
the post-season months of the NA basin.  458 

 459 
Results of the MLR stepwise procedures showed that the selected variables that accounted for 460 

most of the variability in off-season TCs for the EP basin were SST, CC and ENSO, while CC (pre-461 
season and off-season) and AMO (post-season) were chosen as the best variables for the NA basin. 462 
The stepwise procedure identified the climate change trends in GMST and CC, and fluctuations in 463 
ENSO and IPO as the variables that accounted for most of the variability in decadal off-season total 464 
TC counts in the WP basin,  465 
 466 

The findings of this study suggest that trends in SST, GMST and CC associated with climate 467 
change are not only altering the frequency (Klotzbachk, 2006; Saunders and Lea, 2006; Hansen et al., 468 
2010) and intensity of TCs that develop during the peak months of the season, they are also altering 469 
the total number of storms that form in the off-season months (Dec-May), especially in the EP and 470 
NA basins. The results of this study have important implications for the NA and EP basins, if off-471 
season TCs have been increasing in frequency since the 1900 we can expect that this trend associated 472 
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with climate change would continue in future decades. This increasing number of off-season TCs 473 
could potentially impact societies in their path during times of the year when storms are least 474 
expected, possibly increasing environmental and economic impacts in areas that are already 475 
experiencing the effects of climate change exacerbated phenomena.  476 

 477 
 478 
One of the main limitations of this work was the inclusion of tropical depressions in the off-479 

season TC analysis. If data on TC intensity were widely available for all off-season TCs, it would 480 
have been possible to exclude weaker tropical depressions from the analysis since the detection and 481 
classification of those storms was more difficult in the pre-satellite era. Other limitations of this study 482 
include the issues of worse data quality in the pre-satellite era, the problem of applying a universal 483 
missed TC adjustment method to all basins analyzed and the lack of information on TC intensity for 484 
many storms, especially in the pre-satellite era.  485 

 486 
 487 
Acknowledgments 488 
 489 

To Roberto García, director of the National Meteorological Service of San Juan, Puerto Rico, for his 490 

suggestions during the discussion of this paper. The 6‐ hourly tropical cyclone track data 491 

supporting this article are based on publicly available measurements from the International Best 492 
Track Archive for Climate Stewardship (IBTrACS;https://www.ncdc.noaa.gov/ibtracs/). The sea 493 
surface temperature (HadISST1 1° reconstruction), and cloud cover (ICOADS v2.5 1°) datasets 494 
supporting this article are based on publicly available measurements that can be accessed from the 495 
Kingdom of the Netherlands Meteorology Institute (KMNI; https://climexp.knmi.nl/start.cgi). The 496 
global mean surface temperature (GISTEMP v4) data supporting this article are based on publicly 497 
available measurements that from the NASA Goddard Institute for Space Studies (GISS; 498 
https://climatedataguide.ucar.edu/climate-data/global-surface-temperature-data-gistemp-nasa-499 
goddard-institute-space-studies-giss.) The El Niño Southern Oscillation (ENSO 3.4) data supporting 500 
this article are based on publicly available measurements from the National Oceanic and 501 
Atmospheric Administration Physical Sciences Lab (PSL; 502 
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data). The Atlantic Multidecadal 503 
Oscillation data supporting this article are based on publicly available measurements from the 504 
National Center for Atmospheric Research (NCAR; https://climatedataguide.ucar.edu/climate-505 
data/atlantic-multi-decadal-oscillation-amo). The Interdecadal Pacific Oscillation data supporting 506 
this article are based on publicly available measurements from the National Oceanic and 507 
Atmospheric Administration Physical Sciences Lab (PSL; 508 
https://psl.noaa.gov/data/timeseries/IPOTPI/).  509 

References 510 

Aleksandrova, M., Gulev, S. K., and Belyaev, K.: Probability distribution for the visually observed 511 
fractional cloud cover over the ocean. Journal of Climate, 31(8), 3207-3232. 512 
https://doi.org/10.1175/JCLI-D-17-0317.1, 2018. 513 

Bradley, R.S., M.K. Hughes M.K., and M.E. Mann, M.E.:  (2006) Authors were clear about hockey-514 
stick uncertainties,. Nature., 442 (7103): 627. https://doi.org/10.1038/442627b, 2006.  515 

Bruce, P.Peter, and Andrew Bruce, A.: 2017. Practical Statistics for Data Scientists. O’Reilly 516 
Media, .2017. 517 

Camargo, S. J., and & Sobel, A. H. (2005): . Western North Pacific tropical cyclone intensity and 518 
ENSO. Journal of Climate, 18(15), 2996-3006. https://doi.org/10.1175/JCLI3457.1, 2005.  519 

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Indent: First line:  0.3"

https://www.ncdc.noaa.gov/ibtracs/
https://climexp.knmi.nl/start.cgi
https://climatedataguide.ucar.edu/climate-data/global-surface-temperature-data-gistemp-nasa-goddard-institute-space-studies-giss
https://climatedataguide.ucar.edu/climate-data/global-surface-temperature-data-gistemp-nasa-goddard-institute-space-studies-giss
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo
https://psl.noaa.gov/data/timeseries/IPOTPI/
https://doi.org/10.1175/JCLI-D-17-0317.1
https://doi.org/10.1038/442627b
https://doi.org/10.1175/JCLI3457.1


 

19 
 

Stocker, T.F., D. Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, 520 
V., Bex and P.M. Midgley (eds.)Christensen J.H. et al. in Climate Change.:  (2013) The 521 
Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 522 
Intergovernmental Panel on Climate Change, (eds). Stocker T.F., Qin D., Plattner G.-K., Tignor 523 
M., Allen S.K., Boschung J., Nauels A., Xia Y., V.B. & P.M.M.) Cambridge; Cambridge 524 
University Press,. 2013. 525 

Emanuel, K.A. (200: 5) Increasing destructiveness of tropical cyclones over the past 30 years. 526 
Nature, 436: 686–688. https://doi.org/10.1038/nature03906,  2005. 527 

Emanuel, K.A.: (2013) Downscaling CMIP5 climate models shows increased tropical cyclone 528 
activity over the 21st century. PNAS July 23, 2013 110 (30) 12219–12224. Accessed from: 529 
https://doi.org/10.1073/pnas.1301293110, 2013.   530 

Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., ... & Gloeden, 531 
W.: ICOADS Release 3.0: a major update to the historical marine climate record. International 532 
Journal of Climatology, 37(5), 2211-2232, 2017.  533 

Goldenberg, S.B., C.W. LandseaLandsea,  C.W., A.M. Mestas-Nuñez, A.M.,  and W.M. Gray, 534 
W.M.: (2001) The recent increase in Atlantic hurricane activity: Causes and implications. Science, 535 
293: 474–478. DOI: 10.1126/science.1060040, 2001.   536 

Hansen, J., Ruedy, R., Sato, M., & Lo, K.:  (2010). Global surface temperature change. Reviews of 537 
Geophysics, 48(4). https://doi.org/10.1029/2010RG000345, 2010.   538 

Henley, B.J., Gergis, J., Karoly, D.J., Power, S.B., Kennedy, J., & Folland, C.K.:  (2015). A Tripole 539 
Index for the Interdecadal Pacific Oscillation. Climate Dynamics, 45(11-12), 3077-540 
3090.http://dx.doi.org/10.1007/s00382-015-2525-1 . Accessed on MM DD YYYY at 541 
"/data/timeseries/IPOTPI", 2015.. 542 

Hipel, K.W. and McLeod, A.I.: , (2005). Time Series Modelling of Water Resources and 543 
Environmental Systems. Electronic reprint of our book originally published in 1994. 544 
http://www. stats.uwo.ca/faculty/aim/1994Book/, 2005.   545 

Holland, G.J. and P.J. Webster.: (2007) Heightened tropical cyclone activity in the North Atlantic: 546 
Natural variability or climate trend? Philos. Trans. Roy. Soc., 365: 2695–2716. 547 
https://doi.org/10.1098/rsta.2007.2083, 2007.   548 

James, Gareth, J., Daniela Witten, D., Trevor Hastie, T.  and Robert Tibshirani, R.: 2014. An 549 
Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, 550 
Incorporated, 2014. . 551 

Knapp, K. R., H. J. Diamond, H. J., J. P. Kossin, J. P., M. C. Kruk, M. C. and C. J. Schreck, C. J.: 552 
2018:International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. 553 
[indicate subset used]. NOAA National Centers for Environmental Information. non-554 
gonvernment domain https://doi.org/10.25921/82ty-9e16, 2018.     555 

Knutson, T.R., J.L. McBride, J.L., J. Chan, J., K. Emanuel, K., G. Holland, G., C. Landsea, C., I. 556 
Held, I., J.P. Kossin, J.P., A.K. Srivastava, A.K., and M. Sugi, M.:  (2010) Tropical cyclones 557 
and climate change. Nature Geoscience, 3: 157–163; doi:10.1038/ngeo779, 2010.  558 

Klotzbach, P.J.: . (2006) Trends in global tropical cyclone activity over the past twenty years 559 
(1986–2005)  Geophys. Res. Lett., 33: L10805, pp 1-4. https://doi.org/10.1029/2006GL025881, 560 
2006.   561 

Landsea, C.W.:  (2005) Meteorology: Hurricanes and global warming. Nature, 438: E11–E12. 562 
https://doi.org/10.1038/nature04477, 2005.   563 

Formatted: Font color: Auto

Formatted: No underline, Font color: Auto

https://doi.org/10.1038/nature03906
https://doi.org/10.1073/pnas.1301293110
https://doi.org/10.1029/2010RG000345
http://dx.doi.org/10.1007/s00382-015-2525-1
https://doi.org/10.1098/rsta.2007.2083
https://doi.org/10.25921/82ty-9e16
https://doi.org/10.1029/2006GL025881
https://doi.org/10.1038/nature04477


 

20 
 

Landsea, C.W., B.A. Harper, B.A., K. Hoarau, K., and  J.A. Knaff, J.A.: (2006) Can we detect 564 
trends in extreme tropical cyclones? Science 2006, 313:452–454. DOI: 565 
10.1126/science.1128448, 2006.   566 

Landsea, C.W.:  (2007). Counting Atlantic tropical cyclones back to 1900. Eos, Transactions 567 
American Geophysical Union, 88(18), 197-202. https://doi.org/10.1029/2007EO180001, 2007.    568 

Mahala, B. K., Nayak, B. K., and& Mohanty, P. K.:  (2015). Impacts of ENSO and IOD on tropical 569 
cyclone activity in the Bay of Bengal. Natural Hazards, 75(2), 1105-1125. 570 
https://doi.org/10.1007/s11069-014-1360-8, 2015.   571 

Mann, H.B.:  (1945), Nonparametric tests against trend, Econometrica, 13, 245-259, 1945. . 572 

Mann, M.E., T.A. Sabbatelli, T.A.,  and U. Neu, U.: (2007) Evidence for a modest undercount bias 573 
in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett., 34: L22707; 574 
doi:10.1029/2007GL031781, 2007.    575 

Mann, M.E., J.D. Woodruff, J.D., J. Donnelly  J., and Z. Zhihua, Z.: (2009) Atlantic hurricanes and 576 
climate over the past 1,500 years. Vol. 460 (13 August 2009); doi:10.1038/nature0821, 2009. . 577 

McLeod, A. I.:  (2005). Kendall rank correlation and Mann-Kendall trend test. R Package Kendall, 578 
2005.  .  579 

Moon, I. J., Kim, S. H., and& Chan, J. C.:  (2019). Climate change and tropical cyclone 580 
trend. Nature, 570(7759), E3-E5, 2019. . 581 

Nogueira, R. C., Keim, B. D., Brown, D. P., and& Robbins, K. D.:  (2013). Variability of rainfall 582 
from tropical cyclones in the eastern USA and its association to the AMO and 583 
ENSO. Theoretical and applied climatology, 112(1-2), 273-283. 584 
https://doi.org/10.1007/s00704-012-0722-y, 2013.   585 

Saunders, M., Lea, A.: Large contribution of sea surface warming to recent increase in Atlantic 586 
hurricane activity. Nature 451, 557–560,  (2008) doi:10.1038/nature06422, 2008.   587 

Trenberth, K.E. and D.J. Shea, D.J.:  (2006) Atlantic hurricanes and natural variability in 2005. 588 
Geophys. Res. Lett., 33: L12704, doi:10.1029/2006GL026894, 2006.    589 

Trenberth, K. E.:  (2007). Warmer oceans, stronger hurricanes. Scientific American, 297(1), 44-51. 590 
https://www.jstor.org/stable/26069374, 2007.   591 

Trenberth, K.E.evin, Zhang, R., ong & National Center for Atmospheric Research Staff (Eds). Last 592 
modified 10 Jan 2019. "The Climate Data Guide: Atlantic Multi-decadal Oscillation (AMO)." 593 
Retrieved from https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-594 
oscillation-amo, 2019. . 595 

Venables, W. N. and Ripley, B. D. (:2002) Modern Applied Statistics with S. Fourth edition. 596 
Springer, 2002. . 597 

Walsh, K. J., Camargo, S. J., Knutson, T. R., Kossin, J., Lee, T. C., Murakami, H., Particular, C., 598 
2019: Tropical cyclones and climate change. Tropical Cyclone Research and Review, 8(4), 240-599 
250, https://www.sciencedirect.com/science/article/pii/S2225603220300047, 2019. . 600 

Wang, C. and, & Lee, S. K.:  (2008). Global warming and United States landfalling hurricanes. 601 
Geophysical Research Letters, 35(2). https://doi.org/10.1029/2007GL032396, 2008.  602 

Woodruff, S. D., Worley, S. J., Lubber, S. J., Ji, Z., Eric Freeman, J., Berry, D. I., ... & Wilkinson, 603 
C.: ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological 604 
archive. International journal of climatology, 31(7), 951-967, 2011.  605 

Formatted: No underline, Font color: Auto

Formatted: Font color: Auto

Formatted: Indent: Left:  0", First line:  0"

https://doi.org/10.1029/2007EO180001
https://doi.org/10.1007/s11069-014-1360-8
https://doi.org/10.1007/s00704-012-0722-y
https://www.jstor.org/stable/26069374
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo
https://www.sciencedirect.com/science/article/pii/S2225603220300047
https://doi.org/10.1029/2007GL032396


 

21 
 

Zhao, J., Zhan, R., Wang, Y., and & Xu, H.:  (2018). Contribution of the interdecadal Pacific 606 
oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western 607 
North Pacific since 1998. Journal of Climate, 31(20), 8211-8224. https://doi.org/10.1175/JCLI-608 
D-18-0202.1, 2018.   609 

https://doi.org/10.1175/JCLI-D-18-0202.1
https://doi.org/10.1175/JCLI-D-18-0202.1

